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Grothendieck's constant, denoted K G , is defined as the smallest real K > 0 such that we can write x, y = KE(sign(U x )sign(V y )) with x, y ∈ S (the unit sphere of l 2 ) and U x , V y are random variables, which are measurable functions of x, y respectively. Its existence was proved by A. Grothendieck in [START_REF] Grothendieck | Résumé de la théorie métrique des produits tensoriels topologiques[END_REF] where it is shown that : π/2 ≤ K G ≤ sh(π/2) = 2.301 . . . This constant is important in various areas such as functional analysis, algorithmic complexity and quantum mechanics : see [START_REF] Pisier | Grothendieck's theorem, past and present[END_REF]. Its exact value is unknown. In [START_REF] Krivine | Constantes de Grothendieck et fonctions de type positif sur les sphères[END_REF], it is shown that K G ≤ π/2 ln(1 + √ 2) = 1.782 . . . This result is improved in the prominent article [START_REF] Braverman | The Grothendieck constant is strictly smaller than Krivine's bound[END_REF] which proves :

K G < π 2 ln(1 + √ 2) (1) 
Of course, the method gives a better upper bound but the authors did not considered it useful to give it explicitly for the moment. The important fact in (1) is the symbol <.

As explained below, the proof given in [START_REF] Braverman | The Grothendieck constant is strictly smaller than Krivine's bound[END_REF] is divided into two parts and the aim of the present note is to give another proof of the first part.

Let (X i , Y i )(0 ≤ i ≤ n -1) be independent pairs of centered gaussian normal random variables, such that E(X i Y i ) = t. Let X = (X 0 , . . . , X n-1 ), Y = (Y 0 , . . . , Y n-1
), x = (x 0 , . . . , x n-1 ), y = (y 0 , . . . , y n-1 ). Let F, G : R n → R be two odd (i.e. F (-x) = -F ( x)) measurable functions. We set :

Φ F,G (t) = E sign(F ( X))sign(G( Y ))
or else :

Φ F,G (t) = (2π √ 1 -t 2 ) -n R 2n sign(F ( x))sign(G( y))e -x 2 + y 2 -2t x, y 2(1-t 2 ) d xd y (2) 
Φ F,G (t) is an odd function of t, which is analytic around 0, in fact for |Re(t)| < 1. Therefore Φ F,G (i)/i is real. We have :

Φ F,G (i)/i = (2π √ 2) -n R 2n sign(F ( x))sign(G( y))e -x 2 + y 2 4 sin x, y 2 d xd y (3) 
The first part of the proof of (1), which is section 4 of [START_REF] Braverman | The Grothendieck constant is strictly smaller than Krivine's bound[END_REF], consists in showing the :

1 Theorem 1.
There exists an integer n ≥ 1 and two odd functions F, G : R n → R such that :

Φ F,G (i)/i > 2 π ln(1 + √ 2).
H. König has shown that n must be > 1 ; a proof of this is given in section 6 of [START_REF] Braverman | The Grothendieck constant is strictly smaller than Krivine's bound[END_REF].

In [START_REF] Braverman | The Grothendieck constant is strictly smaller than Krivine's bound[END_REF], the authors choose n = 2 ; F ( X) = G( X) = X 0 + ǫH 5 (X 1 ) where H n (x) is the Hermite polynomial of degree n ; we have H 5 (x) = x 5 -10x 3 + 15x ; ǫ is a positive real which decreases to 0.

Here we take n = 3 with :

F ( X) = X 1 cos(ǫH 2 (X 0 ))+X 2 sin(ǫH 2 (X 0 )) and G( Y ) = Y 1 cos(ǫH 2 (Y 0 ))-Y 2 sin(ǫH 2 (Y 0 )).
where ǫ is a fixed positive real and

H 2 (x) = x 2 -1.
Applying the well known formula E(sign(X)sign(Y )) = 2 π Arcsin(E(XY )), we get :

E sign(F ( X))sign(G( Y )) = 2 π E Arcsin t cos(ǫ(X 2 0 + Y 2 0 -2)) or else : Φ F,G (t) = 2 π R 2 Arcsin t cos(ǫ(x 2 + y 2 -2)) e -x 2 +y 2 -2txy 2(1-t 2 ) dx dy 2π √ 1 -t 2 Let t = i and η = 2ǫ : Φ F,G (i)/i = 2 π R 2 Argsh cos(ǫ(x 2 + y 2 -2)) e -x 2 +y 2 4 cos xy 2 dx dy 2π √ 2 = 2 π ∞ 0 π -π
Argsh cos(ǫ(r 2 -2)) e -r 2 4 cos r 2 sin 2θ 4

r dr dθ 2π √ 2 = 2 π ∞ 0 π 0 Argsh (cos(η(2ρ -1))) e -ρ cos (ρ sin θ) √ 2 π dρ dθ
This integral is not difficult to compute with a suitable software, which also gives a good If the inverse power series of Φ F,G (t) had been alternating, we would have obtained in this way an upper bound for K G , that is i/Φ F,G (i) < 1, 7806. But it is not, as is easily checked, using the same computation tools. The second part of the proof in [START_REF] Braverman | The Grothendieck constant is strictly smaller than Krivine's bound[END_REF] must therefore now be applied. It occupies section 5 of this article and uses only the above theorem 1.

  Here are the details of the calculations in Mathematica and Maxima :

	value for η ; with η = 0.228 we find 0.56161447 >	2 π	ln(1 +	√	2) = 0.56109985 . . .
	Computation in Mathematica				
	e = 0.228; 2*(Sqrt[2]/Pi^2)*NIntegrate[ArcSinh[Cos[e*(2r-1)]]
	*Exp[-r]*Cos[r*Sin[t]],{r,0,Infinity},{t,0,Pi}]		
	0.561614475916681				
	Computations in Maxima				
	e:0.228$ float((2*sqrt(2)/(%pi)^2)*romberg(romberg((%e^(-r)*cos(r*sin(t))
	*asinh(cos(e*(2*r-1)))),r,0,30),t,0,%pi));				
	0.5616148084478034				
	e:0.228$ float(2*sqrt(2)/(%pi)^2)*quad_qag(romberg((%e^(-r)*cos(r*sin(t))
	*asinh(cos(e*(2*r-1)))),r,0,30),t,0,%pi,3);			
	[0.5616145048484699,5.20841189541884*10^-9,8.883967107886724,0]