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The aim of CFD simulations is to model and compute the ideal performance of a flow
under some particular conditions. A classic approach is to perform simulations with fixed
parameters and boundary conditions. However, this is not accurate enough due to the
fact that under realistic conditions, some parameters may be uncertain. In recent years,
the interest of undertaking the simulations under uncertainty is increasing, but is not yet
a common rule and ’incomplete’ simulations are still taking place. This procedure could
be missing information such as whether mechanical tolerances are influential in dramatic
parts of the flow or the relevancy in accurate tunning of turbulence models. Taking this
knowledge into consideration, Non-Intrusive Uncertainty Quantification (UQ) has been
applied to 3D RANS simulations of an under-expanded jet, in order to understand the
impact of input uncertainties. Results show that some regions of the jet plume are very
sensitive to a combination of both physical and turbulence model variance. These regions
are in fact corresponding to the parts of the jet where screech and shock-cell noise is
generated, so this can be an indicator of a relevant impact of uncertainties in jet noise
emmission, what can guide to future research and more robust developments in aircraft
industry.

I. Introduction and motivation

It is a regular practice in Computational Fluid Dynamics (CFD) to analyse the scenario performance
of fluids by undertaking simulations with fixed parameters in the set-up configuration. However, this can
be often an incomplete approach. When a classic code is used to mimic the physics of a flow, it does not
take into account the associated uncertainties such as geometrical adaptation, grid uncertainty, domain size,
numerical convergence, manufacturing tolerances or uncertainty of the measurement devices. Not taking
into account those inaccuracies can result to misleading or incomplete engineering conclusions. This gives
rise to the need of providing error measurements in CFD, as most experimentalists do.
In this work, Non-Intrusive Uncertainty Quantification (UQ) techniques are implemented to demonstrate
the inclusion of inaccuracies in input parameters affect the output from Reynolds-averaged Navier-Stokes
(RANS) simulations and how this can be used to gain more information about the performance in conjunction
with Sensitivity Analysis (SA), that is about apportioning the output variance. To the knowledge of the
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authors, there is no literature about UQ on jets in the presence of shock-cells, despite that it has already been 
developed to an underexpanded jet in a crossflow for turbulent mixing,1 to quantify physical uncertainties in 
transonic airfoils to point out the importance of the sensitivity of shocks2 or to uncertainties in the turbulence 
models for transonic wall-bounded flows.3

In compressible supersonic jets this is a particularly interesting analysis, as small changes in input pa-
rameters may lead to sensitive variations in relevant flow features and the noise emission,4 which currently 
represents a major concern in robust design because of environmental regulations and the challenge of per-
ceived noise reduction of 65% by 2050 with respect to the values dated from the year 2000.5

Non-Intrusive UQ methods have been applied to 3D RANS simulations with elsA solver,6 whose set-up is 
described in Section II. Due to the fact that common sampling methods such as Monte-Carlo are impractical 
in terms of computational cost, UQ will be deployed with two different approaches. First, generalised 
Polynomial Chaos (gPC)7 is to be applied in order to study the uncertainty in Section III.B. Second, in 
order to have another method for comparison, Kriging surrogates are built in Section III.C to ensure the 
quality of the analysis. In Section IV, a sensitivity analysis is conducted with both methods, in order to 
assign to each input uncertainty its contribution to the total variance.

The results presented in this work demonstrate the jet plume can very sensitive to a combination of 
both the physical and turbulent model uncertainties prescribed. The influence in the nozzle lip vicinity and 
in the shock-cell areas is particularly interesting since this can be influencing screech and shock-cell noise 
respectively. These conclusions can be an important outcome which can help understand how the noise 
emission and flow features are being affected by input uncertainties and lead to future research in aircraft 
industry robust design.

II. CFD simulations

A. Numerical formulation

The full three-dimensional compressible Reynolds-Averaged Navier-Stokes equations in conservative form are 
solved by using the Finite Volume multi-block structured solver elsA (Onera’s software6). The turbulence 
model used in the computations is the one-equation Spalart-Allmaras standard model.8 The convective flux 
is computed using an upwind approach based on the Roe’s approximate Riemann solver.9 The scheme’s 
accuracy is increased by the use of either a second order MUSCL extrapolation10 coupled with the minmod 
limiter or a third order extrapolation technique.11 The last technique does not include any limiter but, as it 
will be shown in the next sections, the convergence of the steady solutions does not suffer from this numerical 
parameter. Finally, Harten correction12 is included to avoid non-entropic solutions. The convection term 
of the Spalart-Allmaras turbulence model is discretized following the formalism of Larotourou,13 by using 
the sum of a centered approximation and a stabilizing (dissipation) term. The diffusion scheme is based 
on a centred formulation used in conjunction with a correction that is introduced to remove the odd/even 
decoupling and damp high frequency waves. For attaining efficiently steady state solutions, the backward 
Euler time integration is coupled with a V-type multigrid technique with three levels of coarsening. The 
implicit system is solved at CF L = 100 with a LU − SSOR algorithm with four sweeps.14 A minimum of 4-6 
drops of order of magnitude in the residuals is obtained for all the simulations after 10000 multigrid cycles. 
In order to accelerate the convergence for all the conditions, a converged deterministic base case solution has 
been used as initial solution.

B. Simulation set-up

The case of study is one of a cold supersonic under-expanded single jet that was tested experimentally by 
André.15 The jet is produced from a convergent nozzle with an exit diameter of D = 38.0mm and a modelled 
nozzle lip thickness of t = 0.125D. The nozzle is operated under-expanded at the stagnation to ambient 
pressure ratio NPR = ps/pamb = 2.27. The Reynolds number, Re, based on the jet exit diameter is 1.25 × 106 

and the fully expanded jet Mach number is Mj = 1.15. The perfectly expanded Mach number, i.e. the Mach 
number that would be reached if the jet was able to expand further to ambient conditions, is related to the
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total pressure by

NPR = ps
pamb

= (1 + γ − 1

2
M2
j )

γ/(γ−1)

. (1)

The boundary conditions used in the computations are as follows. The interior/exterior and lip walls
of the nozzle are computed with adiabatic no-slip wall conditions. A characteristic approach is chosen to
define the inflow conditions outside the nozzle. Such a condition works for all configurations (inflow/outlow,
subsonic/supersonic): the number of fields to impose (1, 4 or 5) is chosen according to the local analysis of
the waves that travel across the interface. The remaining lateral and outlet boundary conditions are set to
a subsonic characteristic one, where the reference ambient pressure is defined.

The computational domain used for the RANS simulations extends 100D in the axial direction and 50D
in the radial direction. The interior of the nozzle is modeled up to 6D while the exterior up to 9D.

C. Mesh generation

The converged mesh consists in a butterfly type mesh to avoid the singularity at the axis as shown in Fig. 1
(b). It contains 20× 106 cells with roughly (900× 300× 64) cells in the axial, radial and azimuthal directions
respectively forward to the nozzle exit plane, (220× 120× 64) inside the nozzle and (170× 100× 64) outside.

The nozzle is wall-resolved for all the conditions with y+ ≈ 1 and radially stretched up to the end of the
domain at a rate of 10% as can be seen in Fig. 1 (a). Axially, the mesh is uniform at the exit of the nozzle,
then it is stretched at 6% up to 0.25D. Next, it is kept constant up to 10D, in order to have a minimum
of around 40 cells per shock-cell (measured at the last cell, which due to the flow physics, it is the most
shortened shock-cell). The mesh is axially stretched again up to the end of the domain at a rate of 10%.
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Figure 1. Mesh cuts representing every fourth cells in the plane (a) z/D = 0 and the plane (b) x/D = 0

Having a converged mesh for all deterministic simulations required for uncertainty quantification is a must. 
This need is specially important for flows containing shocks. In this under-expanded jet, the shock-cells are 
actually a series of expansion and compression waves that look like widen shocks. The above mentioned 
mesh has been thoroughly obtained with the following convergence procedure using as reference parameter 
the Mach number profile at the axis for the deterministic base case and conditions with a higher NPR. 
First, the mesh has been converged azimuthally with 64 cells, obtaining a relative error with respect to a 
refined mesh of less than 0.15% as shown in Fig. 2 (a). Second, the axial discretization is taken into account 
by varying the starting position, where the mesh topology is uniform. Axial convergence is obtained with an 
error of 0.2% with respect to the most refined mesh for the position of 0.25D as shown in Fig. 2 (b). Finally, 
the y+ has been checked so that it still lays in the range smaller than unity for the range of working conditions.

The simulations are carried out with the third order extrapolation as mentioned in Section II.A. The fact 
that the shock-cells are not discontinuous but weak shocks and that they are discretized over 40 cells allows
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Figure 2. Mach number profile relative error of the deterministic base case at the axis for (a) different azimuthal
discretizations, where each line represents the number of azimuthal nodes, and (b) different axial discretizations,
where each line represents the starting position where the mesh is uniform. The refined mesh has been used as
converged solution.

for the use of such high order scheme without any shock limiter. The Mach profile at the axis using the
second order extrapolation is compared with the third order one in Fig. 3. The second order extrapolation
is, as expected, more dissipative, which reinforces the use of the third order extrapolation. Also a contour
plot of the definitive CFD simulation can be seen in Figs. 4 and 5, where only a region of the extensive
computational domain is shown.
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Figure 3. Mach number profile of the deterministic base case at the axis for (a) a general view and (b) a detalied
view of the first three shock-cells.
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Figure 4. CFD RANS simulation of the Mach number from the deterministic base case of the under-expanded
jet in elsA.
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Figure 5. CFD RANS simulations of the deterministic base case of the under-expanded jet in elsA. The shown
parameters are (a) the dimensionless axial velocity profile, v∗x = vx/cref , (b) dimensionless radial velocity profile,
v∗r = vr/cref and (c) dimensionless static pressure, p∗ = p

γref pref
, with γ = 1.4 the specific heat ratio, pref = 98000Pa

the reference pressure and cref = 340.26 m/s the reference speed of sound.

III. Uncertainty Quantification

The main purpose of this work is to compute both the impact of uncertainty from a jet facility and 
the computational injection of turbulence, that give a stochastic point of view to the problem, rather than 
the classical deterministic one. This leads to the concepts of Uncertainty Quantification and Sensitivity 
Analysis, which involves the study of how uncertainty in the output of a model (numerical or otherwise) can 
be apportioned to different sources of uncertainty in the model input16 (see Figure 6). In this section, the 
input uncertainties are described as well as the mathematical methods used for their handling.
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Figure 6. Propagation of uncertainty throughout a mathematical model.

A. Tests and Prescription of Uncertainties

The parameters treated as stochastic inputs for uncertainty quantification are the stagnation pressure, ps, 
and the turbulent to laminar viscosity ratio, Rt = µt/µ, that are both imposed at the inlet of the nozzle. 
These parameters have been selected because of their stochastic behavior in nature.
The stagnation pressure is used to model the uncertainty in the mass-flow rate. Such decision is based on 
suggestions from the experimentalists at von Karman Institute for Fluid Dynamics. For them, during a 
single run, notable pressure variations are not yet expected due to emptying of the tanks. However, these 
are expected during repeated tests. This is because of the membranes of the valves are opening and closing 
several times, and the displacements of these membranes can be slightly different for each run, leading to 
variations in the mass-flow rate. Moreover, we have to take into account the uncertainty of the measurement 
devices (pressure sensors). Consequently, a conservative range of ±5% has been agreed with experimentalists. 
To sum up, the chosen probabilistic distribution is ps ∼ U(0.95p̄s, 1.05p̄s) = U(211337, 233583) P a, where p̄s 
refers to the deterministic base value p̄s = 222460 P a.
The second parameter is the laminar to turbulent viscosity ratio, Rt = µt/µ, used for the injection of turbu-
lence in the Spalart-Allmaras model,8 which is in fact a computational input for the turbulence at the exit of 
the nozzle. This parameter stays fixed when simulating the operating conditions of an experimental facility. 
However, treating it as a deterministic parameter is not appropriate, as the flow properties can be sensitive. 
Thus to quantify the change in the simulations is relevant. Therefore, the variation of the parameter has 
been carefully chosen based on several tests on the CFD solver, for which the solution is close to experimental 
results. By increasing this parameter at the inlet, it increases also the maximum non dimensional turbulent 
wall unit, y+, achieved at the wall near the exit. Nevertheless, the y+ remains of order unity changing from 
1 to 6 for the higher Rt value. Figs. 7 and 8 show the Mach and Rt profiles for different Rt inlet values, 
respectively. Fig. 9 shows the impact on the axial velocity profile at x = 2mm, and it is compared with 
the available experimental data. The values are non-dimensionalized by the maximum values due to the 
fact that the experimental data corresponds to a subsonic test case (Me = 0.9). Moreover, the experimental 
values lacked of the position of the probes and therefore, a curve translation has been done to match the 
computational results. The chosen probabilistic distribution is Rt ∼ U(2.2, 220). This is because for smaller 
values of Rt the change in the injection of turbulence is too small and there is no need to include it in the 
study. The deterministic base value is Rt = 2.2, as this was the value used by the authors in the initialisation 
of the flow for a Large Eddy Simulation (LES).17, 18
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Figure 7. Mach number profile of the deterministic base case at the axis for different Rt inlet values in a (a)
general and a (b) detailed view. Rt = 0.022 �, Rt = 0.22 ○, Rt = 2.2 △, Rt = 22 ▽, Rt = 220 ◇, Rt = 2200 D.
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Figure 8. Rt profile of the deterministic base case at the axis for different Rt inlet values in a (a) general and
a (b) detailed view. Rt = 0.022 �, Rt = 0.22 ○, Rt = 2.2 △, Rt = 22 ▽, Rt = 220 ◇, Rt = 2200 D.
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Figure 9. Axial velocity profile of the deterministic base case at the axis for different Rt inlet values in a (a)
general and a (b)&(c) detailed view. Experimental ×, Rt = 0.022 �, Rt = 0.22 ○, Rt = 2.2 △, Rt = 22 ▽, Rt = 220 ◇,
Rt = 2200 D.

B. Generalised Polynomial Chaos for Uncertainty Quantification

Uncertainty quantification (UQ) has become a very influential field, due to the fact that methods developed
in these years bring the possibility of understanding how the behaviour of expensive (normally in terms
of computation) mathematical models is being affected by imprecisely defined inputs. For a more formal
explanation, let consider the differential operator on an output of interest of a stationary problem, y(x, ξ(η))
as

L(x,ξ(η); y(x,ξ(η))) = Q(x,ξ(η)), (2)

with L and Q differential operators on D × Ξ, where x ∈ D ⊂ Rd, d ∈ {1,2,3}. η denotes events in the com-

plete probabilistic space (Ω̂, F̂ , P̂ ), with F̂ ⊂ 2Ω̂ the σ-algebra of subsets of Ω̂ and P̂ a probability measure.
Ξ ⊂ RNξ , is the stochastic space on which the random variables ξ(η) are defined and Nξ stands for the
number of random variables (two in our case under study).

The approach presented in this section is the Polynomial Chaos method. This method has been devel-
oped to solve Stochastic Differential and Partial Equations (SDE and SPDE, respectively).19 It was firstly 
introduced by Wiener,20 in order to model through Hermite polynomials stochastic processes with gaussian 
random variables. Lately, Xiu & Karniadakis extended the original version of Wiener to a wider family of 
basis functions leading to the known concept of generalised Polynomial Chaos (gPC).7 It is also known as 
Askey-Chaos, due to the fact that is formed by the complete set of orthogonal polynomials from the Askey 
scheme.21 The objective of such extension is that for non-gaussian random inputs, the convergence of the 
Hermite-chaos is low, and in some cases, disastrous.
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Polynomial Chaos is a spectral method and as such, an important advantage is that one may decompose
a random representation into deterministic and stochastic components as

ŷgPC(x,ξ) =
∞

∑
j=0

ymj(x) Ψj(ξ), (3)

where ymj are the deterministic coefficients (also called modal coefficients) with x = (x, r) and Ψj(ξ) is
the orthogonal base, in a tensor-like form by 1-D products of the orthogonal polynomials, satisfying the
orthogonality relation

⟨Ψi,Ψj⟩ = ⟨Ψ2
i ⟩ δij , (4)

with δij the Kronecker delta function and ⟨⋅, ⋅⟩ the inner product. In Eq. (3), the expansion has infinite
terms. For practical reasons, this expansion has to be truncated accounting Nt − 1 terms, with

Nt =
(Nξ + P )!
Nξ! P !

(5)

and P standing for the maximum order of the expansion. So that, the chaos expansion is finally expressed
as

ŷgPC(x,ξ) =
Nt−1

∑
j=0

ymj(x) Ψj(ξ). (6)

In the following, we are going to get rid of x and ξ just for sake of notation. Polynomial Chaos can be
an Intrusive or Non-Intrusive approach. In this paper it is implemented as Non-Intrusive, due to the fact
that it takes into account the solver as a black-box not requiring to code inside the CFD software. This has
been a popular method in the recent years with many successful applications in literature.22,23,24 As the
input uncertainties have been modelled by Uniform Probabilistic Distributions, Legendre polynomial basis
functions are chosen. For the deterministic realisations required in the expansion, collocation points are
chosen. Regarding the selection of the collocation point configuration, the use of Tensor Grids represents
an expensive way. A much efficient mean is the use of sparse grids.25 In this work, Clenshaw-Curtis (C-C)
quadrature nested rule is applied26 to generate the weights and nodes of the sparse grid. The coefficients
ymj can now be computed as

ymj =
⟨y,Ψj⟩
⟨Ψ2

j⟩
. (7)

The evaluation of Eq. (7) is in fact the computation of the multidimensional integral over the domain
Ω̂, on which deterministic simulations of y from the CFD solver are required under prescription of the
sparse grid. Moreover, this inner product is based on the measure of weights according to the choice of the
orthogonal polynomials Ψ, as the weight function is in fact the probabilistic distribution function. As in the
prescribed input uncertainties uniform distributions appear, the spectral method turns into a Polynomial
Legendre Chaos. Once the coefficients are computed, the mean and the variance can be found by

E(ŷgPC) = ym0 , (8)

V(ŷgPC) =
Nt−1

∑
j=1

y2
mj

⟨Ψ2
j⟩ . (9)

An advantage of Polynomial chaos is that sensitivity analysis is straightforward from UQ results. This
will be discussed in Section IV.
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C. Kriging Surrogates for Uncertainty Quantification

Kriging (also known as Gaussian Process interpolation and in this paper under the acronym KG) is an in-
terpolation surrogate method to approximate sets of data and it has been widely used in literature, specially
for tasks involving costly computational analysis that by other methods would be expensive. Examples of
this are CFD optimization,27 sensitivity analysis,28 topography29 or prototyping.30 Despite of the fact that
surrogates can be also constructed with the Polynomial Chaos Expansion, the main idea of using Kriging
is to try another method for a quick comparison. It is also possible hence to test whether Kriging surro-
gates can have a reliable behaviour with only a 65 deterministic simulations budget from collocation methods.

In essence, Kriging is a two-step process: first a regression function f(ξ) is generated based on the data
set, and from its residuals a Gaussian process Z(ξ) is built, as can be seen in Eq. (10)

ŷKG(ξ) = f̂(ξ) +Z(ξ) =
k

∑
i=1

γifi(ξ) +Z(ξ), (10)

where f(ξ) stands for the k × 1 vector of basis regression functions [f1(ξ) f2(ξ)...fk(ξ)] and γi denotes the
coefficients. Depending on the regression function, Kriging can be baptised with different names. Universal
Kriging defines the trend function as a multivariate polynomial, as described in Eq. (10). Simple Kriging
refers to the use of a known constant parameter as regression function, i.e. f(ξ) = 0. A more popular version
is Ordinary Kriging, which also assumes a constant but unknown regression function f(ξ) = γ0. Universal
Kriging with a second order polynomial regression was our choice.

The Gaussian process Z(ξ) is prescribed to have mean zero and cov(Z(ξi), Z(ξ′i)) = σ2
pRc(θ, ξi, ξ′i), where

σ2
p is the process variance and Rc(θ, ξi, ξ′i) is the correlation model or spatial correlation function (SCF).

In order to create an accurate Kriging surrogate it is important to pay attention to the correlation
function. This function only depends on the distance between the two points ξi and ξ′i, and, for the general
exponential case introduced in Eq. (11), also on p. The smaller the distance between two points, the higher
the correlation and, hence, the more the Kriging predictor is influenced by the other. By the same token, if
the distance gets bigger, the correlation drops to zero. For these reasons, it is not typically worthy to put
several data points together, as the prediction would not be influenced. Several correlations can be tried,
but in the present work the generalised exponential worked very well and was the final choice. From Eq.
(11), exponential (p = 1) and gaussian (p = 2) are not appropriate for the complicated surrogates since during
tests these gave some bumped areas in the spaces between nodes.

Rc(θ, ξi, ξ′i) = e−θ∣ξi−ξ
′

i∣
p

(11)

For Kriging interpolation, the same Matlab code31 used by the first author in27 has been utilised here
with small modifications.
Because the shock-cells could create abrupt changes in some features, the generation of surrogates has been
carefully tested. The best performance was observed for the general exponential correlation, whose results
for complicated data sets to be interpolated can be seen in Fig. 10. It can be noticed that the surrogates
have a smooth shape, so it is not expected to have substantial erratic contributions in uncertainty quantifi-
cation when sampling inter nodal areas. In the following section, the application of sampling techniques and
sensitivity analysis on Kriging surrogates is explained and a comparison between Kriging and SCM results
is commented.

Once the Kriging surrogates are available, sampling techniques are affordable. Latin Hypercube Sam-
pling32 and Random Sampling Monte Carlo are widely used non-intrusive methods for propagation of un-
certainty in models (see Fig. 6). These methods have been used for many applications in science and a
vast literature can be found. Generally speaking, sampling techniques evaluate the models ŷKG for different
inputs ξ, obtaining in that way the model predictions ŷi of a system

ŷi = ŷKG(ξi). (12)

The goal of uncertainty analysis is to determine the uncertainty in ŷKG that results from uncertainty 
in the elements of ξ. Those input uncertainties are represented by probabilistic distributions, on which the
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sampling is done for the evaluations ŷi. From the evaluations of the model, a mapping of the performance is
obtained, and a simple way of representing the output uncertainties can be to compute mean and variance
as

E(ŷKG) = 1

Ns

Ns

∑
i=1

ŷi, (13)

V(ŷKG) = 1

Ns − 1

Ns

∑
i=1

(ŷi −E(ŷKG))2. (14)

It must be noticed that to compute EKG(ŷ) and VKG(ŷ) can be an incomplete representation of uncertainty
in some cases, as two probabilistic distributions can have same mean and variance but very different shape.
In our case under study we are not focusing on a particular point but the whole domain. For that reason it
is better to represent the mean and variance contour plots.
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Figure 10. Examples of Kriging surrogates at several x/D distances on data sets with challenging shape. The 
blue points correspond to the deterministic CFD solutions from the fourth level of accuracy in the Clenshaw-
Curtis sparse grid. In the plots Cps stands for the coefficient of variation for ps (±5% ).

D. Comparison and Discussion of Uncertainty Quantification Results

The first step for uncertainty quantification was to test the convergence of each method and do a comparison 
between the two methods. The idea behind using two different methods with different procedures (Kriging 
surrogate by sampling and gPC by quadrature on collocation points) is to provide a comparison. When 
focusing only on one method, any incoherent feature in the analysis or the codes could be taken as a 
conclusion that cannot be contrasted with any other result. However, if a second approach is giving similar 
outputs, a more consistent feedback can be extracted.
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For this purpose, several samplings were tried on Kriging surrogates by Latin Hypercube Sampling (LHS)
and the results were compared with the gPC expansion of 4th order (as Nξ = 2, only 21 terms are required
in the expansion). The accuracy of the methods has been tested along the lipline for the dimensionless axial
velocity, v∗x, and along the centreline for the Mach number, as these are the most relevant parts of the jet
(along the centreline the shock-cells are strong and preliminary tests revealed that the nozzle lipline could be
sensitive for v∗x). To compute the integrals for the statistical moments of gPC, a sparse grid of 65 collocation
points based on Clenshaw-Curtis (C-C) nested rule was used (the 65 collocation points correspond to the
fourth level of accuracy), having a good match with Kriging sampled surrogates as shown in Figs. 11 and 12.
The required number of collocation points was tested in,33 computing the convergence of statistical moments
with Stochastic Collocation Method, so that level of accuracy of the sparse grid was intended here for gPC.

For convergence of gPC, the order of the expansion, P , and the number of collocation points, Nq, have to
be controlled. If Nq is fixed to the fourth level of accuracy (lvl4) as in the paragraph above, it is now necessary
to focus on the order of the expansion, P , to compute the statistical moments. These undergo convergence
up to P = 4. However, if P > 4, there is divergence and this is due to the fact that more collocation points
are needed to compute the integrals. This has been tested numerically by means of generating artificial
deterministic solutions from Kriging surrogates (see Fig. 13). With this procedure, the extra deterministic
solutions of the sparse grid required for the fifth and sixth level of accuracy (lvl5 artif and lvl6 artif in the
legend of the plots) are artificially generated and higher orders in the gPC expansion are tested. These plots
are revealing that in fact in the region of 3 < x/D < 4 more collocation points would be required with higher
P . As for lvl5 and lvl6 are required 145 and 321 collocation points respectively with a not very relevant
improvement in the accuracy, it is not worthy to perform such a large number of simulations with the CFD
code and lvl4 is assumed to be enough. Moreover, an adaptive refinement method34 would not be worthy
since the surrogates are different for each point of the domain.

Regarding the convergence of sampling on Kriging surrogates, even with a reduced number of samples,
converged statistical moments can be obtained. This is because LHS is a sampling strategy more efficient
than Monte-Carlo and also due to the fact that the stochastic dimension is low, requiring to sample less
dimensions. Absolute errors are shown in the comparisons with gPC.
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Figure 11. Evolution of the v∗x stochastic means (a) and standard deviations (b) along the lipline for LHS on
Kriging surrogates with different number of samples, Ns, and its comparison with gPC results. Even for a
small number of samples, LHS is undergoing very good convergence.
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Figure 12. Evolution of the Mach stochastic means (a) and standard deviations (b) along the centreline for
LHS on Kriging surrogates for different number of samples and its comparison with gPC results. Even for a
small number of samples, LHS is undergoing very good convergence.
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Figure 13. Evolution of (a) Mach stochastic standard deviation for different P and levels of the sparse grid 
and (b) a zoom of the most challenging part. These results are compared with Kriging surrogates sampled by 
means of LHS with Ns = 2000.

For the purpose of visualising uncertainty, the contour plots of the stochastic mean and variance are 
represented for both methods. In Figs. 14, 15 and 16 these values are plotted for vx∗, vr∗ and p∗ for Kriging 
surrogates only, as well as the absolute error with respect to gPC, which is showing the small difference in
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the results between both methods.
Despite the absolute error in the variance can seem slightly notable, it is just illustrative. If attention is

paid, i.e. on v∗x along the lipline close to the nozzle in Fig. 14.d, the absolute error seems to be notable, but
in Fig. 11 the difference is practically negligible.
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Figure 14. Contour plots of v∗x (a) stochastic mean and (b) variance by means of LHS on KG surrogates.
Contour plots of the absolute error between (c) stochastic mean and (d) variance between KG and gPC
methods.
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Figure 15. Contour plots of v∗r (a) stochastic mean and (b) variance by means of LHS on KG surrogates.
Contour plots of the absolute error between (c) stochastic mean and (d) variance between KG and gPC
methods.
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Figure 16. Contour plots of p∗ (a) stochastic mean and (b) variance by means of LHS on KG surrogates.
Contour plots of the absolute error between (c) stochastic mean and (d) variance between KG and gPC
methods.

The objective of the analysis is to determine the regions of the jet which are more sensitive to the input
uncertainties. From the task of understanding the physical meaning of the plots above, one can extract the
following relevant information:

• For the dimensionless axial velocity, v∗x, the most sensitive region is along the lipline, close to the nozzle
lip (see Fig. 14.b). This uncertainty is in fact very high, as can be more clearly observed in Fig. 17.b.
This finding can be influential for noise emission, especially for the screech noise feedback loop: when
the vortical structures hit a shock-cell, there is a large pressure disturbance that can be propagated
upstreams reaching the nozzle lip, and hence exciting the shear layer and generating new structures
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that will propagate downstreams. For that reason, such uncertainty could be influential in near nozzle
lip excitation and therefore affect the way screech noise is generated. In addition to this, since screech
tone is a source of vibrations and resonance for nozzles, its uncertainty could be also influential in their
lifespan. Along the centreline some uncertain regions can also be detected, but they can be better
explained when describing the variance in p∗.

• Regarding the dimensionless radial velocity, v∗r , the most sensitive region is immediately below the
lipline (see Fig. 15.b). It is hard to associate this uncertainty to any particular phenomenon but
it could influence the vortical structures. It can also be observed that the second and third shock-
cell compression are notoriously the more sensitive to input uncertainty, where screech is usually
generated.35

• For the dimensionless static pressure, p∗, the most sensitive region is along the centreline (see Fig.
16.b). This is also observed for the Mach number in Fig. 17.a, where can also be noticed uncertainty
in the position of the shocks. This situation can lead to the conclusion that shock-cell noise is affected
somehow by the input uncertainties. Shock-cell noise is generated by the interaction between vortical
structures and shock cells. This phenomenon can be affected by the uncertainty in the shock position,
leading to the fact that peaks in the noise emission could be sort of flatten needing to share such
energy in a broader frequency range. However, the axial and radial velocities (and hence the vortical
structures) are also affected by the input uncertainties, what could also indicate the existence of higher
values than expected in the noise peaks. This would therefore affect the robustness of the design.
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Figure 17. Stochastic mean and standard deviation envelopes with gPC for (a) Mach along centreline and

(b) dimensionless axial velocity, vx∗ along the lipline.

IV. Sensitivity Analysis

An extension of UQ is the global Sensitivity Analysis (SA).36 SA can be split into local or global methods. 
Local methods perform the sensitivity analysis by varying, commonly around a 5%, 10% or a value decided 
with the experience of the scientist, the values of a parameter in order to see how the output changes. On 
the other hand, the global analysis methods perform a sensitivity analysis not taking into account only the 
impact of the variation of one parameter, but also the higher-order effects in a wider range of the sampling. 
Despite of that, in literature is very common to see the use of local sensitivity analysis or OAT (One-factor-
at-A-Time) methods.37 This method has to be used very carefully, since when used, it is assumed that 
the model presents linearity, neglecting higher-order interactions. For further discussion between local and 
global methods, see.38

There are different methods for global sensitivity analysis, such as Screening Method, Derivate Based Sensi-
tivity Analysis or Variance-Based Analysis.39 The scientist should choose the appropriate one depending on 
the computational cost, dimension of the problem or the expected output, among others. There is no general 
framework for this, which makes important for the scientist to understand all the possibilities and drawbacks.
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For the purposes of this work, a Variance-Based Analysis has been chosen.40 One of the main reasons
of using this method is the possibility of ranking the influence of the input factors by sensitivity indices.

The ANOVA decomposition of the variance is shown in Eq. (15), and sensitivity coefficients are computed
from Eq. (16) from its proportion with respect to the total variance. Si and STi , in Eq. (17), are the first-
order and total sensitivity index respectively. In the following equations the multiple subscripts refer to
second, third or higher order interactions, depending on the number of subscripts. Given a model of the
form y = ŷ(ξ1, ξ2, ..., ξk), with y a scalar, the decomposition of the total variance, V(y), can be written as

V(y) =
Nξ

∑
i=1

Vξi +
Nξ

∑
i=1,j>i

Vξij +
Nξ

∑
i=1,k>j>i

Vξijk + ... . (15)

The values at the right hand side of the expression are the first and higher order contributions to the total
variance. Dividing by the total variance, the sensitivities can be computed as

1 =
Nξ

∑
i=1

Si +
Nξ

∑
i=1,j>i

Sij +
Nξ

∑
i=1,k>j>i

Sijk + ... + Sijk,...,Nξ . (16)

This leads to the following expresion for the total sensitivity index for the i-th parameter

STi = Si + Sij + Sijk + ... + Sijk...m (17)

and the associated sensitivity measure (first order sensitivity coefficient) is computed as

Si =
Vξi(Eξ∼i (y∣ξi))

V(y) , (18)

where ξi is the i-th factor and ξ∼i denotes the matrix of all factors but ξi. This index indicates by how much
one could reduce on average the output variance if a parameter could be fixed. On the other hand, the total
effect index can be computed as

STi =
Eξ∼i (Vξi(y∣ξ∼i))

V(y) . (19)

STi measures the total effect, i.e. first and higher order effects (interactions) of factor ξi. It represents a
good measure to determine if a parameter is influential or not, and whether could be neglected from the
model.
The use of this sensitivity technique can be seen in many fields such as solar energy,41 wastewater treat-
ment,42 or heat exchangers.43

As SA has relation with UQ, the approaches from Section III have been used in this section as well.
Particularly, the Kriging surrogates are sampled according to44 and the coefficients from gPC are used to
compute the sensitivity indices. Despite that sampling could also be done on the Polynomial Chaos Expan-
sion, it is worthy to remind that a second objective is to have two different methodologies to compare results
(sampling and quadrature).

1. Generalised Polynomial Chaos for Sensitivity Analysis

One of the interesting features of gPC is the possibility of performing sensitivity analysis straightforward
after uncertainty quantification. For such task, it is not difficult to realise that there is a clear relation
between Eqs. (9), (15) and (16). Eq. (9) can be rewritten as

1 = 1

V(ŷgPC)
Nt−1

∑
j=1

y2
mj

⟨Ψ2
j⟩ , (20)

and the first and higher-order sensitivity indices can carefully be extracted from the expression above since
the literal part of each monomial gives the hints of the interaction.
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2. Kriging surrogates for Sensitivity Analysis

Since the Kriging surrogates, ŷKG, are available from the uncertainty quantification study, it is now possible
to compute the sensitivity indeces from Eqs. (18) and (19).
In order to compute Si, ξi has to be fixed in several points ξi = ξ∗i along the possible values of the random
variable and compute the mean individually for a further computation of Vξi . This would require a very
large number of calculations since the number of fixed points has to be great enough to compute reliable
statistics. A less expensive method has been coded in Matlab by following the suggested procedure in.44

With this method, the first order sensitivity with Kriging surrogates, SKGi , and the total effect, SKGTi , can
be computed as

SKGi =
1 − 1

2Ns

Ns
∑
j=1

(ŷKG(B)j − ŷKG(ABi)j)
2

V(ŷKG) , (21)

SKGTi =

1
2Ns

Ns
∑
j=1

(ŷKG(A)j − ŷKG(ABi)j)
2

V(ŷKG) . (22)

In these expressions, ŷKG(A), ŷKG(B) and ŷ(AB) are model evaluated matrices, product of decompo-
sition of the original matrices which contain the sample campaign. The procedure is as follows:

• Generate two independent Design of Experiment with LHS: A and B.

• The i-th column in matrix A is swapped with the i-th column in matrix B. ABi is hence generated
and the higher value of i is Nξ.

• Evaluate the Kriging surrogates with the elements from the matrices A and B.

• In Eq. (21) and (22), j refers to the column of the matrices.

A. Comparison and Discussion of Sensitivity Analysis Results

As uncertainty quantification results were compared by means of Kriging surrogates and Polynomial Chaos
in Section III, we decide to focus our attention now on the sensitivity contours with both methods for the
dimensionless static pressure, p∗, plotted in Figs. 18 and 19.
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Figure 18. Sensitivity indeces contour plots by means of Kriging for p∗. a) and b) are the first-order sensitivities
and c) the higher-order interaction.

gPC First-order Sensitivity Index for p
s

x/D
0 1 2 3 4 5 6 7 8 9 10

r/
D

0

1

2

3

0.2

0.4

0.6

0.8

gPC First-order Sensitivity Index for R
t

x/D
0 1 2 3 4 5 6 7 8 9 10

r/
D

0

1

2

3

0.2

0.4

0.6

0.8

 gPC Interaction effect Sensitivity Index

x/D
0 1 2 3 4 5 6 7 8 9 10

r/
D

0

1

2

3

0.2

0.4

0.6

0 0.05 0.1
0.4

0.45
0.5

0.55

a)

b)

c)

Figure 19. Sensitivity indeces contour plots by means of gPC for p∗. a) and b) are the first-order sensitivities
and c) the higher-order interaction.
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One of the motivations of using two methods for sensitivity analysis purposes is that the resulting contours
for the sensitivity indices were not intuitive, what could be product of errors implementing the codes.
Fortunately, both methods provided similar solutions, discarding that. The explanation behind the contours
appearance can be that, when performing sensitivity analysis, all the sensitivities of the domain are quantified
simply providing a ’percentage’ of contribution of uncertainty at every node of the CFD domain.
A solution to provide a more intuitive and useful insight is to show the contribution to the total uncertainty
by each parameter as shown in Figs. 20-22. For representation of the quantities of interest, this time only
gPC results will be shown, as the errors between the implemented methods were checked in Section III and
they were practically negligible.
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Figure 20. Contribution to the total variance of a) stagnation pressure, b) laminar to turbulent viscosity ratio
and c) their interaction, for v∗x.
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Figure 21. Contribution to the total variance of a) stagnation pressure, b) laminar to turbulent viscosity ratio
and c) their interaction, for v∗r .
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In a similar manner than for uncertainty quantification, in this section several interesting patterns have
been found linked to apportions to the input uncertainties:

• For the dimensionless axial velocity, v∗x, the most sensitive region was detected along the lipline, close to
the nozzle lip (see Fig. 14.b). This uncertainty is mainly due to uncertainty in the laminar to turbulent
viscosity ratio, Rt, from the Spalart-Almaras turbulent model (see Fig. 20.b). The stagnation pressure
uncertainty, ps, is also playing an influential role (Fig. 20.a), but its impact is not as high as by Rt
in the area immediately at the exhaust exit. The contribution to uncertainty in the shock-cell areas is
done only by means of ps uncertainty.

• Regarding the dimensionless radial velocity, v∗r , the most sensitive region is immediately below the
lipline (see Fig. 15.b). This uncertainty is undoubtedly linked to ps as seen in Fig. 21.a.

• For the dimensionless static pressure, p∗, the most sensitive region is along the centreline (see Fig.
16.b). As can be seen in Fig. 22.a, ps uncertainty is again the most influential one and the influence
of Rt uncertainty is practically null. Closer to the lipline, Rt uncertainty is greater, but not very
significant.

This analysis suggests that ps uncertainty is a common factor in the three analysed uncertain flow pa-
rameters (dimensionless axial velocity, radial velocity and static pressure). This is especially notable in the
shock-cell area and hence, possible hints about influence of ps in shock-cell noise can be interpreted. Unfor-
tunately, without higher-fidelity simulations such as LES or DNS, this cannot be confirmed, but this results
leave such open question to be investigated.

V. Conclusions

Non-Intrusive Uncertainty Quantification techniques have been applied to 3D RANS CFD simulations of
a supersonic under-expanded jet in order to understand the impact of input uncertainty (experimental and in
turbulence modelling) affects to flow properties. Sensitivity Analysis was also carried out to understand the
relevance of each random input in the output uncertainty. The results from the application of both methods
(generalised Polynomial Chaos and Kriging with Latin Hypercube Sampling) have revealed a good match
in the comparison. Despite the fact that shock-cells could be problematic for uncertainty quantification,
convergence was achieved quickly and surrogates interpolate missing data in a very consistent way.

It has been relevant to extend this study to the whole CFD domain instead of relevant points, since some
interesting regions such as the centre and lipline are sensitive and this study can lead to a deeper under-
standing of the flow physics in jets to motivate future investigations or paying more attention to developing
more robust designs. In addition to this advantage in studying the whole domain, the stochastic base-flow
here generated is to be taken under consideration for uncertainty quantification on Parabolised Stability
Equations that model the jet flow instabilities.

From the points analysed in this paper, the following conclusions can be drawn:

• Shock-cell position and amplitude is highly sensitive to input uncertainty. This has been
observed when the evolution of the Mach number was checked and the standard deviation envelopes
were plotted. Moreover, this effect was also noticed in the contour plots of the variance for v∗x, p∗ and
v∗r , what could also be revealing a relation with uncertainty in the vortical structures. As shock-cell
noise is generated by the interaction between vortical structures and shock-cells, the results presented
here could be suggesting an important impact in such acoustic emission. With sensitivity analysis it
has been observed that the uncertainty below the lipline (where the shock-cells are located) is mostly
due to the uncertainty in the stagnation pressure.

• The area immediately after the nozzle lip is highly sensitive to input uncertainty. This
outcome can be observed in the variance of v∗x, where this interesting behaviour can be product of
the pressure suction effect. The uncertainty in that region has to be taken into account, since this is
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the location of the jet where the screech feedback loop takes place. These results reveal a stochastic
behaviour that can be dramatically influential in the loop since it perturbs the shear-layer development.
This could be also an influential fact in mixing noise. It has been also demonstrated that both the
injection of turbulence and stagnation pressure imprecisions are actively contributing to that feature.

In addition to this, it can be observed in v∗r high uncertainty immediately below the lipline, and the
variance of stagnation pressure is the most influential parameter. This shows that the stochastic be-
haviour of the jet is ’stopping’ the uncertainty spreading in the radial velocity at the lipline.

From this work, future research is encouraged. Since the turbulence effects are unsteady and local near the
lip of the nozzle in high fidelity CFD simulations, such behaviour cannot be captured by RANS simulations
and neither the acoustics. This has motivated a further study on UQ on jet stability by the authors, by
using the results of this paper as stochastic base flow in order to understand the impact in the shear-layer
perturbations, interesting for the screech feedback loop.

The stochastic behaviour of the vortical structures that generate noise interacting with shock-cells cannot
be captured by RANS method. It is known that the interation of the vortical structures and shock-cells drives
acoustics and this should be analysed by LES or DNS simulations. But, at the moment, the computational
resources to perform uncertainty quantification with such high-fidelity simulations of flows in the presence
of shock-cells are very limited.
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