
HAL Id: hal-04107694
https://hal.science/hal-04107694

Submitted on 26 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shorter and Faster Identity-Based Signatures with Tight
Security in the (Q)ROM from Lattices

Éric Sageloli, Pierre Pébereau, Pierrick Méaux, Céline Chevalier

To cite this version:
Éric Sageloli, Pierre Pébereau, Pierrick Méaux, Céline Chevalier. Shorter and Faster Identity-Based
Signatures with Tight Security in the (Q)ROM from Lattices. 21st International Conference on
Applied Cryptography and Network Security, Jun 2023, Kyoto, Japan. pp.634–663, �10.1007/978-3-
031-33488-7_24�. �hal-04107694�

https://hal.science/hal-04107694
https://hal.archives-ouvertes.fr

Shorter and Faster Identity-Based Signatures
with Tight Security in the (Q)ROM from Lattices

Éric Sageloli1, Pierre Pébereau1,2, Pierrick Méaux3, Céline Chevalier4,5

1 Thales SIX
pierre.pebereau, eric.sageloli@thalesgroup.com

2 Sorbonne Université, CNRS, LIP6, PolSys
pierre.pebereau@lip6.fr

3 University of Luxembourg, Luxembourg
pierrick.meaux@uni.lu

4 DIENS, École Normale Supérieure, CNRS, Inria, PSL University, Paris, France,
celine.chevalier@ens.fr

5 CRED, Université Paris-Panthéon-Assas, Paris, France

Abstract. We provide identity-based signature (IBS) schemes with tight security against adaptive
adversaries, in the (classical or quantum) random oracle model (ROM or QROM), in both unstruc-
tured and structured lattices, based on the SIS or RSIS assumption. These signatures are short (of
size independent of the message length). Our schemes build upon a work from Pan and Wagner
(PQCrypto’21) and improve on it in several ways. First, we prove their transformation from non-
adaptive to adaptive IBS in the QROM. Then, we simplify the parameters used and give concrete
values. Finally, we simplify the signature scheme by using a non-homogeneous relation, which helps
us reduce the size of the signature and get rid of one costly trapdoor delegation. On the whole, we
get better security bounds, shorter signatures and faster algorithms.

Table of Contents

Shorter and Faster Identity-Based Signatures
with Tight Security in the (Q)ROM from Lattices . 1

Éric Sageloli, Pierre Pébereau, Pierrick Méaux, Céline Chevalier
1 Introduction . 3
2 Technical Overview . 6
3 Preliminaries . 7
4 Preliminary results . 10

4.1 Results on statistical distance . 10
4.2 Singular values of random matrix . 11
4.3 Lattice trapdoors . 12
4.4 Hash reprogramming in the ROM and the QROM. 13

5 Generic transformation from EUF-naCMA (resp. sEUF-naCMA) to EUF-CMA security
(resp. sEUF-CMA) in the ROM and the QROM . 14

6 IBS Scheme in the ROM and the QROM, based on SIS . 17
7 IBS Scheme in ROM and the QROM, based on RSIS . 22
8 Conclusion . 27

8.1 Parameters (proof of concept) and discussion . 27
8.2 Future work . 28

A Generic probability results . 30
A.1 Results about the statistical distance . 30
A.2 Other probability results . 31

B Proofs of Section 4 . 31
B.1 Bound on singular values of random matrices . 31
B.2 Invertible elements of Rq . 32
B.3 Proof of smoothing lemma (Lemma 1) . 33

Unstructured case (Equation (1)) . 33
Structured case (Equation (2)) . 36

B.4 Results about the quantum queries of a classical function . 37
B.5 Missing proofs of reprogramming Hash lemmas . 39

A lemma to separate classical from quantum queries . 39
Proof of Proposition 7 about non-adaptative reprogramming 41

B.6 Generalization of [29, Claim 5.3] and proof of Proposition 1 44
B.7 Proof of Propositions 4 and 5 about matrix delegation . 47
B.8 Links between lattices and R-lattices . 49
B.9 Lattice trapdoors over Rq . 51

C Detailed games for the proof of Theorem 1 of Section 5 . 55
D Proofs of Section 6 . 61

D.1 Some intermediary results for the proof of Theorems 2 and 3 61
D.2 Detailed games for the proof of Theorem 2 of Section 6 . 62

E Script for the computation of parameters of IBSNA,R and IBS+NA,PW 68

1 Introduction

Identity-Based Signatures. Secure communication over the Internet heavily relies on the use
of digital signatures, which provide authenticity, integrity, and non-repudiation in an asymmetric
setting. In textbook schemes, each user needs to generate its own (public key, secret key) pair, and
we assume that each user is uniquely identified by its public key. In the real world, this is ensured
by the use of public-key infrastructures (PKI) which map public keys to real-world identities such
as names or email addresses. This usually involves a hierarchy of trusted certification authorities
(CA) that can certify public keys as belonging to a certain user.

To relax the need for such heavy structures, Shamir proposed in his seminal work [30] the use
of so-called identity-based signatures (IBS), where the public key of a user simply is its identity.
The corresponding secret key is issued by a trusted authority, which derives it from a master
secret key that only the authority knows, and which is assumed to have a way to verify the
identity of the user. This simplifies the requirements on PKI and certificates and opens the way
to more efficient schemes. In such a scheme, an honest user with identity id can sign a message
µ using its secret key skid, and its signature σ can be publicly verified, given the master public
key mpk and its identity id.

The usual security notion for IBS is Existential Unforgeability under Chosen Message Attack
(EUF-CMA), where an adversary A can obtain a set of secret keys associated to some identities
and get the signatures associated to a certain number of tuples (identity, message) of its choice.
It wins the security game if it is able to produce a new tuple (id, message, signature) for an
identity and a message not already queried. We say it is adaptive if it can adaptively query the
secret keys and signatures (EUF-CMA), non-adaptive otherwise (EUF-naCMA).

The security of cryptographic schemes is usually proved by reduction, meaning that if a
(polynomial-time) adversary A is able to break the security of the scheme, then we can reduce it
to another (probabilistic polynomial time) adversary B that is able to solve an instance of some
hard problem (factoring, discrete logarithm, Short Integer Solution (SIS) [1]. . .). The success
probability of A is bounded by a factor times the success probability of B. If this factor is a small
constant (and does not depend logarithmically, linearly or quadratically on the security param-
eter), we say that the reduction is tight. This is a desirable probability since a cryptographic
scheme with tight reduction does not need to increase the key length to compensate a security
loss. Furthermore, with the recent advances made on quantum computers, it is desirable to rely
on quantum-safe hard problems, such as those based on lattices. It is sometimes possible to rely
only on these hard problems, leading to schemes in the so-called standard model. But in order to
gain efficiency, one usually relies on idealized models, such as the random oracle model (ROM).
Its quantum equivalent is the quantum ROM (QROM), where a possibly quantum adversary
is allowed to quantumly query the oracle. Finally, the goal of this article is thus to present
an identity-based signature scheme with tight security, assuming the SIS problem is hard, and
relying on the ROM or QROM.

Related Work. There are two main approaches used to construct IBS schemes (see [18] for
more details), but none of them is directly applicable to tight post-quantum security (more dis-
cussion in [26]). The first one, called the certification approach, transforms a standard signature
scheme into an IBS scheme [9,4]. The generic transformation is not tight, but can be shown
tightly secure if the underlying signature scheme is tightly secure in the multi-user setting with
adaptive corruption [21] (which may be applied to the post-quantum signature scheme designed
in [27], but then the obtained IBS would not produce short signatures). The second one is to
transform a 2−level hierarchical IBE (HIBE) [16] tightly to an IBS scheme [18].

Overcoming these difficulties, Pan and Wagner gave in [26] the first identity-based signature
scheme with tight security from lattices, and we build upon their construction by improving on

3

it in several ways. They give two constructions, based on either SIS [1] (unstructured lattices)
or Ring-SIS [24] (structured lattices), which are two assumptions believed to be quantum-safe.
The latter one offers better efficiency. Their signatures are short, meaning that they contain
only a constant number of elements, with a size independent of the message length. They use
the Micciancio-Peikert (MP) trapdoor technique [25] and the Bonsai tree technique [6].

They first give a generic transformation trans from a non-adaptive IBS to an adaptive
one. They use the known transformation for digital signature schemes [19] using (R)SIS-based
chameleon hash [6,12] and extend it to the IBS setting ([26, Theorem 1]). They also give a
version in the ROM ([26, Theorem 2]), which is more efficient.

Then, they construct a non-adaptive IBS proved in the ROM and in the QROM, assuming
the (R)SIS assumption is hard. In a nutshell, the master public key is a random matrix A such
that the (R)SIS assumption holds, the master secret key is a MP trapdoor TA for A [25], the
identity secret key for id is a trapdoor of (A∥H1(id)) obtained through TA using the trapdoor
delegation operation of MP and a signature of a tuple (id, µ) is a small vector z computed using
the trapdoor such that (A∥H1(id)∥H2(id, µ)) z = 0, where H1 and H2 are simulated as random
oracles in the security proof. This finally gives rise to an adaptive IBS in the ROM, and an
adaptive IBS in the QROM assuming chameleon hash. In the proof, the adversary has to output
the lists AskedSk and AskedSign of secret key queries and signing queries before receiving the
master public key (since the scheme is non-adaptive). The key points are that, by programming
the random oracles H1 and H2, the reduction can embed a MP trapdoor into both (A∥H1(id))
and (A∥H1(id)∥H2(id, µ)) for all elements of these lists, while the other values are programmed
on the form Ax for x small elements, allowing to construct a SIS solution, with high probability,
for any valid signature on (id∗, µ∗) not queried by A. The programming being indistinguishable
by A from random output. This implies that the reduction does not need to guess the forgery
(id∗, µ∗), making it tight.

While preparing the final version of this paper, we came across a concurrent paper [31], which
also improves the protocol of [26] as one of their contributions, by getting rid of one delegation as
we do here. But as compared to our article, they only improve the non-adaptive scheme, only in
the ROM case and only based on SIS. As opposed to them, we give here further improvements:
We fix some flaws in the proof of [26], propose other choices of distributions, consider QROM and
RSIS, lower the number of hash calls needed when applying the transformation from EUF-CMA
to EUF-naCMA on it, and give a practical instantiation with concrete parameters.

Our Contributions. In this article, we improve on the work of Pan and Wagner [26] in several
ways. We give here an informal description of these improvements and provide a technical
overview in Section 2 for the interested reader.

We prove the generic transformation from non-adaptive to adaptive IBS of [26] in the QROM,
making it unnecessary to rely on chameleon hashes in this case, we also provide a proof of this
transformation in the strong security setting. We use a former reprogramming result restated in
Proposition 6. Our protocols are thus more modular: all the intermediate results (reprogramming
lemmas) are proved both in ROM and QROM. Furthermore, we improve the transformation by
reducing the number of hash functions to 2 instead of 4, making the final scheme simpler and
more efficient.

The set of parameters used is easier, since we harmonize the value of the modulus to q = 3k

in both structured and unstructured case, as opposed to [26] which used q prime in the latter
case. The main interest is to simplify the use of the MP trapdoor generation algorithms [25], and
in particular to get a simpler gadget matrix (of the form [In 3In . . . 3

k−1In] in the unstructured
case). This comes at the cost of a more difficult proof for the smoothness lemma (Lemma 1).

4

Wemake an effort to be “concrete” and avoid universal constants and asymptotic parameters,
giving parameters in Tables 6 and 7. Note that the two former improvements can be directly
applied to the scheme given in [26], which enables us to compare both schemes fairly.

Our scheme is simpler thanks of the use of a non-homogeneous equation for the signature.
With the same notations as above, a signature of a tuple (id, µ) is a small vector z such that
(A∥H1(id)) z = H2(id, µ) (as compared to (A∥H1(id)∥H2(id, µ)) z = 0), again obtained using the
trapdoors of [25]. This has two consequences. First, the signature has fewer coordinates. Then,
this allows us to manage to avoid the use of one trapdoor delegation operator DelTrap in Sign,
that only consist on a sole application of SampleD. Indeed, we now use the secret matrix to
sample the vector z following a discrete Gaussian distribution, meaning that we can reuse the
trapdoor of the secret matrix whereas the scheme in [26] uses a more complex concatenated
matrix, forcing them to delegate one more time a trapdoor. This is obtained at the cost of a
more difficult proof, especially in the QROM case. More precisely, we give thinner reprogramming
lemmas, of independent interest (see Section 4.4). Another improvement of these lemmas is that
we do not always reprogram using a Gaussian distribution, but rather a uniform distribution
on {−1, 0, 1} whenever it is possible. In particular, to obtain the result in the structured case,
we give an improved version of Regev’s claim [29, Claim 5.3] for more general distributions, in
Lemma 18, that is applied in Proposition 1 for our case.

Keeping in mind that one DelTrap operation roughly corresponds to k SampleD operations,
a first consequence of this simplification is that the time complexity of our signature scheme is
at least k times better. Experimentally, this leads to a scheme at least 65 times faster for the
same parameters assuming a 128-bit security for our scheme.

A second consequence is that the security we obtain is better, because we get a smaller
(R)SIS bound. This implies that the parameters we need to obtain 128-bit security only yields
37-bit security for their improved scheme.

A third consequence is that the signatures generated by our schemes are way shorter than
the ones generated in [26], because the use of only one trapdoor delegation yields to a smaller
standard deviation for the signature, and that we have k fewer coordinates for the signature by
design. Experimentally, this leads to a signature half as big, if we use the same parameters for
both schemes. If we consider the same security for both schemes, we even get signatures and
keys five times smaller than theirs.

Other contributions of independent interest. We highlight a few contributions made for
this article that could be used in other contexts:

– We give an extended version of Regev’s claim [29, Claim 5.3], proven for more general dis-
tributions and in a module setting. It is stated and proved in Lemma 18.

– We generalize the reprogramming lemma [5, Lemma 3] in Proposition 7, in order to replace a
quantum random oracle by a bounded number of distributions that are close to the random
distribution. In the initial lemma, there were only two possible distributions.

– We introduce a lemma applicable to a wide class of indistinguability games, that allows to
separate the study of classic and quantum calls to the quantum random oracle, provided the
classic calls are made first. It is stated and proved in Section B.5.

– We prove different results regarding the infinity norm of the minimum of (some) unstructured
q-lattices with q power of a prime, in Appendix B.3 . Then, we use it to prove a variation of
the smoothness lemma [15, Lemma 5.2] for q-ary lattices with q being a power of 3.

– We show a simple characterization of (some) invertibles of Rq for q being a power of 3, in
Appendix B.2.

– To simulate distributions obtained with delegated trapdoors, Proposition 5 and Proposition 4
(such as their counterparts for the structured case, in Appendix B.9) are implicitly used in [26]
and needed in our scheme. They have an important role to ensure the ability to simulate the

5

correct distributions to an adversary against a scheme without master secret key. They are
described in Section 4.

Acknowledgements. This work was supported in part by the French ANR projects CryptiQ
(ANR-18- CE39-0015) and SecNISQ (ANR-21-CE47-0014). Pierrick Méaux was supported by
the ERC Advanced Grant no. 787390.

2 Technical Overview

We focus here on the scheme based on the SIS assumption, the ideas being similar for the scheme
based on RSIS.

Following [26], we proceed in two steps: first a generic transformation from an EUF-naCMA
IBS scheme to an EUF-CMA scheme and then the construction of an EUF-naCMA IBS scheme.

Generic Transformation.

In [26], the authors show that, using a chameleon hash or in the ROM, the non-adaptive
security of an IBS scheme can be tightly transformed into adaptive security.

This implies that the only way to get a scheme secure against a quantum adversary is
to use both chameleon hashes and other hash functions simulated as quantum random ora-
cles in the proof. In this article, we extend this generic transformation to the QROM with a
compatible-with-ROM case proof, using some adaptive reprogramming results of [17] (restated
in Proposition 6).

We can then apply this transformation to our scheme, yielding to a scheme proved in the
sole QROM. Furthermore, it is possible to factor these hash functions to reduce their number
from four to two, which allows getting a scheme in which fewer queries to hash functions are
made.

IBS with Non-Adaptive Security.

In order to exploit the transformation described above, we construct a (weaker) non-adaptively
secure IBS scheme, in which an adversary has to commit its user secret key queries and signing
queries before receiving the master public key. This weaker security gives rise to a tight con-
struction since in the security proof, the adversary’s user secret key queries and signing queries
are known in advance. It is thus possible to tightly embed in the reduction the SIS instances in
the forgery without having to guess anything.

Description of the Scheme. Similarly to [26], our scheme uses the trapdoor setup of [25]
that allows to:

– Instantiate a trapdoor: create a couple of matrix and trapdoor (A,TA), where A looks
random (meaning that its statistical distance with the uniform distribution is negligible).

– Delegate a trapdoor: for any matrix A′ and trapdoor TA of A, “delegate” the trapdoor TA

into a trapdoor T′A of (A∥A′), that reveals no information about TA.
– Perform Gaussian sampling: for any A, trapdoor TA of A, vector u and sufficiently big s,

create x following a discrete Gaussian distribution and verifying Ax = u. Furthermore, the
lower bound of s is linear in the singular value of TA, up to a negligible term.

Each of these operations is in correspondence with one of the algorithms of our IBS:

– The master public key A ∈ Zn×m
q and secret key TA ∈ Z(m−nk)×nk

q correspond to the matrix
and trapdoor created by the trapdoor instantiation.

– The creation of a secret key for an identity id is done by delegating the trapdoor TA ∈ Zm×nk
q

of A into a trapdoor of Tid of (A∥H1(id)) ∈ Zn×(m+nk)
q , for H1 with values in Zn×nk

q .
– The signature of a message µ with skid = Tid corresponds to the Gaussian sampling of a

vector z such that (A∥H1(id))z = H2(µ), for H2 with values in Zn
q .

6

The main difference of our scheme as compared to that of [26] is that their signing algorithm
requires one more trapdoor delegation operation before doing the Gaussian sampling relatively to
this new trapdoor, which explains the better values for parameters and security for our scheme.

More precisely, to sign a message µ for an identity id of secret key Tid, their scheme requires
delegating Tid into a trapdoor Tid,µ of (A∥H1(id)∥H2(id, µ)) (H2 with values in Zn×nk

q in their
scheme), then using Tid,µ to make a Gaussian sampling of a small vector z such that

(A∥H1(id)∥H2(id, µ))z = 0

This makes their signature bigger, on the one hand because it contains an additional component
and on the other hand because it uses a bigger delegated matrix T′′A, because of the double
delegation. This double delegation also has an impact on the SIS bound in their reduction,
which is smaller for our scheme. Finally, the additional delegation operation augments the time
complexity of their signature, that can be estimated as at least k time slower than ours, as
explained in Section 8.1.

Idea of the Proof. Our tight proof follows the same blueprint for QROM and ROM. We
denote the list of all identities id for user secret key queries as AskedSk, and the list of all
identity-message pairs (id, µ) for signing queries as AskedSign. An adversary A has to output
these two lists before receiving the master public key. The key step in our proof is that, by
programming the random oracles H1 and H2, it is possible to simulate the EUF-naCMA game for
a random A (without the secret key TA) by hiding the signatures and secret identity keys in the
hash values. More precisely, the idea is to embed a trapdoor Tid (i.e. a secret key for identity
id) into the values H1(id) for id ∈ AskedSk and a signature of (id, µ), for the values H2(µ, id) for
all (µ, id) ∈ AskedSign.

Moreover, for any īd /∈ AskedSk, (ĩd, µ̃) /∈ AskedSign, we program H(īd) = ARīd and H(ĩd, µ̃) =
Az̃id,µ for some small random matrixRīd and vector z̃id,µ. Note that we use different distributions
than [26], which contributes to lower the size of the SIS bound. Thus, a valid signature z∗ =
(z∗1, z

∗
2) of A for a couple of identity and message (id, µ) such that id /∈ AskedSk, (µ, id) /∈

AskedSign leads to an SIS solution x = z∗1 +Rid∗z
∗
2 − zid∗,µ∗ provided that x ̸= 0, because, by

definition of the signature verification, Az∗1 + H1(id)z
∗
2z = H2(µ). Finally, we ensure that x = 0

does not happen more than half of the time by using an indistinguishability technique of [23].

3 Preliminaries

The non-negative integers, integers and reals are respectively denoted by N, Z, and R. Unless
stated otherwise, we always assume q = 3k and d = 2u with k, u ∈ N∗. Matrices are written as
bold capital letters and vectors as low-case bold letters. Vectors should be understood as column
vectors. For a, b ∈ R, we define Ja, bK = [a, b] ∩ Z. For S ⊂ Rn, we denote by Span(S) ⊂ Rn

the R-vector space generated by S. For x ∈ Rn, we denote by ∥x∥ its Euclidean norm. For a
predicate P, we define JP K = 1 if P is true and 0 otherwise. A function f(n) is negligible, written
f(n) = negl(n), if ∀c ∈ N, f(n) = o(n−c). We denote log the logarithm in base 2 and logb the
logarithm in a base b ∈ R∗≥0. For m ∈ N∗, ϵ > 0, we define rm,ϵ =

√
ln (2m(1 + 1/ϵ)) /π .

Modular arithmetic. For any even (resp. odd) p ∈ N∗ and any x ∈ Zp, we will denote by
x mod ±p the unique representative in K− p/2, p/2K (resp. J−(p− 1)/2, (p− 1)/2K). We extend
this definition to vectors and matrices entry-wise. For x ∈ Zp, we define |x| := |x mod ±p|. For
any p, n,m ∈ N∗ and A = (ai,j) ∈ Zn×m

p , we define ∥A∥1 =
∑

i,j |ai,j |, ∥A∥ =
√∑

i,j |ai,j |
2,

∥A∥∞ = maxi,j |ai,j |. We extend this definition to vectors, considered as matrices with one
column.

7

The Ring Rq. We will work in R = Z[X]/(Xd+1) and Rq = Zq[X]/(Xd+1) for d a power of 2.

We define SR = {
∑d−1

i=0 aiX
i ∈ R : (a0, . . . , ad−1) ∈ {−4, 0, 4}d/4×{−1, 0, 1}d/2×{−4, 0, 4}d/4} ⊂

R. We will consider it as a subset of R3k for all k ≥ 2. For a ∈ R, we will denote by Cf(a) ∈ Zd

the vector whose coordinates are the coefficients of a and Rot(a) ∈ Zd×d the matrix whose lines
are Cf(a) ,Cf(Xa) , . . . ,Cf

(
Xd−1a

)
. We extend this definition for matrix A ∈ Rn×m, that leads

to Cf(A) ∈ Zn×dm and Rot(A) ∈ Zdn×dm. We also extend this definition modulo q by Cf(A
mod q) := Cf(A) mod q.

General Probabilities. In this article, we only consider discrete probability distributions. If
Dist is a probability distribution, x←$ Dist denotes that x is sampled from Dist. The support of a
probability distribution is the set of x such that Pr[Dist = x] > 0. Unless specified otherwise, all
the probability distributions we work with have finite support. If S is a set, x←$ S means that
x is sampled uniformly in S and U (S) denote the uniform distribution on S. For sets S ⊂ X and
Dist a probability distribution with values in X, we denote by Dist|S the probability distribution
x ←$ Dist conditioned to x ∈ S. For two probability distributions Dist,Dist′ with support in a
set X, we define their statistical distance SD

(
Dist,Dist′

)
= 1

2

∑
x∈X

∣∣Pr[Dist = x]− Pr
[
Dist′ = x

]∣∣.
To help the reading of the article, some generic results about statistical distance are stated in
Appendix A.1. For r ∈]0, 1[, we denote by Pr the probability distribution such that Pr[Pr = 0] =
r,Pr[Pr = −1] = Pr[Pr = 1] = (1−r)/2. Finally, we denote by PR,1/2

the probability distribution

4Pd/4
1/2 × P

d/2
1/2 × 4Pd/4

1/2 with support SR.

Lattices. A lattice of dimension k ∈ N is a Z-submodule Λ ⊂ Rk that is finitely generated.
It is said full rank if Span(Λ) = Rk. A R-lattice of dimension k is defined as a R-submodule of
Λ ⊂ Rk. Note that a R-lattice of dimension k becomes a lattice of dimension kd under Cf. We
will often identify R-lattices with their associated lattice through Cf and call them (structured)
lattices. For A ∈ Zn×k

q ,u ∈ Zn
q , B ∈ Rn×k

q ,v ∈ Rn
q , we define the following full-rank lattices

Λq(A)={x ∈ Zn : ∃ s, x=As mod q}, Λ⊥u,q(A) := {x ∈ Zk : Ax=u mod q} ,
ΛR,q(B)={x ∈ Rn : ∃ s, x=Bs mod q}, Λ⊥v,R,q(B)={x ∈ Rk : Bx=v mod q} .

We write Λ⊥q (A) (resp Λ⊥R,q(B)) if u = 0 (resp. v = 0). The dual Λ∗ of a full rank lattice Λ of

dimension k is the set of all v ∈ Rk such that x⊤v ∈ Z for all x ∈ Λ. We have qΛ⊥q (A)∗ = Λq(A
⊤).

SIS and RSIS problems. Consider n,m, β, q ∈ N∗ × N∗ × R × N∗. The SISn,m,β,q problem is
defined as follows: for A ←$ Zn×m

q , find z ∈ Zm
q such that Az = 0 mod q and ∥z∥ ≤ β. The

RSISn,β,q problem is defined as follows: for A ←$ R1×n
q , find z ∈ Rn

q such that Az = 0 mod q
and ∥z∥ ≤ β.

The SIS and RSIS problems are assumed to be hard to solve for quantum adversaries (e.g.
[28]).

Discrete Gaussian Distribution. For x ∈ Rn, s > 0, we define ρs(x) = exp
(
−π∥x∥2/s2

)
. For

a lattice Λ ⊂ Rn, c ∈ Rn and s > 0, the discrete Gaussian distribution DΛ+c,s2 is the probability

distribution with support Λ+ c such that, for all x ∈ Λ+ c, DΛ+c,s(x) is proportional to ρs(x).
When Λ+ c ⊂ Zn, we have DΛ+c,s = Dn

Z,s|Λ+c
. For a Rq-lattice Λ ⊂ Rn

q , c ∈ Rn
q and s > 0 the

Gaussian distribution over Λ, denoted by DΛ,c,s, is defined as Cf−1(DCf(Λ),Cf(c),s). For example,

DR,c,s = Cf−1(Dd
Z,Cf(c),s). For ϵ > 0, the smoothing parameter of a lattice Λ of dimension n,

denoted by ηϵ(Λ), is the smallest s such that ρ1/s (Λ
∗ − {0}) ≤ ϵ. The smoothing parameter of

a R-lattice Λ is defined as ηϵ (Cf(Λ)).

Adversary, games and oracles. PPT stands for ”probabilistic polynomial time”. We denote
by AdvGA the advantage of an adversary A in game G. If the game is applied to a scheme S, we

8

write AdvGA,S or AdvGA if it is clear from context. We denote by AH (resp. A|H⟩) an adversary A
that can make classic (resp. quantum) queries to a hash function H. For an oracle with possible
input x and for an element y, we denote by Ox→y the oracle defined by Ox→y(z) = y if z = x
and O(z) otherwise.

Identity-based signature schemes and security. An Identity-Based Signature (IBS) scheme
is a tuple of PPT algorithms IBS = (Setup,KeyExt, Sign,Verify) such that:
– (mpk,msk)← Setup() outputs a master public key and master private key.
– skid ← KeyExt(mpk,msk, id) outputs a secret key for identity id.
– σ ← Sign(mpk, skid, µ) outputs a signature for a message µ and identity id.
– b ∈ {0, 1} ← Verify(mpk, σ, µ, id) is deterministic.
The scheme IBS is (ξ1, ξ2)-complete if for all mpk,msk, id, µ, we have

Pr
(mpk,msk)←Setup()

[
Pr
[
Verify(mpk, σ, µ, id) = 1 : skid ← KeyExt(mpk,msk, id),

σ ← Sign(mpk, skid, µ)
]
≥ 1− ξ1

]
≥ 1− ξ2 .

The usual security notion for IBS is Existential Unforgeability under Chosen Message Attack
(EUF-CMA) (adaptive or non-adaptive), we depict the corresponding security game in Figure 1.
We also define the notion of strong Existential Unforgeability. For QCorr, QS ∈ N∗, we measure
the EUF-CMA (resp. sEUF-CMA) security of a scheme IBS against an adversary A that can

obtain QCorr identity secret keys and QS signatures by the advantage Adv
EUFCMAIBS

QCorr,QS
A :=

Pr
[
1← EUFCMAIBS

QCorr,QS
(A)
]
(resp. Adv

sEUFCMAIBS
QCorr,QS

A := Pr
[
1← sEUFCMAIBS

QCorr,QS
(A)
]
). Note

that the signatures and keys can be adaptively queried in EUFCMAIBS
QCorr,QS

, we speak of adaptive
security. We will speak of strong security when using sEUF-CMA or sEUF-naCMA.

9

EUFCMAIBS
QCorr,QS

/sEUFCMAIBS
QCorr,QS

(A)

1 : (mpk,msk)← Setup()

2 : cptC := 0, cptS := 0

3 : AskedSk← ∅,AskedSign← ∅, sAskedSign← ∅

4 : (id∗, µ∗, σ∗)← AOCorrupt,OSign(mpk)

5 : if id∗ ∈ AskedSk

6 : ∨ (id∗, µ∗) ∈ AskedSign // for EUF-CMA

7 : ∨ (id∗, µ∗, σ∗) ∈ sAskedSign // for sEUF-CMA

8 : ∨ cptC > QCorr ∨ cptS > QS then

9 : return 0

10 : return Verify(mpk, id∗, µ∗, σ∗)

OSign(id, µ)

cptS := cptS + 1

skid,µ ← KeyExt(mpk,msk, id)

σid,µ ← Sign(mpk, skid,µ, µ)

AskedSign = AskedSign ∪ {(id, µ)} // for EUF-CMA

sAskedSign = sAskedSign ∪ {(id, µ, σid,µ)} // for sEUF-CMA

return σid,µ

OCorrupt(id)

AskedSk := AskedSk ∪ {id}
cptC := cptC + 1

skid ← KeyExt(mpk,msk, id)

return skid

EUFnaCMAIBS
QCorr,QS

/sEUFnaCMAIBS
QCorr,QS

(A)

1 : (mpk,msk)← Setup()

2 : (AskedSk,AskedSign, aux)← A1(mpk)

3 : if |AskedSk| > QCorr

4 : ∨ |AskedSign| > QS then

5 : return 0

6 : for id ∈ AskedSk :

7 : skid ← KeyExt(mpk,msk, id)

8 : for (id, µ) ∈ AskedSign :

9 : skid,µ ← KeyExt(mpk,msk, id)

10 : σid,µ ← Sign(mpk, skid,µ, µ)

11 : GivenSk = {(id, skid), id ∈ AskedSk}
12 : GivenSign =

{
(id, µ, σid,µ),

13 : (id, µ) ∈ AskedSign
}

14 : (id∗, µ∗, σ∗)← A2(mpk,GivenSk,

15 : GivenSign, aux)

16 : if id∗ ∈ AskedSk

17 : ∨ (id∗, µ∗) ∈ AskedSign then // for EUF-naCMA

18 : ∨ (id∗, µ∗, σ∗) ∈ GivenSign then // for sEUF-naCMA

19 : return 0

20 : return Verify(mpk, id∗, µ∗, σ∗)

Fig. 1. EUFCMAIBS
QCorr,QS

/sEUFCMAIBS
QCorr,QS

and EUFnaCMAIBS
QCorr,QS

/sEUFnaCMAIBS
QCorr,QS

games.

For QCorr, QS ∈ N∗, we measure the EUF-naCMA (resp. sEUF-naCMA) security against an
adversary A that can obtain QCorr identity secret keys and QS signature by the advantage

Adv
EUFnaCMAIBS

QCorr,QS
A := Pr

[
1← EUFnaCMAIBS

QCorr,QS
(A)
]
(resp. by the advantage Adv

sEUFnaCMAIBS
QCorr,QS

A
:= Pr

[
1← sEUFnaCMAIBS

QCorr,QS
(A)
]
). Note that the signatures and keys have to be queried at the

beginning in EUFnaCMAIBS
QCorr,QS

(resp. sEUFnaCMAIBS
QCorr,QS

), we speak of non-adaptive security.

Singular values and bounds on singular values. The singular value s1(A) of a matrix

A ∈ Rn×m is defined by supx ̸=0
∥Ax∥
∥x∥ . We extend the definition of singular values of matrices

with coefficients in R to matrices with coefficients in R by taking s1(A) := s1(Cf(A)).

4 Preliminary results

In this section we recall notions and provide technical results that are necessary to prove the
security of the generic transformation in Section 5 and IBS schemes in Section 6 and Section 7.

4.1 Results on statistical distance

For the security of the IBS scheme, we will use a game-based proof where the statistical distance
between uniform distributions and other distributions are crucial for the main argument of the

10

proof. We define these distributions and bound their probability of being close to the uniform
distribution. More precisely, Proposition 1 contains results inspired of [29, Claim 5.3] regarding
the leftover hash lemma, we generalize this result and prove it in Appendix B.6. Then, Lemma 1
states variations of smoothness [15, Lemma 5.2] for the structured and unstructured case with
q = 3k.

For s > 0, m,n, k, l ∈ N, A ∈ Zn×m
q ,B ∈ R1×l

q , we define:

– Dk
Z,s,A the probability distribution that outputs AR for R←$ Dn×k

Z,s and Dk
R,s,B the proba-

bility distribution that outputs BR for R←$ Dn×k
R,s (we omit k in the notation if k = 1).

– UA the probability distribution that outputs Ax, where x ←$ {−1, 0, 1}m and UR,B the

probability distribution that outputs Bx where x←$ S lR and
– PA the probability distribution that outputs Ax, where x←$ Pm

1/2 and PR,B the probability

distribution that outputs Bx, where x←$ P l
R,1/2

.

Proposition 1 (Proof in Appendix B.6.). Let m,n, k, l ∈ N, q = 3k, with k ≥ 4, m ≥ 2nk
and l ≥ max(2k, 21). Then,

Pr
A∈Zn×m

q

[
SD
(
U
(
Zn
q

)
,UA

)
> q−

n
4

]
≤ q−

n
4 , P r
A∈R1×l

q

[
SD
(
U (Rq) ,UR,A

)
> q−

d
4

]
≤ q−

d
4 ,

P r
A∈Zn×m

q

[
SD
(
U
(
Zn
q

)
,PA

)
> q−0.196n

]
≤ q−0.196n, P r

A∈Zn×m
q

[
AZm

q ̸= Zn
q

]
≤ q

n(2k−1)
4k ,

P r
A∈R1×l

q

[
SD
(
U (Rq) ,PR,A

)
> q−0.196d

]
≤ q−0.196d, P r

A∈R1×l
q

[
ARl

q ̸= Rq

]
≤ q−

d(k−1)
2k .

Lemma 1 (Smoothness lemma. Proof in Appendix B.3.). Let n,m, k ∈ N, q = 3k,
m ≥ 2nk. Let ϵ ∈]0, 1/2[and s ∈ R such that s ≥ 12rm,ϵ. Then,

PrA∈Zn×m
q

[
SD
(
Ds,A,U

(
Zn
q

))
> 2ϵ

]
≤ 2q−n/4 . (1)

Let d a power of 2, 2k + k/2 ≥ l > 2k and s ≥ 12rld,ϵ. Then,

PrA∈R1×l
q

[
SD
(
Ds,A,U (Rq)

)
> 2ϵ

]
≤ q−d/4 + 3−d

(2k−l)
2 ≤ 2 ∗ 3−d

(2k−l)
2 . (2)

4.2 Singular values of random matrix

Let C = 8e1+2/e
√
ln(9)/

√
π < 38 and f(m,n) =

√
m + 2π C

(√
n+

√
m ln(3)

)
. We will use

s1(Unif)[n,m] :=
√
2/3f(m,n), s1(Gauss)[n,m, s] := s√

2π
f(m,n), and s1(Binom)[n,m, r] :=√

(1− r)f(m,n).

Corollary 1 (Corollary of [13, Theorem 6.1] and Lemma 8, proof in Appendix B.1.).
Let n,m, k ∈ N, q = 3k. Let s ∈]0, 1[, a ∈ Z∗. Then

PrR←$U({−a,0,a}n×m)[s1(R) ≤ as1(Unif)[n,m]] ≥ 1− 2 ∗ 3−m ,

PrR←$Dn×m
Z,s

[s1(R) ≤ as1(Gauss)[n,m, s]] ≥ 1− 2 ∗ 3−m ,

PrR←$Pn×m
r

[s1(R) ≤ as1(Binom)[n,m, r]] ≥ 1− 2 ∗ 3−m .

This can be applied in the ring case, by sampling from the distributions U (SR), DR,s and PR,r
.

Note that in order to find an upper bound for U (SR) and PR,r
, the corollary needs to be applied

with respectively products of U ({−4, 0, 4}) and products of 4Pr.

11

4.3 Lattice trapdoors

The IBS schemes presented in the article follow the framework of [25] using trapdoor delega-
tion. In this part we recall the results necessary to instantiate the framework, and prove the
adaptations for the cases we consider. More precisely, we use Proposition 2 to instantiate the
trapdoor used to create the master key. Note that we use the binomial distribution instead of
the Gaussian one in [25] for compactness. Then, we use Proposition 3 to delegate trapdoors and
perform Gaussian sampling, to create respectively the secret keys of identities and signatures.
Finally, we give two propositions (Proposition 4, Proposition 5) necessary for the simulation in
the game-based proof, and motivated by the identity-based property of the signature scheme.

Let g = (1, 3, . . . , 3k−1) ∈ Rk and G = [In 3In . . . 3
k−1In] ∈ Zn×nk. A G-trapdoor of a matrix

A ∈ Zn×m
q is a matrix TA ∈ Z(m−nk)×nk

q such that A
(
−TA
Ink

)
= G mod q. A g-trapdoor of a

matrix A ∈ R1×l
q is a matrix TA ∈ R

(l−k)×k
q such that Rot(TA) ∈ Zd(l−k)×dk

q is a G-trapdoor of

Rot(A) ∈ Zd×dl
q . Equivalently, using the definition and properties6 of Rot, A

(
−TA
Ik

)
= g mod q.

Proposition 2 (Statistical instantiation of trapdoors (adapted from [25, Section 5.2])).
Let n,m, k ∈ N∗, q = 3k, m ≥ 2kn. Let Trap(n,m, q) the algorithm that samples A ←$

Zn×(m−nk)
q , TA ←$ P(m−nk)×nk

1/2 and outputs
(
A :=

[
A∥G−ATA

]
,TA

)
. Then, TA is a G-

trapdoor of A, and A is distributed with statistical distance at most nkq−0.196n of the uniform
distribution.

Proof. A direct computation shows that TA is a G-trapdoor of A. The statistical distance upper
bound comes from Proposition 1.

Proposition 3 (Gaussian Sampling and Delegation of trapdoors (adapted from [25,
Section 5])). Let n,m, k ∈ N∗, q = 3k, m ≥ 2kn. Let 0 < ϵ < 1/2. There exists al-

gorithms DelTrap,SampleD such that, for A ∈ Zn×m
q , TA ∈ Z(m−nk)×nk

q a G-trapdoor and

s ≥ rnk,ϵ

√
11
(
s1(TA)2 + 1

)
, we have:

– SampleD(A,u,TA, s) returns z such that Az = u and the statistical distance between the

probability distribution of z and D
Λ⊤
q,u(A),s

is bounded by a function γSample
n,m,ϵ which is negligible

if ϵ is.
– DelTrap(A ∈ Zn×m,TA ∈ Z(m−nk)×nk,A′ ∈ Zn×nk, s) returns a G-trapdoor of [A∥A′] (the

output T′A ∈ Zm×nk satisfies AT′A = A′ − G). Moreover, the probability distribution of

the output T′A is at statistical distance less than nkγSample
n,m,ϵ of the distribution Dm×nk

Z,s with
output R conditioned to AR = A′ −G. More precisely, if we denote by (u1∥u2∥ · · · ∥unk)
the columns of A′ −G, the kth column of T′A is computed as SampleD(A,uk,TA, s).

The next proposition will be used to replace some instances of KeyExt (that correspond to
DistModKExt) by another algorithm that does not use the master secret key (TA), of probability
distribution DistSimModKExt. Note that the proposition allows making multiple replacements of
DistSimModKExt by DistModKExt for the same, fixed, pair of master public and secret keys (output
of DistKExt). This is important because the adversary of EUFnaCMAIBS

QCorr,QS
can ask for multiple

secret keys of identities in one instance of the game - this can be easily overlooked when applying
the framework of [25], designed with simple signature schemes in mind which involve only one
pair of keys, to identity-based signature schemes.

6 More details in Proposition 14 (Appendix B.8).

12

Proposition 4 (Simulation of delegation of trapdoors. Proof in Appendix B.7.). Let

n,m, k ∈ N∗, q = 3k, m ≥ 2kn. Let s > 0, A ∈ Zn×m and TA ∈ Z(m−nk)×nk
q a G-trapdoor of

A. We define DistModKExt(A,TA, s) as{
(A′,T′A) : R←$ Dm×nk

Z,s , A′ := AR+G,T′A ← DelTrap
(
A,TA,A

′, s
) }

,

and DistSimModKExt(A, s) as
{
(A′,R) : R←$ Dm×nk

Z,s , A′ := AR+G
}
.

Then, if s ≥
√
11rnk,ϵ

√
s1(Binom)[m− nk, nk, 1/2]2 + 1, we have

Pr
(A,TA)←Trap(n,m,q)

[
SD(DistModKExt(A,TA, s),DistSimModKExt(A, s)) ≤ nkγSample

n,m,ϵ

]
≥ 1− 2q−n .

The next proposition shows that the probability distribution of the signatures (DistSign) made
with a secret key created by KeyExt (of probability distribution DistKExt) is close to a Gaussian
distribution (Dm+nk

Z,s). This will be useful to show the completeness of the IBS scheme, and also
to replace signatures by Gaussian outputs in the proof of Theorem 2. The proposition allows
studying multiple signatures for the same secret key, in a situation where a couple of public and
master keys (output of DistKExt) has been taken, and multiples secret keys of identities have
been created. This is crucial because the adversary of EUFnaCMAIBS

QCorr,QS
can ask for multiple

signatures, made by multiple secret keys of identities in one instance of the game.

Proposition 5 (Proof in Appendix B.7.). Let n,m, k ∈ N∗, q = 3k, m ≥ 2kn. For s >
0, s̃ > 0, A ∈ Zn×m,A′ ∈ Zn×nk and T′A ∈ Zm×nk a G-trapdoor of [A∥A′]. We define

DistKExt(A,TA, s) :=
{
(A′,T′A) : A′ ←$ Zn×nk

q ,T′A ← DelTrap
(
A,TA,A

′, s
)}

,

DistSign(A,A
′,T′A, s̃) = {z : z← SampleD([A∥A′],u,T′A, s̃),u←$ Zn

q } ,

ν1 := 2q−n + nk(2ϵ+ γSample
n,m,ϵ) +

√
2q−n/8 = negl(n) ,

ν2 := 2nkq−0.196n + 4q−n/4 +
√
2q−n/8 = negl(n) .

Then, for s ≥ max
(√

11rnk,ϵ
√
s1(Binom)[m− nk, nk, 1/2]2 + 1, 12rm,ϵ

)
and

s̃ ≥ max
(√

11rnk,ϵ
√

s1(Gauss)[m,nk, s]2 + 1, 12rm+nk,ϵ

)
, we have

Pr
(A,TA)←$Trap(n,m,q)

[
Pr

(A′,T′
A)←$DistKExt(A,TA,s)

[
SD(DistSign(A,A

′,TA, s̃),Dm+nk
Z,s̃) ≤ γSample

n,m+nk,ϵ

]
≥ 1− ν1

]
≥ 1− ν2 . (3)

The ring equivalent to Proposition 4 is stated and proved in Appendix B.7.
The Rq versions of the functions Trap, SampleD,DelTrap are denoted by TrapR, SampleDR,

DelTrapR and the ring equivalent of Propositions 2,3,4 are stated and proved in Appendix B.9.

4.4 Hash reprogramming in the ROM and the QROM

This section gives two generic lemmas that enable the reprogramming of a hash function, in
both the ROM and the QROM (the latter requiring more effort).

The first one is one of the main results of [17], it deals with the tedious problem of adaptive
hash reprogramming in the QROM, for specific situations where only a chunk of the input is
controlled by the adversary; the other chunk being chosen uniformly at random. It will be of
great use for the ROM and the QROM reductions from EUFCMAIBS

QCorr,QS
to EUFnaCMAIBS

QCorr,QS

of Section 5.

13

The second one is a generalization of [5, Lemma 3], that allows the challenger to replace the
value H(x), by the output of probability distributions Disti close (in statistical distance) to the
uniform distribution. The probability distribution used depending on which set Xi contains x,
for (Xi)i a partition of the input set, with a bounded number of elements. It will be used for
the proof of the EUF-naCMA security of the schemes.

Proposition 6 ([17, Proposition 1], with added ROM case). Let consider m,n ∈ N∗ ,
X = {0, 1}m, Y = {0, 1}n and A = (A1,A2,A3) be any algorithm issuing at most R queries
to ReprogramOracleOne and Q quantum queries to Ob as defined in Figure 2. Then, it can be
shown that the advantage defined by 1

2 |Pr[1←$ AdaptReprog0(A)]− Pr[1←$ AdaptReprog1(A)]|
is upper bounded by 3R

4

√
Q
|X1| . If the queries to Ob are classical, the upper bound becomes QR

|X1| .

Proof. The QROM case is proved in [17, Proposition 1]. We only prove the ROM case. The
only way A can differentiate O0 from O1 is to obtain different values from multiple queries to
Ob with the same input. If we denote by (x1, x2) this input, this implies that one of the R query
to ReprogramOracleOne sampled x1. Because ReprogramOracleOne is queried less than R times
and Ob less than Q times, this event has a probability less than RQ

|X1| .

AdaptReprogb(A)

O0 ←$ Y X1×X2

O1 := O0

ORACLES = {|Ob⟩,ReprogramOracleOne}

b̃← AORACLES

return b̃

ReprogramOracleOne(x2)

(x1, y)←$ X1 × Y

O1 := O(x1∥x2)→y
1

return x1

Fig. 2. Adaptive reprogramming games AdaptReprogb for bit b ∈ {0, 1}. The adversary only decide the chunk in
X2 of the input

Proposition 7 (generalization of [5, Lemma 3] and addition of the ROM case. Proof
in Appendix B.5.). Let m ∈ N∗, Y = {0, 1}m and Sdist a (possibly infinite) set of in-
dependent probability distributions with values in Y . We assume that for each Dist ∈ Sdist,
SD(U (Y) ,Dist) ≤ ϵ. We consider the game NoAdaptReprog of Figure 3, with some fixed param-
eter P ∈ N∗. Then, for any quantum adversary A = (A1,A2,A3) such that A2 make less than
Qc classical queries to Hb and A3 less than Qq queries to |Hb⟩, we have,

AdvNoAdaptReprogA :=

∣∣∣∣Pr[1← NoAdaptReprog(A) | b = 1]− 1

2

∣∣∣∣ ≤ Qcϵ+ 4Q2
q

√
Pϵ .

5 Generic transformation from EUF-naCMA (resp. sEUF-naCMA)
to EUF-CMA security (resp. sEUF-CMA) in the ROM and the
QROM

In [26] the authors exhibit two tight transformations from non-adaptive to adaptive IBS schemes:

– With chameleon hash functions [26, Figure 2].
– With hash functions in the ROM [26, Figure 5], as described in Figure 4.

14

NoAdaptReprog (A)(
P = (Xi)i∈J1,pK,

(Disti)i∈J1,pK ⊂ Sdist,

|aux⟩
)
← A1()

with p ≤ P and

P partition of X

for x ∈ X then

H0(x)←$ Y

for i ∈ J1, pK then

for x ∈ Xi then

H1(x)←$ Disti(x)

b←$ {0, 1}

|aux2⟩ ← AHb
2

(
P, (Disti)i, |aux⟩

)
b̃← A|Hb⟩

3

(
P, (Disti)i, |aux2⟩

)
return Jb = b̃K

Fig. 3. Game NoAdaptReprog (A) for A = (A1,A2,A3).

S̃etup()

return Setup()

S̃ign(s̃kid = (r, skĩdr), µ)

s←$ {0, 1}τnonce

µ̃s ← Hashmess(s, µ)

σĩdr,µ̃s
← Sign(mpk,

skĩdr , µ̃s)

σ̃id,µ := (r, s, σĩdr,µ̃s
)

return σ̃id,µ

K̃eyExt(msk, id)

r←$ {0, 1}τnonce

ĩdr ← Hashid(r, id)

skĩdr ← KeyExt(mpk,

msk, ĩdr)

skid := (r, skĩdr)

return skid

Ṽerify(mpk, id, µ, σ̃)

(r, s, σĩdr,µ̃s
) := σ̃

ĩdr ← Hashid(r, id)

µ̃s ← Hashmess(s, µ)

return Verify(mpk, ĩdr,

µ̃s, σĩdr,µ̃s
)

Fig. 4. Adaptively secure IBS adapt(IBS) from a non-adaptively secure IBS IBS. The codomains of Hashmess and
Hashmess are respectively SetMess and SetId.

In this section we prove that the transformation of Figure 4 is also secure in the QROM.
Moreover, the proof is modular, it also applies to the ROM. Afterwards, the transformation will
be used to prove the security in the ROM and the QROM of our schemes IBSZ (Figure 5) and
IBSR (Section 7, Figure 7) respectively linked to non-adaptive IBS schemes IBSNA,Z (Figure 6)
and IBSNA,R (Section 7, Figure 8). We also show that this transformation work in the strong
security setting, but this will not be used to prove the security of our schemes. Finally, note that
the transformation does not modify the completeness.

Theorem 1 (Adaptive security of adapt(IBS) in the ROM and the QROM provided
IBS is non-adaptively secure, with or without strong security). We assume that SetId =
{0, 1}τid, SetMess = {0, 1}τmess for τid, τmess ∈ N∗. Let QCorr, QS ∈ N∗. For a, b,Q ∈ N∗, we
denote by FindColQ (a, b)Q the game of finding a collision for a random function H : {0, 1}a →
{0, 1}b with access to at most Q quantum queries to H. In order to simplify the notations, we
define the security game FindColId by FindColQ (τnonce+τid,τid)QHashid

+QCorr+QS
and we also define the

security game FindColMess by FindColQ (τnonce+τmess,τmess)QHashmess
+QS

. Let (GameSign,GamenaSign) ∈
{(EUFCMA,EUFnaCMA), (sEUFCMA, sEUFnaCMA)}. Then for each PPT adversary A against

GameSign
adapt(IBS)
QCorr,QS

that makes QHashid quantum queries to Hashid and QHashmess quantum queries

to Hashmess, there exists PPT adversaries C against GamenaSignIBSQCorr,QS
, Bid against FindColId

and Bµ against

15

FindColMess such that Adv
GameSign

adapt(IBS)
QCorr,QS

A is upper bounded by

Adv
GamenaSignIBSQCorr,QS
C + 3 ∗ 2−

τnonce+4
2

(√
QHashid(QCorr +QS) +

√
QHashmess QS

)
+ AdvFindColIdBid + AdvFindColMess

Bµ .

Remark 1. Using [32, Theorem 3.1], we know that there exists a universal constant Ccoll such
that the advantage AdvFindColIdBid + AdvFindColMess

Bµ can be upper bounded by

Ccoll

[
2−τid (QHashid +QS +QCorr + 1)3 + 2−τmess (QHashmess +QS + 1)3

]
. If all queries are classical,

Adv
GameSign

adapt(IBS)
QCorr,QS

A is upper bounded by

Adv
GamenaSignIBSQCorr,QS
C + 2−τnonce (QHashid + 1)(QCorr +QS) + (QHashmess + 1)QS

+ 2−τid(QHashid +QS +QCorr + 1) + 2−τmess(QHashmess +QS + 1) .

Proof. We sum up the changes between games in Table 1.

Hop Change Security loss

G0 to G1 Prohibition of some colli-
sions.

ROM 2−τid(QHashid + 1) (QCorr +QS) + 2−τmess(QHashmess + 1)QS

QROM AdvFindColIdBid
+ AdvFindColMess

Bµ

G1 to G2 Reprogramming of hash
function when OSign or
OCorrupt is queried.

ROM 2−τnonce (QHashid (QCorr +QS) +QHashmess QS)

QROM 2−
τnonce+4

2 3
(√

QHashid(QCorr +QS) +
√

QHashmess QS

)
G2 to G3 Precomputation of identi-

ties, messages, keys and sig-
natures.

0

Minoration of advantage of last game: ≤ Adv
GamenaSignIBSQCorr,QS
C

Table 1. Summary of the changes between the games used for the proof of Theorem 1. Complete games are in
Appendix C. We use FindColQ(τnonce=τid,τid)QHashid

=QCorr=QS=1
=FindColId and FindColQ(τnonce=τmess,τmess)QHashmess

=QS=1
=FindColMess

for compactness.

From G0 = GameSign
adapt(IBS)
QCorr,QS

to G1:
We denote by (σ̃∗ = (t∗, s∗, σ∗), id∗, µ∗) the output of A. We abort the game if one of these two
events happens

fail1 := ”∃(r, id) ∈ NoncesSk : Hashid(r, id) = Hashid(t
∗, id∗)” ,

fail2 := ”∃(t, id, s, µ) ∈ NoncesSign : (t, id, s, µ) ̸= (t∗, id∗, s∗, µ∗) ∧ Hashid(t, id) = Hashid(t
∗, id∗)

∧ Hashmess(s, µ) = Hashmess(s
∗, µ∗)” .

Where NoncesSk (resp. NoncesSign) contains the nonces and identities asked to and created by
the oracle OCorrupt (resp. nonces, messages and identities asked to and created by the oracle
OSign). Note that (t∗, id∗, s∗, µ∗) ∈ NoncesSign can led to a valid forgery only in the strong case.
In the QROM case, we can create B, playing the game of finding a collision on Hashid or Hashmess.

B uses an adversary A against GameSign
adapt(IBS)
QCorr,QS

in order to:
– Find a collision on Hashid if A wins and fail1 is realized. B uses at most QHashid +QCorr +QS

queries to Hashid.

16

– Find a collision on Hashid or Hashmess if A wins and fail2 is realized. B uses at most QHashmess+
QS queries to Hashmess.

Using B, we can then create two adversaries Bid and Bµ that respectively play to FindColId
and FindColMess, and such that the advantage of B is bounded by AdvFindColIdBid + AdvFindColMess

Bµ .
We give a better bound in the ROM case than the bound for a collision by noticing that
the collisions founds are specific. Indeed, The collision with Hashid (resp. Hashmess) is searched
with the constraint that one of the two elements is on the set NoncesSk (resp. a set linked
to NoncesSign) of QCorr + QS (resp. QS) elements while the other is not and can be found
using QHashid + 1 (resp. QHashmess + 1) Hash queries (the ”+1” is for the case where the value is
output by the adversary without being queried). The advantage is bounded by 2−τid(QHashid +
1) (QCorr +QS) (resp. 2

−τmess(QHashmess + 1)QS).
G1 to G2:We use the reprogramming algorithm of Proposition 6 for Hashid when OSign or OCorrupt

is queried and for Hashmess when OSign is queried. For example, when the reprogramming oracle
for Hashmess is queried for a message µ, a nonce s is uniformly sampled in {0, 1}τnonce and the
Hash value Hashmess(s, µ) is programmed to a uniform value of SetMess.

A double application of Proposition 6 shows that
∣∣∣AdvG1

A − AdvG2
A

∣∣∣ is upper bounded by

2−
τnonce+4

2 3
(√

QHashid(QCorr +QS) +
√
QHashmess QS

)
if the hash queries are quantum and

2−τnonce (QHashid (QCorr +QS) +QHashmess QS) if they are classical.
G2 to G3: In this game, the identities and messages that are sampled by the reprogramming
oracles for H1 and Hashmess are precomputed at the beginning of the game. It is thus possible
to precompute the secret keys of identities and signatures computed by OCorrupt and OSign. The
advantage suffers no loss since the distribution of each of these elements remains the same.
Reduction from GamenaSignIBSQCorr,QS

to G3: We use the fact that the signatures and keys of

OCorrupt and OSign are precomputed in G3 to create an adversary C of the GamenaSignIBSQCorr,QS
of

IBS that uses A.
Thanks to the event fail1 and fail2 that were added in G1, we observe that C wins the

GamenaSignIBSQCorr,QS
game for IBS each time that A wins G3. Thus, Adv

G3
A ≤ Adv

GamenaSignIBSQCorr,QS
C .

6 IBS Scheme in the ROM and the QROM, based on SIS

The scheme is defined in Figure 5. The parameters and the conditions they must follow are
summarized in Table 2.

Setup(n,m)

(A,TA)← Trap(n,m, q)

return (A,TA)

KeyExt(A,TA, id)

r←$ {0, 1}τnonce

Tid ← DelTrap
(
A,TA,

H1(r, id), sid
)

return (r,Tid)

Sign(mpk, (r, id,Tid), µ)

s←$ {0, 1}τnonce

u← H2 (r, s, id, µ)

z← SampleD
(
[A∥H1(r, id)] ,

Tid,u, ssign
)

return (r, s, z)

Verify (mpk, id, µ, (r, s, z))

if z = 0 ∨ [A∥H1(r, id)] z

̸= H2(r, s, id, µ)

then return 0

// z = (z1, z2) ∈ Zm
q × Znk

q

return J∥z1∥ ≤ Bound1

∧ ∥z2∥ ≤ Bound2K

Fig. 5. Scheme IBSZ.

The proof of completeness will use the tail inequality.

17

Notation Description

q := 3k modulus, power of 3 for k ∈ N, k ≥ 1
SetId Set of identities, of the form {0, 1}τid for some integer τid

SetMess Set of messages, of the form {0, 1}τmess for some integer τmess

SetNonces Set of nonces, of the form {0, 1}τnonce for some integer τnonce
n,m number of rows and columns of A ∈ Zn×m

q , m ≥ 2nk

ϵ used in rx,ϵ =
√

ln (2x(1 + 1/ϵ)) /π , we take ϵ = ϵ(n) = negl(n)
H1,H2 hash functions with respective values in Zn×nk

q and Zn
q

sid, ssign standard deviations, with

sid ≥ max
(√

11rnk,ϵ

√
s1(Binom)[m− nk, nk, 1/2]2 + 1, 12rm,ϵ

)
.

ssign ≥ max
(√

11rnk,ϵ

√
s1(Gauss)[m,nk, sid]2 + 1, 12rm+nk,ϵ

)
.

Bound1 bound of ∥z1∥ for signatures z=(z1, z2) ∈ Zm
q ×Znk

q , Bound1 ≥
√
2mssign

Bound2 bound of ∥z2∥ for signatures z=(z1, z2) ∈ Zm
q ×Znk

q , Bound2 ≥
√
2nk ssign

Table 2. Parameters of IBSZ and required conditions.

Lemma 2 (Tail inequality (e.g. [3])). Let m ∈ N, σ > 1. Then,
Prz←$Dm

Z,σ

[
∥z∥ >

√
2mσ

]
< 2−

m
4 .

Proposition 8 (completeness). Consider the scheme IBSZ with the parameters of Table 2.

Then, IBSZ is (ξ1, ξ2)-complete with ξ1 = 2q−n+nk(2ϵ+γSample
n,m,ϵ)+4

√
2q−n/8+2−

(nk−1)
4 = negl(n),

and ξ2 = nkq−0.196n + 4q−n/4 +
√
2q−n/8 = negl(n).

Proof. Direct consequence of Proposition 5 and Lemma 2 that shows that

Pr

(z1,z2)←$Dm
Z,ssign

×Dnk
Z,ssign

[
∥z1∥ >

√
2mssign ∨ ∥z2∥ >

√
2nkσ

]
< 2−

m
4 + 2−

nk
4 < 2−

(nk−1)
4 .

From adaptive security to non-adaptive security. In this part we show the adaptive se-
curity of the scheme IBSZ (Figure 5). It consists in three steps. First, we prove the EUF-naCMA
property of the scheme IBSNA,Z in Theorem 2 of Section 6. Then, the EUF-naCMA property of
IBSNA,Z implies the EUF-CMA property of adapt(IBSNA,Z) through Theorem 1. Finally, Proposi-
tion 9 proves that the EUF-CMA property of adapt(IBSNA,Z) implies the EUF-CMA property of
IBSZ.

Setup(n,m)

(A,TA)← Trap(n,m, q)

return (A,TA)

KeyExt(A,TA, id)

Tid ← DelTrap
(
A,TA,

H1(id), sid
)

return (id,Tid)

Sign(mpk, (id,Tid), µ)

u := H2(id, µ)

z← SampleD
(
[A∥H1(id)] ,

Tid,u, ssign
)

return z

Verify(mpk, id, µ, z)

if z = 0 ∨ [A∥H1(id)] z

̸= H2(id, µ)

then return 0

// z = (z1, z2) ∈ Zm
q × Znk

q

return J∥z1∥ ≤ Bound1

∧ ∥z2∥ ≤ Bound2K

Fig. 6. Scheme IBSNA,Z.

Proposition 9 (EUF-CMA security of adapt(IBSZ) implies the security of IBSZ.). Let
QCorr, QS ∈ N and A a PPT adversary of EUFCMAIBSZ

QCorr,QS
(Figure 5) that makes QCorr queries

to OCorrupt, QS queries to OSign, QH1 quantum (resp. classical) queries to H1 and QH2 quantum

18

(resp. classical) queries to H2. Then, there exists a PPT adversary B of EUFCMA
adapt(IBSZ)
QCorr,QS

that
makes QH1 quantum (resp. classical) queries to H1, QH2 quantum (resp. classical) queries to H2,
2(QH1 +QH2) quantum (resp. QH1 +QH2 classical) queries to Hashid, and 2QH2 quantum (resp.

QH2 classical) queries to Hashmess, such that Adv
EUFCMA

IBSZ
QCorr,QS

A = Adv
EUFCMA

adapt(IBSZ)
QCorr,QS

B .

Proof. We can see the functions

H̃1(r, id) := H1(Hashid(r, id)) H̃2(r, s, id, µ) := H1 (Hashid(r, id),Hashmess(s, µ)) ,

are functions if H1,H2,Hashid,Hashmess are. The adversary B can then use the random functions
H̃1 and H̃2 for the game that is playing A. This is sufficient to conclude if A make classical
queries.

If A make quantum queries, we furthermore need to show that B can simulate queries to
|H1(Hashid(·, ·))⟩ and |H1 (Hashid(·, ·),Hashmess(·, ·))⟩ using queries to |H1⟩, |H2⟩, |Hashmess⟩ and
|Hashid⟩. This is shown by Lemmas 13 and 15 of Appendix B.4.

Non-adaptive security in the ROM and the QROM. The non-adaptive security of IBSNA,Z
is, as for the IBS scheme of [26], an ”IBS version” of the proof of the signature scheme of [23],
with the added difficulty of dealing with delegated trapdoors. It is made in two steps:

– The first step consists in replacing EUFnaCMA
IBSNA,Z
QCorr,QS

, in an indistinguishable way for the
adversary A, by a game G5 that does not use the trapdoor TA and where A is uniform.
It is done by reprogramming H1 and H2, to give outputs indistinguishable from a random
function, but that contain ”planted” trapdoors, enabling the challenger to respond to secret
key and signature queries. Here, we need a more subtle method than the one used in [26]:
it was using [5, Lemma 3], which corresponds to a particular case of Proposition 7 with
partitions of size 2. However, in our games, the size of the partitions is only bounded by
QIdSign + 1 where QIdSign is the number of distinct identities for which the adversary queries
a signature. Also note that, contrary to [26] that uses distributions of the form DZ,s,A for
reprogramming, we use reprogramming with UA whenever it is possible.

– The second step is a reduction from SIS to G5 that is similar to what is done in [23] and [26].
Note that we find a better SIS bound than [26], partly thanks or use of UA for the repro-
gramming.

Theorem 2 (EUF-naCMA security of IBSNA,Z). Consider a set of parameters respecting the

conditions listed in Table 2. Let QCorr, QS ∈ N and A a PPT adversary of EUFnaCMA
IBSNA,Z
QCorr,QS

that makes QH1 quantum queries to H1, QH2 quantum queries to H2 and such that the signature
queries are made for QIdSign distinct identities. Let BoundSIS = Bound1+s1(Unif)[m,nk]Bound2+√
m and mx = max(2ϵ, q−n/4) = negl(n). Then, there exists a PPT adversary B of SISn,m,BoundSIS,q

such that Adv
EUFnaCMA

IBSNA,Z
QCorr,QS

A is upper bounded by

2Adv
SISn,m,BoundSIS,q

B
1− q−n

+4Q2
H1

√
2nkmx+4Q2

H2

√
QIdSign+1

√
mx+ λCO(n)

+QCorrnk
(
mx+γSample

n,m,ϵ

)
+QS

(
γSample
n,m+nk,ϵ+nk(2ϵ+γ

Sample
n,m,ϵ)+4q−n/8+(nk+2)mx

)
+QIdSign

(
2q−

n
4 +mx

)
+5nkq−0.196n+11q−

n
4 +

4q−n

1− q−n
,

where γSample
n,m,ϵ is negligible (defined in Section 4.3) and λCO(n) is negligible and is due to the use

of compressed oracles ([33]). If the queries to QH1 and QH2 are classical, first line of the upper

bound becomes 2
1−q−nAdv

SISn,m,BoundSIS,q

B +QH1nkmx+QH2mx.

19

Hop Change Security loss

G0 to G1 Reprogramming of
H1.

ROM: (QH1 +QCorr)nkmx+ nkq−0.196n + 3q−n/4

QROM: QCorr nkmx+ 4Q2
H1

√
2nkmx+ nkq−0.196n + 3q−n/4

G1 to G2 Reprogramming of
H2.

ROM: (QH2 +QS)mx+QIdSign(2q
−n/4 +mx) + nkq−0.196

QROM:
QS mx+ 4Q2

H2

√
(QIdSign + 1)mx

+QIdSign(2q
−n/4 +mx) + nkq−0.196

G2 to G3 TA no more used for
OCorrupt queries.

QCorrnkγ
Sample
n,m,ϵ + 2q−n

G3 to G4 TA no more used for
OSign queries.

QS

(
γSample
n,m+nk,ϵ + nk(2ϵ+ γSample

n,m,ϵ) + 4q−n/8

+(1 + nk)mx
)
+ 2nkq−0.196n + 6q−n/8

G4 to G5 A is taken uniformly. nkq−0.196n

Minoration of advantage of last game:
ROM: AdvG5

A ≤
(

2
1−q−n

)
Adv

SISn,m,BoundSIS,q

B + 4q−n

1−q−n

QROM: AdvG5
A ≤

(
2

1−q−n

)
Adv

SISn,m,BoundSIS,q

B + 4q−n

1−q−n + λCO(n)

Table 3. Summary of the changes between the games used for the proof of Theorem 2. Complete games are given
in Appendix D.2.

Proof. We sum up the changes between games in Table 3.

From G0 = EUFnaCMA
IBSNA,Z
QCorr,QS

to G1: In G1, the probability distribution of outputs of H1,

U
(
Zn×nk
q

)
, is replaced by Dnk

Z,sid,A +G for id ∈ AskedSk and Unk
A else. Moreover, we abort if the

matrix A is sampled in the set

fail1 =
{
A : SD

(
DZ,sid,A,U

(
Zn
q

))
> ϵ ∨ SD

(
UA,U

(
Zn
q

))
> q−n/4

}
.

Using Lemma 1, Proposition 1 and Proposition 2 we see that Pr[fail1] ≤ nkq−0.196n + 3q−n/4.
Moreover, when fail1 is not realized, we have

SD
(
Dnk

Z,sid,A +G,U
(
Zn×nk
q

))
= SD

(
Dnk

Z,sid,A,U
(
Zn×nk
q

))
≤ 2nkϵ ,

SD
(
Unk
A ,U

(
Zn×nk
q

))
≤ nkq−n/4 .

Proposition 7 implies that
∣∣∣AdvG0

A − AdvG1
A

∣∣∣ is less than the upper bound indicated in Table 3.

From G1 to G2: In G2, the probability distribution of outputs of H2, U
(
Zn
q

)
, is replaced by

DZ,ssign,(A∥H1(id))
for (id, µ) ∈ AskedSign and UA else. Moreover, with the notation IdAskedForSign =

{id ∈ SetId : ∃µ ∈ SetMess, (id, µ) ∈ AskedSign}, so |IdAskedForSign| = QIdSign, we abort if the
event fail2 happens, where

fail2 =
{
∃id ∈ IdAskedForSign : SD

(
DZ,ssign,(A∥H1(id))

,U
(
Zn
q

))
> 2ϵ

}
.

We will use Proposition 7 with the size of partitions bounded by QIdSign + 1. We note that
Pr[fail2 : A← Trap(n,m, q) ∧ H1 as in G1] is upper bounded by

Pr
[
∃id ∈ IdAskedForSign, SD

(
DZ,ssign,(A∥H1(id))

,U
(
Zn
q

))
> 2ϵ: A←Trap(n,m,q)

H1 as in G1

]
≤ Pr

[
∃id ∈ IdAskedForSign, SD

(
DZ,ssign,((A∥H1(id))

,U
(
Zn
q

))
> 2ϵ:

A←$Zn×m
q

∀id : H1(id)←$Znk
q

]
+QIdSign mx+ nkq−0.196n by definition of fail1 and Proposition 2

≤ QIdSign(2q
−n/4 +mx) + nkq−0.196n by Corollary 5.

20

We can then apply Proposition 7 to deduce that
∣∣∣AdvG1

A − AdvG2
A

∣∣∣ is less than the upper bounds

indicated in Table 3.
From G2 to G3: In G3, for id ∈ AskedSk, the secret key skid, is defined as the value Rid of
H1(id) := ARid+G, instead of being created by DelTrap. Using Proposition 4, we conclude that∣∣∣AdvG2

A − AdvG3
A

∣∣∣ ≤ QCorrnkγ
Sample
n,m,ϵ + 2q−n.

From G3 to G4: In game G4, for (id, µ) ∈ AskedSign, the signatures zid,µ, are defined as the z
used to create the hash value H2(id, µ) = [A|H1(id)]z, instead of being computed by Sign applied
to a secret key computed with KeyExt. Thus, the probability distribution of a signature is now
Dm+nk

Z,ssign .

Using Proposition 5 and the definitions of fail1 and fail2, we conclude that
∣∣∣AdvG3

A − AdvG4
A

∣∣∣
is less than the upper bound indicated in Table 3.
From G4 to G5:‘ We replace the A made by Trap by a matrix A ←$ Zn×m

q . This is pos-
sible because the trapdoor TA is not used in G4. We use Proposition 2 to conclude that∣∣∣AdvG4

A − AdvG5
A

∣∣∣ ≤ nkq−0.196n.
From G5 to SISn,m,BoundSIS,q: Thanks to the definition of G5, we can simulate an instance of G5

to A from an instance A of the SISn,m,BoundSIS,q problem.
Note that in order to make the simulation in polynomial time, A cannot precompute all the

possibles values of H1, H2 as the challenger do. In the ROM, A can simply make lazy evaluation,
by computing the values only when they are queried. In the QROM, A can use the compressed
oracle technique of [33] in order to efficiently simulate the Hash functions. More precisely:
– Except for a polynomial number of values that can be precomputed, H1(id) can be computed

as AH̃1(id) with a random oracle H̃1 : SetId → {−1, 0, 1}m×nk simulated by a compressed
oracle.

– Except for a polynomial number of values that can be precomputed, H2(id) can be computed

as AH̃2(id) with a random oracle H̃2 : SetId→ {−1, 0, 1}m simulated by a compressed oracle.
Using [33, Lemma 5], we see that the advantage of A with this simulation can only be increased

by a function λ̃CO(n) negligible in n.
Suppose A wins an instance of the game with the answer (z∗ = (z∗1, z

∗
2), id

∗, µ∗). This implies
that [A | H1(id)]z

∗ = H2(id
∗, µ∗), ∥z∗1∥ ≤ Bound1, ∥z∗2∥ ≤ Bound2, id

∗ /∈ AskedSk and (id∗, µ∗) /∈
AskedSign. Thus:
– There exists Rid∗ which has been sampled uniformly in {−1, 0, 1}m×nk such that H1(id) =

ARid.
– There exists zid∗,µ∗ which has been sampled uniformly in {−1, 0, 1}m such that H2(id, µ) =

Azid∗,µ∗ .
This implies that A

[
z∗1 +Rid∗z

∗
2 − zid∗,µ∗

]
= 0. Moreover, using Corollary 1 and the bounds on

z∗1, z
∗
2, we know that with a probability less than at least 1− 2q−n on Rid∗ , we have∥∥z∗1 +Rid∗z

∗
2 − zid∗,µ∗

∥∥ ≤ ∥z∗1∥+ s1(Rid∗) ∥z∗2∥+
∥∥zid∗,µ∗

∥∥
≤ Bound1 + s1(Unif)[m,nk]Bound2 +

√
m = BoundSIS .

If z∗1 +Rid∗z
∗
2 ̸= zid∗,µ∗ , it is a valid solution of the SIS problem.

We show that, for an overwhelming number of A, the case where z∗1 + Rid∗z
∗
2 = zid∗,µ∗

happens with lower probability than the previous case, which implies that the attack fails with
probability at most 1/2. Assume that z∗1 + Rid∗z

∗
2 = zid∗,µ∗ . From the point of view of A,

the instance of the game G5 it is playing is identical for each z̃id∗,µ∗ ∈ {−1, 0, 1}m such that
Az̃id∗,µ∗ = Azid∗,µ∗ . Moreover, Lemma 21 shows that, with a probability more that 1 − q−n in
zid∗,µ∗ , an element z̃id∗,µ∗ ∈ {−1, 0, 1}m, zid∗,µ∗ ̸= z̃id∗,µ∗ , such that Azid∗,µ∗ = Az̃id∗,µ∗ , could
have been taken with the same probability as zid∗,µ∗ for the computation of H2(id, µ). Such an

21

element would satisfy z∗1 +Rid∗z
∗
2 ̸= z̃id∗,µ∗ . Therefore, from the point of view of the adversary,

the probability that z∗1 +Rid∗z
∗
2 ̸= zid∗,µ∗ is at least 1/2.

We conclude that Adv
SISn,m,BoundSIS,q

B is more than
(
1−q−n

2

)
AdvG5

A + 2q−n in ROM, and more

than
(
1−q−n

2

)
AdvG5

A + 2q−n + λ̃CO(n) in QROM, which leads to the upper bound indicated in

Table 3.

7 IBS Scheme in ROM and the QROM, based on RSIS

The scheme is defined in Figure 7. The parameters and the conditions they must follow are on
Table 4.

Setup(n,m)

(A,TA)← TrapR(l, q)

return (A,TA)

KeyExt(A,TA, id)

r←$ {0, 1}τnonce

Tid ← DelTrapR(A,TA,

H1(r, id), sid)

return (r,Tid)

Sign(mpk, (r, id,Tid), µ)

s←$ {0, 1}τnonce

u← H2 (r, s, id, µ)

z← SampleDR
(
[A∥H1(r, id)] ,

Tid,u, ssign
)

return (r, s, z)

Verify (mpk, id, µ, (r, s, z))

if z = 0 ∨ [A∥H1(r, id)] z

̸= H2(r, s, id, µ)

then return 0

// z = (z1, z2) ∈ Rl
q ×Rk

q

return J∥z1∥ ≤ BoundR,1

∧ ∥z2∥ ≤ BoundR,2K

Fig. 7. Scheme IBSR.

Notation Description

q := 3k modulus, power of 3 for k ∈ N, k ≥ 4
SetId Set of identities, of the form {0, 1}τid for some integer τid

SetMess Set of messages, of the form {0, 1}τmess for some integer τmess

SetNonces Set of nonces, of the form {0, 1}τnonce for some integer τnonce
l number of columns of the matrix A ∈ R1×l

q , 2k + k/2 ≥ l > max(2k, 21)

ϵ used in rx,ϵ =
√

ln (2x(1 + 1/ϵ)) /π , we take ϵ = ϵ(d) = negl(d)
H1 hash function 1, with values in R1×k

q

H2 hash function 2, with values in Rq

sid standard deviation,

sid ≥ max
(√

11rdk,ϵ
√

16ds1(Binom)[l − k, dk, 1/2]2 + 1, 12rdl,ϵ
)
.

ssign standard deviation,

ssign ≥ max
(√

11rdk,ϵ
√

ds1(Gauss)[l, dk, sid]2 + 1, 12rd(l+k),ϵ

)
.

BoundR,1 bound of ∥z1∥ for signatures z=(z1, z2) ∈ Rl
q×Rk

q , BoundR,1 ≥
√
2dlssign

BoundR,2 bound of ∥z2∥ for signatures z=(z1, z2) ∈ Rl
q×Rk

q ,BoundR,2 ≥
√
2dkssign

Table 4. Parameters of IBSR and required conditions.

The proof of completeness will use the tail inequality.

Lemma 3 (Tail inequality, ring case (e.g. [3])). Let l ∈ N, σ > 1, then

Prz←$Dl
R,σ

[
∥z∥ >

√
2dlσ

]
< 2−

dl
4 .

22

Proposition 10 (completeness). Consider the scheme IBSR with the parameters of Table 4.

Then, it is (ξ1, ξ2)-complete with ξ1 = k(2ϵ+ γSample
d,dl,ϵ) + 3

(
−d (2k−l)

4
+ 3

2

)
+ 2−

(dk−1)
4 = negl(d) and

ξ2 = 2kq−0.196d + 3

(
−d (2k−l)

4
+3

)
= negl(d).

Proof. Direct consequence of Proposition 21 and Lemma 3 that shows that

Pr

(z1,z2)←$Dl
R,ssign

×Dk
R,ssign

[
∥z1∥ >

√
2ldσ ∨ ∥z2∥ >

√
2dkσ

]
< 2−

dl
4 + 2−

dk
4 < 2−

(dk−1)
4 .

From adaptive security to non-adaptive security.

Setup()

(A,TA)← TrapR(l, q)

return (A,TA)

KeyExt(A,TA, id)

Tid ← DelTrapR
(
A,TA,

H1(id), sid
)

return (id,Tid)

Sign(mpk, (id,Tid), µ)

u := H2(id, µ)

z← SampleDR
(
[A∥H1(id)] ,

Tid,u, ssign
)

return z

Verify(mpk, id, µ, z)

if z = 0 then

return 0

if [A∥H1(id)] z

̸= H2(id, µ) then

return 0

// z = (z1, z2) ∈ Rl
q ×Rk

q

return J∥z1∥ ≤ BoundR,1

∧ ∥z2∥ ≤ BoundR,2K

Fig. 8. Scheme IBSNA,R.

Proposition 11 (EUF-CMA security of adapt(IBSR) implies the EUF-CMA security of
IBSR). Consider a set of parameters with the conditions indicated in Table 4. Let QCorr, QS ∈ N
and A a PPT adversary of EUFCMAIBSR

QCorr,QS
(Figure 7) that makes QH1 quantum (resp. clas-

sical) queries to H1 and QH2 quantum (resp. classical) queries to H2. Then, there exists an

adversary B of EUFCMA
adapt(IBSR)
QCorr,QS

that makes QH1 quantum (resp. classical) queries to H1,
QH2 quantum (resp. classical) queries to H2, 2(QH1 + QH2) quantum (resp. QH1 + QH2 classi-
cal) queries to Hashid, and 2QH2 quantum (resp. QH2 classical) queries to Hashmess, such that

Adv
EUFCMA

IBSR
QCorr,QS

A = Adv
EUFCMA

adapt(IBSR)

QCorr,QS
B .

Proof. Proof is similar to the proof of Proposition 9.

Non-adaptive Security in the ROM and the QROM.

Theorem 3 (EUF-naCMA security of IBSNA,R). Consider a set of parameters with the con-

ditions indicated in Table 4. Let QCorr, QS ∈ N and A a PPT adversary of EUFnaCMA
IBSNA,R
QCorr,QS

that makes QH1 quantum queries to H1, QH2 quantum queries to H2 and such that the signa-
ture queries are made for QIdSign distinct identities. Let also, take BoundRSIS = BoundR,1 +
4
√
ds1(Unif)[l, dk]BoundR,2 +

√
17/2

√
ld and mx = max(2ϵ, q−d/4) = negl(d). Then, there exists

23

a PPT adversary B of RSISl,BoundRSIS,q such that Adv
EUFnaCMA

IBSNA,R
QCorr,QS

A is upper bounded by

2Adv
RSISl,BoundRSIS,q
B
1− q−d

+ 4Q2
H1

√
2kmx+ 4Q2

H2

√
QIdSign + 1

√
mx+ λCO(dl)

+QCorrk
(
mx+γSample

d,dl,ϵ

)
+5kq−0.196d+3(−d

2k−l
4

+4)+QIdSign

(
2 ∗ 3−d

(2k−l)
2 +mx

)
+QS

(
γSample
d,d(k+l)ϵ + k(2ϵ+ γSample

d,dl,ϵ) + 3

(
−d (2k−l)

4
+ 3

2

)
+ (k + 2)mx

)
+

4q−d

1− q−d
,

where γSample
d,dl,ϵ is negligible (defined in Section B.9) λCO(dl) is negligible and is due to the use of

compressed oracles ([33]).
If the queries to QH1 and QH2 are classical, the upper bound becomes

2Adv
RSISl,BoundRSIS,q
B
1− q−d

+QH1kmx+QH2mx

+QCorrk
(
mx+γSample

d,dl,ϵ

)
+5kq−0.196d + 3(−d

2k−l
4

+4)+QIdSign

(
2 ∗ 3−d

(2k−l)
2 +mx

)
+QS

(
γSample
d,d(k+l)ϵ + k(2ϵ+ γSample

d,dl,ϵ) + 3

(
−d (2k−l)

4
+ 3

2

)
+ (k + 2)mx

)
+

4q−d

1− q−d
.

Proof. We sum up the changes between games in Table 5.

Hop Change Security loss

G0 to G1 reprogramming of H1.
ROM: (QH1 +QCorr) kmx+ kq−0.196d + 3−d

(2k−l)
2

+1

QROM: QCorr kmx+ 4Q2
H1

√
2kmx+ kq−0.196d + 3−d

(2k−l)
2

+1

G1 to G2 reprogramming of H2.

ROM: (QH2 +QS)mx+QIdSign(2 ∗ 3−d
(2k−l)

2 +mx) + kq−0.196d

QROM:
QS mx+ 4Q2

H2

√
(QIdSign + 1)mx

+QIdSign(2 ∗ 3−d
(2k−l)

2 +mx) + kq−0.196d

G2 to G3 TA no more used for
OCorrupt queries.

QCorrkγ
Sample
d,dl,ϵ + 2q−d

G3 to G4 TA no more used for
OSign queries.

QS

(
γSample
d,d(k+l)ϵ + k(2ϵ+ γSample

d,dl,ϵ) + 3−d
(2k−l)

4
+ 3

2

+(k + 1)mx
)
+ 2kq−0.196d + 3−d 2k−l

4
+3 .

G4 to G5 A is taken uniformly. kq−0.196d

Minoration of advantage of last game:
ROM: AdvG5

A ≤
(

2
1−q−d

)
Adv

RSISl,BoundRSIS,q
B + 4q−d

1−q−d

QROM: AdvG5
A ≤

(
2

1−q−d

)
Adv

RSISl,BoundRSIS,q
B + 4q−d

1−q−d + λCO(dl)

Table 5. Summary of the changes between the games used for the proof of Theorem 3. Complete games are
similar of the ones of the proof of Theorem 2.

From G0 = EUFnaCMA
IBSNA,R
QCorr,QS

to G1: In G1, the probability distribution of outputs of H1,

U
(
R1×k

q

)
, is replaced by Dk

R,sid,A
+G for id ∈ AskedSk and Uk

R,A else. Moreover, we abort if A
is sampled in the set

fail1 =
{
A : SD

(
DR,sid,A

,U (Rq)
)
> ϵ ∨ SD

(
UR,A,U (Rq)

)
> q−d/4

}
.

24

Using Lemma 1, Proposition 1 and Proposition 18 we see that Pr[fail1] ≤ kq−0.196d+3−d
(2k−l)

2
+1.

Moreover, when fail1 is not realized, we have

SD
(
Dk
R,sid,A

+G,U
(
R1×k

q

))
= SD

(
Dk
R,sid,A

,U
(
R1×k

q

))
≤ 2kϵ ,

SD
(
Uk
R,A,U

(
R1×k

q

))
≤ kq−d/4 .

Proposition 7 implies that
∣∣∣AdvG0

A − AdvG1
A

∣∣∣ is less than
in the ROM: (QH1 +QCorr) kmx+ kq−0.196d + 3−d

(2k−l)
2

+1 ,

in the QROM: QCorrkmx+ 4Q2
H1

√
2kmx+ kq−0.196d + 3−d

(2k−l)
2

+1 .

From G1 to G2: In G2, the probability distribution of outputs of H2, U (Rq), is replaced by
DR,ssign,(A∥H1(id))

for (id, µ) ∈ AskedSign and UR,A else. Moreover, with notation IdAskedForSign =

{id ∈ SetId : ∃µ ∈ SetMess, (id, µ) ∈ AskedSign}, so |IdAskedForSign| = QIdSign, we abort if the
event fail2 happens, where

fail2 =
{
∃id ∈ IdAskedForSign : SD

(
Dssign,(A∥H1(id))

,U (Rq)
)
> 2ϵ

}
.

We use Proposition 7 with the size of partitions bounded by QIdSign + 1.
We note that

Pr[fail2 : A← TrapR(l, q) ∧ H1programmed as in G1]

= Pr
[
∃id ∈ IdAskedForSign : SD

(
DR,ssign,(A∥H1(id))

,U (Rq)
)
> 2ϵ : A←TrapR(l,q)

H1 as in G1

]
≤ Pr

[
∃id ∈ IdAskedForSign : SD

(
DR,ssign,(A∥H1(id))

,U (Rq)
)
> 2ϵ :

A←$Rn×m
q

∀id : H1(id)←$Rk
q

]
+QIdSign mx+ kq−0.196d by definition of fail1 and Proposition 18

≤ QIdSign(2 ∗ 3−d
(2k−l)

2 +mx) + kq−0.196d by Corollary 5.

We can then apply Proposition 7 to deduce that
∣∣∣AdvG1

A − AdvG2
A

∣∣∣ is less than
in the ROM: (QH2+QS)mx+QIdSign(2 ∗ 3−d

(2k−l)
2 +mx)+kq−0.196d ,

in the QROM: QSmx+4Q2
H2

√
(QIdSign+1)mx+QIdSign(2 ∗ 3−d

(2k−l)
2 +mx)+kq−0.196d .

From G2 to G3:
In G3, for id ∈ AskedSk, the secret key skid, instead of being created by DelTrapR, is defined as

the value Rid of H1(id) := ARid+G. Using Proposition 20, we conclude that
∣∣∣AdvG2

A − AdvG3
A

∣∣∣ ≤
QCorrkγ

Sample
d,dl,ϵ + 2q−d.

From G3 to G4: In game G4, for (id, µ) ∈ AskedSign, the signatures zid,µ, instead of being
computed by Sign applied to a secret key computed with KeyExt, are now being defined as the
z used to create the hash value H2(id, µ) = [A|H1(id)]z. Thus, the probability distribution of a
signature is now Dl+k

R,ssign
. Using Proposition 21 and the definitions of fail1 and fail2, we conclude

that
∣∣∣AdvG3

A − AdvG4
A

∣∣∣ is less than the upper bound indicated in Table 5.

From G4 to G5:We replace theAmade by Trap by a matrixA←$R1×l
q . This is possible because

the trapdoor TA is not used in G4. We use Proposition 2 to conclude that
∣∣∣AdvG4

A − AdvG5
A

∣∣∣ ≤
kq−0.196d.

25

From G5 to RSISl,BoundRSIS,q: Thanks to the definition of G5, we can simulate an instance of G5

to A from an instance A of the RSISl,BoundRSIS,q problem.

Note that in order to make the simulation in polynomial time, A cannot precompute all the
possibles values of H1, H2 as the challenger do. In the ROM, A can simply make lazy evaluation,
by computing the values only when they are queried. In the QROM, A can use the compressed
oracle technique of [33] in order to efficiently simulate the Hash functions. More precisely:

– Except for a polynomial number of values that can be precomputed, H1(id) can be computed

as Aϕ(H̃1(id)) with a random oracle H̃1 : SetId→ {−1, 0, 1, 2}dl×k simulated by a compressed
oracle and ϕ defined coordinate by coordinate, that act as identity except on 2 that is sent
to 0, which models that 0 is obtained twice as often as -1 and 1.

– Except for a polynomial number of values that can be precomputed, H2(id) can be computed

as Aψ(H̃2(id)) with a random oracle H̃2 : SetId → {−1, 0, 1, 2}dl simulated by a compressed
oracle and ψ, defined coordinate by coordinate as in the previous item.

Using [33, Lemma 5], we see that the advantage of A with this simulation can only be increased

by a function λ̃CO(dl) negligible in dl.

Suppose A wins an instance of the game with the answer (z∗ = (z∗1, z
∗
2), id

∗, µ∗). This implies
that

[A | H1(id)]z
∗ = H2(id

∗, µ∗), ∥z∗1∥ ≤ BoundR,1, ∥z∗2∥ ≤ BoundR,2 , (4)

and id∗ /∈ AskedSk, (id∗, µ∗) /∈ AskedSign. Thus:

– There exists Rid∗ that has been sampled uniformly in S l×kR such that H1(id) = ARid.
– There exists zid∗,µ∗ that has been sampled uniformly in S lR such that H2(id, µ) = Azid∗,µ∗ .

We write z∗ = (z∗1, z
∗
2) ∈ Rm

q ×Rk
q . Equation (4) becomes A

[
z∗1 +Rid∗z

∗
2 − zid∗,µ∗

]
= 0. More-

over, using Corollary 1 and Proposition 15, we know that with a probability less that at least
1− 2q−d on Rid∗ , we have

∥∥z∗1 +Rid∗z
∗
2 − zid∗,µ∗

∥∥ ≤ ∥z∗1∥+√ds1(Rid∗) ∥z∗2∥+
∥∥zid∗,µ∗

∥∥
≤ BoundR,1 + 4

√
ds1(Unif)[l, dk]BoundR,2 +

√
dl
√
17/2

= BoundRSIS ,

where we use
∥∥S lR∥∥ ≤√d(l/2)(42 + 1) =

√
dl
√
17/2.

If z∗1 +Rid∗z
∗
2 ̸= zid∗,µ∗ , it is a valid solution of the RSIS problem.

We show that, for an overwhelming number of A, the case where z∗1 + Rid∗z
∗
2 = zid∗,µ∗

happens with lower probability than the previous case, which implies that the attack fails with
probability at most 1/2. Assume that z∗1 +Rid∗z

∗
2 = zid∗,µ∗ .

From the point of view of A, the instance of the game G5 it is playing is identical for each
z̃id∗,µ∗ ∈ S lR such that Az̃id∗,µ∗ = Azid∗,µ∗ . Moreover, Lemma 22 shows that, with a probability
more that 1 − q−d in zid∗,µ∗ , an element z̃id∗,µ∗ ∈ S lR, zid∗,µ∗ ̸= z̃id∗,µ∗ , such that Azid∗,µ∗ =
Az̃id∗,µ∗ , could have been taken with the same probability as zid∗,µ∗ for the computation of
H2(id, µ). Such an element would satisfy z∗1+Rid∗z

∗
2 ̸= z̃id∗,µ∗ . Therefore, from the point of view

of the adversary, the probability that z∗1 +Rid∗z
∗
2 ̸= zid∗,µ∗ is at least 1/2.

We conclude that Adv
RSISl,BoundRSIS,q
B is more than

(
1−q−d

2

)
AdvG5

A − 2q−d in ROM and more

than
(
1−q−d

2

)
AdvG5

A − 2q−d + λ̃CO(dl) in QROM, which leads to the upper bound indicated in

Table 5.

26

8 Conclusion

8.1 Parameters (proof of concept) and discussion

We propose parameters to give a rough idea of the efficiency of our IBS scheme. The parameters
are not optimized; the main motivation of this proof of concept is to observe the impact of the
tight reduction on concrete parameters. We describe the principle behind our parameter selection
in the following. First, we only study IBSR since it will be more efficient than IBSZ for the same
security. Then, we reduce the study of IBSR to the study of IBSNA,R since the tightness of the
transformation between IBSR and IBSNA,R provides only negligible changes of size (only nonces
are added, that is, less than 1Ko) and of speed (only hash evaluations are added). It also allows
us to directly compare with the non-adaptive scheme IBSNA,PW [26, Figure 8]. Finally, we take
into account the experimental estimations of C (Section 4.2) made in [13, Section 6] in order to
set C = 1

2π or 1
4π depending on the distribution. More precisely, we make the comparison with

an improved version IBS+NA,PW of IBSNA,PW, where coefficients of the master secret key TA are
sampled with PR,1/2

, as in our scheme (this method was already suggested for the unstructured

case in [25] as an example of ”statistical instantiation”), and setting l = 2k + 2 instead of
l ≥ 2⌈log(q)⌉+ 2 as in our scheme.

We present in Table 6 two sets of parameters, each one giving 128 bits of security for one of the
two schemes. Table 7 displays the sizes and security related to the schemes IBSNA,R and IBS+NA,PW
for these two sets of parameters. We include in Appendix E the script we use to compute sizes and
security bounds for the two schemes, and summarize the principle in the following. Regarding
RSIS concrete security against a quantum adversary, we use the security estimation scripts of [10]
whose initial aim was to assess the security of Kyber [2] and Dilithium [11] schemes. For IBSNA,R
the parameters values and security bounds directly come from Table 4 and Theorem 3 while the
sizes are found by direct computation. For IBSNA,PW the parameters values and security bounds
are given in [26, Section 5.2] while the sizes of signatures and keys are given in [26, Page 25].
However, in [26] the authors use universal constants and asymptotic bounds, that cannot directly
give concrete parameters, thus for a fair comparison we instantiate each asymptotic value by
the one obtained from our results (that is, the same as for IBSNA,R).

k d l − log(ϵ) log(sid)= log(s) log(ssign)= log(s′) log(s
′′
)

ParamI 65 2048 132 200 20.65 38.92 57.19
ParamII 153 2048 308 200 21.27 40.16 59.05

Table 6. Parameter set for IBSNA,R and IBS+
NA,PW. sid, ssign are the standard deviations for IBSNA,R while s, s′, s

′′

are the standard deviations for IBS+
NA,PW.

Scheme Security Signature mpk msk skid
IBSNA,R (ParamI) 129bits 20Mo 28Mo 14Mo 699Mo
IBS+

NA,PW (ParamI) 37bits 41Mo 28Mo 14Mo 699Mo

IBSNA,R (ParamII) 371bits 48Mo 153Mo 77Mo 3940Mo
IBS+

NA,PW (ParamII) 127bits 100Mo 153Mo 77Mo 3940Mo

Table 7. Security and size for IBSNA,R and IBS+
NA,PW with parameters of Table 6

From Table 7 we can conclude that we obtain shorter parameter sizes than with IBS+NA,PW
(and thus IBSNA,PW) for the same security level. More precisely, sizes are around 5 times smaller
for the same estimated level of security. Then, regarding time complexity by definition of DelTrap,

27

it uses one call to SampleD to compute each column of the delegated trapdoor, one signature of
IBS+NA,PW (resp. IBSNA,PW) needs to use k times SampleD with the same (resp. a bigger) standard
deviation as the one for IBSZ/IBSNA,R. We can thus estimate that the signature algorithm, the
slowest part in IBSNA,PW/IBS

+
NA,PW scheme, is k times faster in our schemes. For a concrete

use of IBS scheme, we observe that these sizes are still several orders of magnitude bigger than
the optimized lattice-based signature proposed for the NIST standardization contest: 3 for the
signatures and public keys for a comparison with Dilithium ([11, Table 1]). Since IBSZ scheme
relies on tight security, is not optimized and has the identity-based property, this efficiency
difference is expected, however there are different interesting improvements that could reduce
the gap. We detail some of them in the following part.

8.2 Future work

One of the main improvements on the scheme could come from improving the matrix delegation.
Indeed, the size of the delegated trapdoor is responsible for the big size of the secret key of
identities. Moreover, the singular value of a delegated trapdoor is directly linked to the size
of signatures because it is used to make a lower bound on the standard deviations appearing
in our scheme. The use of subgaussian sampling instead of Gaussian one following the work
of [14] seems to be promising in this direction. Then, it would be interesting to investigate how
the notions of approximate trapdoors [8] could also be used in order to have smaller delegated
trapdoor. Finally, we also think the condition on l, l ≥ 2k log(q), could be greatly improved and
thus directly lead to more competitive sizes.

References

1. Ajtai, M. Generating hard instances of lattice problems (extended abstract). In 28th Annual ACM Sympo-
sium on Theory of Computing (Philadephia, PA, USA, May 22–24, 1996), ACM Press, pp. 99–108.

2. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J. M., Schwabe,
P., Seiler, G., , and Stehlé, D. CRYSTALS-Kyber (version 3.02) – submission to round 3 of the nist post-
quantum project. Specification document (update from August 2021). 2021-08-04, https://pq-crystals.
org/kyber/data/kyber-specification-round3-20210804.pdf.

3. Banaszczyk, W. New bounds in some transference theorems in the geometry of numbers. Mathematische
Annalen, 296 (1993), 625–635.

4. Bellare, M., Namprempre, C., and Neven, G. Security proofs for identity-based identification and
signature schemes. In Advances in Cryptology – EUROCRYPT 2004 (Interlaken, Switzerland, May 2–6, 2004),
C. Cachin and J. Camenisch, Eds., vol. 3027 of Lecture Notes in Computer Science, Springer, Heidelberg,
Germany, pp. 268–286.

5. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., and Zhandry, M. Random
oracles in a quantum world. In Advances in Cryptology – ASIACRYPT 2011 (Seoul, South Korea, Dec. 4–8,
2011), D. H. Lee and X. Wang, Eds., vol. 7073 of Lecture Notes in Computer Science, Springer, Heidelberg,
Germany, pp. 41–69.

6. Cash, D., Hofheinz, D., Kiltz, E., and Peikert, C. Bonsai trees, or how to delegate a lattice basis.
In Advances in Cryptology – EUROCRYPT 2010 (French Riviera, May 30 – June 3, 2010), H. Gilbert, Ed.,
vol. 6110 of Lecture Notes in Computer Science, Springer, Heidelberg, Germany, pp. 523–552.

7. Cesa-Bianchi, N., and Lugosi, G. Prediction, learning and games. Cambridge University Press (2006).

8. Chen, Y., Genise, N., and Mukherjee, P. Approximate trapdoors for lattices and smaller hash-and-
sign signatures. In Advances in Cryptology – ASIACRYPT 2019, Part III (Kobe, Japan, Dec. 8–12, 2019),
S. D. Galbraith and S. Moriai, Eds., vol. 11923 of Lecture Notes in Computer Science, Springer, Heidelberg,
Germany, pp. 3–32.

9. Dodis, Y., Katz, J., Xu, S., and Yung, M. Strong key-insulated signature schemes. In PKC 2003: 6th
International Workshop on Theory and Practice in Public Key Cryptography (Miami, FL, USA, Jan. 6–8,
2003), Y. Desmedt, Ed., vol. 2567 of Lecture Notes in Computer Science, Springer, Heidelberg, Germany,
pp. 130–144.

10. Ducas, L. Github repository pq-crystals/security-estimates. Accessed January 1, 2023, https://github.
com/pq-crystals/security-estimates.

28

https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://github.com/pq-crystals/security-estimates
https://github.com/pq-crystals/security-estimates

11. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., , and Stehlé,
D. CRYSTALS-Dilithium – algorithm specifications and supporting documentation (version 3.1). Speci-
fication document (update from February 2021). 2021-02-08, https://pq-crystals.org/dilithium/data/
dilithium-specification-round3-20210208.pdf.

12. Ducas, L., and Micciancio, D. Improved short lattice signatures in the standard model. In Advances
in Cryptology – CRYPTO 2014, Part I (Santa Barbara, CA, USA, Aug. 17–21, 2014), J. A. Garay and
R. Gennaro, Eds., vol. 8616 of Lecture Notes in Computer Science, Springer, Heidelberg, Germany, pp. 335–
352.

13. Genise, N., Micciancio, D., Peikert, C., and Walter, M. Improved discrete gaussian and subgaussian
analysis for lattice cryptography. In PKC 2020: 23rd International Conference on Theory and Practice of
Public Key Cryptography, Part I (Edinburgh, UK, May 4–7, 2020), A. Kiayias, M. Kohlweiss, P. Wallden, and
V. Zikas, Eds., vol. 12110 of Lecture Notes in Computer Science, Springer, Heidelberg, Germany, pp. 623–651.

14. Genise, N., Micciancio, D., and Polyakov, Y. Building an efficient lattice gadget toolkit: Subgaussian
sampling and more. In Advances in Cryptology – EUROCRYPT 2019, Part II (Darmstadt, Germany, May 19–
23, 2019), Y. Ishai and V. Rijmen, Eds., vol. 11477 of Lecture Notes in Computer Science, Springer, Heidelberg,
Germany, pp. 655–684.

15. Gentry, C., Peikert, C., and Vaikuntanathan, V. Trapdoors for hard lattices and new cryptographic
constructions. Cryptology ePrint Archive, Report 2007/432, 2007. https://eprint.iacr.org/2007/432.

16. Gentry, C., and Silverberg, A. Hierarchical ID-based cryptography. In Advances in Cryptology – ASI-
ACRYPT 2002 (Queenstown, New Zealand, Dec. 1–5, 2002), Y. Zheng, Ed., vol. 2501 of Lecture Notes in
Computer Science, Springer, Heidelberg, Germany, pp. 548–566.

17. Grilo, A. B., Hövelmanns, K., Hülsing, A., and Majenz, C. Tight adaptive reprogramming in the
QROM. In Advances in Cryptology – ASIACRYPT 2021, Part I (Singapore, Dec. 6–10, 2021), M. Tibouchi
and H. Wang, Eds., vol. 13090 of Lecture Notes in Computer Science, Springer, Heidelberg, Germany, pp. 637–
667.

18. Kiltz, E., and Neven, G. Identity-based signatures. In Identity-Based Cryptography, M. Joye and G. Neven,
Eds., vol. 2 of Cryptology and Information Security Series. IOS Press, 2009, pp. 31–44.

19. Krawczyk, H., and Rabin, T. Chameleon signatures. In ISOC Network and Distributed System Security
Symposium – NDSS 2000 (San Diego, CA, USA, Feb. 2–4, 2000), The Internet Society.

20. Langlois, A., and Stehlé, D. Worst-case to average-case reductions for module lattices. Cryptology ePrint
Archive, Report 2012/090, 2012. https://eprint.iacr.org/2012/090.

21. Lee, Y., Park, J. H., Lee, K., and Lee, D. H. Tight security for the generic construction of identity-based
signature (in the multi-instance setting). Theor. Comput. Sci. 847 (2020), 122–133.

22. Lyubashevsky, V. Lattice signatures without trapdoors. Cryptology ePrint Archive, Report 2011/537, 2011.
https://eprint.iacr.org/2011/537.

23. Lyubashevsky, V. Lattice signatures without trapdoors. In Advances in Cryptology – EUROCRYPT 2012
(Cambridge, UK, Apr. 15–19, 2012), D. Pointcheval and T. Johansson, Eds., vol. 7237 of Lecture Notes in
Computer Science, Springer, Heidelberg, Germany, pp. 738–755.

24. Micciancio, D. Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from worst-
case complexity assumptions. In 43rd Annual Symposium on Foundations of Computer Science (Vancouver,
BC, Canada, Nov. 16–19, 2002), IEEE Computer Society Press, pp. 356–365.

25. Micciancio, D., and Peikert, C. Trapdoors for lattices: Simpler, tighter, faster, smaller. In Advances in
Cryptology – EUROCRYPT 2012 (Cambridge, UK, Apr. 15–19, 2012), D. Pointcheval and T. Johansson,
Eds., vol. 7237 of Lecture Notes in Computer Science, Springer, Heidelberg, Germany, pp. 700–718.

26. Pan, J., and Wagner, B. Short identity-based signatures with tight security from lattices. In Post-Quantum
Cryptography - 12th International Workshop, PQCrypto 2021 (Daejeon, South Korea, July 20–22, 2021), J. H.
Cheon and J.-P. Tillich, Eds., Springer, Heidelberg, Germany, pp. 360–379.

27. Pan, J., and Wagner, B. Lattice-based signatures with tight adaptive corruptions and more. In Public-
Key Cryptography - PKC 2022 - 25th IACR International Conference on Practice and Theory of Public-Key
Cryptography, Virtual Event, March 8-11, 2022, Proceedings, Part II (2022), G. Hanaoka, J. Shikata, and
Y. Watanabe, Eds., vol. 13178 of Lecture Notes in Computer Science, Springer, pp. 347–378.

28. Peikert, C. A decade of lattice cryptography. Cryptology ePrint Archive, Report 2015/939, 2015. https:

//eprint.iacr.org/2015/939.
29. Regev, O. On lattices, learning with errors, random linear codes, and cryptography. In 37th Annual ACM

Symposium on Theory of Computing (Baltimore, MA, USA, May 22–24, 2005), H. N. Gabow and R. Fagin,
Eds., ACM Press, pp. 84–93.

30. Shamir, A. Identity-based cryptosystems and signature schemes. In Advances in Cryptology – CRYPTO’84
(Santa Barbara, CA, USA, Aug. 19–23, 1984), G. R. Blakley and D. Chaum, Eds., vol. 196 of Lecture Notes
in Computer Science, Springer, Heidelberg, Germany, pp. 47–53.

31. Wang, Y., Wang, B., Lai, Q., and Zhan, Y. Identity-based matchmaking encryption with stronger security
and instantiation on lattices. Cryptology ePrint Archive, Paper 2022/1718, 2022. https://eprint.iacr.

org/2022/1718.

29

https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://eprint.iacr.org/2007/432
https://eprint.iacr.org/2012/090
https://eprint.iacr.org/2011/537
https://eprint.iacr.org/2015/939
https://eprint.iacr.org/2015/939
https://eprint.iacr.org/2022/1718
https://eprint.iacr.org/2022/1718

32. Zhandry, M. A note on the quantum collision and set equality problems. Quantum Inf. Comput. 15, 7&8
(2015), 557–567. https://doi.org/10.26421/QIC15.7-8-2.

33. Zhandry, M. How to record quantum queries, and applications to quantum indifferentiability. In Advances
in Cryptology – CRYPTO 2019, Part II (Santa Barbara, CA, USA, Aug. 18–22, 2019), A. Boldyreva and
D. Micciancio, Eds., vol. 11693 of Lecture Notes in Computer Science, Springer, Heidelberg, Germany, pp. 239–
268.

A Generic probability results

A.1 Results about the statistical distance

Lemma 4. Let A,B two sets, X,Y two independent random variables with values in A and
f : A→ B a function. Then, SD(f(X), f(Y)) ≤ SD(X,Y) .

Proof.

SD(f(X), f(Y)) =
∑

z∈f(X)

|Pr[f(X) = z]− Pr[f(Y) = z]|

=
∑

z∈f(X)

∣∣Pr[X ∈ f−1(z)]− Pr
[
Y ∈ f−1(z)

]∣∣
=

∑
z∈f(X)

∣∣∣∣∣∣
∑

t∈f−1(z)

Pr[X = t]− Pr[Y = t]

∣∣∣∣∣∣
≤

∑
z∈f(X)

∑
t∈f−1(z)

|Pr[X = t]− Pr[Y = t]|

=
∑

t∈f−1(f(X))

|Pr[X = t]− Pr[Y = t]| .

Since f−1(f(X)) ⊂ X , this yields,∑
t∈f−1(f(X))

|Pr[X = t]− Pr[Y = t]| ≤
∑
t∈X
|Pr[X = t]− Pr[Y = t]| .

Therefore, SD(f(X), f(Y)) ≤ SD(X,Y).

Lemma 5. Let A,B,C three sets, X,Y two independent random variables with values in A and
a function f : A × B → C. Then for any random variable Z independent with both X,Y , with
values in B, we have

SD(f(X,Z), f(Y, Z)) ≤ SD(X,Y) .

Proof. SD(f(X,Z), f(Y,Z)) ≤ SD((X,Z), (Y, Z)) by the previous lemma. Since the variables
are independent, SD((X,Z), (Y,Z)) = SD(X,Y).

Lemma 6. Let m ≥ 1 and X1, . . ., Xm, Y1, . . ., Ym some independent random variables. Let X =

(X1, . . ., Xm), Y = (Y1, . . ., Ym). Then, SD(X,Y) ≤
m∑
i=1

SD(Xi, Yi).

Proof. For m = 2, the result holds. By induction, assume the property holds for some m > 1.
Consider X = (X1, . . . , Xm+1), Y = (Y1, . . . , Ym+1).
Then by triangle inequality

SD(X,Y) ≤ SD(X, (X1, . . . , Xm, Ym+1)) + SD((X1, . . . , Xm, Ym+1), Y)

≤ SD(Xm+1, Ym+1) + SD((X1, . . . , Xm), (Y1, . . . Ym)) .

By induction, this shows SD(X,Y) ≤ SD(Xm+1, Ym+1) +
m∑
i=1

SD(Xi, Yi).

30

https://doi.org/10.26421/QIC15.7-8-2

A.2 Other probability results

Proposition 12. Let X,Y two independent random variables with values on sets A and B
respectively. Let f : A × B → {0, 1} a function. Suppose that there exists ϵ > 0 such that
Pr(a,b)←$(X,Y)[f(a, b) = 1] ≥ 1− ϵ. Then, for all λ ∈ [0, 1[,

Pra←$X [Prb←$Y [f(a, b) = 1] ≥ 1− λ] ≥ 1− ϵ

λ
.

In particular, with λ =
√
ϵ,

Pra←$X

[
Prb←$Y [f(a, b) = 1] ≥ 1−

√
ϵ
]
≥ 1−

√
ϵ .

Proof. We define E(λ) = {a ∈ A : Prb←$Y [f(a, b) = 1] ≥ 1− λ}. We have

1− ϵ ≤ Pr(a,b)←$(X,Y)[f(a, b) = 1]

=
∑

a∈E(λ)

Pr[X = a] Prb←$Y [f(a, b) = 1]

+
∑

a/∈E(λ)

Pr[X = a] Prb←$Y [f(a, b) = 1]

≤ Pr[X ∈ E(λ)] + (1− Pr[X ∈ E(λ)]) (1− λ)
= λPr[X ∈ E(λ)] + (1− λ)
= λPra←$X [Prb←$Y [f(a, b) = 1] ≥ 1− λ] + (1− λ) .

We can then conclude.

Lemma 7. Let Dist a random variable with values in a set A and a function f : A→ B. Then,
the following probability distributions are equal

Dist1 = {(f(a), a) : a←$ Dist} ,
Dist2 = {(b, a) : b←$ f(Dist), a←$ Dist|f−1({b})} .

Proof. For b ∈ f(X), a ∈ A, we have

Pr[Dist2 = (b, a)] = Pr
[
f(Dist) = b ∧ Dist|f−1({b}) = a

]
= Pr

[
Dist ∈ f−1({b}) ∧ Dist|f−1({b}) = a

]
= Pr

[
Dist ∈ f−1({b})

]
Pr
[
Dist|f−1({b}) = a

]
= Pr

[
Dist ∈ f−1({b})

] Pr[Dist ∈ f−1({b}) ∈ {a}]
Pr[Dist ∈ f−1({b})]

= Pr
[
Dist ∈ f−1({b}) ∩ {a}

]
=

{
Pr[Dist = a] if f(a) = b

0 else

= Pr[Dist1 = (b, a)] .

B Proofs of Section 4

B.1 Bound on singular values of random matrices

A random variable X over R is subgaussian with parameter s > 0 if for each t ∈ R, E
[
e2πtX

]
≤

eπs
2t2 .
For k ∈ N∗, a random variable X over Rk is subgaussian with parameter s > 0 if for each

i ∈ J1, kK, the ith component of X is subgaussian with parameter s.

31

Lemma 8. Let n, a ∈ N∗. The probability distribution Dn
Z,s is subgaussian with parameter s.

The uniform distribution U ({−a, 0, a}) is subgaussian with parameter a
√

4π
3 . The uniform dis-

tribution aPr is subgaussian with parameter a
√
2π(1− r).

Proof. The first claim is from [25, Lemma 2.8]. For the last two claims, the proof is an adaptation
of the proof of Hoeffding’s lemma in [7, Lemma A.1]. For example, for U ({−a, 0, a}), we have,
E
[
e2πtX

]
= 1

3

(
e2πta + e−2πta + 1

)
= eϕ(u) with u = 2πat and ϕ(u) = ln

(
1
3

)
+ ln (eu + e−u + 1)

A direct computation and analysis shows that ϕ(0) = ϕ′(0) = 0 ∀v ∈ R, ϕ′′(v) ≤ ϕ′′(0) = 2
3 .

Thus, by Taylor’s Theorem, ∀v, ϕ(v) ≤ u2

2 ϕ
′′(0) = 1

3u
2. We then conclude that

E
[
e2πtX

]
≤ e

1
3
(2πat)2 = e

π
(
a
√

4π
3

)2
t2
.

Proof of Corollary 1. We want to apply [13, Theorem 6.1] with t =
√
m ln(3), which will

show in both cases that with probability 1− 2e−t
2
= 1− 2 ∗ 3−m

s1(R) ≤ σ
[√

m+ C(s2/σ2)
(√

n+
√

ln(3)m
)]

,

where the rows ri are independent, identically distributed, zero-mean, and such that E
[
rir
⊤
i

]
=

σ2I. In both cases of the corollary, the coordinates are independent, identically distributed and
zero-mean, thus E

[
rir
⊤
i

]
= σ2I where σ is the standard deviation. Lemma 8 and a direct com-

putation of the standard deviation show that:

– For the distribution DZ,s, σ = s/
√
2π and s is the subgaussian parameter.

– For the distribution U ({−a, 0, a}), σ = a
√

2
3 and s = a

√
4π
3 .

– For the distribution aPr, σ = a
√

(1− r) and s = a
√
2π(1− r).

We then apply Theorem 6.1 with these values.

The ring case can be deduced from this corollary thanks to the definition of singular norm in
the ring case.

B.2 Invertible elements of Rq

In this part we provide a simple condition on the invertibility of Rq elements, for q = 3k.

Proposition 13 (Simple condition to be invertible in Rq). We consider Rq = Zq[X]/Xd+
1 for d ≥ 2 a power of 2 and q = 3k for k ≥ 1. Let C0, C1, C2, C3 subsets of J−(q−1)/4, (q−1)/4K
such that

(−C0) ∩ C1 ∩ C2 ⊂ {0} , (5)

C0 ∩ C1 ∩ (−C2) ⊂ {0} , (6)

min
x∈C3−{0}

|x| >
∥C1∥∞ + ∥C2∥∞

2
. (7)

Let P ∈ Z[X] of degree < d such that P ̸= 0 mod 3 and

Cf(P) mod ± ∈ C0 × C1 × C2 × C3 .

Then, P is invertible as an element of Rq.

32

Proof. We define P = C0 +C1X
d/4 +C2X

d/2 +C3X
3d/4 with each Ci ∈ Z[X] of degree strictly

less than d/4. We define Q1(X) = Xd/2 + Xd/4 − 1, Q2(X) = Xd/2 − Xd/4 − 1 and set I1 =
(Q1), I2 = (Q2), In the proof of [12, Lemma 7] it is observed that the non-zero ideals of Rq are

Rq itself I1 ⊃ 3I1 ⊃ . . . ⊃ 3k−1I1 ,

I2 ⊃ 3I2 ⊃ . . . ⊃ 3k−1I2 , (3) ⊃ (32) ⊃ . . . ⊃ (3k−1) .

Thus, P is invertible as an element of Rq if and only if

P ̸= 0 mod (I1, 3
k) P ̸= 0 mod (I2, 3

k) P ̸= 0 mod 3 .

Furthermore, we see that

P = 0 mod (I1, 3
k)

⇔ C0 + C1X
d/4 + (1−Xd/4)(C2 + C3X

d/4) = 0 mod (I1, 3
k)

⇔ (C0 + C2) + (C1 + C3 − C2)X
d/4 −Xd/2C3 = 0 mod (I1, 3

k)

⇔ (C0 + C2 − C3) + (C1 + 2C3 − C2)X
d/4 = 0 mod 3k

⇔ C0 + C2 − C3 = 0 mod 3k ∧ C1 + 2C3 − C2 = 0 mod 3k

⇔ C0 + C2 = C3 ∧ 2C3 = C2 − C1 because coefficients of P are

in J−(q − 1)/4, (q − 1)/4K
⇒ C3 = 0 ∧ C0 = −C2 ∧ C2 = C1 by equation (7)

⇒ P = 0 by equation (5) ,

Moreover, we can show with the same method, using Equations (7) and (6), that P = 0
mod (I2, 3

k) implies P = 0. Thus, P is invertible as an element of Rq if and only if P ̸= 0
mod 3.

Corollary 2 (of Proposition 13). Let k ≥ 4, q = 3k. We consider SR as a subset of Rq. Then

SR = {a− a′ a, a′ ∈ SR, a ̸= a′} ⊂ (Rq)
×

Proof. Note that SR is equal to{
P ∈ Rq : Cf(P) ∈ {−8,−4, 0, 4, 8}d/4×{−2,−1, 0, 1, 2}d/2×{−8,−4, 0, 4, 8}d/4

}
.

The proposition can be directly applied.

B.3 Proof of smoothing lemma (Lemma 1)

Unstructured case (Equation (1))

In order to prove it, we introduce Lemmas 9 and 10.

Lemma 9. Let m, k ∈ N∗ b prime and q = bk. For each r > 0, let Bm∞(r) = {x ∈ Zm : ∥x∥∞ <
r}, Bmq,∞ (r) = {x ∈ Zm

q : ∥x∥∞ < r}. Then,

∀0 ≤ l < k,
∣∣∣blZm

q ∩ (Bm∞(q/4b) mod q)
∣∣∣ ≤ (q

b1+l

)m
. (8)

33

Proof. Let Rep = J−(q − 1)/2, (q − 1)/2K if b odd and Rep =K − q/2, q/2K if b = 2. The infinity
norm of x ∈ Zq is the infinity norm of the unique representative of x in Rep.

We will first show that

blZm
q ∩ Bmq,∞ (q/4b) =

(
blZm ∩ Bm∞(q/4b)

)
mod q . (9)

The inclusion ”⊂” comes from the fact that Bm∞(q/4b) ⊂ Repm, which implies that Bmq,∞ (q/4b) =

B∞(q/4b)m mod q. We now show the reverse inclusion ”⊃”. Let x ∈ blZm
q ∩ (Bm∞(q/4b) mod q)

and let x̃ the representative of x in Repm. Because x ∈ blZm
q , there exists y ∈ Zm such that

q = bk| x̃− bly ⇒ bl |
(
x̃− bly

)
⇒ bl|x̃ because l ≤ k .

We can write x̃ = blx̂ for x̂ ∈ Zm. We know that x̃ = z mod q for some z ∈ Bm∞(q/4b) (because
Bmq,∞ (q/4b) = Bm∞(q/4b) mod q). But Bm∞(q/4b) ⊂ Repm implies that z = x̃, and therefore
x ∈ Bmq,∞ (q/4b). This proves the inclusion and therefore Equation (9).

Observe that Bm∞(q/b) ⊂ Repm implies that

∣∣∣(blZm ∩ Bm∞(q/4b)
)∣∣∣ = ∣∣∣(blZm ∩ Bm∞(q/4b)

)
mod q

∣∣∣ (10)

Notice that

x ∈ Bm∞
(
q/4bl+1

)
7→ blx ∈ blZm ∩ Bm∞(q/4b)

is a bijection. We can then use Equations (9) and (10) to see that

∣∣∣(blZm ∩ Bm∞(q/b)
)
mod q

∣∣∣ = ∣∣∣Bm∞(q/4bl+1
)∣∣∣

Finally, we show that
∣∣Bm∞(q/4bl+1

)∣∣ ≤ (q
b1+l

)m
. If l = k− 1, we have

∣∣Bm∞(q/4bl+1
)∣∣ = |{0}| = 1

and thus
∣∣Bm∞(q/4bl+1

)∣∣ ≤ 1 =
(q
b1+l

)m
. If l < k − 1, we have

∣∣∣Bm∞(q/4bl+1
)∣∣∣ = (2⌈ q

4b1+l

⌉
− 1
)m

≤
(q

2b1+l
+ 1
)m

≤
(q

b1+l

)m
because q/2b1+l ≥ q/2bk−1 = b/2 ≥ 1.

Lemma 10. Let k, b ∈ N∗, b prime. Let m,n ∈ N∗, such that m ≥ 2nk. Then,

PrA∈Zm×n [λ∞(Λ(A)) ≥ q/4b] ≥ 1− q−n.

Proof. As in Lemma 9, for each r > 0, we define Bm∞(r) = {x ∈ Zm : ∥x∥∞ < r}, Bmq,∞ (r) =
{x ∈ Zm

q : ∥x∥∞ < r}.

34

Notice that for any non-zero s ∈ Zn
q , there exists 0 ≤ l < k such that s = bls̃ for s̃ with one

invertible coordinate, and we have

PrA∈Zn×m
q

[∥∥∥A⊤s∥∥∥
∞
< q/4b

]
= PrA∈Zn×m

q

[
A⊤s ∈ Bmq,∞ (q/4b)

]
because q/4b ≤ q/2

= PrA∈Zn×m
q

[
blA⊤s̃ ∈ Bmq,∞ (q/4b)

]
because s = bls̃

= Pra∈Zm
q

[
bla ∈ Bmq,∞ (q/4b)

]
because s̃ has an invertible coordinate

= Prx∈blZm
q

[
x ∈ Bmq,∞ (q/4b)

]
=

∣∣blZm
q ∩ Bmq,∞ (q/4b)

∣∣∣∣blZm
q

∣∣
=

∣∣blZm
q ∩ Bmq,∞ (q/4b)

∣∣
(q/bl)

m q being a power of b and bigger than bl

≤
(q

b1+l

(q/bl)

)m

by Lemma 9

=

(
1

b

)m

.

Thus, taking the union for all non-zero s

PrA∈Zn×m
q

[
∃ s ∈ Zn

q − {0} :
∥∥∥A⊤s∥∥∥

∞
< q/b

]
≤ qn

(
1

b

)m

= q(n−
m
k
) because q = bk

≤ q−n because m ≥ 2nk .

Lemma 11. Let n,m, k ∈ N, b prime, q = bk, with m ≥ 2nk and ϵ > 0, then

PrA∈Zn×m
q

[
ηϵ(Λ

⊥(A)) ≤ 4brm,ϵ

]
≥ 1− q−n .

Proof. Lemma 10 and the fact that Λ⊥(A)
∗
= q−1Λ(A⊤) shows that

PrA∈Zn×m
q

[
λ∞1

(
Λ⊥(A)

∗) ≥ 1/(4b)
]
≥ 1− q−n .

Moreover, [20, Lemma 2.5] shows that, since Λ⊥(A) is of dimension m, ηϵ(Λ
⊥(A)) ≤ rm,ϵ ·

1/λ∞1

(
Λ⊥(A)

∗
)
.

Proof of unstructured case ((Equation (1))). This is an adaptation of the demonstration
of [15, Lemma 5.2]. Suppose that AZm

q = Zn
q and s ≥ ηϵ(Λ

⊥
q (A)). We recall that Λ⊥q (A) ⊂ Zm

q

is a full-rank lattice. Thus, by [15, Corollary 2.8]

SD
(
Dm

Z,s mod Λ⊥q (A),U
(
Zn
q

)
mod Λ⊥q (A)

)
< 2ϵ .

Then, because AZm
q = Zn

q , the application Zm mod Λ⊥q (A)→ Zn
q that send e+Λ⊥q (A) to Ae is

an isomorphism and we can thus conclude. We thus need AZm
q = Zn

q and s ≥ ηϵ(Λ
⊥
q (A)). This

is done with Corollary and Lemma 11.

35

Proof of unstructured part of Lemma 1 (Equation (1)). This is an adaptation of the demon-
stration of [15, Lemma 5.2]. Suppose that AZm

q = Zn
q and s ≥ ηϵ(Λ

⊥
q (A)). We recall that

Λ⊥q (A) ⊂ Zm
q is a full-rank lattice. Thus, by [15, Corollary 2.8]

SD
(
Dm

Z,s mod Λ⊥q (A),U
(
Zn
q

)
mod Λ⊥q (A)

)
< 2ϵ .

Then, because AZm
q = Zn

q , the application Zm mod Λ⊥q (A)→ Zn
q that send e+Λ⊥q (A) to Ae is

an isomorphism. We thus need to see when these conditions happen and to estimate ηϵ(Λ
⊥(A)).

This is done with Proposition 1 and Lemma 11 and we can conclude.

Structured case (Equation (2))

We need the following lemma for the proof.

Lemma 12 (Part of [12, Lemma 7] with reformulation and bound improvement). Let
d a power of 2, q = 3k a power of 3 and l > 2k. We have

PrA∈R1×l
q

[
ηϵ(Λ

⊥
R,q(A)) ≤ 12rld,ϵ

]
≥ 1− 3−d

(2k−l)
2 .

Proof. This proof is a adaptation of the proof of [12, Lemma 7] with the condition l > 2k instead
of l > 2 log(q) = 2 log2(3)k.

The lemma [20, Lemma 2.5] shows that, since Λ⊥(A) is of dimension dl,

ηϵ(Λ
⊥(A)) ≤ rdl,ϵ · 1/λ∞1

(
Λ⊥(A)

)
.

Thus, using Proposition 4 and the fact that the distribution of A∗ ∈ Rl×1
q is uniform if the one

of A ∈ R1×l
q is, we see that it is sufficient to prove that

PrB∈Rl×1
q

[ΛR,q(B)) ≥ q/12] ≥ 1− 3−d
(2k−l)

2 .

We defineQ1(X) = Xd/2+Xd/4−1, Q2(X) = Xd/2−Xd/4−1 and we set I1 = (Q1), I2 = (Q2).
We observe that the non-zero ideals of Rq are

Rq itself I1 ⊃ 3I1 ⊃ . . . ⊃ 3k−1I1 ,

I2 ⊃ 3I2 ⊃ . . . ⊃ 3k−1I2 , (3) ⊃ (32) ⊃ . . . ⊃ (3k−1) .

Let C = {v ∈ Rd
q : ∥v∥∞ < q/12}. Fix some x ∈ Rd

q \ {0} and set J = (x). It is one of
the nonzero ideal listed above. We want to estimate PrB←$Rl×1

q
[Bx ∈ C]. Since the function

B ∈ R1×l
q → Bx ∈ J is a morphism between additive groups, of image J l, it can be seen that

the distribution of Bx is uniform over J l and thus

PrB←$R1×l
q

[Bx ∈ C] =
(
|C ∩ J |
|J |

)l

We proceed by bounding the ratio |C∩J ||J | , by disjunction of cases.

Case 1: (J = (3h) for h ∈ {0, . . . , k − 1}). Observe that

36

|C ∩ J | ≤
∣∣∣((3h)Z ∩ J−q/12, q/12K

)∣∣∣d
≤
(⌈

3k−h

6

⌉)d

≤

{
1 if h = k − 1 (it is actually equal).(
3k−h/6 + 1

)d ≤ 3d(k−h−1) if h ∈ J0, . . . , k − 2K

Thus,

|C ∩ J |
|J |

≤
(⌈

3k−h

6

⌉
1

3k−h

)d

≤

(
1/3k−h

)d
if h = k − 1(

3k−h−1

3k−h

)d
if h ∈ J0, . . . , k − 2K and k ≥ 2.

≤ 3−d .

Case 2: (J = (3hQi) for h ∈ {0, . . . , k − 1},i ∈ {1, 2}). Start by noting that any element e

of J can be uniquely written e = Qi(X) s where s =
∑d/2−1

i=0 siX
i ∈ (3k) ⊂ R is a polynomial

of degree strictly less than d/2. Also note that ∥e∥∞ < q/12 implies ∥s∥∞ < q/12. Indeed, for
i ∈ {0, . . . , n/4− 1} we have ei = −si and for i ∈ {n/4, . . . , n/2− 1}, we have ei+n/2 = si. This
fact and the unicity of the s in the decomposition of e imply that

|J ∩ C|
|J |

≤

∣∣∣{(3h)Z ∩ J−q/12, q/12K
}d/2∣∣∣

3−
d(k−h)

2

≤

(⌈
3d(k−h)

6

⌉
1

3k−h

)d/2

≤ 3−d/2 ,

where the last inequalities are proved as for case 1.
We thus deduce that for any x ∈ Rx − {0},

PrB←$R1×l
q

[Bx ∈ C] =≤ 3−
dl
2

Taking the union bound over all nonzero x ∈ Rq we conclude that

PrB←$R1×l
q

[Bx ∈ C] ≤ qd3−
dl
2 = 3d(

2k−l
2)

Proof of structured part of Lemma 1 (Equation (2)). This is an adaptation of the demon-
stration of [15, Lemma 5.2]. Assume ARl

q = Rq and s ≥ ηϵ(Λ⊥(A)). We recall that Λ⊥q (A) ⊂ Zld

is a full-rank lattice. Thus, by [15, Corollary 2.8]

SD
(
Dld

Z,s mod Λ⊥R,q(A),U
(
Zld
q

)
mod Λ⊥R,q(A)

)
< 2ϵ .

Then, since ARl
q = Rq, the application: Zld mod Λ⊥R,q(A) → Rq that sends e + Λ⊥R,q(A) to

ACf−1(e) is an isomorphism.
We estimate ηϵ(Λ

⊥
R,q(A)) with Lemma 12 and establish the conditions for our assumptions

to hold with Lemma 1, which yields the conclusion.

B.4 Results about the quantum queries of a classical function

For l,m ∈ N∗ and f : {0, 1}l → {0, 1}m a function, we denote by |f⟩ the function

|f⟩

 ∑
(x,y)∈{0,1}n×{0,1}m

αx,y|x, y⟩

 =
∑

(x,y)∈{0,1}n×{0,1}m
αx,y|x, y ⊕ f(x)⟩ .

37

It is the usual way to embed classical functions into quantum ones. In particular, a quantum
query to a hash function H is a query of |H⟩.

In this section, we will see how, given quantum access to |f⟩ and |g⟩, we can compute:

– |g ◦ f⟩ (for f and g composable), see Lemma 13.
– |g × f⟩ (for f and g with same domain) Lemma 14.
– |g|Xg

⊔ f|Xf
⟩ (for f, g : Xg ⊔Xf → Y , and g|Xg

⊔ f|Yf
(x) equal to g(x) if x ∈ Xg and f(x) if

x ∈ Xf), see Lemma 15.

Lemma 13 (Composition of functions). Let l,m, n ∈ N∗, f : {0, 1}l → {0, 1}m and g :
{0, 1}m → {0, 1}n, it is possible to implement |g ◦ f⟩ using 2 queries to |f⟩ and one query to |g⟩.
More precisely, |g ◦ f⟩ can be implemented as the following quantum algorithm,

Comp |f⟩,|g⟩

(
|ϕ⟩ =

∑
(x,z)∈{0,1}l×{0,1}n αx,z |x, z⟩

)
Insertion of separable qubit |0m⟩:

∑
(x,z)∈{0,1}l×{0,1}n

αx,z |x, 0m, z⟩,

Application of |f⟩ ⊗ id :
∑

(x,z)∈{0,1}l×{0,1}n
αx,z |x, f(x), z⟩,

Application of id⊗ |g⟩ :
∑

(x,z)∈{0,1}l×{0,1}n
αx,z |x, f(x), z ⊕ (g ◦ f)(x)⟩,

Application of |f⟩ ⊗ id :
∑

(x,z)∈{0,1}l×{0,1}n
αx,z |x, 0m, z ⊕ (g ◦ f)(x)⟩,

This is a separate state, we return:
∑

(x,z)∈{0,1}l×{0,1}n
αx,z |x, z ⊕ (g ◦ f)(x)⟩ = |g ◦ f⟩(|ϕ⟩).

Proof. The algorithm shows the result of each step of the calculus.

Lemma 14 (Product of functions). Let l,m, n ∈ N∗, f : {0, 1}l → {0, 1}m and g : {0, 1}l →
{0, 1}n. It is possible to implement |g × f⟩ using one query to |f⟩ and one query to |g⟩.

More precisely. Let V the function

∑
(x,y)∈{0,1}l×{0,1}m

αx,y|x, y⟩ −→
∑

(x,y)∈{0,1}l×{0,1}m
αx,y|y, x⟩ .

Then, |f × g⟩ = (id⊗ V ⊗ id) ◦ (|f⟩ ⊗ |g⟩) ◦ (id⊗ V ⊗ id).

Proof. Shown by direct computation.

Lemma 15 (Conditional union of functions). Let m,n ∈ N∗, f, g : {0, 1}m → {0, 1}n and
a partition {0, 1}m = Xg ⊔Xf . It is possible to implement |f|Xf

⊔ g|Xg
⟩ using one query to |f⟩

38

and one query to |g⟩.

CondUnion |f⟩,Xf ,|g⟩,Xg

(
|ϕ⟩ =

∑
(x,z)∈{0,1}m×{0,1}n αx,z |x, z⟩

)
Insertion of separable qubit |0m⟩:

∑
(x,z)∈{0,1}m×{0,1}n

αx,z |x, 0m, z⟩,

Application of |id⟩ ⊗ id:
∑

(x,z)∈{0,1}m×{0,1}n
αx,x,z |x, x, z⟩,

Application of |f⟩ in the last m+ n qubit controlled by the first m qubits with

the condition x ∈ Xf :
∑

(x,z)∈{0,1}m×{0,1}n
αx,z |x, x, z ⊕

(
f|Xf

⊔ id|Xg

)
(x)⟩,

Application of |g⟩ in the last m+ n qubit controlled by the first m qubits with

the condition x ∈ Xg:
∑

(x,z)∈{0,1}m×{0,1}n
αx,z |x, x, z ⊕

(
f|Xf

⊔ g|Xg

)
(x)⟩,

Application of |id⟩ ⊗ id:
∑

(x,z)∈{0,1}m×{0,1}n
αx,z |x, 0m, z ⊕

(
f|Xf

⊔ g|Xg

)
(x)⟩,

This is a separate state, we return:
∑

(x,z)∈{0,1}m×{0,1}n
αx,z |x, z ⊕ (f|Xf

⊔ g|Xg)(x)⟩

= |f|Xf
⊔ g|Xg ⟩(|ϕ⟩).

Proof. The algorithm shows the result of each step of the calculus.

B.5 Missing proofs of reprogramming Hash lemmas

A lemma to separate classical from quantum queries

Lemma 16. Let m,n ∈ N∗. We consider a probabilistic algorithm Setup that, for an input
insetup, outputs two functions H0,H1 : X = {0, 1}m → Y = {0, 1}n and an auxiliary output
auxsetup. We suppose that:
– The output auxsetup is determinist in the input insetup: only the computation of H0 and H1 is

probabilistic.
– For each input insetup and b ∈ {0, 1}, the distributions (pb,x)x∈X , where pb,x is defined by

Hb(x) : (H0,H1)← Setup(insetup), are independent.
Let consider Qc, Qq ∈ N. Let denote by FindHashQc,Qq the following game, applied to quantum
adversaries A = (A1,A2,A3).

FindHashQc,Qq (A = (A1,A2,A3))

1 : insetup ← A1()

2 : (H0,H1, auxsetup)← Setup(insetup)

3 : b←$ {0, 1}

4 : |aux⟩ ← AHb
2 (insetup, auxsetup)

5 : b̃← A|Hb⟩
3 (|aux⟩)

6 : if A2 used Hb more than Qc times

7 : ∨ A3 used |Hb⟩ more than Qq times then

8 : b̃←$ {0, 1}

9 : return Jb = b̃K

We omit A2 is Qc = 0 and A3 if Qq = 0.
Finally, Let

Adv
FindHashQc,Qq

A =

∣∣∣∣Pr[1← FindHashQc,Qq(A)
]
− 1

2

∣∣∣∣ .
39

Then, there exist quantum PPT adversaries ACQueries,AQQueries such that,

Adv
FindHashQc,Qq

A ≤ Adv
FindHashQc,0

ACQueries
+ Adv

FindHash0,Qq

AQQueries
.

G1,Qc,Qq (A = (A1,A2,A3))

1 : insetup ← A1()

2 : (H0,H1, auxsetup)← Setup(insetup)

3 : b←$ {0, 1}

4 : |aux⟩ ← AHb
2 (insetup, auxsetup)

5 : // Let S ⊂ X the set of element queried by A2

6 : // zero : X → Y the constant function to 0n ∈ Y

7 : // and HwithoutCQueries
b = Hb|X−S ⊔ zero|S

8 : b̃← A|HwithoutCQueries
b

⟩
3 (|aux⟩)

9 : if A2 used Hb more than Qc times

10 : ∨ A3 used |HwithoutCQueries
b ⟩

11 : more than Qq times then

12 : if A2 used Hb more than Qc times

13 : ∨ A3 used |Hb⟩ more than Qq times then

14 : b̃←$ {0, 1}

15 : return Jb = b̃K

G̃1,Qc,Qq (A = (A1,A2,A3))

1 : insetup ← A1()

2 : (H0,H1, auxsetup)← Setup(insetup)

3 : bc ←$ {0, 1}, bq ←$ {0, 1}

4 : |aux⟩ ← AHbc
2 (insetup, auxsetup)

5 : // Let S ⊂ X the set of element queried by A2,

6 : // zero : X → Y the constant function to 0n ∈ Y

7 : // and HwithoutCQueries
bq

= Hbq |X−S
⊔ zero|S

8 : b̃← A
|HwithoutCQueries

bq
⟩

3 (|aux⟩)
9 : if A2 used Hbc more than Qc times

10 : ∨ A3 used |HwithoutCQueries
bq

⟩ more

11 : than Qq times then

12 : b̃←$ {0, 1}

13 : return b̃

Fig. 9. Games G1, G̃1 of proof of Lemma 16.

Proof. From FindHash to G1: Using the notations of the game G1 of Figure 9, we define
HCQueries
b = Hb|S ⊔ zero|X−S .

We create an adversary Ã = (A1, Ã2, Ã3) of G1 such that

Adv
G0,Qc,Qq

A ≤ Adv
G1,Qc,Qq

Ã ,

Ã2, Ã3 are described in Figure 10.

Note that Ã3 can simulate each query to |Hb⟩ by using one query to |HwithoutCQueries
b ⟩. Indeed,

it can use the knowledge of classical queries and answers (qs, rs)s∈S to construct

HCQueries
b (x) =

{
rs if x = qs for s ∈ S
zero(x) else

.

Then, it uses the Lemma 15 with Hb = HwithoutCQueries
b |X−S ⊔H

CQueries
|S in order to simulate each

query to |Hb⟩ with one query to |HwithoutCQueries
b ⟩ and one query to |HCQueries

b ⟩.

40

ÃHb
2 (insetup, auxsetup)

1 : |aux⟩ ← AHb
2 (insetup, auxsetup)

2 : // Let S ⊂ X the set of element queried by A2

3 : // and (ins, outs), s ∈ S the (query,response) tuples

4 : // asked by A2 to Hb

5 : | ˜aux⟩ ← |aux⟩ ∪ (ins, outs)s∈S

6 : return ˜aux

Ã HwithoutCQueries
b

3 (|aux⟩)

1 : insetup ← A||Hb⟩⟩
3 ()

2 : // where Hb = HwithoutCQueries
b |X−S

⊔ Hb|S

3 : // so each query of |Hb⟩ can be computed by Ã3

4 : // using one query of |HwithoutCQueries
b ⟩

5 : // and the knowledge of S,HCQueries
b

6 : return b̃

Fig. 10. Adversary Ã of proof of Lemma 16 (Ã1 = A1).

Analysis of G1: we see that,

Adv
G1,Qc,Qq

A

=
1

2

∣∣∣Pr[b̃=0 in G1,Qc,Qq

∣∣∣ b=1]−Pr[b̃=0 in G1,Qc,Qq

∣∣∣ b=1]∣∣∣
=
1

2

∣∣∣Pr[b̃=0 in G̃1,Qc,Qq(A)
∣∣∣ (bc, bq)=(0, 0)]−Pr[b̃=0 in G1,Qc,Qq(A)

∣∣∣ (bc, bq)=(1, 1)]∣∣∣
≤ 1

2

∣∣∣Pr[b̃=0 in G̃1,Qc,Qq(A)
∣∣∣ (bc, bq)=(0, 0)]−Pr[b̃=0 in G1,Qc,Qq(A)

∣∣∣ (bc, bq)=(0, 1)]∣∣∣
+

1

2

∣∣∣Pr[b̃=0 in G̃1,Qc,Qq(A)
∣∣∣ (bc, bq)=(0, 1)]−Pr[b̃=0 in G1,Qc,Qq(A)

∣∣∣ (bc, bq)=(1, 1)]∣∣∣
=
1

2

∣∣∣Pr[b̃=0 in FindHash0,Qq(AQQueries)
∣∣∣ b=0]−Pr[b̃=0 in FindHash0,Qq(AQQueries)

∣∣∣ b=1]∣∣∣
+

1

2

∣∣∣Pr[b̃=0 in FindHashQc,0(ACQueries)
∣∣∣ b=0]−Pr[b̃=0 in FindHashQc,0(ACQueries)

∣∣∣ b=1]∣∣∣
=Adv

FindHash0,Qq

AQQueries
+ Adv

FindHashQc,0

ACQueries
,

Where the adversary AQQueries is (A1,AQQueries,2) (AQQueries,2 is described in Figure 11) and the
adversary ACQueries is (A1,ACQueries,2) (ACQueries,2 is described in Figure 11). Note that the two
hypotheses about Setup are used in order to have

1

2

∣∣∣Pr[b̃ = 0 in FindHashQc,0(ACQueries)
∣∣∣ b = 0

]
−Pr

[
b̃ = 0 in FindHashQc,0(ACQueries)

∣∣∣ b = 1
]∣∣∣

= Adv
FindHashQc,0

ACQueries
.

1

2

∣∣∣Pr[b̃ = 0 in FindHash0,Qq(AQQueries)
∣∣∣ b = 0

]
−Pr

[
b̃ = 0 in FindHash0,Qq(AQQueries)

∣∣∣ b = 1
]∣∣∣

= Adv
FindHash0,Qq

AQQueries
.

Proof of Proposition 7 about non-adaptative reprogramming

Lemma 17 (Lemma 9 of [5]). Let A be a quantum algorithm that makes at most Q queries
to a quantum random oracle O with codomain {0, 1}m (m ∈ N∗). Fix y in the codomain of O.
The expected value of the total query probability of all x such that O(x) = y is at most 2Q3

2m .

Proof of Proposition 7. We use Lemma 16 in order to study separately the case were only
classical (ROM) or quantum (QROM) queries are made.

41

A|Hb⟩
QQueries,2(insetup, auxsetup)

1 : (H̃0, H̃1, auxsetup)← Setup(insetup)

2 : |aux⟩ ← AH̃0
2 (insetup, auxsetup)

3 : // queries to H̃0 answered by AQQueries,2

4 : // We note S ⊂ X the set of element

5 : // queried by A2, and

6 : // HwithoutCQueries
b = Hb|X−S ⊔ zero|S

7 : b̃← A|HwithoutCQueries
b

⟩
3 (|aux⟩)

8 : // queries are answered byACQueries,2

9 : // that ask a query of |Hb⟩ and use

10 : // the knowledge of S and |zero⟩

11 : // in order to compute |HwithoutCQueries
b ⟩

12 : return b̃

AHb
CQueries,2(insetup, auxsetup)

1 : (H̃0, H̃1, auxsetup)← Setup(insetup)

2 : |aux⟩ ← AHb
2 (insetup, auxsetup)

3 : // queries are directly asked by ACQueries,2 to Hb

4 : // We note S ⊂ X the set of element queried by A2,

5 : // and H̃withoutCQueries
1 = H̃1|X−S ⊔ zeroS

6 : b̃← A|H̃withoutCQueries
1 ⟩

3 (|aux⟩)
7 : // queries are answered by ACQueries,2

8 : // that knows HwithoutCQueries
1

9 : return b̃

Fig. 11. Adversaries ACQueries,2 and AQQueries,2 of proof of Lemma 16.

Proof of the ROM case
We will show that for each fixed partition P = (Xi)i∈J1,pK, p ≤ P and family of probability
distributions (Disti)i∈J1,pK such that for each i ∈ J1, pK, SD(Disti,U (Y)) < ϵ, the advantage of
A, making only classical queries, is less that ϵ Q.

We suppose that A makes Qi queries on Xi, Q =
∑

iQi. We create the following games:

– G0 is the game where the oracle is always set to H1.
– For k ∈ J1, pK, Gk is like Gk−1 except for the modification of the oracle where Distk is replaced

by U (Y).

We then see that,

AdvG0
A =

∣∣Pr[0← A in G0]− Pr[0← A in Gp]
∣∣

≤
p∑

i=1

∣∣Pr[0← A in Gi]− Pr[0← A in Gi−1]
∣∣

≤
p∑

i=1

QiSD(U (Y) ,Disti) ≤ Q ϵ .

Proof of the QROM case
The proof is an adaptation of the demonstration of [5, Lemma 3] in our more general situation.
We will show that for each fixed partition P = (Xi)i∈J1,pK, p ≤ P and family of probability
distributions (Disti)i∈J1,pK such that for each i ∈ J1, pK, SD(Disti,U (Y)) < ϵ, the advantage of A
to distinguish the uniform oracle H0 and H1 is less that 4Q2

√
Pϵ .

We first remark that H0 is the random oracle. Then, as in the demonstration of Lemma [5,
Lemma 3], we will describe another way to construct H1 as follows. For each i ∈ J1, p, K, we
define ϵi = SD(Disti,U (Y)) ≤ ϵ and for each i such that ϵi > 0, we define Dist′i by :

– If Pr[y = Disti] < 2−m, then Pr
[
y = Dist′i

]
= 0,

– If Pr[y = Disti] ≥ 2−m, then Pr
[
y = Dist′i

]
= (Pr[y = Disti]− 2−m) 2

ϵi
,

The demonstration of [5, Lemma 3] shows that it is a probability distribution using the fact that

ϵi
2
=

∑
y:Pr[y=Disti]≥2−m

(
Pr[y = Disti]− 2−m

)
=

∑
y:Pr[y=Disti]<2−m

(
2−m − Pr[y = Disti]

)
42

It also shows that H1 can be described as:

H1(x)

1 : y ←$ H0(x) (i.e, sampled with U ({0, 1}m))

2 : // we recall that Y = {0, 1}m

3 : for i ∈ J1, pK

4 : if x ∈ Xi ∧ Pr[y = Disti] < 2−m then

5 : // Note that this condition never happens if ϵi = 0

6 : with probability 1− 2m Pr[y = Disti] :

7 : y′ ←$ Dist′i

8 : return y′

9 : return y

Now, we bound the expected query magnitude of the x ∈ X such that the oracle changed.
Lemma 17 shows that the expected total query probability of any x such that H0(x) = y
is 2Q32−m. Let σ be the query magnitude of points x at which we changed the oracle. The
alternative construction of H1 shows that the only elements x where H1(x) can differ from H0

are the ones where the condition of line 4 is verified. Thus,

E[σ]

=

p∑
i=1

E

 ∑
x∈Xi :

Pr[H0(x)=Disti]<2−m

(1− 2m Pr[H0(x) = Disti])× (total query magnitude of x)

=

p∑
i=1

∑
y∈Y :

Pr[y=Disti]<2−m

(1− 2m Pr[y = Disti])× E
[
total query magnitude of all

x ∈ Xi s.t H0(x) = y

]

≤
p∑

i=1

∑
y∈Y : Pr[y=Disti]<2−m

(1− 2m Pr[y = Disti])× 2Q32−m by Lemma 17

= 2Q3
p∑

i=1

∑
y∈Y : Pr[y=Disti]<2−m

(
2−m − Pr[y = Disti]

)
= Q3

p∑
i=1

SD(U (Y) ,Disti)

≤ Q3pϵ ≤ Q3Pϵ by hypothesis on SD(U (Y) ,Disti) and p.

Thus, the expected Euclidean distance is

E
[√

Qσ
]
≤
√
QE[σ] ≤

√
Q× PQ3ϵ = Q2

√
Pϵ .

We then conclude as in the demonstration of [5, Lemma 3] that the expected statistical
distance of the output probability distributions is thus at most 4Q2

√
Pϵ and therefore the

probability distribution of outputs when the oracle is H0 is at most 4Q2
√
Pϵ away from the

probability distribution of outputs when the oracle is H1.

43

B.6 Generalization of [29, Claim 5.3] and proof of Proposition 1

Lemma 18 (Generalization of [29, Claim 5.3]). Let (A,+, x, 0, 1) be a commutative ring,
M an A-module and Dist a probability distribution of A such that

∅ ̸= Supp(Dist) := {a− a′ : a, a′ ∈ Supp(Dist), a ̸= a′} ⊂ A× .

Let m ≥ 1. For a = (ai)i∈J1,mK ∈ Am, and m = (mi)i∈J1,mK ∈ Mm, let ⟨a,m⟩ =
∑

i aimi.
For m ∈ Mm, let χm,Dist the probability distribution that outputs ⟨a,m⟩ for a ←$ Distm.

Then, Em∈Mm [SD(U (M) , χm,Dist)] ≤ Col(Dist)m/2
√
|M |, where Col(Dist) := Prx,y←Dist[x = y] =∑

x∈Supp(Dist) Pr[Dist = x]2. In particular

Prm∈Mk

[
SD(U (M) , χm,Dist) > Col(Dist)m/4|M |1/4

]
≤ Col(Dist)k/4|M |1/4 .

Moreover, if Col(Dist)m < |M |−5, then,

Prm∈Mk [a ∈ Supp(Dist)→ ⟨a,m⟩ ∈M is surjective] ≥ 1− Col(Dist)m/4|M |1/4 .

Proof. We have

∑
h∈M

Pr
[
χm,Supp(Dist) = h

]2
=
∑
h∈M

Pra←$Distm [⟨a,m⟩ = h]2

= Pr(a,a′)←$Dist2m
[
⟨a,m⟩ =

〈
a′,m

〉]
≤ Pr(a,a′)←$Dist2m

[
a = a′

]
+ Pr(a,a′)←$Dist2m

[〈
a− a′,m

〉
= 0

∣∣a ̸= a′
]

=
∑

a∈Supp(D)k

Pr[Distm = a]2 + Pr(a,a′)←$Dist2m
[〈
a− a′,m

〉
= 0

∣∣a ̸= a′
]

≤
∑

(a1,...,am)∈Supp(Dist)m

(
m∏
i=1

Pr[Dist = ai]
2

)
+ Pr

(a,a′)←$Dist2m

[〈
a− a′,m

〉
= 0 | a ̸= a′

]

=
m∏
i=1

 ∑
a∈Supp(Dist)

Pr[Dist = a]2

+ Pr
(a,a′)←$Dist2m

[〈
a− a′,m

〉
= 0 | a ̸= a′

]
= Col(Dist)m + Pr

(a,a′)←$Dist2m

[〈
a− a′,m

〉
= 0 | a ̸= a′

]
.

44

Taking the expectation in m,

Em

[∑
h∈M

Pr
[
χm,Supp(Dist) = h

]2]
≤ Col(Dist)m + Em

[
Pr(a,a′)←$Dist2m

[〈
a− a′,m

〉
= 0

∣∣a ̸= a′
]]

= Col(Dist)m +
∑

m∈Mm

1

|M |m
Pr(a,a′)←$Dist2m

[〈
a− a′,m

〉
= 0

∣∣a ̸= a′
]

=
∑

m∈Mm

Prm′←$Mm

[
m′ = m

]
Pr(a,a′)←$Dist2m

[〈
a− a′,m

〉
= 0

∣∣a ̸= a′
]

=Pr m←$Mm

(a,a′)←$Dist2m

[〈
a− a′,m

〉
= 0

∣∣∣a ̸= a′
]

= Col(Dist)m +
∑

a,a′∈Supp(Dist)m

a̸=a′

Pr[Distm = a] Pr
[
Distm = a′

]
Pr

m∈Mm

[〈
a− a′,m

〉
= 0
]

= Col(Dist)m +
∑

a,a′∈Supp(Dist)m

a ̸=a′

Pr[Distm = a] Pr
[
Distm = a′

]Ker(ϕa−a′)

|M |m
. (11)

where ϕa−a′ :Mm →M is defined by ϕa−a′(m) = ⟨a− a′,m⟩.

In order to evaluate this last probability, we will show that ϕa−a′ is surjective. Because
a,a′ ∈ Supp(Dist)m and a ̸= a′, there exists i such that ai − a′i ∈ Dist ⊂ A×. For m ∈ M , We
denote by m̂ the vector such that m̂i = m and m̂l = 0 for l ̸= i. We can see that for each

m ∈M , m = ϕ
(
(ai − a′i)

−1m̂
)
. Thus ϕ is surjective.

We deduce that

|Ker(ϕa−a′)| ≃ |M |m

|Im(ϕa−a′)|
=
|M |m

|M |
= |M |m−1 ,

and that, using Equation (11),

Em

[∑
h∈M

Pr
[
χm,Supp(Dist) = h

]2]

= Col(Dist)m +
∑

a,a′∈Supp(Dist)m

a̸=a′

Pr[Distm = a] Pr[Distm = a′]

|M |

= Col(Dist)m +
1

|M |
. (12)

45

Thus,

Em

[∑
h∈M

∣∣∣∣Pr[χm,Supp(Dist) = h
]
− 1

|M |

∣∣∣∣
]

≤ Em

|M | 12 (∑
h

(
Pr
[
χm,Supp(Dist) = h

]
− 1

|M |

)2
) 1

2

=
√
|M |Em

(∑
h

(
Pr
[
χm,Supp(Dist) = h

]
− 1

|M |

)2
) 1

2

≤
√
|M |

(
Em

[∑
h

Pr
[
χm,Supp(Dist) = h

]2]− 1

|M |

) 1
2

≤ Col(Dist)m/2
√
|M | by equation (12).

Finally, if Col(Dist)m < |M |−5, we have 1
|M | − Col(Dist)m/4|M |1/4 > 0 and thus

SD(U (M) , χm,Dist) ≤ Col(Dist)m/4|M |1/4

⇒ ∀x ∈M, Pr[χm,Dist = x] ≥ 1

|M |
− Col(Dist)m/4|M |1/4 > 0

⇒ ∀x ∈M, x ∈ Supp(χm,Dist)

⇒ a ∈ Supp(Dist)→ ⟨a,m⟩ ∈M is surjective .

Corollary 3. Let m,n, l, k, h, d ∈ N∗, R = Z[X]/(Xd+1), d = 2h, q = 3k. If k ≥ 4, m ≥ 5n+1
and l ≥ 21, then,

PrA∈R1×l
q

[
ARl

q = Rq

]
≥ 1− 3−(m−n)/4, PrA∈Zn×m

q

[
AZm

q = Zn
q

]
≥ 1− 3

−
(

d(l−4)
4

)
.

Proof. It can be shown by induction on k ≥ 4 than ARl
34 = R34 ⇒ ARl

q = Rq and AZm
3 =

Zn
3 ⇒ AZm

q = Zn
q . For example, if we have already shown that ARl

3u = R3u for some u ≥ 4,

we write any y ∈ R3u+1 as y = 3yu + y3 mod q with Cf(yu) ∈ {0, 3u − 1}l,Cf(y3) ∈ {0, 3− 1}l
and can thus write y = A(3x1 + x2) with xu and xu found using the induction hypothesis that
ARl

3u = R3u . We then use Lemma 18 with:

– A = Z3, M = Zn
3 ,m = m,Dist = U (J−1, 1K}). The condition Col(Dist)m < |M |−5 becomes

1
3m < 3−5n and if satisfied if m ≥ 5n+ 1.

– A =M = R34 , Dist = U (SR) where SR = {
∑d−1

i=0 aiX
i ∈ R34 : (a0, . . . , ad−1) ∈ {−4, 0, 4}d/4×

{−1, 0, 1}d/2×{−4, 0, 4}d/4} ⊂ R34 The distribution satisfies the condition of the lemma by
Proposition 13. Moreover, The condition Col(Dist)l < |M |−5 becomes 1

3dl
< 3−20d and if

satisfied if l ≥ 21.

Proof of Proposition 1. The inequalities about statistical distance are consequences of Lemma 18
with:

– A = Zq, M = Zn
q and m elements of M .

– A = M = Rq, with l elements of M . Corollary 2 is used to ensure the distributions satisfy
the invertibility condition.

The two other inequalities are consequences of Corollary 3.

46

B.7 Proof of Propositions 4 and 5 about matrix delegation

Lemma 19. Let m,n, q ∈ N∗, 0 < ϵ < 1/2, s > 0,A ∈ Zn×m. If AZm = Zn mod q, then, the
two following probability distributions are equal

Dist1 : z←$ DΛ⊥
q (A)+x,s,x←$ Zm , Dist2 : z←$ DΛ⊥

u,q(A),s,u←$ Zn .

Moreover, if s ≥ ηϵ(Λ⊥q (A)) , SD
(
Dist1,Dm

Z,s

)
≤ 2ϵ.

Proof. If AZm
q = Zn

q , we can consider it as a surjective morphism between groups ((Zm
q ,0,+)→

(Zn
q ,0,+)) to deduce that the probability distribution Ax,x←$ Zm

q is uniform on Zn
q . Using in

addition Λ⊥q,Ax(A) = Λ⊥q (A) + x, we conclude that Dist1 = Dist2. Note now that Dist1 and Dm
Z,s

can be expressed as

Dm
Z,s : z←$ DΛ⊥

q (A)+x,s, Λ
⊥
q (A) + x←$

(
Dm

Z,s mod Λ⊥q (A)
)
,

Dist1 : z←$ DΛ⊥
q (A)+x,s,x←$

(
Zm mod Λ⊥q (A)

)
.

With this observation and [15, Corollary 2.8], we see

SD
(
Dist1,Dm

Z,s
)
≤ SD

(
U
(
Zm mod Λ⊥q (A)

)
,Dm

Z,s mod Λ⊥q (A)
)
≤ 2ϵ .

Proof of Proposition 4. We will use an intermediate probability distribution Dist1.

DistModKExt(A,TA, s)

R←$ Dm×nk
Z,s

A′ := AR+G

T′
A ← DelTrap(A,TA,A′, s)

return (A′,T′
A)

Dist1(A)

R←$ Dm×nk
Z,s

A′ := AR+G

R̃← Dm×nk
Z,s conditionned to

AR̃ = A′ −G(= AR)

T′
A := R̃

return (A′,T′
A)

DistSimModKExt(A)

R←$ Dm×nk
Z,s

A′ := AR+G

T′
A := R

return (A′,T′
A)

We study the statistical distance between DistKExt and Dist1: Proposition 3 shows that

if s ≥ rnk,ϵ

√
11
(
s1(TA)2 + 1

)
, then

SD
(
DistModKExt(A,TA, s),Dist1(A)

)
≤ nkγSample

n,m,ϵ . (13)

We show that Dist1 and DistSimModKExt are equal: Dist1 and DistSimModKExt are equals
because, for any A, the two following probability distributions are equals

{(AR,R) : R←$ Dm×nk
Z,s } ,

{(AR,R′) : R←$ Dm×nk
Z,s ,R′ ←$ Dm×nk

Z,s conditioned to AR = AR′} .

This equality comes from a general probability fact proved in Appendix A (Lemma 7).

We analyze when s ≥ rnk,ϵ

√
11
(
s1(TA)2 + 1

)
: Proposition 2, Corollary 1 and the condition

s ≥
√
11rnk,ϵ

√
s1(Binom)[m− nk, nk, 1/2]2 + 1 show that

Pr(A,TA)←$Trap(n,m,q)

[
s ≥ rnk,ϵ

√
11
(
s1(TA)2 + 1

)]
≥ 1− 2q−n . (14)

47

Conclusion: Using Equations (13), (14) and the equality Dist1 = DistSimModKExt, we can con-
clude that

Pr(A,TA)←$Trap(n,m,q)

[
SD(DistSimModKExt(A),DistModKExt(A,TA, s)) ≤ nkγSample

n,m,ϵ

]
≥ 1− 2q−n .

Proof of Proposition 5. The part of Proposition 3 about SampleD and Lemma 19 implies
that, when

(i) s̃ ≥ ηϵ
(
Λ⊥q (A∥A′)

)
,

(ii) (A∥A′)Zm+nk = Zn mod q ,

(iii) s1
(
T′A
)
≤ s1(Gauss)[m,nk, s]

(
⇒ s̃ ≥ rnk,ϵ

√
11
(
s1
(
T′A
)2

+ 1
))

,

we have

SD
(
DistSign(A,A

′,T′A, s̃),Dm+nk
Z,s̃

)
≤ γSample

n,m+nk,ϵ + 2ϵ . (15)

We now study these three conditions.
Study of the conditions (i), (ii)

Lemma 11 and Proposition 1 show that

Pr
(A,A′)←$Zn×m

q ×Zn×nk
q

[
s ≥ ηϵ

(
Λ⊥q (A∥A′)

)
∧ (A∥A′)Zm+nk = Zn mod q

]
≥ 1− 2q−n/4 .

This implies, by a general probability fact, shown in additional appendix in Proposition 12, that

PrA←$Zn×m
q

[
PrA′←$Zn×nk

q

[
s ≥ ηϵ(Λ⊥q (A∥A′))

∧ (A∥A′)Zm+nk = Znmod q
]
≥ 1−

√
2q−n/8

]
≥ 1−

√
2q−n/8 . (16)

Using the equation (16), the fact that the output A′ of DistKExt is uniform and Proposition 2,
we have

Pr
(A,TA)←$Trap(n,m,q)

[
Pr

(A′,T′
A)←$DistKExt(A,TA,s)

[
(i) and (ii) true

]
≥ 1−

√
2q−n/8

]
≥ 1−

(√
2q−n/8 + nkq−0.196n

)
. (17)

Study of the condition (iii)
Lemma 19 (applied nk times) and Proposition 3 shows that if:

(a) s ≥ ηϵ(Λ⊥q (A)),

(b) AZm = Zn mod q

(c) s1(TA) ≤ s1(Binom)[m− nk, nk, 1/2]

(
⇒ s ≥ rnk,ϵ

√
11
(
s1(TA)2 + 1

))
,

48

ten,

SD
(
T′A : (A′,T′A)← DistKExt(A,TA, s),Dm×nk

Z,s

)
≤ nk

(
2ϵ+ γSample

n,m,ϵ

)
. (18)

Moreover, Corollary 1 shows that

PrR←$Dm×nk
Z,s

[
s1(R) > s1(Gauss)[m,nk, s]

]
≤ 2q−n . (19)

Thus, Equations (18) and (19) implies that when (a), (b), (c) are verified,

Pr(A′,T′
A)←DistKExt(A,TA,s)

[
s1
(
T′A
)
≤ s1(Gauss)[m,nk, s]

]
≥ 1−

(
2q−n + nk(2ϵ+ γSample

n,m,ϵ)
)
. (20)

Finally, Proposition 1, Proposition 2, Lemma 11 and Corollary 1 show

Pr
(A,TA)←$Trap(n,m,q)

[(a), (b) and (c) true] ≥ 1−
(
4q−n/4 + nkq−0.196n

)
. (21)

We thus have, by equations (20) and (21)

Pr

(A,TA)←$Trap(n,m,q)

[
Pr(A′,T′

A)←DistKExt(A,TA,s)

[
(iii) true

]
≥ 1−

(
2q−n + nk(2ϵ+ γSample

n,m,ϵ)
)]

≥ 1−
(
4q−n/4 + nkq−0.196n

)
. (22)

Conclusion
We conclude, with equations (15), (17), (22) and with Proposition 2 that

Pr
(A,TA)←Trap(n,m,q)

[
Pr

(A′,T′
A)←DistKExt(A,TA)

[
SD
(
DistSign(A,A

′,TA, s̃),Dm+nk
Z,s̃

)
≤ γSample

n,m+nk,ϵ + 2ϵ
]

≥ 1−
(
2q−n + nk(2ϵ+ γSample

n,m,ϵ) +
√
2q−n/8

)]
≥ 1−

(
2nkq−0.196n + 4q−n/4 +

√
2q−n/8

)
.

B.8 Links between lattices and R-lattices

We will use the functions Cf : Ra×b
q → Za×db

q and Rot : Ra×b
q → Zda×db

q defined in Section 3.

We define the dual of an element a =
∑d−1

i=0 aiX
i ∈ R as a∗ := a0 +

∑d−1
i=1 ad−iX

i. The dual of
a matrix B = (bi,j) ∈ Rn×m is defined as B∗ := (b∗j,i) ∈ Rm×n. We note that (B∗)∗ = B and(
B⊤
)∗

= (B∗)⊤.

Proposition 14. Cf and Rot are Z-linear. Moreover, for all A ∈ Rn×m,B ∈ Rm×l, we have

Cf(AB)=Cf(A) Rot(B) Rot(AB)=Rot(A) Rot(B) Rot(A∗)=Rot(A)⊤ .

Proof. The fact that Cf and Rot are Z-linear is verified by direct computation.

49

First, a direct calculus shows that for each a, b ∈ Rq Cf(ab) = Cf(a)Rot(b). Then, for 1 ≤
i ≤ n, the ith line of Cf(AB) is

Cf

 m∑
j=1

ai,jbj,1, . . .,
m∑
j=1

ai,jbj,l

=

 m∑
j=1

Cf(ai,jbj,1), . . .,
m∑
j=1

Cf(ai,jbj,l)

 ,

=

 m∑
j=1

Cf(ai,j)Rot(bj,1), . . .,
m∑
j=1

Cf(ai,j)Rot(bj,l)

 ,

=
(
Cf(ai,1)∥. . .∥Cf(ai,m)

)
Rot(B) ,

which is equal to the ith line of Cf(A)B. The second equation in a direct consequence of the fact
that, for a, b ∈ R, Rot(ab) = Rot(a)Rot(b). To see that, we note that for 1 ≤ i ≤ d the ith lines
of Rot(ab) and Rot(a)Rot(b) are, by definition, respectively Cf(Xiab) and Cf(Xia)Rot(b) : they
are thus equal by an application of the first equality of the proposition.

The third equation is a direct consequence of the fact that for all a ∈ R, Rot(a∗) = Rot(a)⊤,
and the definitions of Rot and the dual of a matrix in R.

Proposition 15. For A ∈ Rn×m and B ∈ Rm×l, we have ∥AB∥ ≤
√
d s1(A) ∥B∥.

Proof. We note that ∥Cf(A)∥ = ∥A∥, the norm being taken in their respective spaces. We note
that ∥Rot(B)∥ =

√
d∥B∥. We also note that Cf(AB) = Cf(A) Rot(B). Thus,

∥AB∥ = ∥Cf(AB)∥ = ∥Cf(A) Rot(B)∥ ≤ s1(Cf(A)) ∥ Rot(B)∥ ,

= s1(A) ∥ Rot(B)∥ ≤
√
d s1(A) ∥B∥ .

Proposition 16. For A ∈ Rn×m, s1(Rot(A)) ≤
√
d s1(A)

Proof. For all 1 ≤ i ≤ d − 1, we have s1
(
Cf(XiA)

)
= s1(Cf(A)). Thus, for any x ∈ Rdm, we

have,

∥Rot(A)x∥ =
∥∥∥(Cf(A)x,Cf(XA)x, · · · ,Cf(Xd−1A)x

)∥∥∥
=

√√√√d−1∑
i=0

∥Cf(XiA)x∥2

≤

√√√√d−1∑
i=0

s1(Cf(XiA))2 ∥x∥2

=

√
d s1(Cf(A))2 ∥x∥2 =

√
d s1(Cf(A)) ∥x∥

Proposition 17. For A ∈ Rm×n
q ,x ∈ Rn

q ,u ∈ Rm
q , we have

Cf
(
Λ⊤u,R,q (A)

)
= Λ⊤Cf(u)

(
Rot

(
A⊤
)⊤)

Cf (ΛR,q (A)) = Λq

(
Rot

(
A⊤
)⊤)

,

D
Λ⊤
u,R,q(A)+x,s

= Cf−1
(
D

Λ⊤
Cf(u)

(Rot(A))+Cf(x),s

)
.

50

Proof. We will need some properties about Rot and Cf that are shown in Appendix B.8, Propo-
sition 14. The first equality is proved by

x ∈ Λ⊤u,R (A)⇔ x⊤A⊤ = u⊤ ⇔ Cf
(
x⊤A⊤

)
= Cf(u⊤)

⇔ Cf(x⊤)Rot(A⊤) = Cf(u⊤)

⇔ Cf(x) ∈ Λ⊤Cf(u)
(
Rot

(
A⊤
)⊤)

.

The second by

x ∈ ΛR,q (A)⇔ ∃s : x = As

⇔ Cf(x⊤) = Cf
(
s⊤A⊤

)
⇔ Cf(x⊤) = Cf(s⊤)Rot(A⊤)

⇔ Cf(x) = Rot(A⊤)
⊤
Cf(s)

⇔ Cf(x) ∈ Λq

(
Rot

(
A⊤
)⊤)

.

The equality of probability distributions is a direct consequence of the first equality.

Corollary 4. For all B ∈ Rn×m, we have q Cf
(
Λ⊥R,q(B)

)∗
= Cf (ΛR,q(B

∗)) .

Proof. We use Propositions 17 and 14 for

q Cf
(
Λ⊥R,q(B)

)∗
= q

(
Λ⊥q

(
Rot

(
B⊤
)⊤))∗

by Proposition 17

= Λq

(
Rot

(
B⊤
))

because for A ∈ Zm×n, q
(
Λ⊥q (A)

)∗
=Λq

(
A⊤
)

= Λq

(
Rot

(
(B∗)⊤

)⊤)
by Proposition 14

= Cf (ΛR,q (B
∗)) by Proposition 17.

B.9 Lattice trapdoors over Rq

In this section we provide the definitions of the algorithms TrapR,DelTrapR and SampleDR evoked
in Section 4.3. We give the propositions and proofs relative to instantiations on rings, they are
the equivalent (on structured lattices) of the ones presented in Section 4.3 on unstructured
lattices. We will make an extensive use of the propositions of Appendix B.8 in order to pass
from the unstructured to the structured case.

Let g = (1, 3, . . . , 3k−1) ∈ Rk and G = [In 3In . . . 3k−1In] ∈ Zn×nk. We recall that a g-

trapdoor of a matrix A ∈ R1×l
q is a matrix TA ∈ R

(l−k)×k
q such that Rot(TA) ∈ Zd(l−k)×dk

q is a

G-trapdoor (defined in Section 4.3) of Rot(A) ∈ Zd×dl
q . Equivalently, A

(
−TA
Ik

)
= g mod q.

Proposition 18 (Statistical instantiation of trapdoors (from [25, Section 5.2]), ring

version). Let l > 2k. We denote by TrapR(l, q) the algorithm that samples A ←$ R1×(l−k)
q ,

TA ←$ P(l−k)×k
R,1/2

and outputs the couple
(
A :=

[
A∥g −ATA

]
,TA

)
. Then, TA is a g-trapdoor

of A, and A has a probability distribution with statistical distance at most kq−0.196d = negl(d)
from uniform distribution.

51

Proof. A direct computation shows that TA is a G-trapdoor of A. The statistical distance upper
bound comes from Proposition 1.

Proposition 19 ([25], Ring version). Let l, k ∈ N∗, q = 3k, l > 2k. Let 0 < ϵ < 1/2. We
consider g = (1, 3, · · · , 3k−1) as an element of Rk

q . There exists algorithms DelTrapR, SampleDR

such that, for A ∈ R1×l
q , TA ∈ R

(l−k×k)
q a g-trapdoor and s ≥ rdk,ϵ

√
11
(
d s1(TA)2 + 1

)
, we

have:
– SampleDR(A,u,TA, s) returns z ∈ Rk

q such that Az = u and the statistical distance between

the probability distribution of z and D
Λ⊤
R,q,u(A),s

is upper bounded by the function7 γSample
d,dl,ϵ

which is negligible if ϵ is.
– DelTrap(A ∈ R1×l,TA ∈ R(l−k)×k,A′ ∈ R1×k, s) returns a g-trapdoor of [A∥A′] (the output

T′A ∈ Rl×k satisfies AT′A = A′−g). Moreover, the probability distribution of the output T′A
is at statistical distance less than kγSample

d,dl,ϵ of the distribution Dl×k
R,s with output R conditioned

to AR = A′−g. More precisely, with notation A′−g = (u1,u2, · · · ,uk) ∈ Rk, the ith column
of T′A is computed as SampleD(A,ui,TA, s).

Proof. We apply Proposition 3 to Rot(A) with the help of the results of Section B.8. For example,
we use the bound s1(Rot(TA)) ≤

√
ds1(A) of Proposition 16 and the proposition 17 is used to

see that

D
Λ⊤
u,R,q(A),s

= Cf−1
(
D

Λ⊤
Cf(u)

(Rot(A)),s

)
.

Lemma 20. Let l ∈ N∗, q ∈ N∗, 0 < ϵ < 1/2, s > 0 and A ∈ R1×l
q . If ARl

q = Rq Then, the two
following probability distributions are equals

Dist1 : z←$ D
Λ⊥
R,q(A)+x,s

,x←$Rl , Dist2 : z←$ D
Λ⊥
R,u,q(A),s

,u←$R .

Moreover, if s ≥ ηϵ(Λ⊥R,q(A)), then SD
(
Dist1,Dl

R,s

)
≤ 2ϵ

Proof. Similar to the demonstration of Lemma 19.

Proposition 20 (Simulation of delegation of trapdoors). For s > 0, A ∈ R1×l and
TA ∈ R(l−k)×k a g-trapdoor of A. We define

DistR,ModKExt(A,TA, s) :=
{
(A′,T′A) : R←$ Dl×k

R,s , A
′ := AR+G ,

T′A ← DelTrapR
(
A,TA,A

′, s
) }

,

DistR,SimModKExt(A, s) :=
{
(A′,R) : R←$ Dl×k

R,s , A
′ := AR+ g

}
.

Then, if s ≥
√
11rdk,ϵ

√
16ds1(Binom)[l − k, dk, 1/2]2 + 1, we have

Pr
(A,TA)←TrapR(l,q)

[
SD(DistR,ModKExt(A,TA),DistR,SimModKExt(A)) ≤ dkγSample

d,dl,ϵ

]
≥ 1− 2q−d .

Proof. We will use an intermediate probability distribution Dist1.

DistR,ModKExt(A,TA, s)

R←$ Dl×k
R,s

A′ := AR+G

T′
A ← DelTrapR(A,TA,A′, s)

return (A′,T′
A)

Dist1(A)

R←$ Dl×k
R,s

A′ := AR+G

R̃← Dl×k
R,s condi:ionned to

AR̃ = A′ −G(= AR)

T′
A := R̃

return (A′,T′
A)

DistR,SimModKExt(A)

R←$ Dl×k
R,s

A′ := AR+G

T′
A := R

return (A′,T′
A)

7 The same as in Proposition 3.

52

We study the statistical distance between DistR,KExt and Dist1: Proposition 3 shows

that if s ≥ rdk,ϵ

√
11
(
ds1(TA)2 + 1

)
SD
(
DistR,ModKExt(A,TA, s),Dist1(A)

)
≤ lkγSample

d,dl,ϵ . (23)

We show that Dist1 and DistR,SimModKExt are equal: Dist1 and DistR,SimModKExt are equals
because, for any A, the two following probability distributions are equals

{(AR,R) : R←$ Dl×k
R,s}

{(AR,R′) : R←$ Dl×k
R,s ,R

′ ←$ Dl×k
R,s conditioned to AR = AR′} .

This equality comes from a general probability fact proved in Appendix A (Lemma 7).

We analyze when s ≥ rdk,ϵ

√
11
(
s1(TA)2 + 1

)
: Proposition 18, Corollary 1 and the condition

s ≥
√
11rdk,ϵ

√
16ds1(Binom)[l − k, dk, 1/2]2 + 1 show that

Pr(A,TA)←$Trap(l,q)

[
s ≥ rdk,ϵ

√
11
(
ds1(TA)2 + 1

)]
≥ 1− 2q−d . (24)

Conclusion: Using Equations (23), (24) and the equality Dist1 = DistR,SimModKExt, we can
conclude that

Pr

(A,TA)←$Trap(l,q)

[
SD(DistR,SimModKExt(A, s),DistR,ModKExt(A,TA, s))≤dkγSample

d,dl,ϵ

]
≥1− 2q−d .

Proposition 21. For s > 0, s̃ > 0, A ∈ R1×l,A′ ∈ R1×k and T′A ∈ Rl×k a g-trapdoor of
[A∥A′], We define

DistR,KExt(A,TA, s) :=
{
(A′,T′A) : A′ ←$Rl×k

q ,T′A ← DelTrapR
(
A,TA,A

′, s
)}

DistSign(A,A
′,T′A, s̃) = {z : z← SampleDR([A∥A′],u,T′A, s̃),u←$Rn

q }

ν1 := k(2ϵ+ γSample
d,dl,ϵ) + 3−d

(2k−l)
4

+ 3
2

ν2 := 2kq−0.196d + 3−d
(2k−l)

4
+3 = negl(d) .

Then, for s ≥ max
(√

11rdk,ϵ
√

16ds1(Binom)[l − k, dk, 1/2]2 + 1, 12rdl,ϵ

)
and

s̃ ≥ max
(√

11rdk,ϵ
√
ds1(Gauss)[l, dk, s]2 + 1, 12rd(l+k),ϵ

)
, we have

Pr
(A,TA)←$TrapR(l,q)

[
Pr

(A′,T′
A)←$DistR,KExt(A)

[
SD
(
DistSign(A,A

′,TA, s̃),D
d(l+k)
R,s̃

)
≤ γSample

d,d(k+l)ϵ

]
≥ 1− ν1

]
≥ 1− ν2 . (25)

Proof. The part of Proposition 3 about SampleDR and the lemma 19 imply that, when

(i) s̃ ≥ ηϵ
(
Λ⊥R,q(A∥A′)

)
,

(ii) (A∥A′)Rl+k = R mod q ,

(iii) s1
(
T′A
)
≤ ds1(Gauss)[l, dk, s]

(
⇒ s̃ ≥ rdk,ϵ

√
11
(
ds1
(
T′A
)2

+ 1
))

,

53

we have

SD
(
DistR,Sign(A,A

′,TA, s̃),Dl+k
R,s̃

)
≤ γSample

d,d(k+l)ϵ + 2ϵ . (26)

We now study these three conditions.
Study of the conditions (i), (ii) Lemma 12 and Proposition 1 show that

Pr

(A,A′)←$R1×l
q ×R1×k

q

[
s ≥ ηϵ

(
Λ⊥R,q(A∥A′)

)
∧ (A∥A′)Rl+k = R mod q

]
≥ 1− 3 ∗ 3−d

(2k−l)
2

= 1− 3−d
(2k−l)

2
+1 .

This implies, by a general probability fact, shown in additional appendix in Proposition 12, that

PrA←$R1×l
q

[
PrA′←$R1×k

q

[
s ≥ ηϵ(Λ⊥R,q(A∥A′))

∧ (A∥A′)Rl+k = R mod q
]
≥ 1− 3−d

(2k−l)
4

+ 1
2

]
≥ 1− 3−d

(2k−l)
4

+ 1
2 . (27)

Using the equation (27), the fact that the output A′ of DistR,KExt is uniform and Proposition 18,
we have

Pr
(A,TA)←$Trap(n,m,q)

[
Pr

(A′,T′
A)←$DistKExt(A,TA,s)

[
(i) and (ii) true

]
≥ 1− 3−d

(2k−l)
4

+ 1
2

]
≥ 1−

(
3−d

(2k−l)
4

+ 1
2 + kq−0.196d

)
. (28)

Study of the condition (iii)
Lemma 20 (applied k times) and Proposition 19 show that if

(a) s ≥ ηϵ(Λ⊥R,q(A))

(b) ARl = R mod q

(c) s1(TA) ≤ 4s1(Binom)[l − k, dk, 1/2]

(
⇒ s ≥ rdk,ϵ

√
11
(
d s1(TA)2 + 1

))
,

then,

SD
(
T′A : (A′,T′A)← DistR,KExt(A,TA, s),Dl×k

R,s

)
≤ k

(
2ϵ+ γSample

d,dl,ϵ

)
. (29)

Moreover, Corollary 1 shows that

PrR←$Dl×k
R,s

[
s1(R) > s1(Gauss)[l, dk, s]

]
≤ 2q−d . (30)

Thus, Equations (29) and (30) implies that when (a), (b), (c) are verified,

Pr(A′,T′
A)←DistR,KExt(A,TA)

[
s1
(
T′A
)
≤ s1(Gauss)[l, dk, s]

]
≥ 1−

(
2q−d + k(2ϵ+ γSample

d,dl,ϵ)
)
. (31)

Finally, Proposition 1 Proposition 18, Lemma 12 and Corollary 1 show

Pr
(A,TA)←$TrapR(n,m,q)

[(a), (b) and (c) true] ≥ 1−
(
3q−d/4 + 3−d

(2k−l)
2 + 2kq−0.196d

)
(32)

≥ 1−
(
3−d

(2k−l)
2

+2 + 2kq−0.196d
)

(33)

54

We thus have, by equations (31) and (33)

Pr

(A,TA)←$TrapR(n,m,q)

[
Pr(A′,T′

A)←DistR,KExt(A,TA,s)

[
(iii) true

]
≥ 1−

(
2q−d + k(2ϵ+ γSample

d,dl,ϵ)
)]

≥ 1−
(
3−d

(2k−l)
2

+2 + kq−0.196d
)
. (34)

Conclusion
We conclude, with equations (26), (28), (34) Proposition 18 and the fact that 2q−d ≤ 3−d

(2k−l)
4 ,

Pr
(A,TA)←TrapR(l,q)

[
Pr

(A′,T′
A)←DistR,KExt(A,TA)

[
SD
(
DistR,Sign(A,A

′,TA, s̃),Dl+k
R,s̃

)
≤ γSample

d,d(k+l)ϵ + ϵ
]

≥ 1−
(
k(2ϵ+ γSample

d,dl,ϵ) + 3−d
(2k−l)

4
+ 3

2

)]
≥ 1−

(
2kq−0.196d + 3−d

(2k−l)
2

+2 + 3−d
(2k−l)

4
+ 1

2

)
≥ 1−

(
2kq−0.196d + 3−d

(2k−l)
4

+3
)
.

C Detailed games for the proof of Theorem 1 of Section 5

55

G1(A)

1 : (mpk,msk)← Setup()

2 : cptC := 0, cptS := 0

3 : Hashid ←$ SetId{0,1}
τnonce×SetId

4 : Hashmess ←$ SetMess{0,1}
τnonce×SetMess

5 : NoncesSk← ∅,NoncesSign← ∅
6 : AskedSk← ∅,AskedSign← ∅, sAskedSign← ∅
7 : ORACLES = {OCorrupt,OSign, |Hashid⟩, |Hashmess⟩}
8 : (σ̃∗ = (t∗, s∗, σ∗), id∗, µ∗)← AORACLES(mpk)

9 : if id∗ ∈ AskedSk

10 : ∨ (id∗, µ∗) ∈ AskedSign then // for EUF-CMA

11 : ∨ (id∗, µ∗, σ∗) ∈ sAskedSign then // for sEUF-CMA

12 : return 0

13 : fail1 := ”∃(r, id) ∈ NoncesSk :

14 : Hashid(r, id) = Hashid(t
∗, id∗)”

15 : fail2 := ”∃(t, id, s, µ) ∈ NoncesSign :

16 : (t, id, s, µ) ̸= (t∗, id∗, s∗, µ∗)

17 : ∧ Hashid(t, id) = Hashid(t
∗, id∗)

18 : ∧ Hashmess(s, µ) = Hashmess(s
∗, µ∗)”

19 : if cptC > QCorr ∨ cptS > QS then

20 : return 0

21 : if fail1 ∨ fail2 then

22 : return 0

23 : return Verify
(
mpk,Hashid(t

∗, id∗),

24 : Hashmess(s
∗, µ∗), σ∗)

OSign(id, µ)

1 : cptS := cptS + 1

2 : t←$ {0, 1}τnonce

3 : s←$ {0, 1}τnonce

4 : ĩd := Hashid(t, id)

5 : µ̃ := Hashmess(s, µ)

6 : NoncesSign := NoncesSign

7 : ∪{(t, id, s, µ)}
8 : skĩd,µ̃ ← KeyExt(msk, ĩd)

9 : σĩd,µ̃ ← Sign(skĩd,µ̃, µ̃)

10 : σ̃id,µ = (t, s, σĩd,µ̃)

11 : // for EUF-CMA:

12 : AskedSign = AskedSign ∪ {(id, µ)}
13 : // for sEUF-CMA:

14 : sAskedSign = sAskedSign ∪ {(id, µ, σ̃id,µ)}
15 : return σ̃id,µ

OCorrupt(id)

1 : AskedSk = AskedSk ∪ {id}
2 : cptC := cptC + 1

3 : r←$ {0, 1}τnonce

4 : NoncesSk := NoncesSk ∪ {(r, id)}

5 : ĩd := Hashid(r, id)

6 : skĩd ← KeyExt(msk, ĩd)

7 : skid := (r, skĩd)

8 : return skid

Fig. 12. Game G1 of proof of Theorem 1.

56

Union of FindColQ (τnonce + τid, τid)QHashid
+QCorr+QS

and FindColQ (τnonce + τmess, τmess)QHashmess+QS

1 : Hashid ←$ SetId{0,1}
τnonce×SetId

2 : Hashmess ←$ SetMess{0,1}
τnonce×SetId

3 : (u, v)← B|Hashid⟩,|Hashmess⟩

4 : if Hashid(u) = Hashid(v)

5 : ∨ Hashmess(u) = Hashmess(v) then

6 : return 1

7 : return 0

B()

1 : Hashmess ←$ SetMess{0,1}
τnonce×SetMess

2 : mpk,msk← Setup()

3 : cptC := 0, cptS := 0

4 : NoncesSk← ∅,NoncesSign← ∅
5 : AskedSk← ∅,AskedSign← ∅, sAskedSign← ∅
6 : ORACLES = {OCorrupt,OSign, |Hashid⟩, |Hashmess⟩}
7 : (σ̃∗ = (t∗, s∗, σ∗), id∗, µ∗)← AORACLES(mpk)

8 : // Any classical or quantum query to Hashid or Hashmess

9 : // is made by B for A

10 : if id∗ ∈ AskedSk

11 : ∨ (id∗, µ∗) ∈ AskedSign then // for EUF-CMA

12 : ∨ (id∗, µ∗, σ∗) ∈ sAskedSign then // for sEUF-CMA

13 : return 0

14 : if cptC > QCorr ∨ cptS > QS then

15 : return 0

16 : if ∃(r, id) ∈ NoncesSk such that

17 : Hashid(r, id) = Hashid(t
∗, id∗) then

18 : return ((r, id), (t∗, id∗))

19 : if ∃(t, id, s, µ) ∈ NoncesSign such that

20 : (t, id, s, µ) ̸= (t∗, id∗, s∗, µ∗)

21 : ∧ Hashid(t, id) = Hashid(t
∗, id∗)

22 : ∧ Hashmess(s, µ) = Hashmess(s
∗, µ∗) then

23 : if (t, id) ̸= (t∗, id∗) then

24 : return ((t, id), (r∗, id∗))

25 : else then

26 : return ((s, µ), (s∗, µ∗))

27 : return ⊥

OSign(id, µ)

1 : cptS := cptS + 1

2 : t←$ {0, 1}τnonce

3 : s←$ {0, 1}τnonce

4 : ĩd := Hashid(t, id)

5 : µ̃ := Hashmess(s, µ)

6 : NoncesSign := NoncesSign

7 : ∪ {(t, id, s, µ)}
8 : skĩd,µ̃ ← KeyExt(msk, ĩd)

9 : σĩd,µ̃ ← Sign(skĩd,µ̃, µ̃)

10 : σ̃id,µ = (t, s, σĩd,µ̃)

11 : // for EUF-CMA:

12 : AskedSign = AskedSign ∪ {(id, µ)}
13 : // for sEUF-CMA:

14 : sAskedSign = sAskedSign ∪ {(id, µ, σ̃id,µ)}
15 : return σ̃id,µ

OCorrupt(id)

1 : AskedSk = AskedSk ∪ {id}
2 : cptC := cptC + 1

3 : r←$ {0, 1}τnonce

4 : NoncesSk := NoncesSk ∪ {(r, id)}

5 : ĩd := Hashid(r, id)

6 : skĩd ← KeyExt(msk, ĩd)

7 : skid := (r, skĩd)

8 : return skid

Fig. 13. Reduction to the search of a collision for Hashid or Hashmess, for proof of Theorem 1.

57

G2(A)

1 : (mpk,msk)← Setup(λ)

2 : cptC := 0, cptS := 0

3 : Hashid ←$ SetId{0,1}
τnonce×SetId

4 : Hashmess ←$ SetMess{0,1}
τnonce×SetMess

5 : NoncesSk← ∅,NoncesSign← ∅
6 : AskedSk← ∅,AskedSign← ∅, sAskedSign← ∅
7 : ORACLES = {OCorrupt,OSign, |Hashid⟩, |Hashmess⟩}
8 : (σ̃∗ = (t∗, s∗, σ∗), id∗, µ∗)← AORACLES(mpk)

9 : if id∗ ∈ AskedSk

10 : ∨ (id∗, µ∗) ∈ AskedSign then // for EUF-CMA

11 : ∨ (id∗, µ∗, σ∗) ∈ sAskedSign then // for sEUF-CMA

12 : return 0

13 : if cptC > QCorr ∨ cptS > QS then

14 : return 0

15 : fail1 := ”∃(r, id) ∈ NoncesSk :

16 : Hashid(r, id) = Hashid(t
∗, id∗)”

17 : fail2 := ”∃(t, id, s, µ) ∈ NoncesSign :

18 : (t, id, s, µ) ̸= (t∗, id∗, s∗, µ∗)

19 : ∧ Hashid(t, id) = Hashid(t
∗, id∗)

20 : ∧ Hashmess(s, µ) = Hashmess(s
∗, µ∗)”

21 : if fail1 ∨ fail2 then

22 : return 0

23 : return Verify (mpk,Hashid(t
∗, id∗),Hashmess(s

∗, µ∗), σ∗)

// ReprogramOracleOneCor1 and ReprogramOracleOneSign1 (id)

// correspond to the same reprogramming of H1.

// It is more convenient to write it in

// two parts for next games.

ReprogramOracleOneCor1 (id)

1 : r←$ {0, 1}τnonce

2 : ĩd←$ SetId

3 : Hashid := Hash
(r,id)→ĩd
id

4 : return r

ReprogramOracleOneSign1 (id)

1 : t←$ {0, 1}τnonce

2 : ĩd←$ SetId

3 : Hashid := Hash
(t,id)→ĩd
id

4 : return t

ReprogramOracleOne2(µ)

1 : s←$ {0, 1}τnonce

2 : µ̃←$ SetMess

3 : Hashmess := Hash(s,µ)→µ̃
mess

4 : return s

OSign(id, µ)

1 : cptS := cptS + 1

2 : t←$ ReprogramOracleOneSign1 (id)

3 : s←$ ReprogramOracleOne2(µ)

4 : ĩd := Hashid(t, id)

5 : µ̃ := Hashmess(s, µ)

6 : NoncesSign := NoncesSign

7 : ∪ {(t, id, s, µ)}
8 : skĩd,µ̃ ← KeyExt(msk, ĩd)

9 : σĩd,µ̃ ← Sign(skĩd,µ̃, µ̃)

10 : σ̃id,µ = (t, s, σĩd,µ̃)

11 : // for EUF-CMA:

12 : AskedSign = AskedSign ∪ {(id, µ)}
13 : // for sEUF-CMA:

14 : sAskedSign = sAskedSign ∪ {(id, µ, σ̃id,µ)}
15 : return σ̃id,µ

OCorrupt(id)

1 : AskedSk = AskedSk ∪ {id}
2 : cptC := cptC + 1

3 : r←$ ReprogramOracleOneCor1 (id)

4 : NoncesSk := NoncesSk ∪ {(r, id)}

5 : ĩd := Hashid(r, id)

6 : skĩd ← KeyExt(msk, ĩd)

7 : skid := (r, skĩd)

8 : return skid

Fig. 14. Game G2 of proof of Theorem 1.

58

G3(A)

1 : (mpk,msk)← Setup(λ)

2 : cptC := 0, cptS := 0

3 : Hashid ←$ SetId{0,1}
τnonce×SetId

4 : Hashmess ←$ SetMess{0,1}
τnonce×SetMess

5 : for i ∈ J1, QCorrK then

6 : idri ←$ SetId

7 : skri ← KeyExt(msk, idri)

8 : for j ∈ J1, QSK then

9 : idtj ←$ SetId

10 : µs
j ←$ SetMess

11 : sktj ← KeyExt(msk, idtj)

12 : σs
j ← Sign(mpk, sktj , µ

s
j)

13 : NoncesSk← ∅,NoncesSign← ∅
14 : AskedSk← ∅,AskedSign← ∅, sAskedSign← ∅
15 : ORACLES = {OCorrupt,OSign, |Hashid⟩, |Hashmess⟩}
16 : (σ̃∗ = (t∗, s∗, σ∗), id∗, µ∗)← AORACLES(mpk)

17 : if id∗ ∈ AskedSk

18 : ∨ (id∗, µ∗) ∈ AskedSign then // for EUF-CMA

19 : ∨ (id∗, µ∗, σ∗) ∈ sAskedSign then // for sEUF-CMA

20 : return 0

21 : if cptC > QCorr ∨ cptS > QS then

22 : return 0

23 : fail1 := ”∃(r, id) ∈ NoncesSk :

24 : Hashid(r, id) = Hashid(t
∗, id∗)”

25 : fail2 := ”∃(t, id, s, µ) ∈ NoncesSign :

26 : (t, id, s, µ) ̸= (t∗, id∗, s∗, µ∗)

27 : ∧ Hashid(t, id) = Hashid(t
∗, id∗)

28 : ∧ Hashmess(s, µ) = Hashmess(s
∗, µ∗)”

29 : if fail1 ∨ fail2 then

30 : return 0

31 : return Verify (mpk,Hashid(t
∗, id∗),Hashmess(s

∗, µ∗), σ∗)

ReprogramOracleOneCor1 (id)

1 : r←$ {0, 1}τnonce

2 : ĩd := idrcptC

3 : Hashid := Hash
(r,id)→ĩd
id

4 : return r

ReprogramOracleOneSign1 (id)

1 : t←$ {0, 1}τnonce

2 : ĩd := idtcptS

3 : Hashid := Hash
(t,id)→ĩd
id

4 : return t

OSign(id, µ)

1 : cptS := cptS + 1

2 : t←$ ReprogramOracleOneSign1 (id)

3 : s←$ ReprogramOracleOne2(µ)

4 : ĩd := Hashid(t, id)

5 : µ̃ := Hashmess(s, µ)

6 : NoncesSign := NoncesSign

7 : ∪ {(t, id, s, µ)}
8 : // We use the precomputed values

9 : σ̃id,µ = (t, s, σt
cptS

, µs
j)

10 : // for EUF-CMA:

11 : AskedSign = AskedSign ∪ {(id, µ)}
12 : // for sEUF-CMA:

13 : sAskedSign = sAskedSign ∪ {(id, µ, σ̃id,µ)}
14 : return σ̃id,µ

OCorrupt(id)

1 : AskedSk = AskedSk ∪ {id}
2 : cptC := cptC + 1

3 : r←$ ReprogramOracleOneCor1 (id)

4 : NoncesSk := NoncesSk ∪ {(r, id)}

5 : ĩd := Hashid(r, id)

6 : // We use the precomputed values

7 : skid := (r, skrcptC)

8 : return skid

ReprogramOracleOne2(µ)

1 : s←$ {0, 1}τnonce

2 : µ̃ := µs
cptS

3 : Hashmess := Hash(s,µ)→µ̃
mess

4 : return s

Fig. 15. Game G3 of proof of Theorem 1.

59

EUFnaCMAIBS
QCorr,QS

/sEUFnaCMAIBS
QCorr,QS

(C = (C1, C2))

1 : The game shown in Figure 1

C1(mpk)

1 : for i ∈ J1, QCorrK then

2 : idri ←$ SetId

3 : AskedSk := {idri : i ∈ J1, QCorrK}
4 : for j ∈ J1, QSK then

5 : idtj ←$ SetId

6 : µs
j ←$ SetMess

7 : AskedSign := {(idtj , µs
j) : j ∈ J1, QSK}

8 : aux := ∅
9 : return (AskedSk,AskedSign, aux)

C2(mpk,GivenSk,GivenSign, aux = ∅)

1 : // We define:

2 : // GivenSk = {(idri , skri) : i ∈ J1, QCorrK}

3 : // GivenSign = {(idtj , µs
j , σ

s
j) : j ∈ J1, QSK}

4 : AskedSk := {idxi : i ∈ J1, QCorrK}

5 : Hashid ←$ SetId{0,1}
τnonce×SetId

6 : Hashmess ←$ SetMess{0,1}
τnonce×SetMess

7 : cptC := 0, cptS := 0

8 : NoncesSk← ∅,NoncesSign← ∅
9 : AskedSk← ∅,AskedSign← ∅

10 : ORACLES = {OCorrupt,OSign, |Hashid⟩, |Hashmess⟩}
11 : // Oracles are simulated by C2 in order to

12 : // simulate the GameSign
adapt(IBS)
QCorr,QS

for A

13 : (σ̃∗ = (t∗, s∗, σ∗), id∗, µ∗)← AORACLES(mpk)

14 : if id∗ ∈ AskedSk

15 : ∨ (id∗, µ∗) ∈ AskedSign then // for EUF-CMA

16 : ∨ (id∗, µ∗, σ∗) ∈ GivenSign then // for sEUF-CMA

17 : return 0

18 : if cptC > QCorr ∨ cptS > QS then

19 : return 0

20 : fail1 := ”∃(r, id) ∈ NoncesSk :

21 : Hashid(r, id) = Hashid(t
∗, id∗)”

22 : fail2 := ”∃(t, id, s, µ) ∈ NoncesSign :

23 : (t, id, s, µ) ̸= (t∗, id∗, s∗, µ∗)

24 : ∧ Hashid(t, id) = Hashid(t
∗, id∗)

25 : ∧ Hashmess(s, µ) = Hashmess(s
∗, µ∗)”

26 : if fail1 ∨ fail2 then

27 : return 0

28 : return (Hashid(t
∗, id∗),Hashmess(s

∗, µ∗), σ∗)

OSign(id, µ)

1 : AskedSign = AskedSign ∪ {(id, µ)}
2 : cptS := cptS + 1

3 : t←$ ReprogramOracleOneSign1 (id)

4 : s←$ ReprogramOracleOne2(µ)

5 : ĩd := Hashid(t, id)

6 : µ̃ := Hashmess(s, µ)

7 : NoncesSign := NoncesSign

8 : ∪ {(t, id, s, µ)}
9 : // We use the precomputed values

10 : σ̃id,µ = (t, s, σt
cptS

, µs
j)

11 : return σ̃id,µ

OCorrupt(id)

1 : AskedSk = AskedSk ∪ {id}
2 : cptC := cptC + 1

3 : r←$ ReprogramOracleOneCor1 (id)

4 : NoncesSk := NoncesSk ∪ {(r, id)}

5 : ĩd := Hashid(r, id)

6 : // We use the precomputed values

7 : skid := (r, skrcptC)

8 : return skid

ReprogramOracleOne2(µ)

1 : s←$ {0, 1}τnonce

2 : µ̃ := µs
cptS

3 : Hashmess := Hash(s,µ)→µ̃
mess

4 : return s

ReprogramOracleOneCor1 (id)

1 : r←$ {0, 1}τnonce

2 : ĩd := idrcptC

3 : Hashid := Hash
(r,id)→ĩd
id

4 : return r

ReprogramOracleOneSign1 (id)

1 : t←$ {0, 1}τnonce

2 : ĩd := idtcptS

3 : Hashid := Hash
(t,id)→ĩd
id

4 : return t

Fig. 16. Reduction from G3 to GamenaSignIBSQCorr,QS
for proof of Theorem 1.

60

D Proofs of Section 6

D.1 Some intermediary results for the proof of Theorems 2 and 3

Lemma 21 (Adapted from [22, Lemma 4.2]). Let m,n, k ∈ N∗,m ≥ 2nk, q = 3k,. We have

Prz←${−1,0,1}m

[
Prz̄{−1,0,1}m [z̄ = z |Az = Az̄] ≤ 1

2

]
≥ 1− q−n .

Proof. We first see that, for z̄ ∈ {−1, 0, 1}m if ∃z ̸= z̄ ∈ {−1, 0, 1}m such that Az = Az̄, then

Prz̄←${−1,0,1}k
[
z̄ = z

∣∣∣Az = Az̄
]
≤ 1

2 . Consider A as a map Zm
q → Zn

q . We want to find a bound

of the number of z in {−1, 0, 1}m such that there is no other element in {−1, 0, 1}m with image
Az ∈ Zn

q . In the worst case, qn − 1 elements of {−1, 0, 1}m have this property and all the other
elements have the same value through multiplication by A. Thus,

Prz∈{−1,0,1}
[
∃z′ ∈ {−1, 0, 1} : z′ ̸= z ∧Az = Az′ mod q

]
≥ 1− qn − 1

3m
≥ 1− 3kn−m ≥ 1− q−n ,

the later inequality using m ≥ 2nk.

Lemma 22 (Structured version of Lemma 21). Let l, k ∈ N∗, q = 3k, l ≥ 2k,Rq =
Zq/(X

d + 1),A ∈ R1×l
q . We have

Prz←$SlR

[
Prz̄←$SlR

[
z̄ = z

∣∣∣Az = Az̄
]
≤ 1

2

]
≥ 1− q−d .

Proof. We first see that, for z̄ ∈ SmR if ∃z ̸= z̄ ∈ SmR such that Az = Az̄, then we have
Prz̄←$SlR

[
z̄ = z

∣∣Az = Az̄
]
≤ 1

2 . Consider A as a map Rl
q → Rq. We want to find a bound of

the number of z in S lR such that there is no other element in S lR with image Az ∈ Rq. In the
worst case, qd − 1 elements of S lR have this property and all the other elements have the same
value through multiplication by A. Thus,

Prz∈{−1,0,1}

[
∃z′ ∈ S lR : z′ ̸= z ∧Az = Az′ mod q

]
≥ 1− qd − 1

3l
≥ 1− 3kd−ld ≥ 1− 3−kd ,

the later inequality using l ≥ 2k.

Corollary 5 (of Lemma 1). Let n,m, k, u ∈ N∗, q = 3k, m ≥ 2nk. Let ϵ ∈]0, 1/2[and s ∈ R
such that s ≥ 3rm,ϵ. Then,

Pr
[
∃i ∈ J1, uK : SD

(
Ds,(A∥Bi)

,U
(
Zn
q

))
> 2ϵ :

A←$Zn×m
q

∀i∈J1,uK,Bi←$Zn×l
q

]
≤ 2uq−n/4 .

Let d a power of 2, l ≥ 2 log(q) + 1 and s ≥ 12rld,ϵ. Then,

Pr
[
∃i ∈ J1, uK : SD

(
Ds,(A∥Bi)

,U
(
Zn
q

))
> 2ϵ :

A←$Zn×m
q

∀i∈J1,uK,Bi←$Zn×l
q

]
≤ 2u 3−d

(2k−l)
2 .

61

Proof. The proofs of the two inequalities are similar. We prove the first one. Let µ the probability

we want to bound. Let Bad the set of matrices X ∈ Zn×(m+l)
q such that SD

(
Ds,X,U

(
Zn
q

))
> 2ϵ.

We note that, by Lemma 1,

Pr
X∈Zn×(m+k

q
[X ∈ Bad] ≤ 2q−n/4 . (35)

Thus,

µ = Pr
[
∃i ∈ J1, uK(A∥Bi) ∈ Bad :

A←$Zn×m
q

for i∈J1,uK,Bi←$Zn×l
q

]
= q−nm

∑
A∈Zm×n

q

Pr
[
∃i ∈ J1, uK(A∥Bi) ∈ Bad : for i ∈ J1, uK,Bi ←$ Zn×l

q

]
≤ u q−nm

∑
A∈Zm×n

q

Pr
[
(A∥B) ∈ Bad : B←$ Zn×l

q

]
= u Pr

(A∥B)←$Zn×(m+l)
q

[(A∥B) ∈ Bad] ≤ 2uq−n/4 by equation (35).

D.2 Detailed games for the proof of Theorem 2 of Section 6

G0 (A = (A1,A2))

1 : (A,TA)← Trap(n,m, q)

2 : H1 ←$

(
Zn×nk
q

)SetId

3 : H2 ←$
(
Zn
q

)SetId×SetMess

4 : (AskedSk,AskedSign, |aux⟩)← A1(A)

5 : if |AskedSk| > QCorr

6 : ∨ |AskedSign| > QS then

7 : return 0

8 : for id ∈ AskedSk :

9 : Tid ← KeyExt(A,TA, id)

10 : for (id, µ) ∈ AskedSign :

11 : Tid,µ ← KeyExt(A,TA, id)

12 : zid,µ ← Sign(id,Tid,µ, µ)

13 : GivenSk := {Tid, id ∈ AskedSk}
14 : GivenSign := {zid,µ, (id, µ) ∈ AskedSign}

15 : (z∗, id∗, µ∗)← A|H1⟩,|H2⟩
2 (A,GivenSk,GivenSign, |aux⟩)

16 : if id∗ ∈ AskedSk ∨ (id∗, µ∗) ∈ AskedSign then

17 : return 0

18 : return Verify(id∗, µ∗, z∗)

KeyExt(A,TA, id)

1 : Tid ←$ DelTrap (A,TA,H1(id), sid)

2 : return Tid

Verify(id, µ, z)

1 : if z = 0 then

2 : return 0

3 : if (A∥H1(id)) z ̸= H2(id, µ) then

4 : return 0

5 : // we write z = (z1, z2) ∈ Zm
q × Znk

q

6 : return J∥z1∥ ≤ Bound1 ∧ ∥z2∥ ≤ Bound2K

Sign(id,Tid, µ)

1 : u := H2(id, µ)

2 : z← SampleD ((A∥H1(id)) ,Tid,u, ssign)

3 : return z

Fig. 17. Game G0 = EUFnaCMAIBSZ
QCorr,QS

, of proof of Theorem 2.

62

G1 (A = (A1,A2))

1 : (A,TA)← Trap(n,m, q)

2 : if SD
(
DZ,sid,A,U

(
Zn
q

))
> ϵ

3 : ∨ SD
(
UA,U

(
Zn
q

))
> q−n/4 then

4 : return 0

5 : H1 ←$

(
Zn×nk
q

)SetId

6 : H2 ←$
(
Zn
q

)SetId×SetMess

7 : (AskedSk,AskedSign, |aux⟩)← A1(A)

8 : if |AskedSk| > QCorr

9 : ∨ |AskedSign| > QS then

10 : return 0

11 : for id ∈ SetId− AskedSk :

12 : Rid ←$ {−1, 0, 1}m×nk

13 : H1(id) := ARid

Verify(id, µ, z)

1 : if z = 0 then

2 : return 0

3 : if (A∥H1(id)) z ̸= H2(id, µ) then

4 : return 0

5 : // we write z = (z1, z2) ∈ Zm
q × Znk

q

6 : return J∥z1∥ ≤ Bound1 ∧ ∥z2∥ ≤ Bound2K

14 : for id ∈ AskedSk :

15 : Rid ←$ Dm×nk
Z,sid

16 : H1(id) := ARid +G

17 : Tid ← KeyExt(A,TA, id)

18 : for (id, µ) ∈ AskedSign :

19 : Tid,µ ← KeyExt(A,TA, id)

20 : zid,µ := Sign(id,Tid,µ, µ)

21 : GivenSk := {(id,Tid), id ∈ AskedSk}
22 : GivenSign := {((id, µ), zid,µ), (id, µ) ∈ AskedSign}
23 : // Only A2 can call the hash functions.

24 : (z∗, id∗, µ∗)← A|H1⟩,|H2⟩
2 (A,GivenSk,GivenSign, |aux⟩))

25 : if id∗ ∈ AskedSk ∨ (id∗, µ∗) ∈ AskedSign then

26 : return 0

27 : return Verify(id∗, µ∗, z∗)

KeyExt(A,TA, id)

1 : Tid ← DelTrap (A,TA,H1(id), sid)

2 : return Tid

Sign(id,Tid, µ)

1 : u := H2(id, µ)

2 : z← SampleD ((A∥H1(id)) ,Tid,u, ssign)

3 : return z

Fig. 18. Game G1 of proof of Theorem 2.

63

G2 (A = (A1,A2))

1 : (A,TA)← Trap(n,m, p)

2 : if SD
(
DZ,sid,A,U

(
Zn
q

))
> ϵ

3 : ∨ SD
(
UA,U

(
Zn
q

))
> q−n/4 then

4 : return 0

5 : if ∃id ∈ IdAskedForSign :

6 : SD
(
Ds,(A∥H1(id))

,U
(
Zn
q

))
> 2ϵ then

7 : return 0

8 : H1 ←$

(
Zn×nk
q

)SetId

9 : H2 ←$
(
Zn
q

)SetId×SetMess

10 : (AskedSk,AskedSign, |aux⟩)← A1(A)

11 : if |AskedSk| > QCorr

12 : ∨ |AskedSign| > QS then

13 : return 0

14 : for id ∈ SetId− AskedSk :

15 : Rid ←$ {−1, 0, 1}m×nk

16 : H1(id) := ARid

17 : for id ∈ AskedSk :

18 : Rid ←$ Dm×nk
Z,sid

19 : H1(id) := ARid +G

20 : Tid ← KeyExt(A,TA, id)

21 : for (id, µ) ∈ SetId× SetMess− AskedSign :

22 : z̄īd,īd ←$ {−1, 0, 1}m

23 : H2(id, µ) := Az̄īd,īd

24 : for (id, µ) ∈ AskedSign :

25 : z←$ Dm+nk
Z,ssign

26 : H2(id, µ) := (A∥H1(id)) z

27 : Tid,µ ← KeyExt(A,TA, id)

28 : zid,µ := Sign(id,Tid,µ, µ)

29 : GivenSk := {(id,Tid), id ∈ AskedSk}
30 : GivenSign := {((id, µ), zid,µ), (id, µ) ∈ AskedSign}
31 : // Only A2 can call the hash functions.

32 : (z∗, id∗, µ∗)← A|H1⟩,|H2⟩
2 (A,GivenSk,GivenSign, |aux⟩)

33 : if id∗ ∈ AskedSk ∨ (id∗, µ∗) ∈ AskedSign then

34 : return 0

35 : return Verify(id∗, µ∗, z∗)

KeyExt(A,TA, id)

1 : Tid ← DelTrap (A,TA,H1(id), sid)

2 : return Tid

Sign(id,Tid, µ)

1 : u := H2(id, µ)

2 : z← SampleD ((A∥H1(id)) ,Tid,u, ssign)

3 : return z

Verify(id, µ, z)

1 : if z = 0 then

2 : return 0

3 : if (A∥H1(id)) z ̸= H2(id, µ) then

4 : return 0

5 : // we write z = (z1, z2) ∈ Zm
q × Znk

q

6 : return J∥z1∥ ≤ Bound1 ∧ ∥z2∥ ≤ Bound2K

Fig. 19. Game G2 of proof of Theorem 2.

64

G3 (A = (A1,A2))

1 : (A,TA)← Trap(n,m, p)

2 : if SD
(
DZ,sid,A,U

(
Zn
q

))
> ϵ

3 : ∨ SD
(
UA,U

(
Zn
q

))
> q−n/4 then

4 : return 0

5 : if ∃id ∈ IdAskedForSign :

6 : SD
(
Ds,(A∥H1(id)),U

(
Zn
q

))
> 2ϵ then

7 : return 0

8 : H1 ←$

(
Zn×nk
q

)SetId

9 : H2 ←$
(
Zn
q

)SetId×SetMess

10 : (AskedSk,AskedSign, |aux⟩)← A1(A)

11 : if |AskedSk| > QCorr

12 : ∨ |AskedSign| > QS then

13 : return 0

14 : for id ∈ SetId− AskedSk :

15 : Rid ←$ {−1, 0, 1}m×nk

16 : H1(id) := ARid

17 : for id ∈ AskedSk :

18 : Rid ←$ Dm×nk
Z,sid

19 : H1(id) := ARid +G

20 : Tid := Rid

21 : // note that KeyExt is not used here

22 : for (id, µ) ∈ SetId× SetMess− AskedSign :

23 : z̄īd,īd ←$ {−1, 0, 1}m

24 : H2(id, µ) := Az̄īd,īd

25 : for (id, µ) ∈ AskedSign :

26 : z←$ Dm+nk
Z,ssign

27 : H2(id, µ) := (A∥H1(id)) z

28 : // note that KeyExt is still used here

29 : Tid,µ ← KeyExt(A,TA, id)

30 : zid,µ := Sign(id,Tid,µ, µ)

31 : GivenSk := {(id,Tid), id ∈ AskedSk}
32 : GivenSign := {((id, µ), zid,µ), (id, µ) ∈ AskedSign}
33 : // Only A2 can call the hash functions.

34 : (z∗, id∗, µ∗)← A|H1⟩,|H2⟩
2 (A,GivenSk,GivenSign, |aux⟩)

35 : if id∗ ∈ AskedSk ∨ (id∗, µ∗) ∈ AskedSign then

36 : return 0

37 : return Verify(id∗, µ∗, z∗)

Sign(id,Tid, µ)

1 : u := H2(id, µ)

2 : z← SampleD ((A∥H1(id)) ,Tid,u, ssign)

3 : return z

KeyExt(A,TA, id)

1 : Tid ← DelTrap (A,TA,H1(id), sid)

2 : return Tid

Verify(id, µ, z)

1 : return 0

2 : if (A∥H1(id)) z ̸= H2(id, µ) then

3 : return 0

4 : // we write z = (z1, z2) ∈ Zm
q × Znk

q

5 : return J∥z1∥ ≤ Bound1 ∧ ∥z2∥ ≤ Bound2K

Fig. 20. Game G3 of proof of Theorem 2..

65

G4 (A = (A1,A2))

1 : (A,TA)← Trap(n,m, p)

2 : // note that TA won’t be used

3 : if SD
(
DZ,sid,A,U

(
Zn
q

))
> ϵ

4 : ∨ SD
(
(UA),U

(
Zn
q

))
> q−n/4 then

5 : return 0

6 : if ∃id ∈ IdAskedForSign :

7 : SD
(
Ds,(A∥H1(id)),U

(
Zn
q

))
> 2ϵ then

8 : return 0

9 : H1 ←$

(
Zn×nk
q

)SetId

10 : H2 ←$
(
Zn
q

)SetId×SetMess

11 : (AskedSk,AskedSign, |aux⟩)← A1(A)

12 : if |AskedSk| > QCorr

13 : ∨ |AskedSign| > QS then

14 : return 0

15 : for id ∈ SetId− AskedSk :

16 : Rid ←$ {−1, 0, 1}m×nk

17 : H1(id) := ARid

18 : for id ∈ AskedSk :

19 : Rid ←$ Dm×nk
Z,sid

20 : H1(id) := ARid +G

21 : Tid := Rid

22 : // note that KeyExt is not used here

23 : for (id, µ) ∈ SetId× SetMess− AskedSign :

24 : z̄īd,īd ←$ {−1, 0, 1}m

25 : H2(id, µ) := Az̄īd,īd

26 : for (id, µ) ∈ AskedSign :

27 : z←$ Dm+nk
Z,ssign

28 : H2(id, µ) := (A∥H1(id)) z

29 : zid,µ := z

30 : // note that KeyExt and Sign are not used here

31 : GivenSk := {(id,Tid), id ∈ AskedSk}
32 : GivenSign := {((id, µ), zid,µ), (id, µ) ∈ AskedSign}
33 : // Only A2 can call the hash functions.

34 : (z∗, id∗, µ∗)← A|H1⟩,|H2⟩
2 (A,GivenSk,GivenSign, |aux⟩)

35 : if id∗ ∈ AskedSk ∨ (id∗, µ∗) ∈ AskedSign then

36 : return 0

37 : return Verify(id∗, µ∗, z∗)

Verify(id, µ, z)

1 : return 0

2 : if (A∥H1(id)) z ̸= H2(id, µ) then

3 : return 0

4 : // we write z = (z1, z2) ∈ Zm
q × Znk

q

5 : return J∥z1∥ ≤ Bound1 ∧ ∥z2∥ ≤ Bound2K

// Sign and KeyExt are no more used

Fig. 21. Game G4 of proof of Theorem 2.

G5 (A = (A1,A2))

1 : A←$ Zn×m
q

2 : There is no other changes.

Fig. 22. Game G5 of proof of Theorem 2.

66

B (A)

1 : H1 ←$

(
Zn×nk
q

)SetId

2 : H2 ←$
(
Zn
q

)SetId×SetMess

3 : (AskedSk,AskedSign, |aux⟩)← A1(A)

4 : if |AskedSk| > QCorr

5 : ∨ |AskedSign| > QS then

6 : return 0

7 : for id ∈ SetId− AskedSk :

8 : // lazy evaluation if used in ROM

9 : // and use of a compressed oracle in QROM,

10 : // see the proof of Theorem 2

11 : Rid ←$ {−1, 0, 1}m×nk

12 : H1(id) := ARid

13 : for id ∈ AskedSk :

14 : Rid ←$ Dm×nk
Z,sid

15 : H1(id) := ARid +G

16 : Tid := Rid

17 : for (id, µ) ∈ SetId× SetMess− AskedSign :

18 : // lazy evaluation if used in ROM

19 : // and use of a compressed oracle in QROM,

20 : // see the proof of Theorem 2

21 : z̄īd,īd ←$ {−1, 0, 1}m

22 : H2(id, µ) := Az̄īd,īd

23 : for (id, µ) ∈ AskedSign :

24 : z←$ Dm+nk
Z,ssign

25 : H2(id, µ) := (A∥H1(id)) z

26 : zid,µ := z

27 : GivenSk := {(id,Tid), id ∈ AskedSk}
28 : GivenSign := {((id, µ), zid,µ), (id, µ) ∈ AskedSign}

29 : (z∗, id∗, µ∗)← A|H1⟩,|H2⟩(A,GivenSk,GivenSign, |aux⟩)
30 : if id∗ ∈ AskedSk ∨ (id∗, µ) ∈ AskedSign then

31 : return 0

32 : return (Im∥Rid∗) z
∗ − z̄id∗,µ∗

SISn,m,BoundSIS,q(B)

1 : A←$ Zn×m
q

2 : u← B(A)

3 : return J0 < ∥u∥ < BoundSIS ∧Au = 0K

Fig. 23. Reduction from G5 to SISn,m,BoundSIS,q for proof of Theorem 2.

67

E Script for the computation of parameters of IBSNA,R and IBS+NA,PW

from math import *

MSIS_security can be found in [10].

from MSIS_security import *

we use the experimental approximation of C for Discrete

Gaussians # and Uniforms in {-1,1} made in [13, Section 6.1]

CGaussUnif = 1 / (2*pi)

we use the experimental approximation of C for P_{1/2}

made in [13, Section 6.1]

CBinom = 1 / (4*pi)

auxilliary functions

def f(m, n, C):

return sqrt(m) + 2 * pi * C * (

sqrt(n) + sqrt(m * log (3)))

def s1unif(n, m):

return sqrt(2 / 3) * f(m, n, CGaussUnif)

def s1gauss(n, m, s):

return (s / sqrt(2 * pi)) * f(m, n, CGaussUnif)

def s1binom(n, m):

return sqrt(1 / 2) * f(m, n, CBinom)

def r(m, eps):

return sqrt(log(2 * m * (1 + 1/eps)) / pi)

def compute_sid(k, d, l, eps):

return max(

sqrt (11) * r(d * k, eps) * 4 *

sqrt(d * s1binom(l - k, d * k)**2 + 1),

12 * r(d * l, eps))

def compute_ssign(k, d, l, eps , sid):

return max(

sqrt (11) * r(d * k, eps) *

sqrt(d * s1gauss(l, d * k, sid)**2 + 1),

12 * r(d * (l+k), eps))

s_PW is taken as sid :

it is smaller than if we took the formulae of

[26, Section 5.2].

and it simplifies our estimations

def compute_s_PW(k, d, l, eps):

return compute_sid(k, d, l, eps)

def compute_sp_PW(k, d, l, eps , s_PW):

return compute_ssign(k, d, l, eps , s_PW)

def compute_spp_PW(k, d, l, eps , sp_PW):

return max(

sqrt (11) * r(d * k, eps) *

sqrt(d * s1gauss(l + k, d * k, sp_PW)**2 +

1), 12 * r(d * (l + 2*k), eps))

68

class IBSParameterSet:

_PW : specific to IBSPW scheme ([26, Figure 8]))

def __init__(self , k, d, l, eps):

self.k = k # the modulus is equal to q=3^k

self.d = d # Ring dimension

self.l = l # Dimension of A

self.eps = eps # epsilon

Note that :

- IBSPW does not use the probability P_(1/2)

but gaussian distribution # to create T_A

- (see their [26, Lemma 12]).

The use of P_ (1/2) led to smaller trapdoor

and thus better # results : we use P_(1/2) for both ,

wich make a better standard deviation s for IBSPanWan.

(see equations at [26, Section 5.2])

- We use our estimations of singular values of matrix

for both IBSR and IBSPW because the ones

of IBSPW included universal constants.

self.sid = compute_sid(k, d, l, eps)

self.ssign = compute_ssign(k, d, l, eps ,

self.sid)

the standard deviations s, s’, s ’’.

self.s_PW = compute_s_PW(k, d, l, eps)

self.sp_PW = compute_sp_PW(k, d, l, eps ,

self.s_PW)

self.spp_PW = compute_spp_PW(k, d, l, eps ,

self.sp_PW)

sProof_PW is our estimation of the standard

deviation tilde{s} they used for Hash reprogramming

in the proof of [26, Theorem 4].

We used Lemma 1 to

estimate it (it gives a conditon on std such that

A*(Discrete Gaussian(std)) is near

the uniform distribution ")

self.sProof_PW = 12 * r(d * l, eps)

self.signBoundI = sqrt(2 * d * l) * self.ssign

self.signBoundII = sqrt(

2 * d * k) * self.ssign

Bound of the solution , see (([26, Figure 8]

self.signBound_PW = sqrt(

d * (l + 2*k)) * s1gauss(l, d * k,

self.spp_PW)

RSIS Bound of IBSR , from 3

self.RSISBound = self.signBoundI + 4 * sqrt(

d) * s1unif(

l, d * k) * self.signBoundII + sqrt(

17 / 2) * sqrt(l * d)

RSIS Bound of IBSPW , constructed by looking at the

69

demonstration of [26, Theorem 4]),

self.RSISBound_PW = (

1 + 2 * sqrt(d) *

s1gauss(l, d * k, self.sProof_PW)

) * self.signBound_PW

Creation of MSISParams for IBSR and IBSPan

#in order to use MSIS_summarize_attacks

self.MSISParams_PW = MSISParameterSet(

d, l, 1, self.RSISBound_PW , 3**k, ” l 2 ”)
self.MSISParams = MSISParameterSet(

d, l, 1, self.RSISBound , 3**k, ” l 2 ”)
self.size_sign = ceil(

l * d * log(2 * self.signBoundI , 2) +

k * d * log(2 * self.signBoundII , 2))

With notation z=(z_1 ,z_2) we use the fact that

by definition of the scheme (Figure 7)

|sign_1|_infty \leq |sign_1|_2 \leq signBoundI

|sign_2|_infty \leq |sign_2|_2 \leq signBoundII

so they can be stored respectively modulo 2* signBoundI

and 2* signBoundII

self.size_sign_PW = ceil(

(l + 2*k) * d *

log(min(2 * self.signBound_PW , 3**k), 2))

We use the fact that

by definition # ([26, Figure 8]):
|sign|_infty \leq |sign|_2 \leq signBound_PW

so it can be stored modulo min(2* signBound_PW , 3**k)

self.size_pk = ceil(l * d * log (3**k, 2))

self.size_sk = ceil((l-k) * k * d * log(3, 2))

self.size_sk_id = ceil(

(l+k) * k * d *

log(sqrt(2 * d) * self.sid , 2))

We use the fact that the ouput is close to discrete

gaussian with standard deviation sid

#(see for example Equation~(29))
and the tail inequality (Lemma~3) to each coordonate

self.size_sk_id_naive = ceil(

(l+k) * k * d * log (3**k, 2))

def secu(self):

MSISsecu_PW = MSIS_summarize_attacks(

self.MSISParams_PW)

secu_PW = MSISsecu_PW [-2]

-1 because of the factor 2 in the reduction to RSIS

print(

”\ nS e cu r i t y o f IBSPW (c o s t with c o s t s v p) : ”
+ str(secu_PW - 1))

MSISsecu = MSIS_summarize_attacks(

self.MSISParams)

70

secu = MSISsecu [-2]

-1 because of the factor 2 in the reduction to RSIS

print(

”\ nS e cu r i t y o f IBSR (c o s t with c o s t s v p) : ”
+ str(secu - 1))

return secu

def print_params(self):

txt = ”k=” + str(self.k)

txt += ” , l o g (3∗∗ k , 2)=” + str(

round(log (3** self.k, 2), 2))

txt += ” , d=” + str(self.d)

txt += ” , l=” + str(self.l)

txt += ” , l o g (e p s i l o n ,2)= ” + str(

round(log(self.eps , 2), 2)) + ”\n”
txt += ” Standard d e v i a t i o n s f o r IBSR : \ n”
txt += ” s i d=” + str(self.sid)

txt += ” , l o g (s s i d ,2)= ” + str(

round(log(self.sid , 2), 2)) + ”\n”
txt += ” s s i g=” + str(self.ssign)

txt += ” , l o g (s s i d ,2)= ” + str(

round(log(self.ssign , 2), 2)) + ”\n”
txt += ” Standard d e v i a t i o n s f o r IBSPW: \ n”
txt += ”s PW=” + str(self.sid)

txt += ” , l o g (s PW,2)= ” + str(

round(log(self.s_PW , 2), 2)) + ”\n”
txt += ”sp PW=” + str(self.sid)

txt += ” , l o g (sp PW,2)= ” + str(

round(log(self.sp_PW , 2), 2)) + ”\n”
txt += ”spp PW=” + str(self.ssign)

txt += ” , l o g (spp PW ,2)= ” + str(

round(log(self.spp_PW , 2), 2))

print(txt)

def print_sizes(self):

txt = ”SIGNATURE SIZES : ”
txt += ”IBSR=” + str(

round(self.size_sign / 10**6 , 2)) + ”Mo”
txt += ” IBSRPW=” + str(

round(self.size_sign_PW / 10**6 ,

2)) + ”Mo”
txt += ”\nPUBLIC KEY SIZE : ”
txt += ”mpk=” + str(

round(self.size_pk / 10**6 , 2)) + ”Mo”
txt += ”\nSECRET KEY SIZES : ”
txt += ”msk=” + str(

round(self.size_sk / 10**6 , 2)) + ”Mo, ”
txt += ” s k i d=” + str(

round(self.size_sk_id / 10**6 , 2)) + ”Mo”

71

txt += ”\nRSIS bounds : ”
txt += ”IBSR=” + str(self.RSISBound)

txt += ” , o f l o g=” + str(

round(log(self.RSISBound , 2), 2))

txt += ”IBSPW=” + str(self.RSISBound_PW)

txt += ” , o f l o g=” + str(

round(log(self.RSISBound_PW , 2), 2))

print(txt)

def summary(self):

print(”PARAMETERS SUMMARY: \ n”)
self.print_params ()

print(”SIZES SUMMARY: \ n”)
self.print_sizes ()

print(”SECURITY SUMMARY: \ n”)
self.secu()

create the set of parameters

paramsI = IBSParameterSet (65, 2048, 132,

2**(-200))

paramsII = IBSParameterSet (153, 2048, 308,

2**(-200))

Make a summary of parameters values ,

print(”Summary f o r paramsI : \ n”)
paramsI.summary ()

print(”Summary f o r paramsI I : \ n”)
paramsII.summary ()

72

	Shorter and Faster Identity-Based Signatures with Tight Security in the (Q)ROM from Lattices
	Introduction
	Technical Overview
	Preliminaries
	Preliminary results
	Results on statistical distance
	Singular values of random matrix
	Lattice trapdoors
	Hash reprogramming in the ROM and the QROM

	Generic transformation from EUFnaCMA (sEUFnaCMA) to EUFCMA security (sEUFCMA) in the ROM and the QROM
	IBS Scheme in the ROM and the QROM, based on SIS
	IBS Scheme in ROM and the QROM, based on RSIS
	Conclusion
	Parameters (proof of concept) and discussion
	Future work

	Generic probability results
	Results about the statistical distance
	Other probability results

	Proofs of Section 4
	Bound on singular values of random matrices
	Invertible elements of Rq
	Proof of smoothing lemma (Lemma 1)
	Unstructured case (Equation (1))
	Structured case (Equation (2))

	Results about the quantum queries of a classical function
	Missing proofs of reprogramming Hash lemmas
	A lemma to separate classical from quantum queries
	Proof of Proposition 7 about non-adaptative reprogramming

	Generalization of [Claim 5.3]STOC:Regev05 and proof of Proposition 1
	Proof of Propositions 4 and 5 about matrix delegation
	Links between lattices and R-lattices
	Lattice trapdoors over Rq

	Detailed games for the proof of Theorem 1 of Section 5
	Proofs of Section 6
	Some intermediary results for the proof of Theorems 2 and 3
	Detailed games for the proof of Theorem 2 of Section 6

	Script for the computation of parameters of IBSR and IBSnaPW+

