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ABSTRACT
This work contributes to reduce the cost of the verification process

of model-based systems, especially the ones designed as SysML ac-

tivity diagrams, by relying on the concept of diagram calls defined

in SysML standard. By exploiting the diagram calls concept, we

propose a mechanism to transform a given diagram into its equiva-

lent fractal (hierarchical) form. Further, we present an abstraction

algorithm to reduce the size of the obtained SysML activity dia-

gram by ignoring the irrelevant behaviors and by merging similar

artifacts. To do verification, the abstracted diagram is transformed

automatically into PRISM source code to check the system’s require-

ments that are specified in the probabilistic temporal logic, PCTL.

The soundness of the provided framework is presented for each

step, and, its practical effectiveness is demonstrated on diagrams

obtained by reversing the open source of OpenSAF middle-ware.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability;

KEYWORDS
Fractionation, SysML Activity Diagrams, Abstraction, Reduction,

Probabilistic Verification.
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1 INTRODUCTION
Motivations. In modern system development, various techniques

have been demonstrated for modeling systems and software such

as UML and SysML; also for verifying them to ensure their security,

correctness, and safety before deployment, e.g. automatic verifica-

tion, mechanization, and static/dynamic analysis. More particularly,

qualitative model checking [1, 4] is the most widely used technique

for the assessment of UML and SysML behavioral diagrams [12, 13].
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Model checking is a automatic formal verification technique for fi-

nite state concurrent systems that checks the systems’ requirements

specified as temporal logic expressions. In addition to qualitative

model checking, quantitative verification techniques based on prob-

abilistic model checkers [1] have recently gained popularity by

evaluating the satisfiability of a given property on systems that

inherently exhibit probabilistic behavior. From a modeling per-

spective side, SysML activity diagrams are behavioral models that

offer the possibility to call other diagrams of different kind such

as state machine and sequence diagrams, and also they allow the

specification of probabilistic behavior [11].

Background. Despite its wide use, model checking is generally a

resource-intensive process that requires a large amount of mem-

ory and time processing. This is due to the fact that the systems’

state space may grow exponentially with the size of the composed

concurrent processes combined with the number of variables. To

overcome this issue, various techniques have been explored [1, 4]

for qualitative model checking and leveraged later to cover the

probabilistic case. Among these techniques, several solutions aim

at optimizing the employed model checking algorithms by intro-

ducing symbolic data structures based on binary decision diagrams,

while others target to reduce the model as well as the requirement

under verification.

Abstraction is one of the most relevant techniques addressing

the state explosion problem [1, 4]. It can be seen as a mapping

from a concrete model into a more abstract one that encapsulates

the systems’ behavior while being of a reduced size. The intuition

behind this transformation is to be able to check a property against

an abstract model, and, then to infer safely equivalent results on the

concrete model. Abstraction [2] can be managed through, merging
states and transitions where similar behaviors are encapsulated

on a unified one, abstracting data where a set/range of values is

represented by a single symbolic value. Abstraction can also be

done via restriction by forbidding some behavior of the system; or

by an observer automaton that restricts systems behaviors to those

acceptable by an automaton that observes the system from outside.

Among well-known deployed abstraction algorithms are: cone of

influence, bi-simulation minimization, symmetry and partial order

reductions [4]. Thence, it is of a major importance to reduce the

complexity of a diagram as any approach translating the concrete

UML/SysML diagrams into themodel checker input languagewould

be limited by the tool’s abstraction mechanism, if exists. Moreover,

abstracting the semantic model instead of the concrete diagram can

be costly since the size of the semantic model is usually greater

than that of the diagram itself. Consequently, this work explores the

https://doi.org/10.1145/3297280.3297480
https://doi.org/10.1145/3297280.3297480
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second category by abstracting systems modeled in SysML activity

diagrams prior verification.

Contributions. To overcome the verification and modeling limi-

tations, we propose to reduce the cost of the verification process

of a system, modeled as SysML activity diagrams, by fractioning

the initial diagram to ease the use of other abstraction, reduction,

and refinement operations. The overall framework developing the

proposed solution is depicted in Fig. 1.

Â Ã Ā

A ϕ P

S R |=

Ξ

Ψ ϒ

Γ

Figure 1: Fractionation-based Verification.

Starting from the specification of a given system S, the frame-

work considers initially the SysML activity diagram A that models

properly S and its requirement specification ϕ that is expressed as

Probabilistic Computation Tree Logic (PCTL) to be guaranteed on

A. Then, the function Ξ fractionates A to be Â (Â is the hierarchical

representation of A) that is abstracted later using the function Ψ
with respect to ϕ, and the result is a new diagram Ã. To reduce more

Ã, the reduction function ϒ is applied to return a new compacted

diagram Ā. Further, to verify the satisfiability of ϕ, the transforma-

tion function Γ translates Ā into P, a PRISM source code. Finally,

we demonstrate the practical application of the proposed frame-

work using a case study that would be otherwise difficult to verify.

Besides, we observe a significant reduction in the state space by an

important rate, which makes probabilistic model checking helpful.

Outlines. The remainder of this paper is organized as follows.

Section 2 discusses the related work and compares it with the

proposed contribution. Section 3 presents the needed preliminaries

for this work. Then, the proposed Fractionation-based framework is

detailed in Section 4 and its implementation with the experimental

results are shown in Section 5. Finally, Section 6 concludes this

paper and provides hints on the possible future works.

2 RELATEDWORK
In the literature, fewworks examine the abstraction and the analysis

of SysML diagrams before verification while the majority rely on

the implemented algorithms within the plugged verification tools.

This work is compared to the existing initiatives that deal with the

verification of SysML and UML diagrams, and probabilistic systems.

Ouchani et al. [13, 14] proposed an abstraction framework that

reduces a SysML activity diagram with respect to a PCTL prop-

erty through cone of influence. The obtained diagram is mapped to

PRISM for verification. With respect to [13, 14] the current frame-

work covers more SysML artifacts, and accelerate the verification

process by fractioning diagrams which help to abstract easily the

diagrams. Also, it is helpful for the refinement and the correction

processes when needed. Further, this framework is applied on a

concrete use case.

Westphal [17] proposed a reduction UML framework explicit to

symmetric UML diagrams that are modeled with Rhapsody where

the requirements are expressed as live sequence charts. Westphal’s

approach looks to reduce the charts of the requirement and to ab-

stract data specified in the object reference model. The reduction

exploits the strong assumption of symmetric diagrams by applying

the symmetric reduction whereas data abstraction interprets data

in a symbolic domain. Compared to our work, Westphal’s approach

[17] is applied only on symmetric models and the verification pro-

cess when using Rhapsody is not well detailed.

Prashanth and Shet [15] proposed an abstraction technique spe-

cific to state chart diagrams. Initially, the approach computes a

set of relevant events in the diagram related to a safety property

expressed in LTL. The result is a new reduced diagram. However,

the approach does not show the representation of the abstracted

statechart either its soundness. Especially, the state space is chang-

ing for each safety property which means the specification of the

diagrams is also changing accordingly in the used verification tool.

Further, the approach does not cover the probabilistic behavior and

the deterministic decisions.

Daoxi et al. [5] proposed to reduce a single UML state machine

to preserve in the original model only the atomic propositions of

a LTL property. Then, they translate the abstracted model into a

Promela source code to be verified using Spin
1
. They adopt the same

mechanism as [15] without showing the abstracted state machine.

Further, both the abstraction and the translation mechanisms are

not automatic. Compared to our proposed contribution, Daoxi et al.

approach [5] is limited to a set of artifacts especially excluding the

probabilistic decisions.

Del Mar Gallardo et al. [18] proposed an abstraction framework

that abstracts data and events in state chart diagrams. Data ab-

straction segments the data domain by replacing data values with

symbolic ones whereas the events abstraction customizes a selected

set of events to be represented by a single event (called the mother

state). In fact, the considered state chart diagram has initially a

hierarchical form where the mother state encompasses already a

set of events that makes the events abstraction as a natural step

without automation. Further, the considered diagrams do not sup-

port probability, and the segmentation of the data domain is given

to the users choice without guidance.

Holtzen et al. [9] generalize the abstraction of non-deterministic

program for the probabilistic ones by explicitly quantifying the

non-deterministic choices. They upgrade the main definitions and

properties of the abstraction techniques to the probabilistic space.

In general the main concepts can be leveraged for both domains, but

the main difficulty is when abstracting a probabilistic choice, the

authors do not show how to estimate the distributions and guards

of a choice.

Brau et al. [3] combine heterogeneous modeling, abstraction and

analysis techniques to be applied on an avionic case study. They

use AADL
2
and CPAL

3
for modeling, the OCARINA toolchain to

1
http://spinroot.com, Spin is a formal verification tool for multi-threaded software

applications.

2
The Architecture Analysis and Design Language (AADL) is an industry standard

modeling language.

3
https://www.designcps.com/, The Cyber-Physical Action Language (CPAL) is an

implementation-oriented language meant to model and program Cyber-Physical Sys-

tems (CPS)
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parse AADL models, and CPAL2X to extract data from CPAL source

files. For analysis they use Alloy
4
that relies on SAT solver. The

main contribution of [3] is applying the chain tool on a simple

avionic case study, but without showing the way of specifying the

assumptions and how they are guaranteed when using Alloy.

Kloetzer and Mahulea [10] abstract a robot environment by

proposing a trajectory plan to monitor robots’ motion in a dy-

namic environment following an exponential probabilistic function.

Motions are built up on temporal logic by incorporating probabilis-

tic assumptions on region and a robot which eases the abstraction,

and to control better the movement in a region. The abstracted

transition system of a robot movement has been defined without

showing how it is produced based on the observed trajectory plan.

With respect to the studied works, the majority of them rely on

the abstraction techniques built with the verification tools without

proving the soundness the applied abstraction approach. Besides,

our proposed framework looks prominent since it reduces the size

of diagrams by a considerable rate and keeps a backward path for

reconstruction when needed. Further, it develops an automatic ab-

straction and verification mechanism. Furthermore, this framework

is scalable and can exploit the existing reduction techniques built

within the verification tool, if needed.

3 PRELIMINARIES
We present in this section the main ingredients needed for the

proposed framework, mainly, SysML activity diagrams and the

PCTL temporal logic.

3.1 SysML Activity Diagrams
SysML activity diagrams are a graph-based representation to de-

sign system’s behaviors at various levels of abstraction [8] where

vertices are nodes that control flows in edges. Figure 2 illustrates

the main graphical artifacts of SysML activity diagrams that can

be decomposed into two categories of constructs: activity nodes

and activity edges. Hence, in general the number of edges is always

greater than the number of nodes.

The nodes are categorized into three types: activity invocation,

object and control nodes. Activity invocation includes send and

receive signals, action, and call behavior. Activity control nodes are

initial, flow final, activity final, decision, merge, fork, join nodes,

and the interrupt region. Activity edges are of two types: control

flow and object flow. Control flow edges are used to show the execu-

tion path through the activity diagram and connect activity nodes.

Object flow edges are used to show the flow of data between activity

nodes. Concurrency and synchronization are modeled using forks

and joins, whereas, branching is modeled using decision and merge

nodes. While a decision node specifies a choice between different

possible paths based on the evaluation of a guard condition (and/or

a probability distribution), a fork node indicates the beginning of

multiple parallel control threads. Moreover, a merge node specifies

a point from where different incoming control paths follow the

same path, whereas a join node allows multiple parallel control

threads to synchronize and rejoin. Further, an interrupt region mod-

els the interruption when errors occur with a precise probability.

4
http://alloytools.org, Alloy is a language for describing structures and a tool for

exploring them.

To control the flow, the activation of a node depends only on the

termination of its preceded node and the guard satisfaction of their

related edge. Except for the initial node, which is activated when

the main diagram is invoked.

initial activity final flow final

send opaque call

decision receive merge

join fork interrupt region

Figure 2: SysML Activity Diagram Artifacts.

When a call behavior action satisfies the input flow prerequisites,

it consumes its input tokens and invokes the specified behavior.

The values in the input tokens are made available to the invoked

behavior as argument values. When the behavior’s execution is

terminated, tokens are offered on all outgoing control edges. Fur-

ther, an activity diagram can invoke a new activity behavior in a

decision node to evaluate guards or to measure a probability to

take a decision. Furthermore, the behavior invocation supports

both the synchronous and asynchronous calls. In the asynchronous

case, the execution of the invoked behavior proceeds without any

further dependency on the execution of the activity containing the

invoking action. And in the synchronous case, the execution of the

calling action is blocked until it receives a reply token from the

invoked diagram.

We denote by a, ai , at , and af opaque (atomic), initial, flow final,

and activity final nodes, respectively; a I v and a J v to send

and receive a value v by the node a, a ↑ A to call an activity A
by a, a♦д,p a guarded, probabilistic, or conditional probabilistic

decision in a, a� a merge node, a| a join, a∥ a fork, a‡p an interrupt

regionwith a probabilityp, and�д the activity edge with the guard

д5. Definition 3.1 expresses formally SysML activity diagrams by

assuming one initial node and one final node only for each diagram,

and Dist(N) denotes a convex probability distributions over the set

of activity nodes N .

Definition 3.1. An SysML activity diagram is a tupleA = ⟨N, E,

G, Grd, Prob⟩, where:

• N is a finite set of activity nodes such as ai and af denote

the initial and the final nodes, respectively;

• E is a finite set of activity edges,

5
In this paper, we consider д a propositional logic formula that can be extended later.
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• G is the set of guards,

• Grd : E 7→ G is a partial function that returns a guard for

an edge, and

• Prob : N 7→ Dist(N) is a partial probabilistic function that

assigns for each node a convex discrete probability distribu-

tion µ ∈ Dist(N) over its output transitions.

3.2 PCTL Specification
We comment here what properties can be of relevance and how

to express them in such a way that they can specify very well the

requirements needed to check the functionality of the system under

verification. A formalism that is able to express all the factors that

diagrams describe, paths of actions, propositions on state variables,

probabilities of occurrence of one or a sequence of actions can be

PCTL [6]. Formulas ϕ in such a logic are generated by the following

BNF grammar.

ϕ ::= ⊤ | ap | ϕ ∧ ϕ | ¬ϕ | P◃▹ p [ψ ]

ψ ::= Xϕ | ϕUϕ | ϕU
≤ kϕ

Here, k ∈ N, p ∈ [0, 1], and ◃▹∈ {<, ≤, >, ≥}. A state formula can be

“ap”, an atomic proposition, or any propositional logic expression

built from “ap”. P◃▹ p [ψ ], called probabilistic path predicate, returns
true if the probability to satisfy the path formula ψ is ◃▹ p. A path

formula is built from the typical temporal operators next (X), until
(U), and bounded until (U≤ k

). Other logic operators can be derived

from the basic ones, like eventually and generally that are denoted

respectively by F andG . The semantics of these operators are given

by the following equivalence relations.

• ⊥ ≡ ¬⊤, ϕ ∨ ϕ ′ ≡ ¬(¬ϕ ∧ ¬ϕ ′), ϕ → ϕ ′ ≡ ¬ϕ ∨ ϕ ′, and
ϕ ↔ ϕ ′ ≡ ϕ → ϕ ′ ∧ ϕ ′ → ϕ.

• Fϕ ≡ ⊤ U ϕ, F ≤ kϕ ≡ ⊤ U ≤ k ϕ, Gϕ ≡ ¬(F¬ϕ), and

G≤ kϕ ≡ ¬(F ≤ k¬ϕ) where k ∈ N.
• P≥p [Gϕ] ≡ P≤1−p [F¬ϕ].

4 FRACTIONATION-BASED VERIFICATION
FRAMEWORK

We detail the framework flow depicted in Fig. 1 by presenting first

the fractionation algorithm (Section 4.1). Then, the abstraction

mechanism including the reduction rules (Section 4.2). Finally, we

present the transformation of diagrams to a PRISM source code

(Section 4.3).

4.1 Fractionation Algorithm
For an optimal hierarchical representation, first we look for the

largest possible sub diagram called ample, a sub diagramwith single

input and single output, that can be extracted from the initial one.

Then, we proceed the same process till satisfying the stopping crite-

ria
6
(a sequence of opaque nodes). We fractionate A by extracting

a set of sub-diagrams A1, · · · ,An satisfying the stopping criteria

such that A = A′[a1 ↑ A1, · · · , an ↑ An ] where ‘ = ‘ means both

sides have equivalent behaviors.

To align within the standard syntax of SysML activity diagrams,

an ample is bounded by a single input node and a single output

node. Definition 4.1 stipulates formally an ample where pred(a) and

6
Initially, we consider a path of opaque nodes as the smallest sub diagram.

succ(a) return respectively the predecessor and successor nodes of

a given node a.

Definition 4.1. Let A = ⟨N, E, G, Grd, Prob⟩ be an SysML ac-

tivity diagram,A′ = ⟨N ′, E ′, G′, Grd ′, Prob ′⟩ is the largest ample

of A such that A = A′′[a ↑ A′] where A′′ = ⟨N ′′, E ′′, G′′, Grd ′′,
Prob ′′⟩, iff:

• N ′ ⊆ N , N ′′ = (N \ N ′) ∪ {a ↑}, ai = a′′i , a′i , and
af = a′′f , a′f ,

• E ′ ⊆ E and E ′′ = (E \ E ′) ∪ {predA(succA′(a′i )) � a,
a � succA(predA′(a′f ))},

• G′ ⊆ G, G′′ = G \G′
,Grd(E) = Grd ′(E ′) ∪Grd ′′(E ′′) and

Grd ′(E ′) ∩Grd ′′(E ′′) = ∅, and

• Prob ′′(N ′′) = (Prob(N) \ Prob ′(N ′)) ∪ {predA(succA′(a′i ))
→1 a, a →1 succA(predA′(a′f ))} and Prob

′(N ′) ⊆ Prob(N).

We ensure the scalability of themodeling and verification process

by proving Corollary 4.2 that shows the associativity property of

the call composition operator ↑. For simplicity, we expressA[a ↑ A′]

by A ↑a A
′
.

Corollary 4.2. The composition relation based on the call opera-
tor ↑ is associative, i.e. : A1 ↑a1

(A2 ↑a2
A3) = (A1 ↑a1

A2) ↑a2
A3.

Proof. Based on Definition 4.1, it is easy to show that A1 ↑a1

(A2 ↑a2
A3) = (A1 ↑a1

A2) ↑a2
A3, by comparing the final con-

structed tuple of each side as defined in Definition 4.1. �

The algorithm “Fractal” illustrated in Algorithm 1 finds the

largest possible amples of a given SysML activity diagram A by

developing the function Ξ. It is called recursively to find a new

ample inside the largest ample found by making it as an SysML

activity diagram. The diagram is visited using a depth-first search

procedure and the algorithm’s output is a fractal diagram. First,

the initial node is pushed into the stack of nodes denoted by nodes
(line 6). The algorithm recursively pops a node from the stack nodes
into the current node denoted by cNode (line 8). For a current node
cNode with a single input edge (line 11) where its successor nodes

have the same output node (line 13) the current node is considered

and its marked successors are pushed into the stack of nodes (line

14). After all nodes are visited, the new diagram newD to be called

in the current node cNode is constructed from nNode by adding

an initial and a final node (lines 21-24). Recursively, the algorithm

is called for all obtained diagrams satisfying single input single

output (lines 25-27).

By relying on the underlying semantics of activity diagrams

proposed through operational rules and resulting a probabilistic

automaton [13], we considerMA as the probabilistic automaton of

A; and we denote by RΞ the relation related to the function Ξ that

is defined in Definition 4.3.

Definition 4.3 (Fractionation relation). Let A,A′ ∈ A where

A′ = Ξ(A); then,MARΞMA′ denotes the relation between the prob-

abilistic automataMA,MA′ of A and A′
.

The soundness of Ξ speculated in Lemma 4.4 shows that the

relation RΞ is a bi-simulation relation [16].

Lemma 4.4 (Fractionation Soundness). The fractalization al-
gorithm Ξ is sound, i.e.MARΞMA′ is a bi-simulation relation.
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Algorithm 1 The Largest Ample Algorithm (Fractal).

Input: SysML activity diagram A.
Output: Fractal SysML activity diagram A′[a1 ↑ A1, · · · , an ↑ An ].

1: newDs as list_of_ Diagrams ◃ List of new diagrams:

◃ A1, · · · ,An
2: curD, newD,nodes as Stack ◃ Current diagram, next diagram,

◃ and all nodes.

3: cNode as Node ◃ Current node to analyze.

4: nNode, vNode as list_of_ Node ◃ Nodes and visited ones

◃ for the new diagram.

5: procedure Fractal(A)
6: nodes.pop(in); ◃ Consider the initial node.

7: while not nodes.empty() do ◃ Parse all nodes.

8: cNode := nodes.pop(); ◃ Select a current node.

9: if cNode not in vNode then
10: vNode.add(cNode); ◃ Consider the current node

◃ as visited.

11: if (size(pred(cNode))=1) ∧ Type(cNode) , ai ) then
12: nNode := next(cNode);
13: if (size(succ(nNode))==1 ∧ Type(cNode) <

{af , at })) then
14: nNode.add(cNode); ◃ Add the next node

◃ to the new diagram.

15: nodes.delete(cNode);
16: end if
17: end if
18: end if
19: nodes.push(nNode);
20: end while
21: newD.push(in);
22: newD.push(nodes);
23: newD.push(f in);
24: newDs.add(newD); ◃ Construct the new diagram.

25: while not newDs.empty() do curD = newDs.Next;
26: Call Fractal(curD); ◃ Fractionate another diagram.

27: end while
28: end procedure

Proof. For a given Awhere A′ = Ξ(A), we prove the soundness
of Ξ by showing the correspondence between any state and its

related transitions inMA with its similar associated one inMA′ .

Algorithm 1 implements Ξ by adding two Dirac transitions (Con-

ditions 2 and 4 in Definition 4.1) having silent actions for each called

diagram. Further RΞ is an equivalence relation since Ξ is reflexive,

symmetric et transitive. And for any action in MA we have the

same inMA′ and we have for every two states s and s ′ inMA and

M ′
A the same probability since Ξ does not affect the probabilistic

decisions. Then,MA andM ′
A are probabilistically bi-simulated. �

4.2 The Abstraction Algorithm
The abstraction step of the current framework implements, first Ψ
then ϒ, by extending the one developed in [13] and collapsing states
that have similar behaviors as well by taking advantages from the

properties of the operator ↑.

To implement Ψ, we consider a PCTL expression ϕ to be veri-

fied on A where Σϕ is the set of the atomic propositions of ϕ. By
assuming Σϕ ⊆ N , we propose Definition 4.5 that reduces the

size of A. The first rule excludes the nodes of the diagram that are

unrelated to the activity whereas the second excludes the entire

called diagram.

Definition 4.5. For a given SysML activity diagram A ↑a A
′
and

a PCTL expression ϕ such that Σϕ ⊆ N , we have

• ∀ax < Σϕ ∧ ax ∈ N ∪N ′
: Ψ(ax � N ) = N .

• Σϕ ∩ NA′ = ∅ : Ψ(A ↑a A
′) = A.

Further, Definition 4.6 develops the set of collapsing rules imple-

mented by function ϒ.

Definition 4.6. For a SysML activity diagram A, we define a set
of reduction rules that are applicable on the artifacts ∥, |, �, and ♦
as follows.

• ϒ(∥(a1, ∥(a2, a3))) = ∥(a1, a2, a3),

• ϒ(|(a1, |(a2, a3))) = |(a1, a2, a3),

• ϒ(�(a1,�(a2, a3))) = �(a1, a2, a3),

• ϒ(♦p (a1,♦p′(a2, a3))) = ♦p .p′,p .(1−p′),(1−p).(1−p′)(a1, a2, a3),

• ϒ(♦д(a1,♦д′(a2, a3))) = ♦д∧д′,¬д∧д′,¬д∧¬д′(a1, a2, a3).

The algorithm “AbsRed” illustrated in Algorithm 2 abstracts a

given SysML activity diagram A by taking into account all atomic

propositions of a specification ϕ ‘Var (ϕ)’. The diagram is visited

using a depth-first search procedure, then, the algorithm’s output

is a less complex diagram. First, the initial node is pushed into the

stack of nodes denoted by nodes (line 5). The algorithm recursively

pops a node from the stack nodes into the current node denoted

by cNode (line 7) and adds each visited node into the list vNode of
visited nodes (line 9). Then, it applies the abstraction rules in order

to minimize the diagram A (lines 10-12). In each iteration, the desti-

nation nodes of the cNode’s outgoing edges are explored. When two

successive nodes are matched (line 14), then they will be collapsed

(line 15) to be pushed into nodes (line 21). The condition in line 17

excludes a diagram not overlapped with the atomic propositions of

ϕ. The algorithm terminates when all nodes are visited.

The algorithm implements the composed function ϒ ◦ Ψ by call-

ing first Ψ then ϒ. Hence, Definition 4.7 defines the relation Rϒ◦Ψ
between the probabilistic automata of A denoted byMA andMA′

of A′
obtained by A′ = ϒ(Ψ(A)).

Definition 4.7 (Abstraction-Reduction relation). Let A,A′ ∈ A

where A′ = ϒ(Ψ(A);MARϒ◦ΨMA′ is the relation between the prob-

abilistic automataMA,M
′
A of A and A′

, respectively.

The soundness of the composed functions speculates the type of

relation betweenMA andMA′ where A′ = Ψ ◦ ϒ(A).

Lemma 4.8 (Abstraction-Reduction Soundness). Ψ ◦ ϒ is
sound, i.e.MARϒ◦ΨMA′ is a probabilistic weak simulation relation.

Proof. For A′ = ϒ(Ψ(A)), we prove the soundness of ϒ ◦ Ψ by

showing the correspondence of a set of transitions in MA with a

weak transition inMA′ for a given state inMA.

We have ϒ ◦ Ψ implemented in Algorithm 2 hides actions by

applying Ψ which replaces a set of transitions inMA with a weak

transition in MA′ . Further, ϒ merges nodes that reduces states in
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Algorithm 2 The Abstraction-Reduction Algorithm.

Input: SysML activity diagram A.
Output: New Abstracted and Reduced SysML activity diagram A′

.

1: nodes as Stack ◃ All nodes.

2: cNode as Node ◃ Current node.

3: nNode, vNode as list_of_ Node ◃ New and visited nodes.

4: procedure AbsRed(M,ϕ)
5: nodes.push(in);
6: while not nodes.empty() do
7: cNode := nodes.pop(); ◃ Current node to analyze.

8: if cNode not in vNode then
9: vNode.add(cNode);
10: if cNode < InstOf(fin,in)∪Var(ϕ)) then
11: nNode := next(cNode); ◃ Abstracting nodes

12: nodes.delete(cNode);
13: end if
14: if (Match(nNode,succ(nNode))) then
15: M.Collapse(nNode,succ(nNode)); ◃ Reducing

◃ nodes.

16: end if
17: if (Var (ϕ) 1 A′

) then
18: A.delete(A′); ◃ Excluding a diagram.

19: end if
20: end if
21: nodes.push(nNode); ◃ Constructing new diagram.

22: end while
23: end procedure

MA′ by preserving the probability distribution for the weak tran-

sitions. Then, for the transitions of any state in MA there exist a

corresponding weak transition for a state inMA′ to represent the

same behavior. Consequently,MARϒ◦ΨMA′ is a probabilistic weak

simulation relation. �

4.3 Transformation Algorithm
The function Γ presented in Fig. 1 translates a diagramA to a PRISM

source code P . The latter is a composition of modules, presenting

diagrams as processes, and communicate à la CSP algebra [7] over

global and local variables. Each module has a finite set of local

variables of type boolean or integer. A module’s state is defined by

the evaluation of its local variables, while the global state of P is

defined by the evaluation of all variables, locals and global.

The behavior of each module is described by a set of proba-

bilistic and Dirac commands representing the transitions of the

probabilistic automata of A (the underlying semantics of an activ-

ity has been provided as probabilistic automata [13]). Probabilistic

commands are written as [α] д → p1 : u1+...+pn : un , and Dirac

as [α] д → u where pi ∈]0, 1[,
∑

1≤i≤n
pi = 1, α is the action label,

and the guard д is a proposition logic formula over all variables.

The update u stipulates the execution of the action α by specify-

ing the next state of the one satisfying д. An update ui expresses
explicitly the evaluation of the local variables of the next state

as (v ′j = [[vj ]])& · · ·&(v ′k = [[vk ]]) by assigning a value [[vi ]] to a

variable vi , where & is the conjunction operator.

For the set of activities A and the set of PRISM programs P, we

define the function Γ that assigns for each node and edge a fragment

of PRISM source code. The generated code of any diagram, initial

or called, is bounded by terms ’module the diagram’s name’ and
endmodule.

Γ(A) =



[αx ]x → (x ′ = ⊥)&(y′ = ⊤); iff x,y ∈ N, x � y ∈ E,

Type(x) ∈ {a, ai }, and

Type(y) ∈ {a, at , af , |, ∥,�,♦, ‡}

[αx ]x → (x ′ = ⊥)&(y′
1
= ⊤)&(y′

2
= ⊤); iff x,y1,y2 ∈ N, x � y1 ∈ E,

x � y2 ∈ E, Type(x) ∈ {∥}, and

Type(y) ∈ {a, at , af , |, ∥,�,♦, ‡}

[αx ]y1&y2 → (x = ⊤)&(y′
1
= ⊥)&(y′

2
= ⊥); iff x,y1,y2 ∈ N, x � y1 ∈ E,

x � y2 ∈ E, Type(x) ∈ {|}, and,

Type(y) ∈ {a, at , af , |, ∥,�,♦, ‡}

[αx ]y1 ∨ y2 → (x = ⊤)&(y′
1
= ⊥)&(y′

2
= ⊥); iff x,y1,y2 ∈ N, x � y1 ∈ E,

x � y2 ∈ E, Type(x) ∈ {�}, and,

Type(y) ∈ {a, at , af , |, ∥,�,♦, ‡}

[αx ]x → p : (x = ⊥&y1 = ⊤) iff x ∈ N, x �p y1 ∈ E,

+(1 − p) : (x = ⊥&y2 = ⊤); x �1−p y2 ∈ E, Type(x) ∈ {♦p }, and,

Type(y) ∈ {a, at , af , |, ∥,�,♦, ‡}

[αx ]x ∧ д → (x = ⊥)&(y′
1
= ⊥); iff x,y1,y2 ∈ N, x �д y1 ∈ E,

[αx ]x ∧ ¬д → (x = ⊥)&(y′
2
= ⊥); x �¬д y2 ∈ E, Type(x) ∈ {♦д}, and,

Type(y) ∈ {a, at , af , |, ∥,�,♦, ‡}

[αx ]x → (x = ⊥)&(y′
1
= ⊥); iff x,y1,y2,y3 ∈ N, x � y3 ∈ E,

[αx ]x → (x = ⊥)&(y′
2
= ⊥); x � y2 ∈ E, Type(x) ∈ {↑},

Type(y1) ∈ {ai }, Type(y2) ∈ {af }, and,

Type(y) ∈ {a, at , af , |, ∥,�,♦, ‡}

[αx ]x → (x ′ = ⊥) iff x ∈ N, Type(x) ∈ {at }

[αx ]x →
∧
i>0

(x ′i = ⊥) iff x ∈ N, Type(x) ∈ {af }

[αx ]x1 ∧ x2 → p : (x ′
1
= ⊥&x ′

2
= ⊥&y′

1
= ⊤); iff x1, x2,y1,y2 ∈ N, x1 �p y1 ∈ E,

+1 − p : (x ′
1
= ⊥&x ′

2
= ⊥&y′

2
= ⊤); x2 � y2 ∈ E, Type(x) ∈ {‡}, and,

[αx ]¬x1 ∧ x2 → (x ′
1
= ⊥&x ′

2
= ⊥&y′

2
= ⊤); Type(y) ∈ {a, at , af , |, ∥,�,♦}

Definition 4.9 defines the mapping relation of Γ by relying on

the correspondence betweenMA, the probabilistic automata of A,
and MP the probabilistic automata of P constructed respectively

through the operational semantic rules developed in [13].

Definition 4.9 (Mapping relation). For A ∈ A and P ∈ P where

MA and MP are the probabilistic automata of A and P such that

Γ(A) = P ; then,MARΓMP is the relation betweenMA andMP .

The function Γ is sound means that the relation between MA
andMP is a strong bi-simulation relation [16].

Lemma 4.10 (Mapping Soundness). The mapping algorithm Γ is
sound, i.e.MARΓMP is a strong probabilistic bi-simulation relation.

Proof. By comparing the transitions of MA and MP where

Γ(A) = P , A ∈ A, and P ∈ P, we show that for each action of

a state inMA has one and only one equivalent inMP . Further for

two states s1 and s2 where s1RΓs2, we have:

• The initial state ofMA is related to the one ofMP , and

• Each PRISM command produced by Γ is the transitions of

an action. Further, for each pair of states s1 and s2 where

s1RΓs2 and each transition s1 →p1
s ′
1
of either MA or MP
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there exists a transition s2 →p2
s ′
2
of eitherMA orMP , such

that p1 = p2.

So,MARΓMP is a strong probabilistic bi-simulation relation. �

Proposition 4.11 shows that the function Γ preserves the satisfia-

bility of a PCTL expression ϕ.

Proposition 4.11 (Mapping Preservation). Let Γ(A) = P where
MA and MP are the probabilistic automata of A and P . Then, for a
PCTL expression ϕ we have:MA |= ϕ ⇔ MP |= ϕ.

Proof. Based on the PCTL semantics (Section 3.2) and by fol-

lowing a structural induction on each term of PCTL, we prove the

PCTL satisfiability preservation on bothMA andMP .

We haveMARΓMP strong bi-simulation relation(Lemma 4.10),

which means paths and states behavior are equivalent in bothMA
andMP . Then propositional and temporal operators are satisfied on

MP andMA for each PCTL operator with respect to its semantics

(the equivalence relations defined in Section 3.2). Hence, MA |=

ϕ ⇔ MP |= ϕ �

5 EXPERIMENTAL RESULTS
We show the effectiveness of the proposed framework by applying

it on the Open Service Availability Framework
7
(OpenSAF), an open

source project focused on service availability that goes beyond high

availability requirements established to develop a base platform

high availability middleware for communication.

OpenSAF’s application interface specification code consists of

4,849 files and 1,735,859 lines written in C describing 12 services

and two frameworks. For the experiment, we rely on Visustin
8
tool

that generates the flow chart diagrams of OpenSAF C++ source

code used to derive an equivalent SysML activity diagrams. The

obtained diagrams are not probabilistic which are equivalent to

UML activity diagrams for this application since the code does not

support probabilistic choices.

Exist(temp_var)

Temp_var==1

RcvAsync

Replysync

RcvAsync

RcvSync

PrepareData

Yes

No Yes

SendReceive

  SendReceiveA

SendSync

SendAsync

No

Figure 3: The messaging activity diagram.

7
http://opensaf.org.

8
http://www.aivosto.com/visustin.html. It generates flow charts of 36 programming

languages

The messaging service is the most important package in Open-

SAF. It is a buffered message passing system for processes on the

same or different nodes based on message queue. As first step, the

function Ξ is applied on the initial one obtained from Visustin. The

result is a fractioned diagram calling 9 other diagrams as shown in

Figure 3. For the limit of space we focus on the messaging service,

the called SendSync diagram is described in Figure 4 and it calls 6

other diagrams including saMsgInitialize behaviour.

Rc != SA_AIS_OK

FinishSending

StartSendSync

Version

No

callbk

saMsgInitialize

Rc != SA_AIS_OK

saMsgMessageSend

saMegFinalize

No

No

Yes
Yes

PrintMessage

Yes

Figure 4: SendSyn Activity diagram.

For verification, we consider two requirements for the behavior

related to ‘saMsginitialize’: 1) The ncsAgents should authenticate

before starting up, and also, 2) If it can be shutdown aftermsInitSync.

Both are expressed in PCTL as follows where G stands for the

generally operator that looks for all paths, X is the next operator,
and the eventually operator F that looks for any state in a path.

• Pmax =?G[(InitParameters → X (saSecAuthenticate))
&(saSecAuthenticate → X (ncs_aдents_startup))]

• Pmin =?G[(InitParameters → F (ncs_aдents_shutdown))]

As a second step, the function Ψ is applied where the nodes

and diagrams that do not contain the atomic propositions from

the properties are excluded. Then, the function ϒ merges nodes of

similar kinds. The result is a considerable reduced diagram. Later

the function Γ is applied and the PRISM source code is generated.

The fragment code listed in Listing 1 shows a part of the code.

1 MDP

2 cons t i n t s t e p ;

3 module Messaging / / Module o f messaging diagram

4 inM : boo l i n i t t r u e ; / / The v a r i a b l e o f the i n i t i a l node .
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5 DecxTmpVar : boo l i n i t f a l s e ; / / De c i s i on f o r check ing the guard

tmpvar .

6 xTmpVar : boo l i n i t f a l s e ; / / Checking the guard tmpvar .

7 DecTmpVar : boo l i n i t f a l s e ; / / De c i s i on to e v a l u a t e the guard

tmpvar .

8 TmpVar : [ 0 . . 1 ] i n i t 0 ; / / The i n i t i a l v a l u e o f tmpVar .

9 SendSyncCall : boo l i n i t f a l s e ; / / SendSyncCa l l a c t i o n node .

10 SendSyncBack : boo l i n i t f a l s e ; / / SendSyncCa l l a c t i o n node .

11 Merдe : [ 0 . . 3 ] i n i t 0 ; / / The i n i t i a l v a l u e o f merge .

12 End : boo l i n i t f a l s e ; / / End to s t op the behav i o r .

13 / / i n t i a l b ehav i o r

14 [ inM ] ( inM ) −>(in′M = f alse ) &(DxTmpVar ′ = true ) ;
15 / / F i r s t d e c i s i o n behav i o r

16 [DxTmpVar ] (DxTmpVar ) −>(DxTmpVar ′ = f alse ) &(xTmpVar ′ = true ) ;
17 [DxTmpVar ] (DxTmpVar ) −>(DxTmpVar ′ = f alse ) &(xTmpVar ′ = f alse ) ;
18 [xTmpVar ] (xTmpVar ) −>(xTmpVar ′ = f alse ) &(TmpVar ′ = 1 ) ;

19 [xTmpVar ] (xTmpVar ) −>(xTmpVar ′ = f alse ) &(TmpVar ′ = 0 ) ;

20 / / Second d e c i s i o n behav i o r

21 [DxTmpVar ] (DxTmpVar ) −>(DxTmpVar ′ = f alse ) &(xTmpVar ′ = true ) ;
22 [DxTmpVar ] (DxTmpVar ) −>(DxTmpVar ′ = f alse ) &(xTmpVar ′ = f alse ) ;
23 [xTmpVar ] (xTmpVar ) −>(xTmpVar ′ = f alse ) &(TmpVar ′ = 1 ) ;

24 [xTmpVar ] (xTmpVar ) −>(xTmpVar ′ = f alse ) &(TmpVar ′ = 0 ) ;

25 / / C a l l SendSync behav i o r

26 [SendSyncCall ] (TmpVar = 1 ) −>(TmpVar ′0 = 1 ) &(SendSyncCall ′ = true ) ;
27 [SendSyncBack ] (SendSyncCall ) −>(SendSyncCall ′ = f alse ) &(

SendSyncBack′ = true ) ;
28 / / Merge behav i o r

29 [Merдein ] (DxTmpVar & !xTmpVar ) −>(DxTmpVar ′ = f alse ) &(

Merдe′ = 1 ) ;

30 [Merдeout ] (Merдe > 0 ) −>(End′ = true ) ;
31 / / End behav i o r

32 [End ] (End > 0 ) −>(in′M = f alse ) . . . ( End
′ = f alse ) ;

33 endmodule

Listing 1: The PRISM Source Code Fragment of the System.

Finally, we compare the verification results before and after ap-

plying the proposed framework. We have obtained false (Pmax=0)

for the first property and true (Pmin=1) for the second one which

means OpenSAF needs to implement the authentication for agents

and nodes. The scalability is the main difference in terms of time

verification. Without applying the proposed framework, it costs

39046.98 seconds for the first property and 27154.87 seconds for

the second. By applying the presented framework, the verification

time costs 234.589 and 122.01 seconds, respectively. It means, the

proposed framework reduces the verification time, in this appli-

cation case, with a considerable rate of more than 90% which is a

prominent reduction.

6 CONCLUSION
We presented, in this paper, a promising verification framework that

reduces significantly the cost of probabilistic model-checking by

fractioning a system initially modeled as SysML activity diagrams.

The proposed framework encloses three steps, the first builds a

given diagram in its fractal form which facilitates and accelerates

later the analysis and verification procedures. Further, the abstrac-

tion and reduction steps reduce the diagram size with respect to

the requirement under verification. Furthermore, the translating

mechanism verifies the system under test by transforming its proper

diagrams to PRISM source code. Finally, we proved the soundness of

the presented framework, and illustrated its potential effectiveness

on a real use case.

In the near future, we would like to extend the presented frame-

work by investigating the directions shown by dashed edges and

enumerated steps in Figure 5. First, we would like to include other

kinds of diagrams and features (1), and detail the sketched proofs by

Â Ã Ā

A (1) ϕ P

S R |=

Ξ

Ψ ϒ

Γ

(3)

(2)

Figure 5: The Extended Fractionation Framework.

presenting the underlying semantics of the fractal SysML activity

diagrams, the properties of the implemented functions, and the

preservation of the requirements satisfaction. Further, we plan to

instantiate automatically the property from the diagrams (2), and to

provide a probabilistic counter example guided abstraction refine-

ment approach on the obtained results in case of errors (3). Finally,

we target to apply this framework on a large real applications.
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