Chimène Fankam
email: fankamc@ensma.fr

Stéphane Jean
email: jean@ensma.fr

Guy Pierra
email: pierra@ensma.fr

Numeric reasoning in the Semantic Web

The Semantic Web is an effort by the W3C to enable integration and sharing of information across different applications and organizations using annotations by means of ontology instances. With the growth of such data, two important problems need to be addressed:

(1) a scalability issue and (2) a performance issue for reasoning. Main memory reasoners are efficient for reasoning, but they hardly support real size data. This paper discusses the use of databases, more precisely of ontology-based databases (OBDBs), for managing Semantic Web annotation data. Such systems are able to manage real-size data. But the main weakness of databases are their poor deductive reasoning capabilities. Thus, we propose an approach that consists in enriching annotation instances with new numeric-valued or string-valued properties allowing to replace deductive reasoning by numeric queries. We define formally some cases where this approach may be implemented and we propose extension of ontology languages allowing to represent explicitly their structures. Ontology being recorded in OBDB, these extensions allow the OBDB system to perform dynamically the instance enrichment and to rewrite queries as numeric queries. This approach is in particular used for geometric reasoning, and we present its implementation within On-toDB, an OBDB developed in our laboratory.

a scalability issue. A lot of applications need to manage an amount of ontology-based data that don't fit in main memory; a reasoning issue. An ontology is a conceptualization based on a formal theory that allows to reason over the ontology-defined concepts and individuals.

Reasoning operations need to be performed in an acceptable response time.

Introduction

The Semantic Web is an effort by the W3C to enable integration of data sources across the Web. In order to capture information semantics in a machine processable way, Web resources are annotated with terms described as ontology individuals. Such ontology individuals are called ontology-based data. As Semantic Web technologies become mature and standardized, they are applied to real-world applications. As a consequence, an increasing amount of ontology-based data is becoming available on the Web. Managing such data raises two major issues : Solving these two problems is an important factor in realizing the Semantic Web vision. The difficulty is to provide a solution that solves them together. Indeed, during these last years, several works have addressed the scalability problem using databases. If some works have focused on using databases to store instance data [START_REF] Pan | DLDB: Extending Relational Databases to Support Semantic Web Queries[END_REF][START_REF] Abadi | Scalable Semantic Web Data Management Using Vertical Partitioning[END_REF], others have proposed new database architectures to store both ontology descriptions and instance data. We call these database architectures Ontology-Based Databases (OBDBs) [START_REF] Alexaki | The ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases[END_REF][START_REF] Broekstra | Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema[END_REF][START_REF] Ma | RStar: an RDF Storage and Query System for Enterprise Resource Management[END_REF][START_REF] Park | An efficient and scalable management of ontology[END_REF][START_REF] Dehainsala | OntoDB: An Ontology-Based Database for Data Intensive Applications[END_REF]. Evaluations of OBDBs performance have shown that some architectures scale quite well and do support real size Semantic Web data management [START_REF] Theoharis | Benchmarking Database Representations of RDF/S Stores[END_REF][START_REF] Park | An efficient and scalable management of ontology[END_REF][START_REF] Dehainsala | OntoDB: An Ontology-Based Database for Data Intensive Applications[END_REF]. However, if scalability constitues a major strength of databases, this is not the case of their deductive capabilities. Thus, several propositions have been made to combine reasoners with databases [START_REF] Mei | Ontology query answering on databases[END_REF][START_REF] Volz | Incrementally Maintaining Materializations of Ontologies Stored in Logic Databases[END_REF][START_REF] Borgida | Loading data into description reasoners[END_REF][START_REF] Pan | DLDB: Extending Relational Databases to Support Semantic Web Queries[END_REF]. To speed-up the query response time of such architecture, reasoning is often done offline [START_REF] Park | An efficient and scalable management of ontology[END_REF]. Then, database are used to materialize all the deduced facts which lead to a strong storage overhead.

In this paper, we propose an alternative approach. The idea is to use capability of database to process efficiently numeric queries and string-oriented queries to perform some reasoning operations at runtime. Thus our approach consists (1) in using the ontology representation available in an OBDB to interpret in a semantic way both the data manipulation language and the data query language of the database and (2) in enriching the annotations instances with new property values in order to replace deductive reasoning by numeric (or stringoriented) query processing. For example, when an object property π is defined, using OWL2 constructs, as asymmetric, transitive, and inverse functional, thus defining a tree-order, this tree-order (≺) may be represented by means of numeric intervals [START_REF] Agrawal | Storage and Querying of E-Commerce Data[END_REF]. Thus, [START_REF] Pan | DLDB: Extending Relational Databases to Support Semantic Web Queries[END_REF] when an instance that supports the π property is inserted in the database, two additional data properties (lo bound, hi bound) are computed by the system. These data properties reflect the tree-order, i.e,

x ≺ y ⇔ lo bound(y) < lo bound(x) < hi bound(x) < hi bound(y). Then, (2) when annotations instances smaller than a given instance are requested, the query interprets access to the ontology and re-writes the recursive query over π as a numeric query over lo bound and hi bound. This kind of index is not really new. Indeed, a number of approach [START_REF] Agrawal | Storage and Querying of E-Commerce Data[END_REF][START_REF] Christophides | On labeling schemes for the semantic web[END_REF], known as labeling, have been proposed to compute transitive closures of relationships and to index them using numeric or string-oriented labels. However, these approaches are often hard encoded in the data management system for pre-defined relationships such as polymorphism through class subsumption. We propose extensions of ontology languages allowing to discover when this kind of approach may be followed and to implement it dynamically when a new ontology is loaded. The proposed framework integrates various existing labeling schemes to address most recursive containment relationships, including subclass reasoning and taxonomic queries widespread in resource annotations, and we show that the same framework may be efficiently used for DAG structures encountered in spatial and temporal application.

The remainder of this paper is organized as follows. In the next section we present an overview of OBDBs. We propose a taxonomy of existing OBDBs and present their scalability and deductive capabilities. In section 3 we present a framework to transform deductive reasoning into numeric reasoning for property whose range are partially ordered sets. In section 4 we discuss how this framework can be implemented within OBDB and in section 5 we describe our current implementation on a real-world application. Finally, we conclude in section 6.

2 Ontology-Based Databases (OBDBs)

In the last years, many OBDB architectures have been proposed. We present first a proposed taxonomy of these architectures. Then, we discuss capabilities of existing OBDBs to solve the scalability and reasoning issues faced by the Semantic Web.

Classification of OBDBs

OBDBs recording different categories of data and in particular ontologies description and instance data, these data may be governed by various number of schemas. Thus we propose to classify OBDBs architectures according to the number of schemas used.

Type 1 OBDBs. In type 1 OBDBs, information is represented in a single schema composed of a unique triple table (subject, predicate, object) [START_REF] Harris | 3store: Efficient Bulk RDF Storage[END_REF][START_REF] Wilkinson | Efficient RDF Storage and Retrieval in Jena2[END_REF][START_REF] Chong | An Efficient SQL-based RDF Querying Scheme[END_REF][START_REF] Petrini | SWARD: Semantic Web Abridged Relational Databases[END_REF]. This table, called vertical table [START_REF] Agrawal | Storage and Querying of E-Commerce Data[END_REF], may be used both for ontology descriptions and instance data. For ontology descriptions, the three columns of this table represent respectively subject ontology element identifier, predicate and object ontology element identifier. For example, the triple 1 (Student, subClassOf, Person) represents a subsumption relationship between classes Student and Person. For instance data, the three columns of this table represent respectively instance identifier, characteristic of an instance (i.e, property or class belonging) and value of that characteristic. For example, the triple (Peter, grade, PhD) represents the fact that Peter has a PhD grade. Figure 1 illustrates this approach. Figure 1 (a) presents a toy example of an ontology (upper part) with some instances (bottom part) as a graph. An extract of the corresponding vertical table is shown in Figure 1 (b).

Type 2 OBDBs. Type 2 OBDBs store separately ontology descriptions and instance data in two different schemas [START_REF] Alexaki | The ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases[END_REF][START_REF] Broekstra | Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema[END_REF][START_REF] Ma | RStar: an RDF Storage and Query System for Enterprise Resource Management[END_REF]. The schema for ontology descriptions depends upon the ontology model used to represent ontologies (e.g., RDFS, OWL, PLIB). It is composed of tables used to store each ontology modeling primitive such as classes, properties and subsumption relationships. For instance data, different schemas have been proposed. A vertical table can be used to store instance data as triples [START_REF] Ma | RStar: an RDF Storage and Query System for Enterprise Resource Management[END_REF][START_REF] Broekstra | Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema[END_REF] property associated with value for at least one instance of a class is associated to each class [START_REF] Dehainsala | OntoDB: An Ontology-Based Database for Data Intensive Applications[END_REF][START_REF] Park | An efficient and scalable management of ontology[END_REF]. These three basic approaches have also small variants (see [START_REF] Theoharis | Benchmarking Database Representations of RDF/S Stores[END_REF] for details). Figure 2 presents an example of type 2 OBDBs that stores data of our previous example (see Figure 1). In this example, ontology descriptions are stored using a schema for RDFS ontologies. In the bottom part, instance data are represented using a binary representation. Type 3 OBDBs. OntoDB [START_REF] Dehainsala | OntoDB: An Ontology-Based Database for Data Intensive Applications[END_REF][START_REF] Pierra | Base de Données à Base Ontologique : principes et mise en oeuvre[END_REF] proposes to add another schema to type 2 OBDBs. This schema called meta-schema records the ontology model into a reflexive meta model. For the ontology schema, the meta-schema plays the same role as the one played by the system catalog in traditional databases. Indeed, meta-schema may allow: (1) generic access to the ontology, (2) support of evolution of the used ontology model, and (3) storage of different ontology models (OWL, DAML+OIL, PLIB, etc.). Figure 3 presents the meta-schema of our example.

These three categories of OBDB architectures behave differently according to the kind of information that need to be managed. In the next section we focus on their scalability capacity.

Scalability of OBDBs

Type 1 OBDBs. The vertical table approach raises serious performance issues when queries require many self-joins over this table [START_REF] Alexaki | The ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases[END_REF]. To ensure a high performance of queries, each column of the vertical table shall be indexed [START_REF] Ma | RStar: an RDF Storage and Query System for Enterprise Resource Management[END_REF]. Moreover, the predicate column shall be clustered [START_REF] Agrawal | Storage and Querying of E-Commerce Data[END_REF] or materialized views need Fig. 2. Type 2 OBDBs approach to be created [START_REF] Pan | DLDB: Extending Relational Databases to Support Semantic Web Queries[END_REF]. In both cases, these approaches require extra storage cost and lead to update overhead. And, even with such optimizations, several works have shown that in various conditions type 2 OBDBs outperform type 1 OBDBs [START_REF] Theoharis | Benchmarking Database Representations of RDF/S Stores[END_REF][START_REF] Ma | RStar: an RDF Storage and Query System for Enterprise Resource Management[END_REF][START_REF] Alexaki | The ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases[END_REF].

Type 2 OBDBs. Performance of these OBDBs depend upon the representation used for instance data. Evaluation conducted in [START_REF] Agrawal | Storage and Querying of E-Commerce Data[END_REF][START_REF] Theoharis | Benchmarking Database Representations of RDF/S Stores[END_REF][START_REF] Pan | DLDB: Extending Relational Databases to Support Semantic Web Queries[END_REF][START_REF] Abadi | Scalable Semantic Web Data Management Using Vertical Partitioning[END_REF] have shown that the vertical table approach for instance data suffers the same weaknesses as those encountered for Type 1 OBDB. Thus the binary representation has been considered for a long time as the best representation for instance data. However, experimental results on the recently proposed table per class representations have challenged this idea [START_REF] Dehainsala | OntoDB: An Ontology-Based Database for Data Intensive Applications[END_REF][START_REF] Park | An efficient and scalable management of ontology[END_REF]. For queries where the class to be queried is specified, table per class representations outperform the classical binary table approach with ratio often bigger than 10, in particular when instances are associated with several properties [START_REF] Dehainsala | OntoDB: An Ontology-Based Database for Data Intensive Applications[END_REF]. Moreover, insertion and update are faster. The only case where the binary approach is better than table per class representations is for queries where the class to be queried is not specified and that only request a very small number of property values. Type 3 OBDBs. Addition of the meta-schema in OBDBs of type 3 doesn't improve performance of queries but increase functionalities as stated previously. Availability of ontologies in the database is in particular needed to implement the dynamic labeling scheme proposed in this paper. This survey on scalability of OBDBs show that, for a number of use cases corresponding to the performed benchmarks, type 2 or 3 OBDBs using either binary representation or the table per class representation scale quite well and do support real size Semantic Web data management. The other challenge is to provide, at the same time, reasoning capabilities.

Meta-Schema

… … … … 2 3 domain 2 1 1 name 1 Range Domain Name ID Attribute … … … …

Deductive capabilities of OBDBs

Deductive capabilities are not the major strength of databases. To perform reasoning, two main approaches may be followed. The first approach consists in performing reasoning before query processing and to materialize all the deduced facts and, in particular, the transitive closure (TC) of all transitive relationships. We call this approach eager reasoning. This approach supports efficient query processing since reasoning is not required at runtime. Its drawback is extra storage cost and update overhead. The second approach consists in performing reasoning during query processing using virtual deduced facts to provide query results. We call this approach lazy reasoning. This approach is dual to the previous one: it requires extra cost for query processing but doesn't impose storage and update overhead.

Currently, OBDBs mainly support usual subsumption reasoning as specified in [START_REF] Hayes | RDF Semantics[END_REF] (i.e, subClassOf and instanceOf relationships). Most of them perform lazy reasoning using different database mechanisms such as views [START_REF] Pan | DLDB: Extending Relational Databases to Support Semantic Web Queries[END_REF], labeling schemes [START_REF] Park | An efficient and scalable management of ontology[END_REF] or subtable relationship of object-relational databases [START_REF] Alexaki | The ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases[END_REF][START_REF] Broekstra | Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema[END_REF]. Some OBDBs address more complex reasoning. For example, ONTOMS supports instance reasoning for inverse, symmetric, and transitive properties [START_REF] Park | An efficient and scalable management of ontology[END_REF]. As a rule, these most complex reasoning tasks are performed using eager reasoning and TC which lead to serious storage and update overhead in real-size applications. Other approaches propose to use logic engines (e.g Datalog engine) of deductive databases or OWL reasoners to perform these most complex reasoning tasks [START_REF] Mei | Ontology query answering on databases[END_REF][START_REF] Volz | Incrementally Maintaining Materializations of Ontologies Stored in Logic Databases[END_REF][START_REF] Borgida | Loading data into description reasoners[END_REF][START_REF] Pan | DLDB: Extending Relational Databases to Support Semantic Web Queries[END_REF]. However deductive databases have not found widespread adoptions outside academia and the response time of such architectures is often not compatible with person system interaction.

In fact, beside their capabilities to manage large size data, the major strength of database is their capability to process efficiently numeric queries and stringoriented queries. Thus efficient eager reasoning may be performed if a deductive reasoning may be replaced by numeric (or string-oriented) query processing. A well known application of this approach is the so-called labeling approach [START_REF] Agrawal | Storage and Querying of E-Commerce Data[END_REF][START_REF] Christophides | On labeling schemes for the semantic web[END_REF] where transitive relationships are represented either by numeric intervals or by string (or bit vector) values. These applications are very efficient, as long as the transitive relationship defines a tree structure. When it is a DAG, labeling becomes more complex and much less efficient. In the next section we propose a framework that integrate the various labeling schemes, and we show that the same framework may be efficiently used for DAG structure encountered in spatial and temporal application.

3 Numeric reasoning over partially ordered sets

A Motivating Example

The aim of the e-Wok Hub project2 is to manage the memory of many engineering projects on the capture and storage of CO 2 . In particular, an important objective is to improve the quality of documents search on this subject. The followed approach consists in using annotations of documents defined as much as possible by automatic means. As an example, we have focused on geographical aspects of CO 2 storage. An existing ontology, called COG3 , that describes the spatial French geographic entities, is used to annotate documents. In this ontology, a spatial area is represented by an ontology individual characterized by a name, a type (e.g, country, department or town) and boundaries. Moreover, spatial areas are organized in a tree structure using a transitive relationship named subdivision. This relationship has the following meaning: x subdivision y ⇔ y ⊂ x. Thus it defines a partial order on spatial areas.

Figure 4 presents an extract of the spatial areas tree of the COG. Each node represents a spatial area and each edge represents the subdivision relationship. The root of the tree is the country France which is subdivided in the departments Ile de France and Poitou Charentes areas. The latter is itself divided into the towns Poitiers and La Rochelle. Documents are automatically annotated using the COG. The annotation predicate is named geolocalized in. The annotation (doc geolocalized in zone) means that the document doc contains information about whole or part of the spatial area zone. We note that this predicate has a particular behavior with respect to the subdivision order. If a document contains information about Poitiers, it contains information about some part of Poitou Charentes. Thus (doc geolocalized in Poitiers) implies (doc geolocalized in Poitou Charentes). Notice that all predicates whose range is spatial area don't have necessary this behavior. For example, the person who heads Poitou Charentes doesn't head the town of Poitiers.

This behavior has an impact on querying. Indeed, if one searches for all documents relevant to the spatial area zone, the system should reason over the inclusion relationship and return all documents annotated with the spatial areas included in zone. Eager or lazy reasoning approaches can be used to provide correct results. Eager reasoning consists in storing not only annotations defined by domain experts but also annotations that can be derived using the characteristic of geolocalized in. Considering the high number of documents that may be managed combined with the number of French spatial areas (and of world spatial areas in a second step), eager reasoning requires a lot of storage space and would hardly scale. A naive lazy reasoning technique would be to compute the inclusion relationship TC using recursive operator of SQL99 (if available in the DBMS) or recursive stored procedures. Again, due to the large amount of documents combined with the number of areas, this approach would hardly scale in query processing response time. The inclusion relationship defining a tree structure, a classical labeling scheme may be used to represent in a compressed way the subsumption relationship TC. These techniques consist in assigning values to each node of a hierarchy according to the node's position. Figure 5 shows an application of interval labeling scheme on our previous example of the COG. On this tree, each spatial area is assigned a pair of integer values, bound1 and bound2, that defines an interval. An area zone1 is a (recursive) subdivision of zone2 if the interval of zone1 is included in the interval of zone2.

France [1 , 12] Poitou Charentes [6 , 11] Ile de France [2 , 5] Paris [3 , 4] Poitiers [7 , 8] La Rochelle [9 , 10] Fig. 5. translation of a tree structure into two numeric values This approach has been implemented and scales perfectly since the annotation instances are quite stable. Thus, once all instances of the COG have been entered within the database, the labeling scheme does not need any change when new document annotations are recorded.

Unfortunately, when one annotes automatically documents, one doesn't only encounter names of countries, department and town. Other geographic areas names, such as regions, districts or localities, are also used. Note that a partial order still exists between all these spatial areas. But this order no longer defines a tree. It defines a DAG for which the interval labeling scheme is much less efficient. Moreover most existing labeling schemes need to be recomputed when the instances to be indexed are modified. We propose below a framework allowing to select various labeling schemes depending upon the problem at hand, and we introduce new labeling schemes for reasoning over spatial areas and temporal periods.

Proposed Framework

First, let us characterize formally the behavior of the geolocalized in and subdivision relationships.

Let E and F be two sets ; R ⊂ E × F and ≺⊂ F × F be two binary relationships, with ≺ being an order relationship, i.e., reflexive, antisymmetric and transitive. We said that R is propagated by the order ≺ if and only if:

∀x ∈ E, ∀y, z ∈ F, x R y ∧ y ≺ z ⇒ x R z and we call propagated closure (PC) of R by ≺, noted R + ≺ : R + ≺ = {(x, z) ∈ E × F | ∃y ∈ F, x R y ∧ y ≺ z} If R = geolocalized in
in and ≺= subdivision, for a given geographic area, R + ≺ contains all the documents that are annotated either by this area or by one of its (recursive) subdivisions.

Reasoning over Propagated Closure.

We note that R + ≺ is the composition of the transitive closure of ≺, noted ≺ * , with R: R + ≺ =≺ * • R. Thus efficient representation of ≺ TC would provide an efficient representation of R PC. We use a labeling scheme for that purpose. A labeling scheme L over (F, ≺) is a triple: L = (D, label, less or eq) where:

-D is an ordered (≤) concrete domain; Thus, if for all y ∈ F, label(y) is pre-computed and stored in the database and if less or eq may be computed in constant time (e.g., by numeric or string value comparison), the computation of the R PC may be done in linear time by a single traversal of the R relationship.

-label : F → D is

Topological and Geometrical Labeling Schemes.

Most labeling schemes that have been proposed use the topological structure of the lattice that represents the order over the F space to define the labels. For instance, as we have seen previously, the post-ordered interval scheme proposed by Agrawal et al. [START_REF] Agrawal | Storage and Querying of E-Commerce Data[END_REF], compute the numeric interval that labels each node by means of a post-order traversal of the spanning tree of the order relationship between all known instances. In the Bit Vector scheme, proposed by Wirth [START_REF] Wirth | Type extensions[END_REF], the label of a node is represented by a vector of n bits where n is the number of instances of the F space. A "1" bit at some position uniquely identifies a node in the lattice structure and each node inherits the bits identifying its ancestor in the lattice. Thus these encodings are efficient as long as no major change occurs in the population of the F space, and, for the interval scheme, as long as the lattice is a tree. When signifiant changes occur in F instances, the labels need to be recomputed.

In fact, when reasoning over spatial or temporal domain, the underlying space has not only a topological structure but also a geometrical structure. Thus, it is associated with a metric that may be used for defining labels. Indeed, in Figure 4, both bounding rectangles and bounding circles might also be used for labeling geographic areas. When reasoning over geological periods where various geological time scales are used, an approximate mapping of each geological period onto geologic time (expressed in mya: "million of years ago") may be done. Notice that, unlike topology-based labels, these labels are absolute labels. They represent an additional knowledge that cannot be automatically computed from the known instances of F names or relationships, but they don't need to be changed when the content of F is updated. All these various labels may be represented as labeling scheme within OBDBs allowing efficient reasoning over PCs. We note that geometrical labels have two differences with topological labels : (1) they are invariant for a given instance, whatever other instances are considered, (2) they cannot be derived from non geometrical or non-temporal properties of an ontology individual. Thus, spatial and temporal properties are primitives ontological properties of temporal or spatial objects. As such, it is reasonable to consider that their values, for given individuals, may be either available in some place (e.g., through a web service) or exchanged together with the individual descriptions. My date of birth as well as the geolocalization of Paris are both ontological properties that are available somewhere and that could be managed in ontology-based data source. One difficulty is that geometrical description may involve complex data structure available only in specific systems (e.g., GIS). In fact, important geometric reasoning only needs very simple data. Spatial inclusion of convex bodies may be evaluated on the basis of bounding rectangles or of bounding circles. Temporal precedence just need to compare two float values or two intervals. Thus it is both possible to restrict the set of geometrical representations allowed and to support a large range of (approximate) spatial or temporal reasonings. Our suggestion is to support only interval (in one dimension (1D)), rectangle and circle (in two dimension (2D)).

Design and implementation

This section presents how our approach can be implemented in the different OBDB architectures to allow automation of the property propagation mecha-nism. We assume now that E and F are two ontological classes. To represent that a property R : E × F is propagated by a partial order ≺ over F, we need to represent: (1) the fact that ≺ is an order, (2) the labeling scheme of this order L = (D, label, less or eq), and (3) the fact that R must be propagated by L. Existing ontology languages don't provide modeling primitives to represent these three pieces of information. As a consequence, both ontology models and OBDBs need to be extended. In an owl database for instance, the first information needs to add a new value (named orderProperty) to the enumerated set of values of owl property characteristics (transitiveProperty, symmetricProperty, etc.) since antisymmetric is available neither in OWL1 nor in OWL2. The third information needs to add a new value (named propagatedBy) to the single existing value of property-to-property relationship (inverseOf). Thus, these two information needs extension of ontology models. Finally, for the second information, we need to create two additional (meta-)tables in the OBDB. The first one describes the labeling schemes available in the OBDB. The second one defines which labeling scheme is assigned to a particular order property. These two tables are the extensions to OBDB that are required by our labeling model. Below, we outline the implementation process and discuss representation issues. The different steps of this implementation can be supported by both type 2 and type 3 OBDB architectures.

Extension of the Ontology Models part of OBDB

In this section, we present the information that needs to be recorded as n-ary tables. Notice that if binary representation is used, these tables must be splitted into binary tables. The two first tables represent information that we propose to add to ontology definition language. The two last tables are systems tables.

-Table 1 property characteristic contains the characteristics of property. The required extension of ontology model is the capability to represent order-Property as a characteristic.

Table 1. property characteristic Table Columns

Column Description propertyId refers to the unique identifier of the property in the property table. characteristic the characteristic of the property (for example orderProperty, symmetricProperty, etc.)

-Table 2 property to property contains the relationships between two properties. The required extension of ontology model is the capability to represent propagated by relation between a property and another property that defines an order. When a geometric labeling is used, and when this label is provided, for example as a bounding rectangle, together with the instance data, the inclusion relationship may often be implicit : it is to be computed by inclusion of geometrical shapes defined by the geometric labels. In this case, the orderId is replace by a reserved word that may be *geo rectangle*, *geo circle*, *geo interval*. This means that the propertyId is propagated by the inclusion (increasing) order of the corresponding geometric shapes. The columns that contain the geometric labels are named as specified in table 3. For a propagated by relationship, the column direction specifies whether the propagation is done in a direct way (the same direction as the order property) or in a reverse way. For example, applicable laws in Poitou Charentes include those defined in areas encompassing Poitou Charentes; this implies a propagation in the reverse way as compared to the order property subdivision, on the contrary of the property geolocalized in where the propagation is done in a direct way. -Table 3 labeling scheme contains information about the various labeling schemes available in the particular OBDB. This table is supposed to be defined by the database administrator (DBA). Nevertheless, it contains lines whose four first attributes have predefined content.

Theses lines specify how a geometrical labeling must be identified to be recognized by the system. These lines are defined in Table 4.

-Table 5 property schemes contains information about the various scheme associated to each particular property. This table is automatically generated by the system. When a propagated by property is introduced in table 2, the default labeling scheme defined in table 3 is automatically implemented if the orderId identifies a property. If the orderId is a reserved word the system just checks that the needed labeling columns are presents and a line in table 5 is also added. The DBA may change the default labeling scheme when needed.

Representation of Individuals

Individuals of ontology classes will be represented according to the data structure strategy used in each particular OBDB. To automate the generation of specifics properties used to record labels, they are manage like other properties and they are initialized to NULL if no value is provided.

Table 3. labeling scheme Table Columns Column Description schemeId refers to the unique identifier associated to the labeling scheme numberOfColumns the number of columns used to represent the domain D (for example 2 for the interval labeling scheme) listColumnsSuffixes a list of column's suffixes used to represent D (for example { bound1, bound2}) listColumnsTypes a list of column's types associated to the column's names in listColumnsNames (for example {int, int}) label the optional name of the SQL/PSM function to be used for computing the label associated with those instances whose labels value equals NULL. This function is called on F each time one or a set of new instances of F are entered in the database within the same transaction. This name does not exist (NULL) when the label must be provided externally with each instance (e.g., for geometrical labeling schemes). less or eq the name of the SQL/PSM boolean function to be used for evaluating if one individual is smaller or equal to another for the order defined by propertyId. If L is the interval labeling scheme over the F space, and i1 and i2 are two individuals, i2 ≺ i1 if the call less or eq(i2.bound1, i2.bound2,i1.bound1, i1.bound2) returns true. defaultScheme a boolean value. The default scheme to be associated to a new property defining an order. or to the identifier of a propagated property when its orderId is a reserved word. schemeId the unique identifier of the scheme listProperties the list of identifiers of the properties associated to listColumnsNames in the class F activeScheme a boolean value. true if the scheme is active.

Representation of Annotations

Two strategies can be used for representing annotations :

using a distinct binary table for each annotation property:

• the first column resourceId refers to the unique identifier of a resource;

• the second column individuaId refers to the unique identifier of the ontological instance used to annotate the resource. Using this representation, one or several joins (depending on the structure of the data part) will be necessary during query processing to retrieve label property(ies) value(s) associated to the property defining the order relation; using a distinct materialized view for each annotation property containing resourceId and individualId columns as defined above, but also all the columns in listColumnsNames labeling scheme representation. Notice that if materialized views are used, a management policy must be defined for data updating.

Queries Processing

Our goal is to support fully automatic numeric reasoning for queries using properties that have specific characteristic like order relation or propagation by an order. Each incoming query must then be treated by an OBDB interpreter as follows:

identification of the query category: each ontology query must be analyzed at the ontological level in order to determine whether it involves or not properties with specific characteristics. This will be done using tables property characteristic, property to property and property schemes; query interpretation: if the query does not require special treatment, it will be processed as usual; if not, the query will first be translated into a numeric query using information stored in the tables labeling scheme and property schemes. This translation also depends on the annotation representation. The resulting rewritten query will then be efficiently processed by the database.

Figure 6 summarizes the different steps followed to process query. Below, we describes the effective implementation of our approach in OntoDB OBDB. This section describes how our approach has effectively been implemented on the OntoDB database [START_REF] Dehainsala | OntoDB: An Ontology-Based Database for Data Intensive Applications[END_REF][START_REF] Pierra | Base de Données à Base Ontologique : principes et mise en oeuvre[END_REF] using the COG ontology by means of the OntoQL query language [START_REF] Jean | Querying Ontology Based Database Using OntoQL (an Ontology Query Language)[END_REF]. Only the bounding rectangle and the numeric interval labeling schemes have been implemented. First we briefly present the OntoDB database.

OntoDB

OntoDB is a type 3 OBDB designed to support evolutions of the ontology schema, and to offer data access at the ontology level. Currently, OntoDB is implemented on top of Postgres. It consists of 4 parts. Parts 1 and 2 are the traditional parts available in all DBMSs, namely the data part that contains instance data and the meta-base part that contains the system catalog. Parts 3 (ontology) and 4 (meta-schema) are specific to OntoDB. Ontology-based data are represented in OntoDB using an horizontal approach; one table is created for each ontological class; its columns consists of a subset of the class applicable properties (i.e, that include the class in their domain), namely those that are used by at least one instance of the class. This representation scales well when numerous properties per instances are used [START_REF] Dehainsala | OntoDB: An Ontology-Based Database for Data Intensive Applications[END_REF]. The COG ontology model is stored in the ontology part of OntoDB. Figure 7 shows the content of the tables of the ontology part using a simplified ontology model. This ontology model is instantiated in the meta-schema part, this allows to automate the generation of the structure of the ontology part using a model transformation. When the property geolocalized in is inserted in the property to property table, if the orderId referenced is subdivision and if the interval labeling scheme is active as the default scheme, then, the system will automatically add the properties bound1 and bound2, required by the default labeling scheme, to its range spatial area. When the property geolocalized in is inserted again in the property to property table, then, if the orderId referenced is *geo rectangle*, the system checks that properties xmin, xmax, ymin, ymax are provided in its range spatial area and generates a new line in the labeling scheme table. We have extended the ontology part of OntoDB with the tables labeling scheme and property schemes described in section 4.1 and instantiated them with appropriate information as shown in Figure 8. Once the COG ontology model and property characteristics and relationships have been represented, individuals have also to be represented in the data part using the OntoDB strategy (table per class representation) as shown in Figure 9. Labels values for individuals can either be assigned outside the OBDB, for predefined labeling schemes, or computed automatically by the OBDB, for topological labeling schemes (e.g. for scheme 5, the interval function is automatically triggered by the system). OntoDB uses the ontological class IDs to generate the tables names and property IDs to generate columns names in the data part. This mechanism establishes the link between the ontology part and the data part. For better readability, we use the names (names of classes, names of properties, etc.) instead of IDs. Currently, we have only implemented topological labeling schemes by numeric interval and geometrical labeling by bounding rectangle as it is the case for the property geolocalized in and the relation subdivision. The values of the coordinates of bounding rectangles being not currently available in the COG ontology, they were fetched from another source and enter into OntoDB. As mentioned in section 4.3, two strategies can be used to represent annotations. Figure 10 shows the implementation of the two strategies in OntoDB. In the second strategy using a materialized view, for each annotation only the values bound1 and bound2 of the individuals are duplicated because scheme 1 (interval) is the active labeling scheme for the property 3 (subdivision). We can now turn to the transformation of queries so that they can be efficiently performed within OntoDB using numeric reasoning capabilities of Postgres. The incoming queries (that may be, for instance, rather simple SPARQL queries as it is done in the eWok-Hub project) are first rewrited as OntoQL query, an SQL-like query language [START_REF] Jean | Querying Ontology Based Database Using OntoQL (an Ontology Query Language)[END_REF]. Then we have classified incoming queries in two groups; queries which do not require a special treatment and query which need to be rewritten. This classification is done referring to the tables property to property and property scheme as mentioned in section 4. [START_REF] Broekstra | Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema[END_REF]

Implementation

LABELING_SCHEME

Conclusion

Realization of the Semantic Web vision requires scalable ontology data management tools that perform reasoning operations over ontology-based annotations in an acceptable response time. In this paper we have first described the current state of the art of OBDBs that allow to store both ontology descriptions and instance data in a database. If some OBDB architectures scale quite well for various applications, reasoning capabilities are mainly provided by representing explicitly all the facts that may be deduced by a reasoner. This may lead to a strong storage overhead for real-world applications. As an alternative we have proposed an approach that consists in enriching the ontology instances used as annotations with new property values in order to replace deductive reasoning by numeric (or string-oriented) query processing.

The kind of reasoning we have addressed is both transitive reasoning over partially ordered sets and reasoning over composition of two properties, the second one being transitive. These cases encompass evaluation of taxonomy-valued properties, subsumption reasoning and spatial and temporal inclusion reasoning. We have proposed a framework that allows to characterize such cases at the ontology level allowing OBDB systems to implement dynamically numeric reasonings when such ontologies are loaded. This framework consists of three pieces of information, each of them corresponding to extension of existing ontology models:

the fact that a property defines an order i.e, transitive, reflexive and antisymmetric, or a tree-order i.e, also inverse functional;

the fact that one property may be propagated by another property that is transitive;

a labeling scheme allowing to specify what kind of labeling should be used to replace deductive reasoning by numeric (or string-valued) reasoning.

Two kinds of labeling scheme exist. Topological labeling schemes correspond to the various labeling schemes already proposed for tree structured or DAGstructured data. Such labels may be computed by the OBDB system. Our approach allows both to specify in a declarative way which particular scheme must be used for a particular property and to define which default scheme must be used when no scheme is specified. Geometrical labeling schemes are used for spatial or temporal reasoning. The labels values must be provided to the system as properties, but our approach allows to specify which properties must be used as labels. In both case, the OBDB query interpreter may automatically rewrite query to make profit of the labeling. This approach has been implemented in the OntoDB OBDB and we have presented the two approaches that may be used for rewriting queries.

Fig. 1 .

 1 Fig. 1. Type 1 OBDBs approach

Fig. 3 .

 3 Fig. 3. Type 3 OBDBs Meta-Schema

Fig. 4 .

 4 Fig. 4. COG ontology : example of inclusive relationship between individuals

 a morphism of ordered sets: ∀x, y ∈ F, x ≺ y ⇒ label(x) ≤ label(y) less or eq : D × D → Boolean is a function that compares in constant time two values of D: ∀a, b ∈ D, less or eq(a, b) ⇔ a ≤ b

Fig. 6 .

 6 Fig. 6. Query processing steps.

Fig. 7 .

 7 Fig. 7. COG -OntoDB : ontology part

Fig. 9 .

 9 Fig. 9. COG -OntoDB : the data part

Fig. 10 .

 10 Fig. 10. COG -OntoDB : representation of annotations

Fig. 11 .

 11 Fig. 11. COG -OntoDB : example query rewriting

 . An alternative is to use a binary representation where each class is represented by an unary table and each property by a binary table [3, 4, 1, 2]. Recently, table per class representations (also called class-based representations) have been proposed where a table having a column for each 1 RDF uses URI for identifiers. For readability, we use names throughout this paper.

	Ontology								
	String	name	Person	address	Address	country	String	TRIPLES TRIPLES
					age					Subject Subject	Predicate Predicate	Object Object
	grade Instances	Student	Worker	salary	Integer		name Student Student Person name Student Student Person	rdf:type rdfs:subClassOf rdf:type rdf:type rdf:type rdfs:subClassOf rdf:type rdf:type	rdf:Property Person rdfs:Class rdfs:Class rdf:Property Person rdfs:Class rdfs:Class	Ontology
		Student#1		Worker#1	address	Address#1	name name	rdfs:range rdfs:range	xsd:String xsd:String
	Peter subClassOf Legend: name	grade PhD	John name		1500 salary	France country	Student#1 Student#1 Student#1 … Student#1 Student#1 Student#1 …	grade name rdf:type … grade name rdf:type …	PhD Peter Student … PhD Peter Student …	Instances
	property								Worker#1 Worker#1	address address	Address#1 Address#1
	property value instanceOf								… …	… …	… …
			(a)						(b)

Table 2 .

 2 property to property TableColumns

	Column	Description
	PropertyId	the unique identifier of the propagated property.

orderId the unique identifier of the property in property characteristic table or a reserved word (*geo rectange*, . . .) relationName the name of the semantic relation linking the two properties; for example propagated by, inverse of direction defines the propagation direction according to the order relationship. Allowed values : direct, reverse.

Table 4 .

 4 predefined labeling scheme in the labeling-scheme table

	schemeId	numberOfColumns listColumnsSuffixes listColumnsTypes ...
	geo interval	2	{bound1, bound2}	{float, float}	...
	geo rectangle	4	{xmin, xmax, ymin,	{float, float, float,	...
			ymax}	float}	
	geo circle	3	{xcenter, ycenter, ra-	{float, float, float} ...
			dius}		

Table 5 .

 5 property schemes TableColumns

	Column	Description						
	propId	the	unique	identifier	of	the	order	property	in
		property characteristic table				

 . Figure 11 shows an example of query rewriting where an incoming SPARQL query is rewritten into a numeric query according to the binary table representation and the materialized view representation. SELECT doc.uri FROM document doc, unnest(doc.geolocalized_in) as geo WHERE geo = ''Poitou Charentes'' USING NAMESPACE "http://rdf.insee.fr/geo/" SELECT DISTINCT doc.* FROM document doc, geolocalized_in geo, spatial_area spa, spatial_area as x WHERE (doc.id = geo.resourceId) AND (x.name = 'Poitou Charentes') AND (geo.IndividualName = spa.name) AND (include(spa.bound1,spa.bound2,x.bound1,x.bound2)=TRUE); PREFIX geo: <http://rdf.insee.fr/geo/> SELECT ?doc WHERE { ?doc geo:geolocalized_in ?x . FILTER (?x = ''Poitou Charentes'') } FROM document doc, geolocalized_in_view geoview, spatial_area as x WHERE (doc.id = geoview.resourceId) AND (x.name= 'Poitou Charentes') AND (include(geoview.bound1,geoview.bound2,x.bound1,x.bound2)=TRUE);

	SPARQL query	Binary table
	OntoQL query	
		Materialized view
		SELECT distinct doc.

*

http://www-sop.inria.fr/acacia/project/ewok/index.html

Code Officiel Gographique, http://rdf.insee.fr/geo/

Acknowledgment. The research described in this project was supported by ANR under Grant 05RNTL02706, eWok-Hub. The authors want to thanks all members of the project for fruitful discussions. A particular thanks to Eric Sardet, CRITT Informatique, who contributed to the design and implementation on OntoDB.