
HAL Id: hal-04108096
https://hal.science/hal-04108096

Submitted on 14 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Call Behavior-Based Compositional
Verification Framework for SysML Activity Diagrams

Samir Ouchani

To cite this version:
Samir Ouchani. Towards a Call Behavior-Based Compositional Verification Framework for SysML Ac-
tivity Diagrams. ICTAC 2019 : 16th International Colloquium on Theoretical Aspects of Computing,
Oct 2019, Hammamet, Tunisia, France. �hal-04108096�

https://hal.science/hal-04108096
https://hal.archives-ouvertes.fr

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/336822768

Towards a Call Behavior-Based Compositional Verification Framework for

SysML Activity Diagrams

Chapter · October 2019

DOI: 10.1007/978-3-030-32505-3_13

CITATION

1
READS

27

1 author:

Samir Ouchani

Groupe Cesi

100 PUBLICATIONS 667 CITATIONS

SEE PROFILE

All content following this page was uploaded by Samir Ouchani on 28 November 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/336822768_Towards_a_Call_Behavior-Based_Compositional_Verification_Framework_for_SysML_Activity_Diagrams?enrichId=rgreq-9707872aa4e6eb7d780b66f63c28ce47-XXX&enrichSource=Y292ZXJQYWdlOzMzNjgyMjc2ODtBUzo4MzAxOTQwNTkzMzM2MzJAMTU3NDk0NTA5NjEwMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/336822768_Towards_a_Call_Behavior-Based_Compositional_Verification_Framework_for_SysML_Activity_Diagrams?enrichId=rgreq-9707872aa4e6eb7d780b66f63c28ce47-XXX&enrichSource=Y292ZXJQYWdlOzMzNjgyMjc2ODtBUzo4MzAxOTQwNTkzMzM2MzJAMTU3NDk0NTA5NjEwMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9707872aa4e6eb7d780b66f63c28ce47-XXX&enrichSource=Y292ZXJQYWdlOzMzNjgyMjc2ODtBUzo4MzAxOTQwNTkzMzM2MzJAMTU3NDk0NTA5NjEwMg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Samir-Ouchani?enrichId=rgreq-9707872aa4e6eb7d780b66f63c28ce47-XXX&enrichSource=Y292ZXJQYWdlOzMzNjgyMjc2ODtBUzo4MzAxOTQwNTkzMzM2MzJAMTU3NDk0NTA5NjEwMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Samir-Ouchani?enrichId=rgreq-9707872aa4e6eb7d780b66f63c28ce47-XXX&enrichSource=Y292ZXJQYWdlOzMzNjgyMjc2ODtBUzo4MzAxOTQwNTkzMzM2MzJAMTU3NDk0NTA5NjEwMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Groupe_Cesi?enrichId=rgreq-9707872aa4e6eb7d780b66f63c28ce47-XXX&enrichSource=Y292ZXJQYWdlOzMzNjgyMjc2ODtBUzo4MzAxOTQwNTkzMzM2MzJAMTU3NDk0NTA5NjEwMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Samir-Ouchani?enrichId=rgreq-9707872aa4e6eb7d780b66f63c28ce47-XXX&enrichSource=Y292ZXJQYWdlOzMzNjgyMjc2ODtBUzo4MzAxOTQwNTkzMzM2MzJAMTU3NDk0NTA5NjEwMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Samir-Ouchani?enrichId=rgreq-9707872aa4e6eb7d780b66f63c28ce47-XXX&enrichSource=Y292ZXJQYWdlOzMzNjgyMjc2ODtBUzo4MzAxOTQwNTkzMzM2MzJAMTU3NDk0NTA5NjEwMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Towards a Call Behavior-Based Compositional

Verification Framework for SysML Activity Diagrams

Samir Ouchani

LINEACT, Laboratoire d’Innovation Numérique

École d’Ingénieur CESI, Aix-en-Provence, France

Abstract. SysML activity diagram is a standard modeling language for com-

plex systems. It supports systems’ composition by providing the operator ‘call

behavior’. In general, the verification of systems modeled with those diagram in-

herit the limitations of the developed built-in tools, especially the case of model

checking. To address this shortcoming, we propose a compositional verification

framework based on the call behavior operator to alleviate the state space ex-

plosion problem of model-checking. The framework decomposes a property into

local sub-properties and verify them separately on the composed behavioral dia-

grams. Further, we propose to ignore the diagrams artifacts that are useless with

respect to the property under verification. We prove the soundness of the pro-

posed approach by showing that the result deduced from the verification of the

local properties is always preserved. The verification results are obtained by en-

coding SysML activity diagrams in the probabilistic model checker ‘PRISM’.

Finally, we demonstrate the effectiveness of our framework by verifying a set of

properties on two use cases that require a large amount of memory and a consid-

erable time processing.

Keywords: SysML; Activity Diagrams; Model-Checking; Compositional Verification;

Abstraction, PCTL; PRISM.

1 Introduction

A major challenge in systems and software development process is to reduce as possible

bugs by advancing the error detection at early stages of their life-cycles development.

Experimentally, it has been shown that the cost of repairing a software flaw during

maintenance is approximately 500 times higher than fixing it at early design phases [4].

Further, only 15% of flaws are detected in the initial design phase, whereas the cost

of fixing them at this phase is extremely beneficial as compared to fixing them at the

development and testing phases. Yet, a more ambitious challenge is to accelerate the

verification process of a product based on its design artifacts. Here, we are interested on

systems modeled by using modern and standard language like SysML [20]. The latter

is a prominent object-oriented graphical language which today become defacto stan-

dard for software and systems modeling. Especially, SysML reuses a subset of UML

packages [14] and extends others with specific systems’ engineering features such as

probability, time, and the rate. SysML covers mainly four perspectives of systems mod-

eling: structure, behavior, requirement, and parametric diagrams. Particularly, SysML

activity diagrams are behavioral diagrams used to model system behaviors at various

levels of abstraction [15].

For the verification of SysML activity diagrams, model checking is the most pop-

ular used technique [23]. Model checking [5] is a formal and automatic verification

technique that checks systems specifications expressed as temporal logic formula or

automata-based formalism on finite state concurrent systems. Compared to qualita-

tive model checking, quantitative verification techniques based on probabilistic model

checkers [4, 12] have recently gained popularity. Probabilistic verification offers the ca-

pability of measuring the satisfiability probability of a given property on systems that

inherently exhibit probabilistic behavior. Despite its wide use, model checking in gen-

eral is a resource-intensive process that requires a large amount of memory and time

processing. This is due to the fact that the systems’ state space may grow exponentially

with the number of variables combined with the presence of concurrent behaviors. Con-

sequently, it is of a major importance to reduce the verification process complexity.

To overcome this issue, various techniques have been explored [4, 5] for qualitative

model checking and then leveraged to the probabilistic case. Among these techniques,

several solutions aim at optimizing the employed model checking algorithms by intro-

ducing symbolic data structures based on binary decision diagrams, while others target

the analysis of the model itself. Besides, two classes of solutions are found in the lit-

erature: abstraction and compositional verification. The former provides a minimized

representation of the global system under verification. Whereas, the latter avoids the

construction of the considered global system. Abstraction techniques can be classified

into four categories [5]: abstraction by state merging, on variables, by restriction, or by

observer automata. Besides, the well-known compositional verification techniques [6]

are: partitioned transition relation, lazy parallel composition, interface processes, and

assume-guarantee.

In this paper, we are interested by the interface processes and the abstraction by

restriction techniques that are consistent within the composition by call behaviors in

SysML activity diagrams. The provided framework considers as input a system mod-

eled with SysML activity diagrams and its requirements expressed in PCTL [21]. Then

it decomposes a property into local sub-properties in order to verify them separately

for each system’s sub-component in parallel. Further, in order to accelerate more the

verification process, it ignores the diagrams artifacts that are useless with respect to the

property and the local properties under verification. For verification, each system’s com-

ponent is transformed automatically into PRISM. Finally, the framework infers safely

the verification result of the target property from the obtained results of the local prop-

erties. In a nutshell, the main contributions of this paper can be summarized as follows.

1. Proposing a complete formalization of the existing calculus dedicated to SysML

activity diagrams.

2. Developing an efficient verification approach that reduces the verification costs

overhead of probabilistic model checking.

3. Proving the soundness of the proposed approach.

4. Showing the effectiveness of the developed framework on two real use cases.

The next section compares our approach with the existing initiatives related to the

verification of SysML activity diagrams. Then, the preliminaries needed for our work

are presented in Section 3. Section 4 describes and formalizes SysML activity diagrams.

Then, our compositional verification framework is detailed in Section 5, and Section 6

presents the experimental results. Finally, Section 7 concludes the paper and provides

future directions.

2 Related Work

In this section, we survey the research initiatives dedicated mainly to the formaliza-

tion and the verification of SysML diagrams and to the compositional verification of

probabilistic systems.

Yuan et al. [16] construct a set of rules to transform UML state machines to Timed

Automata (TA). They apply the query view transformation approach in order to produce

TA encoded in UPPAAL input language. The properties to be verified against TA are

expressed in LTL. Apvrille and Saqui-Sannes [3] apply structural analysis to SysML by

using the TTool open-source toolkit. They translate a subset of SysML diagrams into

a Petri net and solves an equation system built upon the incidence matrix of the net.

Then, a push-button approach is applied to display verification results.

Ando et al. [1] express SysML state machine diagrams in CSP# processes that could

be verified by the PAT model checker. This work includes only a sub-set of rules and

experimenting the transformation on a toy case study. In addition, they did not detail

the temporal logic that expresses the system requirements. Carrillo et al. [8] define

SysML blocks in a refinement process. The structural architecture of a SysML block

is given by the internal block diagram and the behavior of each sub-block is described

by an interface automaton. Their main intention in a refinement process is to ensure the

consistency and the compatibility between different blocks.

Ermeson et al. [7] verify the embedded realtime systems with energy constraints

that are modeled using SysML State Machine diagram, and the MARTE UML Profile

(Modeling and Analysis of Real-Time and Embedded systems) is used to specify ERTSs

(Embedded Real-time Systems) constraints such as execution time and energy. They

map only states and transitions into ETPN (Time Petri Net with Energy constraints).

In their transformation, they don’t give the transformation of actions in a given state

even the semantics of the mutual exclusive and orthogonal states by taking just the in-

ternal states into consideration. Furthermore, they propose a similar methodology [2]

that maps one SysML activity diagram to time Petri Net for requirement validation of

embedded real-time systems with energy constraints. The computation model formal-

ized as an ETPN is not well presented and it misses the representation of the energy

consumption values. The authors do not provide a formal transformation for SysML

elements even the values represented from MARTE profile. Also, they do not clarify

why they represent each constraint in an action by a separate transition.

Ouchani et al. [24] introduce the abstraction by merging states to reduce the verifi-

cation cost of a SysML activity diagram. In [22], the authors transform a diagram into

an equivalent hierarchical form in order to help the abstraction developed in [24].

David et al. [18] introduced an extension of UML statecharts with randomly varying

duration that allows probabilistic decision in state. The Input/Output (I/O) automata is

used to provide a compositional semantics for statecharts. Also, probability distribution

after a continuous or discrete time is introduced as an arbitrary operator. And in [17],

they introduce means to specify system randomness within statecharts, and to verify

probabilistic temporal properties. The model is represented as MDP, and the properties

are expressed in PCTL.

Concerning the compositional verification for probabilistic systems, Feng et al. [11]

discusses assume-guarantee technique for probabilistic system by focusing more on the

learning algorithm to generate the minimal deterministic automata that represents a

probabilistic safety property. And in [10], they propose the assume-guarantee approach

where both the assumption and the guarantee properties are probabilistic safety proper-

ties such that assumptions are generated manually. Also in [9], they apply the assume-

guarantee technique on synchronous systems modeled as DTMC, where assumptions

are safety properties defined as probabilistic finite automata. To our knowledge, few

probabilistic model checkers support abstraction and compositional verification tech-

niques. As example, PRISM builds the symmetry reduction and LiQuor1 implements

the bi-simulation equivalence.

3 Preliminaries

In this section, we present the probabilistic automata as a modeling formalism and

PCTL temporal logic as a specification language.

Probabilistic automata (PAs) [12] are a modeling formalism for systems that exhibit

probabilistic and nondeterministic features. Definition 1 illustrates a PA where Dist(S)
denotes the set of convex distributions over S and µ = [. . . ,si 7→ pi, . . .] is a distribution

in Dist(S) that assigns a probability µ(si) = pi to the state si.

Definition 1 (Probabilistic Automaton). A probabilistic automaton is a tuple M =
(s, S, L, Σ , δ), where:

– s is an initial state, such that s ∈ S,

– S is a finite set of states,

– L : S → 2AP is a labeling function that assigns to each state a set of atomic propo-

sitions taken from the set of atomic propositions (AP),

– Σ is a finite set of actions,

– δ : S×Σ → Dist(S) is a probabilistic transition function assigning for each s ∈ S

and α ∈ Σ a probabilistic distribution µ ∈ Dist(S).

For PA’s composition, this concept is modeled by the parallel composition as stipulated

in Definition 2. During synchronization, each PA resolves its probabilistic choice inde-

pendently. For transitions s1
α

−→ µ1 and s2
α

−→ µ2 that synchronize in α then the com-

posed state (s′1,s
′
2) is reached from the state (s1,s2) with probability µ1(s

′
1)× µ2(s

′
2).

In the no synchronization case, a PA takes a transition where the other remains in its

current state with probability one.

Definition 2 (Parallel Composition of PAs). The parallel composition of two PAs:

M1 = (s1, S1, L1, Σ1, δ1) and M2 = (s2, S2, L2, Σ2, δ2) is a PA M = ((s1,s2), S1 ×

1 http://www.i1.informatik.uni-bonn.de/baier/projectpages/LIQUOR/LiQuor

S2, L(s1)∪ L(s2), Σ1 ∪ Σ2, δ), where: δ (S1 × S2,Σ1 ∪ Σ2) is the set of transitions

(s1,s2)
α

−→ µ1 × µ2 such that one of the following requirements is met.

1. s1
α

−→ µ1,s2
α

−→ µ2, and α ∈ Σ1 ∩Σ2,

2. s1
α

−→ µ1,µ2 = [s2 7→ 1], and α ∈ Σ1\Σ2,

3. µ1 = [s1 7→ 1], s2
α

−→ µ2, and α ∈ Σ2\Σ1.

To verify a PA, we use PCTL to express its related specifications. The following gram-

mar represents the PCTL syntax.

φ ::= ⊤ | ap | φ ∧φ | ¬φ | P⊲⊳ p[ψ]
ψ ::= Xφ | φU≤kφ | φUφ

Where the term “⊤” means true, “ap” is an atomic proposition, k ∈N, p ∈ [0,1], and

⊲⊳∈ {<,≤,>,≥}. The operator “∧” represents the conjunction and “¬” is the negation

operator, and P is the probabilistic operator. Also, “X”, “U≤k”, and “U” are the next,

the bounded until, and the until temporal logic operators, respectively.

To specify a satisfaction relation of a PCTL formula in a state “s”, a class of adver-

saries has been defined to solve the nondeterminism in PAs. Hence, a PCTL formula

should be satisfied under all adversaries. The satisfaction relation (|=) of a PCTL for-

mula is defined as follows, where “s” is a state and “π” is a path obtained by a memo-

ryless adversary [12].

– s |=⊤ is always satisfied.

– s |= ap ⇔ ap ∈ L(s) and L is a labeling function.

– s |= φ1 ∧φ2 ⇔ s |= φ1 ∧ s |= φ2.

– s |= ¬φ ⇔ s 6|= φ .

– s |= P⊲⊳ p[ψ]⇔ P({π is a path starts f rom the state s|π |= ψ}) ⊲⊳ p.

– π |=Xφ ⇔ π(1) |= φ where π(1) is the second state of π .

– π |= φ1U≤kφ2 ⇔∃i ≤ k : ∀ j < i, π(j) |= φ1 ∧π(i) |= φ2.

– π |= φ1Uφ2 ⇔∃ k ≥ 0 : π |= φ1U≤kφ2.

4 SysML Activity Diagrams Formalization

In this section, we describe and formalize SysML activity diagrams by providing an

adequate syntax and semantics.

As illustrated in Fig. 6, SysML activity diagrams are a graph-based representation

where their main constructs (Fig. 1) can be decomposed into two categories: activity

nodes and activity edges. The former contains three types: activity invocation, object

and control nodes. Activity invocation includes receive and send signals, action, and call

behavior. Activity control nodes are initial, flow final, activity final, decision, merge,

fork, and join nodes. Activity edges are of two types: control flow and object flow.

Control flow edges are used to show the execution path through the activity diagram

and to connect activity nodes. Object flow edges are used to show the flow of data

between activity nodes. Concurrency and synchronization are modeled using forks and

joins, whereas, branching is modeled using decision and merge nodes. While a decision

node specifies a choice between different possible paths based on the evaluation of a

guard condition (and/or a probability distribution), a fork node indicates the beginning

of multiple parallel control threads. Moreover, a merge node specifies a point from

where different incoming control paths follow the same path, whereas a join node allows

multiple parallel control threads to synchronize and rejoin. In addition, the call behavior

action consumes its input tokens and invoke its specified behavior. The execution of the

calling artifact is blocked until it receives a reply from the invoked behavior.

Fig. 1: SysML Activity Diagram Constructs.

4.1 Syntax of SysML Activity Diagrams

The UML superstructure [14] specifies basic rules for the execution of the various nodes

by explaining textually how tokens are passed from one node to another. For formaliza-

tion, we present in Table 1 SysML activity diagrams constructs and their representation

as NuAC terms. At the beginning, a first token starts flowing from the initial node and

moves downstream from one node to another with respect to the foregoing set of con-

trol routing rules defined by the control nodes until reaching either an activity final or a

flow final node.

However, activity diagram semantics as specified in the standard stay informal since

it is explained textually. We present in Fig. 2 the Backus-Naur-Form of the new version

of Activity Calculus (NuAC) that helps to formalize SysML activity diagrams. This

version of NuAC calculus optimizes the syntax presented in [24] and allows for multi-

plicity in join, merge, fork, and decision constructs by exploiting their commutativity

and associativity properties. We denote by A [N] to specify N as a sub term of A

and by |A | to denote a term A without tokens. For the call behavior case of a ↑ A ′,

we denote A [a ↑ A ′] by A ↑a A ′.

During the execution, the structure of the activity diagram is kept unmodified and

the only changes is the tokens locus. The NuAC syntax was inspired by this idea so that

Activity Constructs NuAC Terms Description

l : ι ֌N Initial node is activated when a diagram is invoked.

l : � Activity final node stops the execution of the diagram.

l : � Flow final node terminates the execution in its path.

l : a ↑ A ֌N Action node defines an atomic action and it can

invoke its related behavioral diagram.

l : D((p,g,N), Decision node selects an execution path

(1− p,¬g,N)) with a convex distribution {p,1− p}
and/or a set of guards {g,¬g}.

l : M(x,y)֌N , Merge node specifies the continuation,

lx or ly and x is the set of input flows x = {x1,x2}.

Fork node models the concurrency between N1 and N2.

l : F(N1,N2) It begins multiple parallel control threads.

UML 2.0 activity forks model unrestricted parallelism.

l : J(x,y)֌N , Join node presents the synchronization

and x is the set of input pins x = {x1,x2}.

Table 1: Rewriting Activity Diagram Constructs in NuAC.

A ::= ε | l : ιn
֌N

N ::= N
n
| l : M(x,y)֌N | l : J(x,y)֌N | l : F(N ,N) | l : a ↑ A

n
֌N

| l : D((p,g,N),(1− p,¬g,N)) | l : � | l : � | l

Fig. 2: Syntax of New Activity Calculus (NuAC).

a NuAC term presents a static structure while tokens are the only dynamic elements.

We can distinguish two main syntactic terms: marked and unmarked. A marked NuAC

term corresponds to an activity diagram with tokens. An unmarked NuAC term corre-

sponds to the static structure of the diagram. A marked term is typically used to denote

a reachable state that is characterized by the set of tokens locations in a given term.

To support multiple tokens, we augment the “overbar” operator with an integer n

such that N
n

denotes a term marked with n tokens with the convention that N
1
= N

and N
0
=N . Multiple tokens are needed when there are loops that encompass in their

body a fork node. Furthermore, we use a prefix label for each node to reference it and

uniquely use it in the case of a backward flow connection (case of merge or join). Par-

ticularly, labels are useful for connecting multiple incoming flows towards merge and

join nodes. Let L be a collection of labels ranged over by l0, l1, · · · and N be any node

(except initial) in the activity diagram. We write l : N to denote an l-labeled activity

node N . It is important to note that nodes with multi-inputs (e.g. join and merge) are

visited as many times as they have incoming edges. Thus, as a syntactic convention,

we use either the NuAC term (i.e. l : M(x,y)֌N for merge and l : J(x,y)֌N for

join) if the current node is visited for the first time or its corresponding label (i.e. lx
or ly) if the same node is encountered later during the traversal process. Also, we de-

note by D((g,N1),(¬g,N2)) or D((p,N1),(1− p,N2)) to express a decision without

probabilities or guards, respectively.

4.2 Semantics of SysML Activity Diagrams

The execution of SysML activity diagrams is based on token’s flow. To give a mean-

ing to this execution, we use structural operational semantics to formally describe how

the computation steps of NuAC atomic terms take place. The operational semantics of

NuAC is based on the informally specified tokens-passing rules defined in [14].

INIT-1 l : ι ֌N
l

−→ l : ι ֌N

ACT-1 l : a
m
֌N

l
−→ l : a

m−1
֌N ∀m > 0

ACT-2 l : a
m
֌N

n l
−→ l : a

m+1
֌N

n−1

∀m ≥ 0,n > 0

BH-1
A = l′ : ι ֌N ′ ∀n > 0

l : a ↑ A
n
֌N

l
−→ l : a ↑ l′ : ι ֌N ′

n−1
֌N

BH-2
A [l′ : �]

l′

−→ |A | ∀n > 0

l : a ↑ A
n
֌N

l′

−→ l : a ↑ A
n
֌N

FORK-1 l : F(N1,N2)
m l
−→ l : F(N1,N2)

m−1
∀m > 0

PDEC-1 l : D((p,g,N1),(1− p,¬g,N2))
m l
−→p l : D((p,g,N1),(1− p,¬g,N2))

m−1
∀m > 0

MERG-1 A [l : M(x,y)֌N
n
, lx

m
, ly

k
]

lx−→ A [l : M(x,y)֌N
n
, lx

m−1
, ly

k
] ∀m > 0,k,n ≥ 0

MERG-2 A [l : M(x,y)֌N
n
, lx

m
, ly]

lx−→ A [l : M(x,y)֌N
n
, lx

m−1
, ly] ∀m > 0,n ≥ 0

JOIN-1 A [l : J(x,y)֌N
n
, lx

m
, ly

k
]

lx−→ A [l : J(x,y)֌N
n
, lx

m−1
, ly

k−1
] ∀m,k > 0,n ≥ 0

FLOWFINAL A [l :
⊗

]
l

−→ A [l :
⊗
]

FINAL A [l : �]
l

−→ |A |

ACTIVITY
N

α
−→p N

′

A [N]
α

−→p A [N ′]

Fig. 3: NuAC Operational Semantic Rules.

We define Σ as the set of non-empty actions labeling the transitions (i.e. the alphabet

of NuAC, to be distinguished from action nodes in activity diagrams). An element α ∈Σ
is the label of the executing active node. Let Σo be Σ ∪{o} where o denotes the empty

action. Let p be a probability value such that p ∈]0,1[. The general form of a transition

is A
α

−→p A ′ and A
α

−→ A ′ in the case of a Dirac (non probabilistic) transition. The

probability value specifies the likelihood of a given transition to occur and it is denoted

by P(A ,α,A ′). Fig. 3 shows the operational semantic rules of NuAC. The semantics

of SysML activity diagrams expressed using A as a result of the defined semantic rules

can be described in terms of the PA stipulated in Definition 3. In addition, we propose

in Table 2 the NuAC axioms that are proved by using NuAC semantic rules.

Definition 3 (NuAC-PA). A probabilistic automata of a NuAC term A is the tuple

MA = (s, L, S, Σo, δ), where:

– s is an initial state, such that L(s) = {l : ι ֌N },

– L : S → 2[[L]] is a labeling function where: [[L]] : L → {⊤,⊥},

– S is a finite set of states reachable from s, such that, S = {si:0≤i≤n : L(si) ∈ {N }},

– Σo is a finite set of actions corresponding to labels in A ,

– δ : S×Σo → Dist(S) is a partial probabilistic transition function such that, for

each s ∈ S and α ∈ Σo assigns a probabilistic distribution µ , where:

• For S′ ⊆ S such that S′ = {si:0≤i≤n : s
α

−→pi
si}, each transition s

α
−→pi

si

satisfies one NuAC semantic rule and µ(S′) = ∑n
i=0 pi = ∑n

i=0 µ(si) = 1.

• For each transition s
α

−→1 s′′ satisfying a NuAC semantic rule, µ is defined

such that µ(s′′) = 1.

DA-1 l : D((p,g,N1),(1− p,¬g,N2)) = l : D((1− p,¬g,N2),(p,g,N1))
DA-2 l : D((p,N1),(1− p, l′ : D((p′,N2),(1− p′,N3)))) = l : D((p+ p′− p× p′,

l′ : D((p
p+p′−p×p′

,N1),(
p′−p×p′

p+p′−p×p′
,N2))),(1− p− p′+ p× p′,N3))

DA-3 l : D((p,g,N1),(1− p,¬g, l′ : D((p′,g′,N2),(1− p′,¬g′,N3))))
= l : D((p,g,N1),(p′− p.p′,¬g∧g′,N2),((1− p)(1− p′),¬g∧¬g′,N3))

FA-1 l : F(N1,N)1 = N1

FA-2 l : F(N1,N2) = l : F(N2,N1)
FA-3 l : F(N1, l

′ : F(N2,N3)) = l : F(l′ : F(N1,N2),N3) = l : F(N1,N2,N3)

JA-1 A [l : J(x,y)֌N ′,N ֌ lx,N ֌ ly] = A [N ֌N ′]
JA-2 l : J(x,y)֌N = l : J(y,x)֌N

JA-3 A [l : J(x,x′)֌N , l′ : J(y,z)֌ lx′] = A [l : J(x,y,z)֌N]

MA-1 A [l : M(x,y)֌N ′,N ֌ lx,N ֌ ly] = A [N ֌N ′]
MA-2 l : M(x,y)֌N = l : M(y,x)֌N

MA-3 A [l : M(x,x′)֌N , l′ : M(y,z)֌ lx′] = A [l : M(x,y,z)֌N]

CA-1 l : a ↑ ε = a

CA-2 A1 ↑a1
(A2 ↑a2

A3) = (A1 ↑a1
A2) ↑a2

A3 = A1 ↑a1
A2 ↑a2

A3

Table 2: Axioms for NuAC.

5 The Approach

Fig. 4 depicts an overview of our compositional verification framework. It takes a set of

SysML activity diagrams composed by the call behavior interface and a Probabilistic

Computation Tree Logic (PCTL) [12] property as input. First, we develop an abstrac-

tion approach that restricts the verification of a PCTL property only on the influenced

diagrams instead of the whole composition. Then, we propose a compositional verifi-

cation approach by interface processes that distributes a PCTL property into local ones

which helps to verify them separately for each diagram. For verification, we encode the

diagrams into the PRISM input language [19]. Finally, we deduce the result of the main

property from the results of the local properties that are verified separately for each

called diagram.

SysML Activity

Diagrams

PRISM

PRISM

Code

PCTL

Properties

Minimized

Diagrams

Local

Properties

Local

Results

Global

Results

Abstracting

Using

Decomposing

Encoding

Input

Input

Output

Infer

Fig. 4: A Compositional Verification Framework.

5.1 The Compositional Verification

Let A be a SysML activity diagram with n call behaviors denoted by A = A0 ↑a0

A1 · · ·Ai−1 ↑ai−1
Ai · · ·An−1 ↑an−1

An. In order to reduce the diagram A , we apply

NuAC axioms and introduce the reduction rule defined in Definition 4 to remove dia-

grams Ai that are not influenced by the property φ to be verified. The obtained diagram

after applying the reduction rule is denoted by Â .

Definition 4. Let A be a diagram that contains n call behaviors, APφ is the atomic

propositions of the PCTL property φ , and APAi
is the atomic propositions of the be-

havioral diagram Ai. Reducing A to the diagram Â with respect to φ is obtained by

applying the following rule.

∀0 ≤ i ≤ n,APφ ∩APAi
= /0

Ai = ε
Below, Proposition 1 shows the satisfiability probability after reduction.

Proposition 1. For a reduced diagram Â of A with respect to φ , we have:

[Â |= φ]⇒ [A |= φ].

Proof. The proof of this proposition follows an induction reasoning on the PCTL struc-

ture. First, we take the case of ψ = φ1Uφ2.

By definition, for 0 ≤ i ≤ n where APψ ∩APAi
= /0, then: Ai = ε . The result is Â =

A0 ↑a0
A1 · · ·Ak−1 ↑ak−1

Ak and k ≤ n.

From the PCTL semantics, we have [(A0 ↑a0
A1 · · ·Ak−1 ↑ak−1

Ak) |= ψ]⇔∃m, ∀ j <
m : π(j) |= φ1 ∧π(m) |= φ2 where π(j) and π(m) are the states i and j respectively in

a path π of A . And, by calling Ai in ai using BH-1, the only changes in the path π are

the propositions of Ai till executing BH-2, then: ∃m′ ≥ m, j′ ≥ j, ∀ j′ < m′ : π(j′) |=
φ1 ∧π(m′) |= φ2⇔ A0 ↑a1

. . . ↑ak
Ak . . . ↑ai

Ai |= ψ .

By calling a new Ai+1 in ai+1 up to n, we will have: ∃m′′ ≥ m′, j′′ ≥ j′, ∀ j′′ < m′′ :

π(j′′) |= φ1 ∧π(m′′) |= φ2 ⇔ A0 ↑a1
. . . ↑an An |= ψ ⇔ A |= φ1Uφ2.

For φ1U≤kφ2 and Xφ cases, we deduce the following.

– ∀0≤ i≤ n,APφ ∩APAi
= /0 : [Ai = ε∧(A0 ↑a0

A1 · · ·An−1 ↑an−1
An) |= φ1U≤kφ2]⇒

[∃k′ ≥ k : A |= φ1U≤k′φ2].
– ∀0 ≤ i ≤ n,APφ ∩APAi

= /0 : [Ai = ε ∧ (A0 ↑a0
A1 · · ·An−1 ↑an−1

An) |= Xφ] ⇒
[A |= Xφ].

⊓⊔

For a parallel verification, we decompose the PCTL property φ into local ones φi:0≤i≤n

over Ai with respect to the call behavior actions ai:0≤i≤n (interfaces), we introduce the

decomposition operator “♮” proposed in Definition 5. The operator “♮” is based on sub-

stituting the propositions of Ai to the propositions related to its interface ai−1 which al-

lows the compositional verification. We denote by φ [y/z] substituting the atomic propo-

sition “z” in the PCTL property φ by the atomic proposition “y”.

Definition 5 (PCTL Property Decomposition). Let φ be a PCTL property to be ver-

ified on A1 ↑a A2. The decomposition of φ into φ1 and φ2 is denoted by φ ≡ φ1♮aφ2

where APAi
are the atomic propositions of Ai, then:

1. φ1 = φ([la/APA2
]), where la is the atomic proposition related to the action a in A1.

2. φ2 = φ([⊤/APA1
]).

The first rule is based on the fact that the only transition to reach a state in A2 from

A1 is the transition of the action la (BH-1). The second rule ignores the existence of

A1 while it kept unchanged till the execution of BH-2. To handle multiplicity for the

operator “♮”, we have Property 1.

Property 1. The decomposition operator ♮ is associative for A1 ↑a1
A2 ↑a2

A3, i.e. :

φ1♮a1
(φ2♮a2

φ3)≡ (φ1♮a1
φ2)♮a2

φ3 ≡ φ1♮a1
φ2♮a2

φ3.

For the verification of φ on A1 ↑a1
A2, Theorem 1 deduces the satisfiability of φ from

the satisfiability of local properties φ1 and φ2 obtained by the operator ♮.

Theorem 1 (Compositional Verification). The decomposition of the PCTL property φ
by the decomposition operator ♮ for A1 ↑a1

A2 is sound, i.e. :

A1 |= φ1 A2 |= φ2 φ = φ1♮a1
φ2

A1 ↑a1
A2 |= φ

Proof. The proof of Theorem 1 follows a structural induction on the PCTL structure by

using Definition 5. As an example, we take the until operator “U”. Let φ = ap1 U ap2

where ap1 ∈ APA1
and ap2 ∈ APA2

. By applying Definition 5, we have: φ1 = ap1 U a1

and φ2 =⊤ U ap2. Let A1 |= φ1 ⇔∃m1, ∀ j1 < m1 : π1(j1) |= ap1∧π1(m1) |= ap1∧a1

where π is a path in the NuAC PA of A . For A2 |= φ2 ⇔ ∃m2, ∀ j2 < m2 : π2(j2) |=
⊤∧π2(m2) |= ap2. To construct A1 ↑a1

A2, BH-1 is the only transition to connect π1

and π2 which form: π = π1.π ′
2 such that π ′

2(i) = π2(i)∪ π1(m1). Then: ∃ j ≤ m, m =
m1 +m2 : π(j) |= ap1 ∧π(m) |= ap2 ⇔ A1 ↑a1

A2 |= φ . ⊓⊔

Finally, Proposition 2 generalizes Theorem 1 to support the satisfiability of φ on an

activity diagram A with n call behaviors.

Proposition 2 (CV-Generalization). Let φ be a PCTL property to be verified on A ,

such that: A = A0 ↑a0
· · · ↑an−1

An and φ = φ0♮a0
· · · ♮an−1

φn, then:

A0 |= φ0 · · ·An |= φn

φ = φ0♮a0
· · · ♮an−1

φn

A0 ↑a0
· · · ↑an−1

An |= φ

Proof. We prove Proposition 2 by induction on n.

– The base step where “n = 1” is proved by Theorem 1.

– For the inductive step, first, we assume:

A0 |= φ0 · · ·An |= φn

φ = φ0♮a0
· · ·♮an−1

φn

A0 ↑a0
· · · ↑an−1

An |= φ

Let A ′ = A0 ↑a0
· · · ↑an−1

An and φ ′ = φ0♮a0
· · ·♮an−1

φn. While ♮ and ↑ are associa-

tive operators, then: A = A ′ ↑an An+1 and φ = φ ′♮anφn+1. By assuming An |= φn

and applying Theorem 1, then:

A ′ |= φ ′ An+1 |= φn+1

A = A ′ ↑an An+1 φ = φ ′♮anφn+1

A |= φ

5.2 The Encoding to PRISM

To encode a SysML activity diagram A into its equivalent PRISM code P , we rely to

the PRISM MDP formalism that refers to the PA2 which coincides with the NuAC se-

mantics. In PRISM, we define the NuAC transition s
l

−→ µ as a probabilistic command.

Mainly, the probabilistic command takes the following form: [l] g → p1 : u1 + ...+ pm :

um, which means, for the action “l” if the guard “g” is true, then, an update “ui” is

enabled with a probability “pi”. The guard “g” is a predicate of a conjunction form con-

sisting to the evaluation of the atomic propositions related to the state s. The update ui

2 http://www.prismmodelchecker.org/doc/manual.pdf, (The introduction section, line 10).

describes the evaluation of the atomic propositions related to the next state si of s such

that s
l

−→pi
si (1 ≤ i ≤ m). For the Dirac case, the command is written simply by: [l]

g → u.

The function Γ presented in Listing 1.1 produces the appropriate PRISM command

for each NuAC term. The action label of a command is the label of its related term “l”.

The guard of this command depends on how the term is activated, therefore, a boolean

proposition as a flag is assigned to define this activation. For simplicity, the flag related

to a term labeled by l is denoted by a boolean proposition l that is initialized to false

except for the initial node it is true which conforms to the premise of the NuAC rule

“INIT-1”. Concerning the command updates, they deactivate the propositions of a term

n ∈ A and activate its successors. We define three useful functions: L(n), S(Ai), and

E(Ai) that return the label of a term n, the initial and the final terms of the diagram Ai,

respectively. For example, the call behavior action “l : a ↑ Ai” (line 32) produces two

commands (line 34), and it calls the function Γ ′ (line 34). The first command in line

34 synchronizes with the first command in line 52 produced by the function Γ ′ in the

action l from the diagram A . Similarly, the second command in line 34 synchronizes

with the command of line 56 in the action L(E(Ai)) from the diagram Ai. The first

synchronization represents the NuAC rule BH-1 where the second represents the rule

BH-2. The function Γ ′ is similar to the function Γ except for the initial and the final

nodes as shown in lines 52 and 56, respectively. The generated PRISM fragment of each

diagram Ai is bounded by two PRISM primitives: the module head “Module Ai”, and

the module termination “endmodule”.

1 Γ : A → P

2 Γ (A) = ∀n ∈ A , L(n = ι) = ⊤ , L(n 6= ι) =⊥ , Case (n) of

3 l : ι֌N ⇒ in {[l]l −→ (l′ =⊥)&(L(N)′ =⊤);}∪Γ (N) end

4 l : M(x,y)֌N ⇒ in {[lx]lx −→ (l′x =⊥)&(L(N)′ =⊤);}
5 ∪{[ly]ly −→ (l′y =⊥)&(L(N)′ =⊤);}∪Γ (N) end

6 l : J(x,y)֌N ⇒ in {[l]lx ∧ ly −→ (l′x =⊥)&(l′y =⊥)&(L(N)′ = ⊤);}∪Γ (N) end

7 l : F(N1,N2)⇒ in {[l]l −→ (l′ =⊥)&(L(N1)
′ =⊤)&(L(N2)

′ =⊤);}∪Γ (N1)∪Γ (N2) end

8 l : D(A , p,g,N1 ,N2) ⇒
9 Case (p) of]0,1[⇒

10 in {[l]l −→ p : (l′ =⊥)&(l′g =⊤)+(1− p) : (l′ =⊥)&(l′¬g =⊤);}
11 ∪{[l¬g]lg ∧¬g −→ (l′¬g =⊥)&(L(N2)

′ =⊤);}
12 ∪{[lg]lg ∧g −→ (l′g =⊥)&(L(N1)

′ =⊤);}∪Γ (N1)∪Γ (N2)end

13 Othe rwis e in {[l]l −→ (l′ =⊥)&(l′g =⊤);}∪{[l]l −→ (l′ =⊥)&(l′¬g =⊤);}
14 ∪{[lg]lg ∧g −→ (l′g =⊥)&(L(N1)

′ =⊤);}
15 ∪{[l¬g]lg ∧¬g −→ (l′¬g =⊥)&(L(N2)

′ =⊤);}
16 ∪Γ (N1)∪Γ (N2)end

17 l : aB֌N , Case (B) of

18 ↑ Ai ⇒
19 in {[l]l → (l′ = ⊥);}
20 ∪{[L(E(Ai))]L(E(Ai))→ (l′ =⊥)&(L(N)′ =⊤);}∪Γ ′(Ai); end

21 ε ⇒ in {[l]l −→ (l′ =⊥)&(N ′ =⊤);}∪Γ (N ′) end

22 l : � ⇒ in [l]l −→ (l′ =⊥); end

23 l : �⇒ in [l]l −→ &l∈L (l′ =⊥);end

24 / / D e f i n i n g t h e f u n c t i o n Γ ′(a ↑ Ai)
25 Γ ′ : A → P

26 Γ ′(Ai) = ∀m ∈ Ai : L(m) =⊥ , Case (m) of

27 l : ι֌N ⇒ / / The a c t i o n l and t h e gua rd l a r e from t h e l i n e 4 0 .

28 in {[l]l → (L(S(Ai))
′ =⊤);

29 [L(S(Ai))]L(S(Ai))→ (L(S(Ai))
′ =⊥)&(L(N)′ =⊤);}∪Γ (N) end

30 l : � ⇒ in [L(E(Ai))]L(E(Ai))→ (L(E(Ai))
′ =⊥); end

31 Othe rwis e Γ (A);

Listing 1.1: Generating PRISM Commands Function.

6 Implementation and Experimental Results

For the purpose of providing experimental results demonstrating the efficiency and the

validity of our framework, we verify a set of PCTL properties on the online shopping

system [13] and the automated teller machine [13]. To this end, we compare the verifica-

tion results “β ”, the verification cost in terms of the model size3 “γ”, and the verification

time “δ” (sec) with and without applying our approach.

6.1 Online Shopping System

The online shopping system aims at providing services for purchasing online items.

Fig. 5a illustrates the corresponding SysML activity diagram. It contains four call-

behavior actions4, which are: “Browse Catalogue”, “Make Order”, “Process Order”,

and “Shipment” denoted by a, b, c and d, respectively. For simplicity, we take this or-

der to denote their called diagrams by A1 to A4, respectively, where A0 denotes the

main diagram. As an example, Fig. 5b expands the diagram related to the call behav-

ior action “Process Order” and it is denoted by A3. The whole diagram is written by:

A = A0 ↑a A1 ↑b A2 ↑c A3 ↑d A4. Here, we propose to verify the properties Φ1 and

Φ2 that are expressed in PCTL.

(a) Online Shopping System. (b) Process Order.

Fig. 5: SysML Activity Diagrams.

Property Φ1. “For each order, what is the minimum probability value to make a

delivery after browsing the catalogue?”

PCTL: Pmin =?[(Browse Catalogue) ⇒ (F(Delivery))].

3 The model size is the number of transitions (edges).
4 Each call-behavior action is represented by its proper diagram.

In this expression, the “Browse Catalogue” proposition is part of A0 and “Delivery”

is a proposition of A3. For comparison, we verify first Φ1 on A . Then, by using Propo-

sition 1, we reduce the verification of Φ1 from A to A0 ↑c A3. And, by using the

decomposition rules of Definition 5, Φ1 is decomposed into two properties: Φ11 and

Φ12 such that: Φ11 , Pmin =?[(Browse Catalogue)
⇒ (F(Process Order))], and Φ12 , Pmin=?[(True) ⇒ (F(Delivery))]. After the ver-

ification of Φ1 on A , Φ11 on A0 and Φ12 on A3, Table 3 summarizes the verification

results and costs for different values of the number of orders “n”. From the obtained

results, we observe that the probability values are preserved where β1=β11 × β12. In

addition, the size of the diagrams is minimized γ11+γ12 < γ1. Consequently, the verifi-

cation time is reduced significantly δ11+δ12≪ δ1.

n 3 4 5 6 7 8 9 10

β1 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76

γ1 2,213,880 4,823,290 8,434,700 13,048,110 51,145,160 202,489,260 454,033,360 805,777,460

δ1 10.764 24.364 44.098 72.173 358.558 1818.247 6297.234 17761.636

β11 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

γ11 5,486 7,266 9,046 10,826 12,606 14,386 16,166 17,946

δ11 1.09 3.12 7.511 12.86 27.03 54.38 111.74 163.89

β12 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

γ12 12 12 12 12 12 12 12 12

δ12 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

Table 3: The Verification Cost for Properties Φ1 Φ11, and Φ12.

Property Φ2. “For each order, what is the maximum probability value to confirm a

shipment?”

PCTL: Pmax =?[G((CreateDelivery)⇒ F(Con f irmShipment)].
The propositions of this property “CreateDelivery” and “ConfirmShipment” belong to

A2, and A4, respectively. Similarly to the verification of Φ1, we verify Φ2 on A . Then,

we decompose Φ2 to Φ21 and Φ22 with respect to A0 ↑b A2 ↑d A4. The PCTL expres-

sions of the decomposition are: Φ21 , Pmax=?[G((CreateDelivery)⇒F(Shipment)],
and Φ22 , Pmax =?[G((True) ⇒ F(Con f irmShipment)]. Table 4 shows the verifica-

tion results and costs of Φ2 on A , Φ21 on A0 ↑b A2, and Φ22 on A4 for different values

of the number of orders “n”. We found: β2=β21 ×β22, γ21+γ22 < γ2 and δ21+δ22≪ δ2.

6.2 Automated Teller Machine

The Automated Teller Machine (ATM) is a system that interacts with a potential cus-

tomer via a specific interface and communicates with the bank over an appropriate

communication protocol. Fig. 6 represents the ATM SysML activity diagram (A ′) com-

posed of the main diagram (A ′
0) “Figure 6-(a)” and three called diagrams: (a′) Check

Card (A ′
1)5, (b′) Authorize (A ′

2), and (c′) Transaction (A ′
3) that is showed in Fig. 6-(b).

5 The call behavior action “Check Card” is denoted by a′ and calls the diagram A ′
1 .

n 3 4 5 6 7 8 9 10

β2 0.9377 0.9377 0.9377 0.9377 0.9377 0.9377 0.9377 0.9377

γ2 2,213,880 4,823,290 8,434,700 13,048,110 51,145,160 202,489,260 454033360 805,777,460

δ2 33.394 78.746 168.649 354.211 2280.252 17588.755 34290.635 63097.014

β21 0.9377 0.9377 0.9377 0.9377 0.9377 0.9377 0.9377 0.9377

γ21 9614 12017 14420 16823 19226 21629 24032 26435

δ21 4.775 12.301 32.852 83.337 274.9 450.81 586.43 652.76

β22 1 1 1 1 1 1 1 1

γ22 9 9 9 9 9 9 9 9

δ22 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Table 4: The Verification Cost for Properties Φ2 Φ21, and Φ22.

Our goal is to measure the satisfiability probability of the PCTL properties Φ3 and Φ4

on A
′
= A

′

0 ↑a′ A
′

1 ↑b′ A
′

2 ↑c′ A
′

3 .

Property Φ3. “What is the minimum probability of authorizing a transaction after

inserting a card”. PCTL: Pmin =?[G(InstertCard ⇒ F(DebitAccount))].

After verifying Φ3 on A
′
, we verify Φ31 on A

′

0 and Φ32 on A
′

3 such that : Φ31 ,

Pmin=?[G(InstertCard) ⇒ (F(Transaction))] and : Φ32 , Pmin =?[G((True) ⇒ F

(DebitAccount))]. As a result we found the following: β3 = 0.8421, γ3 = 606470,

δ3 = 3.12, β31 = 0.8421, γ31 = 3706, and δ31 = 0.64, β32 = 1, γ32 = 15, and δ32 = 0.007.

From the obtained results, we found that the satisfiability probability is maintained

β3=β31×β32, with a considerable verification costs γ31 + γ32 < γ3 and δ31+δ32≪ δ3.

Property Φ4. “What is the maximum probability of inserting a card when it is not

valid.” PCTL: Pmax =?[(CardNotValid) ⇒ (F(InsertCard))].

Similarly to the verification of Φ3, instead of verifying Φ4 on A
′

we verify Φ41 on A
′

1

and Φ42 on A
′

0 such that :

Φ41 , Pmax =?[(CardNotValid) ⇒ (F(EndCheckCard))], and

Φ42 , Pmax =?[(CheckCard) ⇒ (F(InsertCard))].
After verification, we found the following: β4 = 0.05, γ4 = 606470, δ4 = 11.458,

β41 = 1, γ41 = 11, and δ41 = 0.004, β42 = 0.05, γ42 = 7211, and δ42 = 1.584. From

these results, we have: β4=β41×β42, γ41+γ42 < γ4 and δ41+δ42 ≪ δ4.

7 Conclusion

In this paper, we presented a compositional verification framework to improve the ef-

ficiency of probabilistic model-checking. More specifically, our target was verifying

systems modeled using SysML activity diagrams composed by the call behavior inter-

faces. We improved their verification cost by introducing a probabilistic compositional

verification approach based on decomposing a global PCTL property into local ones

with respect to interfaces between diagrams. Moreover, the presented framework can

ignore the called diagrams that are irrelevant to a given PCTL property. For verifi-

cation, we proposed an algorithm to encode the composed diagrams into PRISM input

language. Furthermore, we proposed a semantic for SysML activity diagrams that helps

(a) ATM. (b) Transaction.

Fig. 6: ATM SysML Activity Diagram.

on proofs and to encode easily the diagrams in PRISM. We proved the soundness of the

proposed framework by showing the satisfiability preservation of PCTL properties. In

addition, we demonstrated the effectiveness of our framework by verifying real systems

that are not symmetric, which mean, we can not benefit from the symmetry reduction

built within the PRISM model checker. In future, we would like to extend our work by

investigating several directions. First, we plan to extend our framework to handle more

compositional verification techniques like assume-guaranty and integrate them within

the PRISM implementation. Then, we explore more system features such as time and

object. Finally, we intend to apply our framework on a large systems’ applications.

References

1. Takahiro Ando, Hirokazu Yatsu, Weiqiang Kong, Kenji Hisazumi, and Akira Fukuda. For-

malization and model checking of sysml state machine diagrams by csp#. In Computational

Science and Its Applications ICCSA 2013, volume 7973 of LNCS, pages 114–127. Springer

Berlin Heidelberg, 2013.

2. Ermeson Andrade, Paulo Maciel, Gustavo Callou, and Bruno Nogueira. A Methodology for

Mapping SysML Activity Diagram to Time Petri Net for Requirement Validation of Embed-

ded Real-Time Systems with Energy Constraints. In ICDS ’09: Proc.of the 2009 Third Int.

Conf. on Dig. Soc., pages 266–271, Washington, DC, USA, 2009. IEEE Computer Society.

3. Ludovic Apvrille and Pierre Saqui-Sannes. Static analysis techniques to verify mutual exclu-

sion situations within sysml models. In Ferhat Khendek, Maria Toeroe, Abdelouahed Gherbi,

and Rick Reed, editors, SDL 2013: Model-Driven Dependability Engineering, volume 7916

of LNCS, pages 91–106. Springer Berlin Heidelberg, 2013.

4. Christel Baier and Joost Pieter Katoen. Principles of Model Checking. The MIT Press, may

2008.

5. B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and Ph. Schnoebelen.

Systems and Software Verification. Springer, 2001.

6. Sergey Berezin, Sérgio Vale Aguiar Campos, and Edmund M. Clarke. Compositional rea-

soning in model checking. In Int. Symp. on Compositionality: The Significant Difference,

COMPOS’97, pages 81–102, 1998.
7. Ermeson Carneiro, Paulo Maciel, Gustavo Callou, Eduardo Tavares, and Bruno Nogueira.

Mapping SysML State Machine Diagram to Time Petri Net for Analysis and Verification of

Embedded Real-Time Systems with Energy Constraints. In ENICS ’08: Proc.of the 2008

Int.Conf.on Adv.in Elec.and Micro-elec., pages 1–6, Washington, DC, USA, 2008. IEEE

Computer Society.
8. Oscar Carrillo, Samir Chouali, and Hassan Mountassir. Formalizing and verifying compati-

bility and consistency of sysml blocks. SIGSOFT Softw. Eng. Notes, 37(4):1–8, 2012.
9. Lu Feng, Tingting Han, Marta Kwiatkowska, and David Parker. Learning-based composi-

tional verification for synchronous probabilistic systems. In Proc. of the 9th int. conf. on Aut.

tech. for verif. and analy., ATVA’11, pages 511–521. Springer-Verlag, 2011.
10. Lu Feng, Marta Kwiatkowska, and David Parker. Compositional verification of probabilistic

systems using learning. In Proceedings of the 2010 Seventh Int. Conf. on the Quant. Eval. of

Sys., QEST ’10, pages 133–142. IEEE Computer Society, 2010.
11. Lu Feng, Marta Kwiatkowska, and David Parker. Automated learning of probabilistic as-

sumptions for compositional reasoning. In Proc. of the 14th int. conf. on Fund. approaches to

software engineering, FASE’11/ETAPS’11, pages 2–17, Berlin, Heidelberg, 2011. Springer-

Verlag.
12. V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker. Automated Verification Techniques

for Probabilistic Systems. In M. Bernardo and V. Issarny, editors, Formal Methods for Eter-

nal Networked Software Systems (SFM’11), LNCS, pages 53–113. Springer, 2011.
13. H. Gomaa. Software Modeling and Design: UML, Use Cases, Patterns, and Software Archi-

tectures. Cambridge University Press, 2011.
14. Object Management Group. OMG Unified Modeling Language: Superstructure 2.1.2, Nov.

2007.
15. J. Holt and S. Perry. SysML for Systems Engineering. Institution of Engineering and Tech-

nology Press, January 2007.
16. Xiaopu Huang, Qingqing Sun, Jiangwei Li, and Tian Zhang. MDE-Based Verification of

SysML State Machine Diagram by UPPAAL. In Yuyu Yuan, Xu Wu, and Yueming Lu,

editors, Trustworthy Computing and Services, volume 320 of Communications in Computer

and Information Science, pages 490–497. Springer Berlin Heidelberg, 2013.
17. David N. Jansen, Holger Hermanns, and Joost Pieter Katoen. A Probabilistic Extension of

UML Statecharts - Specification and Verification. In In Formal Techniques in Real-Time and

Fault-Tolerant Systems (FTRTFT), LNCS 2469: 355374, pages 76–91. Springer, 2002.
18. David N. Jansen, Holger Hermanns, and Joost Pieter Katoen. A QoS-Oriented Extension of

UML Statecharts. LNCS, 2863:76–91, 2003.
19. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of Probabilistic Real-

Time Systems. In CAV, LNCS, pages 585–591. Springer, 2011.
20. Object Management Group. OMG Systems Modeling Language Specification, Sep. 2007.
21. S. Ouchani, O. A. Mohamed, and M. Debbabi. A security risk assessment framework for

sysml activity diagrams. In 2013 IEEE 7th International Conference on Software Security

and Reliability, pages 227–236, June 2013.
22. Samir Ouchani. Towards a fractionation-based verification: Application on sysml activity

diagrams. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing,

SAC ’19, pages 2032–2039. ACM, 2019.
23. Samir Ouchani and Mourad Debbabi. Specification, verification, and quantification of secu-

rity in model-based systems. Computing, 97(7):691–711, 2015.
24. Samir Ouchani, Otmane Aı̈t Mohamed, and Mourad Debbabi. Efficient probabilistic abstrac-

tion for sysml activity diagrams. In SEFM, pages 263–277, 2012.

View publication stats

https://www.researchgate.net/publication/336822768

