
HAL Id: hal-04107806
https://hal.science/hal-04107806v1

Preprint submitted on 26 May 2023 (v1), last revised 21 Dec 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unifying GANs and Score-Based Diffusion as Generative
Particle Models

Jean-Yves Franceschi, Mike Gartrell, Ludovic Dos Santos, Thibaut Issenhuth,
Emmanuel de Bézenac, Mickaël Chen, Alain Rakotomamonjy

To cite this version:
Jean-Yves Franceschi, Mike Gartrell, Ludovic Dos Santos, Thibaut Issenhuth, Emmanuel de Bézenac,
et al.. Unifying GANs and Score-Based Diffusion as Generative Particle Models. 2023. �hal-
04107806v1�

https://hal.science/hal-04107806v1
https://hal.archives-ouvertes.fr


Unifying GANs and Score-Based Diffusion as
Generative Particle Models

Jean-Yves Franceschi
Criteo AI Lab, Paris, France

jycja.franceschi@criteo.com

Mike Gartrell
Criteo AI Lab, Paris, France
m.gartrell@criteo.com

Ludovic Dos Santos∗
Criteo AI Lab, Paris, France
l.dossantos@criteo.com

Thibaut Issenhuth∗

Criteo AI Lab, Paris, France
LIGM, Ecole des Ponts, Univ Gustave Eiffel,

CNRS, Marne-la-Vallée, France
t.issenhuth@criteo.com

Emmanuel de Bézenac∗
Seminar for Applied Mathematics,

D-MATH, ETH Zürich, Rämistrasse 101,
Zürich-8092, Switzerland

emmanuel.debezenac@sam.math.ethz.ch

Mickaël Chen∗

Valeo.ai, Paris, France
mickael.chen@valeo.com

Alain Rakotomamonjy∗

Criteo AI Lab, Paris, France
a.rakotomamonjy@criteo.com

Abstract

Particle-based deep generative models, such as gradient flows and score-based
diffusion models, have recently gained traction thanks to their striking performance.
Their principle of displacing particle distributions by differential equations is
conventionally seen as opposed to the previously widespread generative adversarial
networks (GANs), which involve training a pushforward generator network. In
this paper, we challenge this interpretation and propose a novel framework that
unifies particle and adversarial generative models by framing generator training as
a generalization of particle models. This suggests that a generator is an optional
addition to any such generative model. Consequently, integrating a generator into
a score-based diffusion model and training a GAN without a generator naturally
emerge from our framework. We empirically test the viability of these original
models as proofs of concepts of potential applications of our framework.

1 Introduction

Score-based diffusion models (Song et al., 2021) have recently received significant attention within the
machine learning community, due to their striking performance on generative tasks (Rombach et al.,
2022; Ho et al., 2022). Similarly to gradient flows, these models involve systems of particles, where
the displacement of the particle distribution is described by a differential equation parameterized by a
gradient vector field. Such particle-based deep generative models are typically seen as opposed to
generative adversarial networks (GANs, Goodfellow et al., 2014), as the latter involves adversarial
training of a generator network (Dhariwal & Nichol, 2021; Song, 2021; Xiao et al., 2022).

In this paper, we challenge the conventional view that particle and adversarial generative models are
opposed to each other. We make the following contributions.

A unified framework. We present a novel framework that unifies both classes of models, showing
that they are based on similar particle evolution equations. Particle models follow a gradient vector

∗Authors listed in a randomly chosen order.

Preprint. Under review.



Table 1: Taxonomy of particle models, including our proposed hybrid models: Score GANs and
Discriminator Flows.

Model Generator Flow type∇hρt
Wasserstein gradient flows ✗ Wasserstein gradient −∇WF(ρt)Stein gradient flows ✓

Score-based diffusion models ✗
αt∇ log

[
pdata ⋆ k

σ(t)
RBF

]
− βt∇ log ρtScore GANs ✓

Discriminator Flows ✗ −∇
(
c ◦ fρt

)
where fρt is a discriminator between ρt and pdataGANs ✓

field during inference; in a similar fashion, the generator’s outputs can be seen as following the same
gradient field during training, up to a specific smoothing due to the generator. Building upon prior
scattered literature, we propose a new framework that encompasses a variety of methods, which are
listed in Table 1 together with their respective flow type.

Decoupling generators and flows. By uncovering the role of the generator as a smoothing operator,
we suggest that the existence of a generator and the flow that particles follow can be decoupled. We
deduce that it is possible to train a generator with score-based gradients which replace adversarial
training (which we call a Score GAN); and that a GAN can be trained without a generator, using
only the discriminator to synthesize samples (which we call a Discriminator Flow); cf. Table 1. We
introduce these new models as proofs of concept, which we empirically assess to support the validity
of our framework and illustrate the new perspectives it opens up in this active field of research.

Throughout the paper, we call out some specifics of the contributions of our framework as Definitions
and Findings (italicized in the main text).

Outline. We begin with a discussion of particle models without generators in Section 2, covering
Wasserstein gradient flows and score-based diffusion models. In Section 3, we discuss how generator
training can be framed as a particle model with a generator, including GANs and Stein gradient flows.
Section 4 then highlights how our framework allows us to decouple the generator and flow components
of particle models, leading to the aforementioned new models, Score GANs and Discriminator Flows.
Finally, we discuss the implications of our findings and conclude the paper in Section 5.

Notations. We consider the evolution of generated distributions ρt over RD w.r.t. time t ∈ R+, with t
being respectively inference time for particle models without generators or training time for generator
training. This evolution until some finite or infinite end time T ∈ R+ ∪ {+∞} then yields a final
generated distribution pg = ρT , which ideally approaches the data distribution pdata.

2 Particle Models without Generators: Non-interacting Particles

In this section, we formally introduce the notion of generative particle models that do not use a
generator, and present two standard instances: Wasserstein gradient flows and score-based diffusion
models. They involve the manipulation of particles xt ∼ ρt following a differential equation parame-
terized by some vector field. We characterize these models by noticing that their particles actually
optimize, independently from each other, a loss that depends on the current particle distribution.
Definition 1 (Particle Models, PMs). PMs model particles xt ∼ ρt starting from a prior ρ0 = π:

x0 ∼ π = ρ0, dxt = ∇hρt(xt) dt, (1)

where hρt :RD → R is a functional that depends on the current particle distribution ρt. Time t
corresponds to generation / inference time from ρ0 to the final distribution pg = ρT .
Finding 1. In PMs, the evolution of Equation (1) makes each generated particle xt individually
follow a gradient ascent path on the objective hρt(xt).

In prior work, the prior π is chosen to be easy to sample from, such as a Gaussian. hρt is usually
defined in a theoretical manner so that the flow of Equation (1) conveys good convergence properties
for ρt towards pdata when t → T . Because analytically computing hρt is often intractable, it is
empirically estimated and replaced by a neural network in practice.

2



2.1 Wasserstein Gradient Flows

A Wasserstein gradient flow is an absolute continuous curve of probability distributions in a Wasser-
stein metric space P2 over RD that satisfies a continuity equation (Santambrogio, 2017), and equiva-
lently an evolution of particles xt ∼ ρt under mild hypotheses (Jordan et al., 1998):

∂tρt −∇ ·
(
ρt∇WF(ρt)

)
= 0, dxt = −∇WF(ρt)(xt) dt, (2)

where F :P2 → R is the functional to minimize in the Wasserstein space. This definition involves the
Wasserstein gradient of the functional F(ρt), which for some functionals can be obtained in closed
form by computing the first variation of the functional F (Santambrogio, 2017, Section 4.3):

∇WF(ρt) = ∇
∂F(ρt)
∂ρt

:RD → RD. (3)

Finding 2. Wasserstein gradient flows are PMs with hρt = −
∂F(ρt)
∂ρt

+ cst and T = +∞.

Table 2: Gradient flows for standard objectives F .

Objective F(ρ) hρ

Forward KL Eρ log ρ/pdata − log ρ/pdata

f -divergence Epdata
f
(
ρ/pdata

)
−f ′(ρ/pdata)

Squared MMD
w.r.t. kernel k

E
x,x′∼ρ

y,y′∼pdata

 k
(
x,x′

)
+k

(
y,y′

)
−2k(x,y)

 Ey∼pdata [k(y,·)]
−Ex∼ρ[k(x,·)]

Entropy Eρ log ρ − log ρ

The partial differential equation governing the
particle evolution, as well as its convergence
properties toward pdata, strongly depends on
the functional F . We detail the standard ex-
amples of the forward Kullback-Leibler (KL)
divergence (Kullback & Leibler, 1951), f -
divergences (Rényi, 1961), the squared Maxi-
mum Mean Discrepancy (MMD, Gretton et al.,
2012; Arbel et al., 2019), and entropy regu-
larization in Table 2. They can be additively
combined for a variety of objectives F . More
examples exist in the literature (Liutkus et al., 2019; Mroueh et al., 2019; Glaser et al., 2021).

Several methods have been explored in the literature to solve Equation (2) in practice, either using
input-convex neural networks (Mokrov et al., 2021; Alvarez-Melis et al., 2022) to discretize the
continuous flow, or parameterizing∇hρ by a neural network (Gao et al., 2019; Fan et al., 2022; Heng
et al., 2023). In all cases, these methods fit with the class of PMs as framed in Definition 1.

2.2 Score-Based Diffusion Models

Early score-based models (Noise Conditional Score Networks [NCSN], Song & Ermon, 2019) rely
on Langevin dynamics as described in the following stochastic differential equation, converging
towards pdata when t→∞:

dxt = ∇ log pdata(xt) dt+
√
2 dWt. (4)

Several methods that use neural networks to estimate the score function of the data distribution
∇ log pdata (Hyvärinen, 2005), coupled with the use of Langevin dynamics, can work in practice
even for high-dimensional distributions. Nonetheless, because of ill-definition and estimation issues
for the score for discrete data on manifolds, a Gaussian perturbation of the data distribution is
introduced to stabilize the dynamics. Thus, pdata in Equation (4) is replaced by the distribution
pσdata of x+ σε, where x ∼ pdata and ε ∼ N (0, ID). Denoting ⋆ as the convolution of a probability
distribution p by a kernel k:RD ×RD → R, we notice that pσdata is actually the convolution of pdata
by a Gaussian kernel:

pσdata = pdata ⋆ k
σ
RBF, p ⋆ k ≜

∫
x

k(x, ·) dp(x), kσRBF(x, y) ≜
1

σ
√
2π

e−
∥x−y∥22

2σ2 . (5)

NCSN then follows this equation, estimating the score with denoising score matching (Vincent, 2011)
and repeating the process for a decreasing sequence of σs:

dxt = ∇ log[pdata ⋆ k
σ
RBF](xt) dt+

√
2 dWt. (6)

Building on Song et al. (2021), newer score models (Karras et al., 2022) make σ a continuous function
of time σ(t), decreasing towards 0 in finite time to improve convergence. Many of these approaches

3



share the following generation equation, corresponding to the reverse of a noising process for pdata
(Elucidating the Design Space of Diffusion-Based Generative Models [EDM], Karras et al., 2022):

dxt = 2σ′(t)σ(t)∇ log
[
pdata ⋆ k

σ(t)
RBF

]
(xt) dt+

√
2σ′(t)σ(t) dWt, (7)

where σ′ is the derivative of σ(t). These approaches admit an equivalent deterministic flow yielding
the same probability path ρt:

dxt = σ′(t)σ(t)∇ log
[
pdata ⋆ k

σ(t)
RBF

]
(xt) dt. (8)

However, we notice that this only holds under the implicit assumption that Equation (7) perfectly
reverses the initial noising process, i.e., ρt = pdata ⋆k

σ(t)
RBF. This assumption can be broken in practice

when the score is not well estimated or for coarse time discretization. In the general case for both
NCSN and EDM, by going through the Fokker-Planck equation (Jordan et al., 1998), which allows us
to substitute the stochastic component dWt by the negative of the score of the generated distribution,
we obtain the following equivalent exact probability flows:

dxt
dt

= ∇ log

[
pdata ⋆ k

σ
RBF

ρt

]
(xt),

dxt
dt

= σ′(t)σ(t)∇ log

[
1

ρt

(
pdata ⋆ k

σ(t)
RBF

)2]
(xt). (9)

Finding 3. Score-based diffusion models are PMs:

• NCSN (Song & Ermon, 2019) with hρt = log
[
pdata ⋆ k

σ
RBF

]
− log ρt and T = +∞;

• EDM (Karras et al., 2022) with hρt = σ′(t)σ(t)

(
2 log

[
pdata ⋆ k

σ(t)
RBF

]
− log ρt

)
and T < +∞.

NCSN actually implements through Langevin dynamics a forward KL gradient flow, which is
common knowledge in the related literature (Jordan et al., 1998; Yi et al., 2023).

3 Particle Models with Generators: Training of Interacting Particles

In the previous section we presented a framework for particle models (PMs) that, in the absence of a
generator, individually manipulate particles in the data space, and optimize a distribution-dependent
objective hρt via a differential equation. In this section we frame generator training as a generalization
of PMs involving direct interaction between particles. We show, supported by prior literature, that
our framework applies to the case of GANs and Stein gradient flows.

3.1 Generator Training as a Modified Particle Model

We begin with the training of a neural generator gθ:Rd → RD parameterized by θ. Associated with
a prior distribution on its latent space pz , gθ produces a generated distribution pθ as the pushforward
of pz through gθ: pθ = gθ♯pz , by which we seek to imitate pdata. Unlike PMs which progressively
construct synthesized samples directly in the data space RD, generators enable models like GANs
to generate samples starting from a different latent space. When d < D, this latent space allows
the resulting distribution to be naturally embedded into a lower-dimensional manifold, thereby
integrating the manifold hypothesis (Bengio et al., 2013). Parameters θ evolve during training,
making the generated distribution move accordingly: ρt = pθt .

We characterized in Section 2, Finding 1, PMs as models that make free generated particles optimize
an objective hρ:RD → R that convey desirable convergence properties. We leverage this observation
to show that generator training can be framed as a PM as well. We see that generators involve
generated particles xt ∼ ρt as generator outputs xt = gθt(z), with z ∼ pz , which move during
training. We proceed by making the generator optimize the same objective hρt as in PMs, that is, the
generator parameters are trained to minimize at each optimization step (where η is the learning rate):

Lgen(θ) = −ηEz∼pz
[
hρt
(
gθ(z)

)]
. (10)

In the optimization of Equation (10), we intentionally ignore the dependency of ρ on θ, i.e. in practice
ρ = StopGradient(gθ♯pz). This allows us to mimic PMs where generated particles xts optimize the
objective hρt , without taking into account that ρt is actually a mixture of all the xts.

4



By optimizing θt via gradient descent for the loss of Equation (10), idealized in the continuous
training time setting, we obtain using the chain rule:

dθt
dt

= ∇θtEz∼pz
[
hρt
(
gθt(z)

)]
= Ez∼pz

[
∇θtgθt(z)∇hρt

(
gθt(z)

)]
. (11)

As a consequence, using the chain rule again, each generated particle xt = gθt(z) ∼ ρt evolves as:

dgθt(z)

dt
= ∇θtgθt(z)

⊤ dθt
dt

= Ez′∼pz
[
kgθt

(
z, z′

)
∇hρt

(
gθt
(
z′
))]

, (12)

where kgθ : z, z
′ 7→ ∇θtgθt(z)

⊤∇θtgθt
(
z′
)

is the matrix Neural Tangent Kernel (NTK, Jacot et al.,
2018) of the generator. Equation (12) describes the dynamics of the generated particles as a modified
version of Equation (1) for PMs. We formalize this as follows.
Definition 2 (Interacting Particle Models, Int-PMs). Int-PMs model particles resulting from the
pushforward gθt♯pz of a generator gθt applied to a prior pz , with the following training dynamics:

dgθt(z) =
[
Aθt(z)

](
∇hρt

)
dt, (13)

where hρt :RD → R is a functional that depends on the current distribution ρt, time t is training time,
and Aθt(z) is a linear operator operating on vector fields (Sriperumbudur et al., 2010), defined as:[
Aθt(z)

]
(V ) ≜ Ez∼pz

[
kgθt

(
z, z′

)
V
(
gθt(z)

)]
, kgθt

(
z, z′

)
≜ ∇θtgθt

(
z′
)⊤∇θtgθt(z). (14)

Similarly to PMs, the vector field∇hρt in Int-PMs indicates which direction each generated particle
will follow to get closer to the data distribution. However, Aθt smooths this gradient field using the
generator’s NTK, and generated particles thus interact with each other. Indeed, moving one particle
makes its neighbors move because of their parameterization by the generator. Notably, Int-PMs
generalize PMs: in the degenerate case where k

(
z, z′

)
= δz−z′ , with δ the Dirac delta function

centered on 0, i.e., when particles can move freely with a sufficiently powerful generator, the effect
of parameterization disappears with Aθt = id, and therefore Equation (13) reduces to Equation (1).
Finding 4. Int-PMs generalize PMs. Each Int-PM is therefore defined by two components: the loss
function hρt and the choice of generator architecture gθ.

We will show in the remainder of this section that Int-PMs encompass both GANs and Stein gradient
flows, borrowing Franceschi et al. (2022)’s results which the previous reasoning generalizes.

3.2 GANs as Interacting Particle Models

In GANs, each generator gθ is accompanied by a discriminator fρ that depends on the generated
distribution. fρ is optimized as a neural network via gradient ascent (GA) to maximize an objective
of the following form:

fρ = GAf

{
Ld(f ; ρ, pdata) ≜ Eρ[a ◦ f ]− Epdata [b ◦ f ] +R(f ; ρ, pdata)

}
, (15)

for some functions a, b:R → R (e.g. for the WGAN of Arjovsky et al. (2017), a = b = id) and
regularization R (e.g., the gradient penalty of Gulrajani et al. (2017)). In this work, we remain
oblivious to how the discriminator is trained in practice as a single network alongside the generator.
Nonetheless, we note that this GA is usually stopped early and not run until convergence, because the
discriminator is trained only for a few steps between generator updates.

This discriminator is then used to train the generator, as usually framed in a min-max optimization
setting. However, several works (Metz et al., 2017; Franceschi et al., 2022; Yi et al., 2023) showed that
generator optimization deviates from min-max optimization, because alternating updates between the
generator and the discriminator make the generator minimize a loss function of the form (Franceschi
et al., 2022):

LGAN(gθ) = ηEz∼pz
[(
c ◦ fρ

)(
gθ(z)

)]
, (16)

for some c:R → R (e.g., for WGAN, c = id). Using Definition 2, we deduce the following
observation.

5



Finding 5. GANs are Int-PMs with hρ = −c ◦ fρ, where fρ is the current discriminator.

Under some assumptions on the outcome of discriminator training in Equation (15), the resulting
∇hρ for GANs has been proven to implement a Wasserstein gradient −∇WF(ρ). Two notable
examples are (see also Section 2.1): f -divergence GANs (Nowozin et al., 2016), which are linked
to the forward KL divergence gradient flow (Yi et al., 2023) and therefore diffusion models; and
Integral Probability Metrics GANs, which are linked to the squared MMD gradient flow w.r.t. the
NTK of the discriminator (Franceschi et al., 2022). However, these links have been made under
strong simplifying assumptions, and the GAN formulation as an Int-PM in this paper is far more
general.

Finding 6. GANs as Int-PMs generalize gradient flows and diffusion models.

3.3 Stein Gradient Flows as Int-PMs

Int-PMs as framed in Definition 2 are similar to Stein gradient flows (Liu & Wang, 2016; Liu, 2017;
Duncan et al., 2023). The latter are a generalization of Wasserstein gradient flows in another geometry
shaped by a kernel k:RD × RD → RD × RD defined in the data space:

dxt = −Ex′
t∼ρt

[
k
(
xt, x

′
t

)
∇WF(ρt)(xt)

]
dt. (17)

Prior works showed strong links between such flows and GAN optimization, which help us to see
that GANs are Int-PMs. In the following, we will see that Stein Gradient flows serve as an example
of a functional generator-based counterpart of a generator-less PM.

We begin by generalizing the reasonings of Chu et al. (2020), Durr et al. (2022) and Franceschi et al.
(2022), which initially applied only to the case of GANs. We assume that for Int-PMs in Equations (13)
and (14), the generator’s NTK is constant throughout training, i.e. kgθt = kg , like for many networks
with infinite width (Jacot et al., 2018; Liu et al., 2020). Then, when ∇hρ = −∇WF(ρt), e.g., for
gradient flows as in Finding 2 or for GANs following Finding 5, we obtain an equation similar to
Equation (17):

dgθt(z)

dt
= −Ez′∼pz

[
kg
(
z, z′

)
∇WF(ρt)

(
gθt
(
z′
))]

. (18)

This is a special case of Equation (17) with an invertible generator (Chu et al., 2020). However, in the
general case, the kernel kg:Rd × Rd → RD × RD acts on the latent space, making Equation (18)
define a generalized latent-driven Stein flow that was uncovered by Franceschi et al. (2022).

Finding 7. Stein gradient flows are Int-PMs with an invertible generator in the NTK regime and
hρt = −

∂F(ρt)
∂ρt

+ cst. They can be generalized to non-invertible generators with Equation (18).

4 Decoupling the Generator and the Flow in Particle Models

We saw in the last section that Int-PMs, such as GANs, generalize PMs, such as diffusion and
Wasserstein gradient flows, by applying their generative equations to generator training. This suggests
that many generative models can be defined by their PM flow, which allows an optional generator to
be trained. As we saw in Section 3.3, this is the case for gradient flows, which can either define a PM
or an Int-PM with the same h as a Wasserstein gradient. Consequently, we formulate the following
claim that directly results from our framework.

Claim 1. A generator can be trained using the gradient flow of a score-based diffusion model instead
of adversarial training, and it is possible to remove the generator in a GAN by synthesizing samples
with the discriminator only.

We confirm this hypothesis in this section by introducing corresponding new hybrid models, which
we call respectively Score GANs and Discriminator Flows (see Table 1), and by empirically demon-
strating their viability. Note that we introduce these models as proofs of concepts of the applications
of our framework. Since they challenge many assumptions and standard practices of generative
modeling, they do not benefit from the same wealth of accumulated knowledge that classic models
have access to, and thus are harder to tune than standard models.

6



Figure 1: From left to right, generation process
on MNIST of EDM and Discriminator Flow for
every 8 evaluations of∇hρt . The last row shows
the first 7 steps of Discriminator Flow.

Figure 2: Uncurated samples of studied models
on CelebA and MNIST.

Algorithm 1: Training iteration of Score GANs; all operations can be performed in parallel for
batching. See Appendix A for details on the practical implementation of lines 3 and 5.
Input: Noise distribution pσ , number of intermediate score training steps K, learning rates

λ, η ∈ R+, previous generator gθ:RD → R, previous ρ score model sρϕ:RD × R→ RD,
pretrained pdata score model spdataψ :RD × R→ RD.

Output: Updated generator gθ and ρ score model sρϕ.
1 for k = 1 to K do // Updates of sρ by denoising score matching
2 x ∼ pdata, z ∼ pz , x = gθ(z), σ ∼ pσ , xσ ∼ N

(
x, σ2ID

)
;

3 ϕ← ϕ− λ∇ϕ
∥∥∥sρϕ(xσ, σ) + xσ−x

σ2

∥∥∥2
2

// Score matching with generator, Equations (11) and (19)
4 x ∼ pdata, z ∼ pz , x = gθ(z), σ ∼ pσ , ε ∼ N (0, ID);

5 θ ← θ + η · ∇θgθ(z)⊤
(
spdata

ψ

(
gθ(z) + σε, σ

)
− sρϕ

(
gθ(z) + σε, σ

))

Table 3: Test FID of studied models.

Dataset
PMs (no generator) Int-PMs (generator)

EDM Discr. Flow GAN Score GAN

MNIST 3 4 3 15
CelebA 10 41 19 35

Experimental setting. We conduct experiments on
the unconditional generation task for two standard
datasets composed of images: MNIST (LeCun et al.,
1998) and 64× 64 CelebA (Liu et al., 2015). We con-
sider two reference baselines, EDM (the score-based
diffusion model of Karras et al. (2022)) and GANs,
and use the Fréchet Inception Distance (FID, Heusel
et al., 2017) to test generative performance in Table 3. Training details are given in Appendix C; our
source code is open-sourced at https://github.com/White-Link/gpm. We refer to Appendix B
and the code for more experimental results and samples for each baseline.

4.1 Training Generators with Score-Based Diffusion: Score GANs

We propose training a generator with the score-based diffusion flow of NCSN, Equation (9), left.
This involves applying Equation (13) with hρt = log

[
pdata ⋆ k

σ
RBF

]
− log ρt. To do so, we directly

use the generator weight update formula of Equation (11), as it avoids the problem of estimating
hρt and only requires its gradient∇hρt = ∇ log

[
pdata ⋆ k

σ
RBF

]
−∇ log ρt. Composed of the scores

of, respectively, the noised data distribution and the generated distribution, ∇hρt can be efficiently
estimated via score matching techniques.

In practice, we use a score network spdataψ pretrained with the latest denoising score matching
techniques (Karras et al., 2022) to estimate the static term ∇ log

[
pdata ⋆ k

σ
RBF

]
. Moreover, as

∇ log ρt is dynamic and needs to be continuously estimated, we leverage GAN discriminator practices
and train a network sρϕ by alternating with generator updates to estimate this score.

However, our proposed solution remains impractical for two reasons. First, since the dynamics would
match pdata ⋆ kσRBF and ρt, we would need to schedule σs during training, similar to what Song
& Ermon (2019) do during inference. Second, while ∇ log ρt can be estimated using sliced score
matching (Song et al., 2020), this approach is less performant than denoising score matching and

7

https://github.com/White-Link/gpm


Algorithm 2: Training iteration of Discr. Flows. Cf. batching and discretization in Appendix A.
Input: Initial distribution π = ρ0, gradient strength η ∈ R+, learning rate λ ∈ R+, previous

discriminator fϕ:RD × R→ R.
Output: Updated discriminator fϕ.
1 x ∼ pdata, x0 ∼ π, t ∼ U(0, 1); // Initialization, random sampling time

2 xt ← x0 − η
∫ t
0
∇xs

[(
c ◦ fϕ

)
(xs, s)

]
ds; // Partial generation, Equation (20)

3 ϕ← ϕ+ λ∇ϕ
{
Ld

(
fϕ(·, t); δxt , δx

)}
; // Train fϕ at time t, cf. Equation (15)

leads to estimation issues when ρt lies on a manifold (Song & Ermon, 2019), as in our case with a
pushforward generator. Both of these problems can be solved by instead matching pdata ⋆ k

σ
RBF and

ρt ⋆ k
σ
RBF for a range of σs, using Equations (12) and (13):

hρt = log[pdata ⋆ k
σ
RBF]− log[ρt ⋆ k

σ
RBF]. (19)

This approach allows us to leverage denoising score matching to train sρϕ and to avoid scheduling
σs by instead sampling them during training and noising the generated distribution with the chosen
noise levels. Overall, we obtain the algorithm for Score GANs described in Algorithm 1.

Finding 8. Score GANs are Int-PMs with hρ = Eσ∼pσ
[
log
[
pdata⋆k

σ
RBF

ρt⋆kσRBF

]]
and T = +∞.

4.2 Removing the Generator from GANs: Discriminator Flows

Based on Findings 4 and 5, we see that removing the generator from GANs to make them PMs, as in
Definition 1, simply requires that we define hρt = −c ◦ fρt , where fρt is the discriminator between
ρt and pdata at sampling time t in Equation (1):

dxt = −∇
(
c ◦ fρt

)
(xt) dt, (20)

with each particle following the pointwise GAN generator loss of Equation (16). This makes
Equation (20) the equivalent of GAN training, but as a PM without parameterization by a generator.

This approach requires training a neural discriminator fϕ:RD × R→ R, that takes as input both a
sample xt ∼ ρt and its corresponding time t ∈ R. Each xt ∼ ρt must be computed both in training
and inference from x0 ∼ ρ0 = π using Equation (20). For practical convenience, we restrict, without
loss of generality, t ∈ [0, 1], i.e. T = 1. This results in the training procedure of Algorithm 2 for
Discriminator Flows.
Finding 9. Discriminator Flows are PMs with hρ = −c ◦ fρt and T = +∞.

Unlike diffusion models, for which the score can be freely estimated at each t because ρt is assumed
to equal pdata ⋆k

σ(t)
RBF, the generation process of Discriminator Flows is not known in advance. In fact,

we must simulate the entire process during training, making each training iteration slower. However,
our approach has the advantage of generalizing the diffusion process and allowing the discriminator
to learn another path from the initial distribution ρ0 = π to pdata. We believe that, when properly
tuned, Discriminator Flows may benefit from faster sampling times than diffusion models because
they can learn shorter paths towards pdata.

4.3 Experimental results

We see uncurated samples from our proposed Score GAN and Discriminator Flow models in Figure 2,
as well as the baseline EDM and GAN models. In Table 3 we report the FID scores for all models.
We observe that both of our introduced models produce reasonable results, which experimentally
confirms our initial claim. Nonetheless, these models exhibit worse (higher) FID scores than our
baselines, although Discriminator Flows provide good performance on the MNIST dataset. We
attribute these performance results to the fact that our proposed models are novel and do not benefit
from the accumulated knowledge regarding training best practices that the standard models possess.

Interestingly, the proposed models exhibit typical properties of generator-free and generator-based
models. Since Score GANs use a generator, as in GANs, only one function evaluation is required to

8



draw a sample, making it orders of magnitude faster to sample from than EDM; like GANs, Score
GANs may produce mode collapse, as shown in Appendix B. Of course, Discriminator Flows are
slower at both training and inference time than such generator-based models, but this comes with
the additional flexibility of operating directly in the data space (Voleti et al., 2022; Couairon et al.,
2023). However, as shown in Figure 1 and in the numerical results in Appendix B, Discriminator
Flows have the expected advantage of converging faster to the target distribution as compared to the
state-of-the-art diffusion model EDM, and thus have higher efficiency during inference.

4.4 Relationship with Prior Work

Score GANs. Conceptually, Score GANs implement for each σ a forward KL gradient flow, similarly
to Yi et al. (2023) who theoretically proved that some GAN models approximate it without noising,
under optimality assumptions on the discriminator. However, Score GANs differ from traditional
GANs as they involve no discriminator but rather split the flow∇hρt into two parts: one that can be
estimated before generator training as it depends only on the data distribution, and one that must be
continuously estimated during training as it depends on the generated distribution. While hρt could
be estimated by adding noise to the inputs of a discriminator (Wang et al., 2022), Score GANs instead
only need to estimate the score of the generated distribution, which is no longer adversarial.

Discriminator Flows. As a general concept, Discriminator Flows provide an encompassing frame-
work that helps to reveal the connections of various approaches to GAN training.

Recently, Heng et al. (2023) introduced deep generative Wasserstein gradient flows (DGGF), a
method that relies on f -divergence gradient flows approximated by estimating the ratio ρt/pdata with a
neural network. Examined under our framework, DGGF’s training objectives correspond to that of a
discriminator in f -divergence GANs, allowing us to frame DGGF as a special case of Discriminator
Flows. Nonetheless, we stress that Discriminator Flows have a larger scope than DGGF since we
can handle all types of GAN objectives; all our experiments were performed with WGAN objectives.
Moreover, unlike DGGF, which in practice removes the time dependency in their estimation without
a theoretical justification, our method does handle time as input to the discriminator.

Discriminator Flows also relate to, and generalize, methods that finetune GAN outputs with gradient
flows (Tanaka, 2019; Che et al., 2020; Ansari et al., 2021). The latter use discriminator gradients to
approximate such flows, making them naturally expressible as Discriminator Flows in our framework.
In practice, they only apply their sampling procedures in the latent space of the generator, as applying
them in pixel space leads to artifacts. We resolve this issue with a principled training procedure for
the discriminator conditioned on sampling time.

Finally, we provide intuition on the sampling efficiency of Discriminator Flows observed in Figure 1.
We observe that diffusion models smooth the data distribution with a Gaussian kernel by Equation (5),
while discriminators were shown to smooth the data distribution with their NTK (Franceschi et al.,
2022). This observation brings diffusion models and GANs closer while explaining the sampling
efficiency of Discriminator Flows thanks to the properties of NTKs for generative modeling. Indeed,
Franceschi et al. (2022) presented empirical evidence that using NTKs of standard discriminators as
kernels in MMD gradient flows (which some GAN models implement) instead of Gaussian kernels
accelerates convergence towards pdata of Equation (1) by several orders of magnitude.

5 Conclusion

In this paper we have unified score-based diffusion models, GANs, and gradient flows under a
single framework based on particle models which can be complemented with a generator. Since this
framework unifies models that have been customarily opposed in the literature, this work paves the
way for new perspectives in generative modeling. As an example of potential applications, we have
shown that our framework naturally leads to two novel generative models: a generator that follows
score-based gradients, and a generator-free GAN that uses a discriminator-guided generation process.

Of course, generator-less and generator-based models each retain their unique attributes. On the
one hand, generator training provides a simple and efficient sampling procedure and endows the
generative model with a low-dimensional structured latent space, at the cost of potential instability
and mode collapse. On the other hand, generator-less models, despite their slow sampling, may be
easier to train since the generator component has been removed from their flow and are more flexible

9



as they rely on a continuous-time process directly defined in the data space. We believe that our
framework, by unveiling the close relationship between these models, can help them to improve upon
one another, or can even help create other new hybrid models.

Beyond potential applications, our study could be enhanced and expanded in many ways for future
work. On the theoretical side, we would like to tackle the challenging task (Hsieh et al., 2021) of
taking into account the fact that the discriminator in GANs is actually continuously trained with
the generator. On the practical side, while we have proposed new models that function reasonably
well, we would be interested in refining them further for state-of-the-art generative performance.
Furthermore, Score GANs could serve as a distillation method for score-based diffusion models
(Salimans & Ho, 2022), while Discriminator Flows could outperform diffusion models for generation
efficiency.

Acknowledgements

We would like to thank Lorenzo Croissant and Ugo Tanielian for helpful discussions and comments
on the paper, as well as Edouard Delasalles for inspiring the architecture of our code.

This work was granted access to the HPC / AI resources of IDRIS under the allocation 2023-
AD011013503R1 made by GENCI (Grand Equipement National de Calcul Intensif). Emmanuel de
Bézenac is financially supported by the ETH Foundations of Data Science.

References
Alvarez-Melis, D., Schiff, Y., and Mroueh, Y. Optimizing functionals on the space of probabilities

with input convex neural networks. Transactions on Machine Learning Research, 2022.

Ansari, A. F., Ang, M. L., and Soh, H. Refining deep generative models via discriminator gradient
flow. In International Conference on Learning Representations, 2021.

Arbel, M., Korba, A., Salim, A., and Gretton, A. Maximum mean discrepancy gradient flow. In
Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems, volume 32, pp. 6484–6494. Curran Associates,
Inc., 2019.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein generative adversarial networks. In Precup, D.
and Teh, Y. W. (eds.), Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 214–223. PMLR, August 2017.

Bengio, Y., Courville, A., and Vincent, P. Representation learning: A review and new perspectives.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828, August 2013.

Brock, A., Donahue, J., and Simonyan, K. Large scale GAN training for high fidelity natural image
synthesis. In International Conference on Learning Representations, 2019.

Che, T., Zhang, R., Sohl-Dickstein, J., Larochelle, H., Paull, L., Cao, Y., and Bengio, Y. Your GAN
is secretly an energy-based model and you should use discriminator driven latent sampling. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.-F., and Lin, H.-T. (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 12275–12287. Curran Associates, Inc., 2020.

Chu, C., Minami, K., and Fukumizu, K. The equivalence between Stein variational gradient descent
and black-box variational inference. arXiv preprint arXiv:2004.01822, 2020.

Couairon, G., Verbeek, J., Schwenk, H., and Cord, M. DiffEdit: Diffusion-based semantic image
editing with mask guidance. In International Conference on Learning Representations, 2023.

Dhariwal, P. and Nichol, A. Diffusion models beat GANs on image synthesis. In Ranzato, M.,
Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.), Advances in Neural Information
Processing Systems, volume 34, pp. 8780–8794. Curran Associates, Inc., 2021.

Duncan, A., Nüsken, N., and Szpruch, L. On the geometry of stein variational gradient descent.
Journal of Machine Learning Research, 24(56):1–39, 2023.

10



Durr, S., Mroueh, Y., Tu, Y., and Wang, S. Effective dynamics of generative adversarial networks.
arXiv preprint arXiv:2212.04580, 2022.

Fallis, D. The epistemic threat of deepfakes. Philosophy & Technology, 34:623––643, 2021.

Fan, J., Zhang, Q., Taghvaei, A., and Chen, Y. Variational Wasserstein gradient flow. In Chaudhuri,
K., Jegelka, S., Song, L., Szepesvári, C., Niu, G., and Sabato, S. (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 6185–6215. PMLR, July 2022.

Franceschi, J.-Y., De Bézenac, E., Ayed, I., Chen, M., Lamprier, S., and Gallinari, P. A neural tangent
kernel perspective of GANs. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvári, C., Niu, G., and
Sabato, S. (eds.), Proceedings of the 39th International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pp. 6660–6704. PMLR, July 2022.

Gao, Y., Jiao, Y., Wang, Y., Wang, Y., Yang, C., and Zhang, S. Deep generative learning via variational
gradient flow. In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
2093–2101. PMLR, June 2019.

Glaser, P., Arbel, M., and Gretton, A. KALE flow: A relaxed KL gradient flow for probabilities with
disjoint support. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W.
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 8018–8031. Curran
Associates, Inc., 2021.

Goodfellow, I. NIPS 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160,
2016.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., and Bengio, Y. Generative adversarial nets. In Ghahramani, Z., Welling, M., Cortes, C.,
Lawrence, N. D., and Weinberger, K. Q. (eds.), Advances in Neural Information Processing
Systems, volume 27, pp. 2672–2680. Curran Associates, Inc., 2014.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. A kernel two-sample test.
Journal of Machine Learning Research, 13(25):723–773, 2012.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. Improved training of Wasser-
stein GANs. In Guyon, I., von Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.
V. N., and Garnett, R. (eds.), Advances in Neural Information Processing Systems, volume 30, pp.
5769–5779. Curran Associates, Inc., 2017.

Hendrycks, D. and Gimpel, K. Gaussian error linear units (GeLUs). arXiv preprint arXiv:1606.08415,
2016.

Heng, A., Ansari, A. F., and Soh, H. Deep generative Wasserstein gradient flows, 2023. URL
https://openreview.net/forum?id=zjSeBTEdXp1.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. GANs trained by a two
time-scale update rule converge to a local Nash equilibrium. In Guyon, I., von Luxburg, U., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S. V. N., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30, pp. 6629—-6640. Curran Associates, Inc., 2017.

Ho, J., Chan, W., Saharia, C., Whang, J., Gao, R., Gritsenko, A., Kingma, D. P., Poole, B., Norouzi,
M., Fleet, D. J., and Salimans, T. Imagen Video: High definition video generation with diffusion
models. arXiv preprint arXiv:2210.02303, 2022.

Hsieh, Y.-P., Mertikopoulos, P., and Cevher, V. The limits of min-max optimization algorithms:
Convergence to spurious non-critical sets. In Meila, M. and Zhang, T. (eds.), Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 4337–4348. PMLR, July 2021.

Hyvärinen, A. Estimation of non-normalized statistical models by score matching. Journal of
Machine Learning Research, 6(24):695–709, 2005.

11

https://openreview.net/forum?id=zjSeBTEdXp1


Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Bach, F. and Blei, D. (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp.
448–456, Lille, France, July 2015. PMLR.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel: Convergence and generalization in
neural networks. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and
Garnett, R. (eds.), Advances in Neural Information Processing Systems, volume 31, pp. 8580–8589.
Curran Associates, Inc., 2018.

Jordan, R., Kinderlehrer, D., and Otto, F. The variational formulation of the Fokker-Planck equation.
SIAM Journal on Mathematical Analysis, 29(1):1–17, 1998.

Kang, M., Shin, J., and Park, J. StudioGAN: A taxonomy and benchmark of GANs for image
synthesis. arXiv preprint arXiv:2206.09479, 2022.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating the design space of diffusion-based
generative models. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A.
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 26565–26577. Curran
Associates, Inc., 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015.

Kloeden, P. E. and Platen, E. Introduction to Stochastic Time Discrete Approximation, pp. 305–337.
Applications of Mathematics. Springer Berlin Heidelberg, Berlin - Heidelberg, Germany, 1992.

Kullback, S. and Leibler, R. A. On information and sufficiency. The Annals of Mathematical Statistics,
22(1):79–86, 1951.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

Li, X., Thickstun, J., Gulrajani, I., Liang, P., and Hashimoto, T. B. Diffusion-LM improves control-
lable text generation. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A.
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 4328–4343. Curran
Associates, Inc., 2022.

Lim, J. H. and Ye, J. C. Geometric GAN. arXiv preprint arXiv:1705.02894, 2017.

Liu, B., Zhu, Y., Song, K., and Elgammal, A. Towards faster and stabilized GAN training for
high-fidelity few-shot image synthesis. In International Conference on Learning Representations,
2021.

Liu, C., Zhu, L., and Belkin, M. On the linearity of large non-linear models: when and why the
tangent kernel is constant. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.-F., and Lin,
H.-T. (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 15954–15964.
Curran Associates, Inc., 2020.

Liu, L., Lu, Y., Yang, M., Qu, Q., Zhu, J., and Li, H. Generative adversarial network for abstractive
text summarization. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
AAAI’18, pp. 8109–8110. AAAI Press, 2018.

Liu, Q. Stein variational gradient descent as gradient flow. In Guyon, I., von Luxburg, U., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S. V. N., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30, pp. 3118—-3126. Curran Associates, Inc., 2017.

Liu, Q. and Wang, D. Stein variational gradient descent: A general purpose Bayesian inference
algorithm. In Lee, D. D., Sugiyama, M., von Luxburg, U., Guyon, I., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems, volume 29, pp. 2378–2386. Curran Associates,
Inc., 2016.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face attributes in the wild. In IEEE
International Conference on Computer Vision (ICCV), pp. 3730–3738, December 2015.

12



Liutkus, A., Simsekli, U., Majewski, S., Durmus, A., and Stöter, F.-R. Sliced-Wasserstein flows:
Nonparametric generative modeling via optimal transport and diffusions. In Chaudhuri, K. and
Salakhutdinov, R. (eds.), Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 4104–4113. PMLR, June 2019.

Lucy, L. and Bamman, D. Gender and representation bias in GPT-3 generated stories. In Proceedings
of the Third Workshop on Narrative Understanding, pp. 48–55, Virtual, June 2021. Association for
Computational Linguistics.

Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J. Unrolled generative adversarial networks. In
International Conference on Learning Representations, 2017.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spectral normalization for generative
adversarial networks. In International Conference on Learning Representations, 2018.

Mokrov, P., Korotin, A., Li, L., Genevay, A., Solomon, J., and Burnaev, E. Large-scale Wasserstein
gradient flows. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W.
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 15243–15256. Curran
Associates, Inc., 2021.

Mroueh, Y., Sercu, T., and Raj, A. Sobolev descent. In Chaudhuri, K. and Sugiyama, M. (eds.),
Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics,
volume 89 of Proceedings of Machine Learning Research, pp. 2976–2985. PMLR, April 2019.

Müller, A. Integral probability metrics and their generating classes of functions. Advances in Applied
Probability, 29(2):429–443, 1997.

Nichol, A. Q., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., McGrew, B., Sutskever, I., and Chen,
M. GLIDE: Towards photorealistic image generation and editing with text-guided diffusion models.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvári, C., Niu, G., and Sabato, S. (eds.), Proceedings
of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 16784–16804. PMLR, July 2022.

Nowozin, S., Cseke, B., and Tomioka, R. f -GAN: Training generative neural samplers using
variational divergence minimization. In Lee, D. D., Sugiyama, M., von Luxburg, U., Guyon, I., and
Garnett, R. (eds.), Advances in Neural Information Processing Systems, volume 29, pp. 271––279.
Curran Associates, Inc., 2016.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., and Chintala, S. PyTorch: An imperative style, high-performance
deep learning library. In Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox,
E., and Garnett, R. (eds.), Advances in Neural Information Processing Systems, volume 32, pp.
8026–8037. Curran Associates, Inc., 2019.

Radford, A., Metz, L., and Chintala, S. Unsupervised representation learning with deep convolutional
generative adversarial networks. In International Conference on Learning Representations, 2016.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. High-resolution image synthesis
with latent diffusion models. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 10684–10695, June 2022.

Ronneberger, O., Fischer, P., and Brox, T. U-Net: Convolutional networks for biomedical image
segmentation. In Navab, N., Hornegger, J., Wells, W. M., and Frangi, A. F. (eds.), Medical
Image Computing and Computer-Assisted Intervention — MICCAI 2015, pp. 234–241, Cham,
Switzerland, 2015. Springer International Publishing.

Rényi, A. On measures of entropy and information. In Neyman, J. (ed.), Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pp. 547–561.
University of California Press, 1961.

Salimans, T. and Ho, J. Progressive distillation for fast sampling of diffusion models. In International
Conference on Learning Representations, 2022.

13



Santambrogio, F. {Euclidean, metric, and Wasserstein} gradient flows: an overview. Bulletin of
Mathematical Sciences, 7:87–154, 2017.

Seymour, J. and Tully, P. Generative models for spear phishing posts on social media. arXiv preprint
arXiv:1802.05196, 2018.

Skafte Detlefsen, N., Borovec, J., Schock, J., Harsh, A., Koker, T., Di Liello, L., Stancl, D., Quan,
C., Grechkin, M., and Falcon, W. TorchMetrics - measuring reproducibility in PyTorch, February
2022. URL https://github.com/Lightning-AI/torchmetrics.

Song, Y. Generative modeling by estimating gradients of the data distribution. https://yang-song.
net/blog/2021/score/, 2021. Accessed: 2023-05-17.

Song, Y. and Ermon, S. Generative modeling by estimating gradients of the data distribution.
In Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., and Garnett, R.
(eds.), Advances in Neural Information Processing Systems, volume 32, pp. 11918–11930. Curran
Associates, Inc., 2019.

Song, Y., Garg, S., Shi, J., and Ermon, S. Sliced score matching: A scalable approach to density and
score estimation. In Adams, R. P. and Gogate, V. (eds.), Proceedings of The 35th Uncertainty in
Artificial Intelligence Conference, volume 115 of Proceedings of Machine Learning Research, pp.
574–584. PMLR, July 2020.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. Score-based
generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2021.

Sriperumbudur, B. K., Gretton, A., Fukumizu, K., Schölkopf, B., and Lanckriet, G. R. G. Hilbert
space embeddings and metrics on probability measures. Journal of Machine Learning Research,
11(50):1517–1561, 2010.

Tanaka, A. Discriminator optimal transport. In Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché
Buc, F., Fox, E., and Garnett, R. (eds.), Advances in Neural Information Processing Systems,
volume 32, pp. 6816—-6826. Curran Associates, Inc., 2019.

Tanielian, U., Issenhuth, T., Dohmatob, E., and Mary, J. Learning disconnected manifolds: a no
GAN’s land. In Daumé, III, H. and Singh, A. (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
9418–9427. PMLR, July 2020.

Vincent, P. A connection between score matching and denoising autoencoders. Neural Computation,
23(7):1661—-1674, July 2011.

Voleti, V., Jolicoeur-Martineau, A., and Pal, C. MCVD - masked conditional video diffusion for
prediction, generation, and interpolation. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D.,
Cho, K., and Oh, A. (eds.), Advances in Neural Information Processing Systems, volume 35, pp.
23371–23385. Curran Associates, Inc., 2022.

Wang, D., Li, C., Wen, S., Nepal, S., and Xiang, Y. Man-in-the-middle attacks against machine
learning classifiers via malicious generative models. IEEE Transactions on Dependable and Secure
Computing, 18(5):1941–0018, September 2021.

Wang, Z., Zheng, H., He, P., Chen, W., and Zhou, M. Diffusion-GAN: Training GANs with diffusion.
arXiv preprint arXiv:2206.02262, 2022.

Xiao, Z., Kreis, K., and Vahdat, A. Tackling the generative learning trilemma with denoising diffusion
GANs. In International Conference on Learning Representations, 2022.

Yi, M., Zhu, Z., and Liu, S. MonoFlow: Rethinking divergence GANs via the perspective of
differential equations. arXiv preprint arXiv:2302.01075, 2023.

Zhang, H., Goodfellow, I., Metaxas, D., and Odena, A. Self-attention generative adversarial networks.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 7354–7363.
PMLR, June 2019.

14

https://github.com/Lightning-AI/torchmetrics
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/


A Algorithmic Details

We detail in this section some aspects of the Score GAN and Discriminator Flow algorithms that
were described at a high level in Section 4.

A.1 Score GANs

Algorithm 1 involves two major steps: line 3 performs denoising score matching for the gener-
ated distribution, and line 5 updates the generator parameters using the resulting gradient flow in
Equation (19). We describe some implementation tricks for these steps in the following subsections.

A.1.1 Denoising Score Matching

Denoising score matching was described in line 3 of Algorithm 1, as originally used by Song &
Ermon (2019). Following best practices later introduced by Karras et al. (2022), instead of directly
training a network sρϕ to estimate the score, we instantiate and train a denoising network dρϕ using the
following update:

ϕ← ϕ− λ∇ϕ
∥∥∥dρϕ(xσ, σ)− x

∥∥∥2
2
, (21)

where dρϕ is implemented as a U-Net (Ronneberger et al., 2015), with additional input-output skip
connections for better preconditioning (Karras et al., 2022). We then use dρϕ to compute the estimated
score:

sρϕ(x, σ) =
dρϕ(x, σ)− x

σ2
. (22)

We use the same tricks to pretrain the score model of the data distribution, spdataψ .

A.1.2 Generator Training

Line 5 of Algorithm 1 indicates how to update generator parameters, following Equation (11). In
order to facilitate its implementation in deep learning frameworks, we instead use the equivalent
weight update:

θ ← θ + η∇θ
[
gθ(z)

⊤
StopGradient

(
spdataψ

(
gθ(z) + σε, σ

)
− sρϕ

(
gθ(z) + σε, σ

))]
, (23)

that is, we optimize the loss −gθ(z)⊤StopGradient
(
spdataψ

(
gθ(z) + σε, σ

)
− sρϕ

(
gθ(z) + σε, σ

))
.

We also adapt the weight update as follows. While keeping the same hρ as in Equation (19), we
multiply it in the weight update by σ (which amounts to changing the noise level sampling distribution
pσ accordingly). When implemented with a denoiser network as described in Appendix A.1.1, the
score estimation sρϕ(x, σ) can be numerically unstable for small σs when using Equation (22). This
explains why Karras et al. (2022) consistently multiply scores by σ, which is a choice that we follow
for Score GANs. Furthermore, we can generalize Score GANs to other functionals hρ encompassing
the EDM formulation of Equation (9), right:

hρt = µpdata
log[pdata ⋆ k

σ
RBF]− µρ log[ρt ⋆ k

σ
RBF], (24)

where µpdata
and µρ are constant hyperparameters (e.g., for EDM, µpdata = 2 and µρ = 1).

Overall, in practice we implement the generator weight update corresponding to line 5 of Algorithm 1
as:

θ ← θ + η∇θ
[
σ · gθ(z)⊤StopGradient

(
µpdatas

pdata
ψ

(
gθ(z) + σε, σ

)
− µρs

ρ
ϕ

(
gθ(z) + σε, σ

))]
.

(25)

A.2 Discriminator Flows

In Algorithm 3 we provide a detailed implementation of the high-level Algorithm 2 for Discriminator
Flows, including how batching and differential equation discretization are handled. For the latter, we
use the Euler method with a uniform temporal grid, with N steps, in [0, 1]; while higher-order solvers

15



Algorithm 3: Training iteration for Discriminator Flow (detailed).
Input: Batch size B ∈ N∗, number of steps N ∈ N∗, initial distribution π = ρ0, gradient

strength η ∈ R+, previous discriminator fϕ:RD × R→ R.
Output: Updated discriminator fϕ.
1 for b = 1 to B do // In parallel
2 xb ∼ pdata, x

b
0 ∼ π; // Initialization

// Partial generation
3 for i = 0 to N − 1 do // Solve Equation (20)

4 xbi+1/N ← xbi/N −
η
N∇xb

i/N

[(
c ◦ fϕ

)(
xbi/N ,

i
N

)]
;

5 ib ∼ U
(
J0, N − 1K

)
; // Select random step

// Train discriminator fϕ at the chosen random steps, cf. Equation (15)

6 ϕ← GAϕ

Ld

(
fϕ

(
·, ibN

)
;U
({

xbib/N

}
b∈J1,BK

)
,U
({

xb
}
b∈J1,BK

))

Figure 3: Uncurated samples from studied models trained on CelebA and MNIST.

and more optimal temporal grid choice could have been used, as in EDM (Karras et al., 2022), we
avoid using any refinement of time discretization for Discriminator Flows for the sake of simplicity.
For batch-parallel execution on GPUs, we solve the differential equation of Equation (20) over [0, 1]
for all batch samples, and then select a random time for each sample to compute the discriminator
loss and update its parameters.

B Further Experiments

In this section we present additional experiments that will help the reader develop better intuition on
the behavior of both Score GANs and Discriminator Flows in practice.

B.1 Additional Samples

Figure 3 shows additional samples for all four tested models. Furthermore, for better visualization pur-
poses, our public repository https://github.com/White-Link/gpm includes animated images
illustrating the generation process for EDM and Discriminator Flows, as illustrated in Figure 1.

B.2 Mode Collapse on Score GANs

A widely known issue for GANs, identified soon after their introduction, is known as mode collapse
(Goodfellow, 2016), which occurs when the generator only covers a fraction of the generated

Figure 4: Uncurated samples of a Score GAN variant which shows strong mode collapse on MNIST.
Note that the Score GAN parameters were intentionally chosen to obtain this behavior.

16

https://github.com/White-Link/gpm


0 10 20 30 40 50 60
NFE

101

102
F

ID

Discriminator Flow (discretized)

EDM (Heun solver)

EDM (Euler solver)

(a) Changing the differential equation time discretization of Equation (20) for Discriminator Flow.

0 10 20 30 40 50 60
NFE

101

102

F
ID

Discriminator Flow (early stopped)

EDM (Heun solver)

EDM (Euler solver)

(b) Stopping the generative process of Equation (20) at an earlier time T ′ than in training (0 < T ′ < T = 1).

Figure 5: FID performance versus NFE (neural of function evaluations, i.e., the number of times
∇hρ is queried to produce a single image) for EDM and Discriminator Flow on MNIST. We test
different NFE modulation methods for the Discriminator Flow, in order to evaluate the time efficiency
of each method.

distribution. Interestingly, we observe the same phenomenon in Score GANs. We illustrate this with
an extreme example in Figure 4, where we intentionally change parameters in our original model
in order to induce the mode collapse issue. We induce mode collapse by choosing µpdata = 2 and
µρ = 1 in Equation (25) (i.e., EDM parameters instead of NCSN parameters in the original model).

Since mode collapse is absent from the generator-less particle models that we tested (the score models
on which Score GANs are based, and also Discriminator Flows), this observation suggests that mode
collapse is primarily caused by the generator. This is in line with previous theoretical and empirical
findings identifying the generator as the cause of mode collapse (Tanielian et al., 2020; Durr et al.,
2022).

B.3 Time Efficiency of Discriminator Flows

Qualitative experimental results in Section 4 suggested that Discriminator Flows, by learning a path
towards the data distribution with a discriminator, might be more efficient at inference time than
diffusion models for which the path towards the data distribution is determined by the diffusion
equation. We support this observation by quantitative results in this subsection.

Since Discriminator Flows are based on a discretized differential equation, we can measure the time
efficiency of this model by decreasing the number of neural function evaluations (NFEs) in two ways:
by using a larger time discretization of Equation (20) (see Figure 5(a)), or by an early stop of the
generative process at time T ′ < T (see Figure 5(b)). We compare time efficiency of Discriminator

17



Flows against two inference methods for EDM based on a (first-order) Euler solver (Kloeden &
Platen, 1992), and (second-order) Heun / EDM sampler (Karras et al., 2022). In both cases, when
comparing the two first-order methods, we observe that Discriminator Flows consistently outperform
the Euler-based EDM model.

In Figure 5(a) we evaluate the robustness of Discriminator Flows w.r.t. time discretization on MNIST.
We trained the evaluated model with 128 generative steps and η = 1. By increasing the time
discretization, in addition to decreasing the number of NFEs, the discriminator is queried at times not
observed during the training phase, thus measuring the performance of the discriminator w.r.t. time
interpolation. We observe that, even if the discretized Discriminator Flow is based on a first-order
solver of a differential equation, its behavior is comparable to the (second-order) Heun / EDM sampler
version. Furthermore, compared with the (first-order) Euler solver based EDM, the Discriminator
Flow model shows a performance improvement of an order of magnitude for low NFEs. For example,
with only 13 NFEs, both Discriminator Flow and the second-order version of EDM achieve an FID
of approximately 13, while the first-order version of EDM achieves a FID of 230.

In Figure 5(b), we report the performance of Discriminator Flows w.r.t. the generative process time
when stopping the generation early. We trained the evaluated model with 64 generative steps and
η = 2 , i.e., with half as many generative steps as the model evaluated in Figure 5(a) but with a
doubled velocity, c.f. Algorithm 3. Again, the Discriminator Flow model, while being first-order
based, suffers a lower drop in performance than the first-order EMD, and a drop comparable to the
second order EDM. Furthermore, we observe that the first 10 generative steps of the Discriminator
Flows model brings better FID values than both first- and second- order EDMs.

Overall, the first-order Discriminator Flow performance behavior w.r.t. NFE is, in both settings, closer
to the second-order EDM than the first-order EDM, which supports our initial claim. We stress that
this is achieved while Discriminator Flows discretize Equation (20) on a regular temporal grid, while
EDM discretize time for both first- and second-order methods using a custom temporal grid that
improves discretization performance.

B.4 Experiments on Gaussians

As a toy example, we train all considered models (Discriminator Flows, GANs, EDM, and Score
GANs) on synthetic samples generated from a two-dimensional mixture of Gaussian distributions.
We provide a visualization of the particle evolution w.r.t. training and inference time in our repository
https://github.com/White-Link/gpm, as well as in Figures 6 to 10. See the figure captions for
more information.

We again observe that for a limited number of NFEs, Discriminator Flows remain closer to the target
distribution than EDM.

C Experimental Details

We provide all details in this section that are necessary to reproduce our experiments. Our Python
source code (tested on version 3.10.4), based on PyTorch (Paszke et al., 2019) (tested on version
1.13.1), is open-sourced at https://github.com/White-Link/gpm.

C.1 Datasets and Evaluation Metric

MNIST. MNIST is a standard dataset introduced in LeCun et al. (1998), with no clear license to
the best of our knowledge, composed of monochrome images of hand-written digits. Each MNIST
image is single-channel, of size 28 × 28. We preprocess MNIST images by extending them to
32× 32 frames (padding each image with black pixels), in order to better fit as inputs and outputs of
standard convolutional networks. We linearly scale pixels values so that they lie in [−1, 1]. MNIST
is comprised of a training and testing dataset, but no validation set; we create one for each model
training by randomly selecting 10% of the training images.

CelebA. CelebA (Liu et al., 2015) is a dataset composed of celebrity pictures. Its license permits
use for non-commercial research purposes. Each CelebA image has three color channels, and is of

18

https://github.com/White-Link/gpm
https://github.com/White-Link/gpm


size 178× 218. We preprocess these images by center-cropping each to a square image and resizing
to 64× 64 with a Lanczos filter. We linearly scale pixels values so that they lie in [−1, 1].

Gaussians. Our Gaussian dataset is composed of a mixture of 5 two-dimensional Gaussian dis-
tributions with standard deviation 1

2 , with means evenly spaced over a circle of radius 5. Training,
validation, and testing datasets all consist of i.i.d. samples from this mixture.

FID. Throughout the paper we use the Fréchet Inception Distance (FID, Heusel et al., 2017) to
measure the generative performance of the models we consider. We use in our code the PyTorch
implementation of TorchMetrics (Skafte Detlefsen et al., 2022).

C.2 Hyperparameters

We summarize the model hyperparameters used during training in Tables 4 to 7. See our code for
more information. We further discuss some aspects of our implementation choices in the remainder
of this subsection.

Networks. Beyond multi-layer perceptrons (MLP) and EDM’s U-Nets, we use three kinds of model
architectures: DCGAN (Radford et al., 2016), a ResNet (Kang et al., 2022) based on SAGAN with
self-attention (Zhang et al., 2019), and FastGAN (Liu et al., 2021). We adapt these models in the
following ways:

• For MNIST images, we changed the first (respectively, last) convolution of the DCGAN discrimi-
nator (respectively, generator) to adapt it for 32× 32 inputs (respectively, outputs).

• We adapted FastGAN to operate on images of size 32× 32 and 64× 64 by removing layers with
higher resolutions.

• We added a bias to the first convolutional layers of discriminators which did not have one.
• We enhanced these models so that they can accept a vectorial embedding of time t for Discrimina-

tor flows by modulating most of their convolution outputs (before the activation) channel-wise
with an affine transformation. The affine transformation parameters are the outputs of a MLP of
depth 2, with SiLU activations (Hendrycks & Gimpel, 2016) and a hidden width that is twice as
large as the input time embeddings.

Final generator activation. Since image pixel values lie in [−1, 1], we add a final hyperbolic
tangent activation to the output of the generators operating on image data.

Score GAN noise distribution pσ. Since during training Score GANs mimic the inference pro-
cedure of a diffusion model, we choose to sample σ during Score GAN training time following the
schedule chosen by EDM at inference time (Karras et al., 2022). In practice, we choose a minimal
value σmin, a maximal value σmax, and an interpolation parameter ρ. To sample from pσ, we first
sample an interpolation value α ∼ U

(
[0, 1]

)
, and then compute σ as:

σ =

(
σ

1
ρ
max + α

(
σ

1
ρ

min − σ
1
ρ
max

))ρ
. (26)

Note that here ρ denotes a scalar hyperparameter following the EDM notation, and not the generated
distribution as in the main paper.

Usual generative modeling tricks. For simplicity in our proof-of-concept experiments, we avoided
using standard performance improvement tricks such as exponential moving average and truncation
tricks (Brock et al., 2019), EDM sampling tricks (Karras et al., 2022), or spectral normalization
(Miyato et al., 2018).

C.3 Compute

For all experiments we use one or two Nvidia V100 GPUs with CUDA 11.8. When using two V100
Nvidia GPUs, the training time of both Discriminator Flow and Score GAN models is at most one
day for the largest dataset (CelebA).

19



Table 4: Chosen hyperparameters for Discriminator Flows for each dataset. GP stands for Gradient
Penalty (Gulrajani et al., 2017). IPM stands for Integral Probability Metric (Müller, 1997). BN stands
for Batch Normalization (Ioffe & Szegedy, 2015).

Hyperparameters Gaussians MNIST CelebA

GAN loss Non-saturating vanilla IPM IPM
a (Equation (15)) log(1− sigmoid) id id
b (Equation (15)) − log sigmoid id id
c (Equation (15)) − log sigmoid id id
R (Equation (15)) 0 GP GP
GP strength 0 0.04 0.05
GP center — 0 0

π (Equation (1)) N (0, ID)
η (Algorithm 3) 20 [2, 1] 2
N (Algorithm 3) 56 [64, 128] 25

Network architecture MLP DCGAN ResNet
Width 512 64 64
Activation Leaky ReLU, negative slope of −0.2
Depth 4 — —
BN No
Initialization Normal Orthogonal Normal
Initialization gain 0.02 1.41 0.02

Time embedding type Fourier
Frequency scale 16
Time embedding size 128

Batch size 128 128 64
Number of optimization steps 4000 200 000 200 000
Optimizer Adam (Kingma & Ba, 2015)
Learning rate 0.0002
(β1, β2) (0.5, 0.999)

Model selection — Best validation FID
Validation frequency — 1000
Number of validation samples — 6000 1000

D Broader Impacts

Our work aims to better understand recent generative modeling methods. As such, from a practical
point of view, our work shares much of the impact of other work in this domain. While the models
we propose do not yet have the quality required for broad application, generative models have a wide
range of potential positive and negative impacts. Some of the positive impacts include enabling faster
and more accurate natural language processing (Li et al., 2022), improving automated tasks like
summarization (Liu et al., 2018), and automating certain aspects of content creation (Nichol et al.,
2022). However, generative models are also susceptible to producing undesirable output, such as
unethical text, adversarial attacks (Wang et al., 2021), and malicious manipulation of data. These
models also have the potential to exacerbate issues such as bias and discrimination in AI systems
(Lucy & Bamman, 2021), enabling the creation of more effective fake text and videos, and expanding
the scope and complexity of cyberattacks that can be launched by malicious actors (Seymour & Tully,
2018). For a thorough discussion on the potential dangers of deepfakes, see Fallis (2021).

Discussions and debates around the responsible use of generative models and the potential broader
impacts of deploying them more widely are still ongoing. We hope that our principled framework
aimed at improving our understanding of generative models will contribute to these discussions and
to a better control of such models.

20



Table 5: Chosen hyperparameters for EDM for each dataset. Cf. Karras et al. (2022) and our code
for more details.

Hyperparameters Gaussians MNIST CelebA

σmin 0.002
σmax 40
σdata 0.5
ρ 7
Equation & Solver Heun solver on the deterministic ODE of Equation (8)
Number of solver steps 7 32 25

Network architecture MLP EDM EDM
Width 512 16 128
Number of residual blocks — 1 2
Dropout — 0.13 0.1
Depth 4 — —
Activation Leaky ReLU, slope of −0.2 — —

Initialization
Uniform Kaiming for convolutions,

Unit weight and zero bias for group normalization layers,
otherwise PyTorch default

Time embedding type Fourier Positional Positional
Frequency scale 16 — —
Time embedding size 128 256 256

Batch size 128 128 64
Number of optimization steps 10 000 500 000 100 000
Optimizer Adam (Kingma & Ba, 2015)
Learning rate 0.0002
(β1, β2) (0.9, 0.999)

Model selection —

21



Table 6: Chosen hyperparameters for GANs for each dataset. Hinge refers to Hinge GANs (Lim &
Ye, 2017).

Hyperparameters Gaussians MNIST CelebA

GAN loss Non-saturating vanilla Hinge
Number of discriminator
steps per generator update 1

Latent space size 128
pz (Definition 2) N (0, Id)

Discriminator architecture MLP DCGAN FastGAN
Width 512 64 32
Activation Leaky ReLU, negative slope of −0.2
Depth 4 — —
BN No Yes Yes

Generator architecture MLP DCGAN FastGAN
Width 512 64 32

Activation Leaky ReLU,
slope of −0.2 ReLU Leaky ReLU,

slope of −0.2
Depth 4 — —
BN No Yes Yes

Initialization Normal
Initialization gain 0.02

Batch size 128 128 64
Number of optimization steps 1900 10 000 100 000
Optimizers Adam (Kingma & Ba, 2015)
Learning rate 0.0002
(β1, β2) (0.5, 0.999)

Model selection — Best validation FID
Validation frequency — 1000
Number of validation samples — 6000 1280

22



Table 7: Chosen hyperparameters for Score GANs for each dataset.

Hyperparameters Gaussians MNIST CelebA

σmin (Appendix C.2) 0.1 0.32 0.32
σmax (Appendix C.2) 10 40 40
ρ (Appendix C.2) 3
K (Algorithm 1) 10 1 4
Latent space size 128
pz (Definition 2) N (0, Id)

Data score spdata

ψ EDM from Table 5

Gen. score sρϕ architecture MLP EDM EDM
σdata 0.5
Width 512 64 128
Number of residual blocks — 2 2
Dropout — 0.13 0
Depth 4 — —

Activation Leaky ReLU,
slope of −0.2 — —

Initialization EDM from Table 5

Generator architecture MLP DCGAN FastGAN
Width 512 64 32
Activation ReLU
Depth 4 — —
BN No Yes Yes
Initialization PyTorch default Normal Orthogonal
Initialization gain — 0.02 1.41

Batch size 128 256 32
Number of generator
optimization steps 3150 100 000 150 000

Optimizers Adam (Kingma & Ba, 2015)
Score learning rate 0.0002 0.001 0.0004
Generator learning rate 0.0002
(β1, β2) (0.9, 0.999)

Model selection — Best validation FID —
Validation frequency — 2500 —
Number of validation samples — 6000 —

23



100 75 50 25 0 25 50 75

100

50

0

50

100

(a) Initialization (sampling from ρ0 = π).

30 20 10 0 10 20 30

40

30

20

10

0

10

20

30

40

(b) t = 1
7
T .

10 5 0 5 10

15

10

5

0

5

10

15

(c) t = 2
7
T .

6 4 2 0 2 4 6

6

4

2

0

2

4

6

(d) t = 3
7
T .

4 2 0 2 4

4

2

0

2

4

(e) t = 4
7
T .

4 2 0 2 4

4

2

0

2

4

(f) t = 5
7
T .

4 2 0 2 4

4

2

0

2

4

(g) t = 6
7
T .

4 2 0 2 4

4

2

0

2

4

(h) t = T .

Figure 6: Sampling steps for EDM on a Gaussian mixture; 128 samples are shown for both the generated (●) and the data (◆) distributions. The second-order solver
was used with 13 NFEs. Arrows show the gradients ∇hρt associated with each generated sample, corresponding to the direction provided by the score function, cf.
Equation (8).

24



3 2 1 0 1 2 3

4

3

2

1

0

1

2

3

4

(a) Initialization (sampling from ρ0 = π).

3 2 1 0 1 2 3 4

4

3

2

1

0

1

2

3

4

(b) t = 1
7
T .

3 2 1 0 1 2 3 4

4

3

2

1

0

1

2

3

4

(c) t = 2
7
T .

3 2 1 0 1 2 3 4

4

3

2

1

0

1

2

3

4

(d) [t = 3
7
T .

3 2 1 0 1 2 3 4

4

3

2

1

0

1

2

3

4

(e) t = 4
7
T .

4 3 2 1 0 1 2 3 4

4

3

2

1

0

1

2

3

4

(f) t = 5
7
T .

4 3 2 1 0 1 2 3 4

4

3

2

1

0

1

2

3

4

(g) t = 6
7
T .

4 3 2 1 0 1 2 3 4

4

3

2

1

0

1

2

3

4

(h) t = T .

Figure 7: Sampling steps for Discriminator Flows on a Gaussian mixture; cf. Figure 6. Our chosen discretization yields 14 NFEs. The colored background
represents the pointwise generator loss function −hρt = −c ◦ fρt (darker is lower, renormalized for every snapshot), from which the particle gradients, shown in the
figures, are derived.

25



3 2 1 0 1 2 3 4

3

2

1

0

1

2

3

4

(a) Initialization (ρ0 = gθ0♯pz).

3 2 1 0 1 2 3 4

4

2

0

2

4

6

8

(b) t = 1
7
T .

4 2 0 2 4 6 8 10

7.5

5.0

2.5

0.0

2.5

5.0

7.5

(c) t = 2
7
T .

8 6 4 2 0 2 4 6

6

4

2

0

2

4

(d) t = 3
7
T .

4 2 0 2 4 6 8 10

4

2

0

2

4

(e) t = 4
7
T .

4 3 2 1 0 1 2 3 4

3

2

1

0

1

2

3

4

(f) t = 5
7
T .

2 0 2 4

3

2

1

0

1

2

3

4

(g) t = 6
7
T .

3 2 1 0 1 2 3 4

3

2

1

0

1

2

3

4

(h) t = T .

Figure 8: Training snapshots of a GAN on a Gaussian mixture; cf. Figure 6. Here time t represents training time, and T is the end of training. The colored
backgrounds represent the pointwise generator loss function −hρt = −c ◦ fρt (darker is lower, renormalized for every snapshot), from which the particle gradients,
shown in the figures, are derived and then fed to the generator following Equations (11) and (13).

26



3 2 1 0 1 2 3 4

3

2

1

0

1

2

3

4

(a) Initialization (ρ0 = gθ0♯pz).

4 2 0 2 4

3

2

1

0

1

2

3

4

(b) t = 1
7
T .

3 2 1 0 1 2 3 4

3

2

1

0

1

2

3

4

(c) t = 2
7
T .

3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

(d) t = 3
7
T .

3 2 1 0 1 2 3 4

3

2

1

0

1

2

3

4

(e) t = 4
7
T .

3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

(f) t = 5
7
T .

3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

(g) t = 6
7
T .

3 2 1 0 1 2 3 4

3

2

1

0

1

2

3

4

(h) t = T .

Figure 9: Training snapshots of a Score GAN on a Gaussian mixture; cf. Figure 6. Here time t represents training time, and T is the end of training.

27



3 2 1 0 1 2 3 4

3

2

1

0

1

2

3

4

(a) Initialization (ρ0 = gθ0♯pz).

4 2 0 2 4

3

2

1

0

1

2

3

4

(b) t = 1
7
T .

3 2 1 0 1 2 3 4

3

2

1

0

1

2

3

4

(c) t = 2
7
T .

3 2 1 0 1 2 3 4

3

2

1

0

1

2

3

4

(d) t = 3
7
T .

3 2 1 0 1 2 3 4 5
4

3

2

1

0

1

2

3

4

(e) t = 4
7
T .

3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

(f) t = 5
7
T .

3 2 1 0 1 2 3 4

4

3

2

1

0

1

2

3

4

(g) t = 6
7
T .

4 3 2 1 0 1 2 3 4

3

2

1

0

1

2

3

4

(h) t = T .

Figure 10: Training snapshots of a Score GAN on a Gaussian mixture identical to Figure 9, but with generated samples perturbed by Gaussian noise of standard
deviation σ = 0.2. Arrows show the gradients∇hρt received by the generated particles at this noise level, corresponding to Equation (19), split into the data score (in
blue) and minus the score of the generated distribution (in yellow). They are then fed to the generator following Equations (11) and (13).

28


	Introduction
	Particle Models without Generators: Non-interacting Particles
	Wasserstein Gradient Flows
	Score-Based Diffusion Models

	Particle Models with Generators: Training of Interacting Particles
	Generator Training as a Modified Particle Model
	GANs as Interacting Particle Models
	Stein Gradient Flows as Int-PMs

	Decoupling the Generator and the Flow in Particle Models
	Training Generators with Score-Based Diffusion: Score GANs
	Removing the Generator from GANs: Discriminator Flows
	Experimental results
	Relationship with Prior Work

	Conclusion
	Algorithmic Details
	Score GANs
	Denoising Score Matching
	Generator Training

	Discriminator Flows

	Further Experiments
	Additional Samples
	Mode Collapse on Score GANs
	Time Efficiency of Discriminator Flows
	Experiments on Gaussians

	Experimental Details
	Datasets and Evaluation Metric
	Hyperparameters
	Compute

	Broader Impacts

