
HAL Id: hal-04107633
https://hal.science/hal-04107633v1

Submitted on 26 May 2023 (v1), last revised 27 Nov 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asymptotic tail properties of Poisson mixture
distributions

Samuel Valiquette, Gwladys Toulemonde, Jean Peyhardi, Éric Marchand,
Frédéric Mortier

To cite this version:
Samuel Valiquette, Gwladys Toulemonde, Jean Peyhardi, Éric Marchand, Frédéric Mortier. Asymp-
totic tail properties of Poisson mixture distributions. Stat, 2023, 12 (1), pp.e622. �10.1002/sta4.622�.
�hal-04107633v1�

https://hal.science/hal-04107633v1
https://hal.archives-ouvertes.fr


Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

Asymptotic tail properties of Poisson mixture distributions

Samuel Valiquette1,2,3,4 | Gwladys Toulemonde2,3 | Jean Peyhardi2 | Éric Marchand4 | Frédéric

Mortier1,5

1UPR Forêt et Sociétés, CIRAD,

F-34398 Montpellier, France. Forêts et

Sociétés, Univ Montpellier, CIRAD,

Montpellier, France.
2IMAG, CNRS, Université de

Montpellier, 34090, Montpellier, France
3LEMON, Inria, 34095, Montpellier,

France
4Département de mathématiques,

Université de Sherbrooke, Sherbrooke,

Canada, J1K 2R1
5Environmental Justice Program,

Georgetown University, Washington

D.C., United States of America

Correspondence

Samuel Valiquette, Département de

mathématiques, Université de

Sherbrooke, Sherbrooke, Canada, J1K

2R1.

Email: samuel.valiquette@usherbrooke.ca

Summary

Count data are omnipresent in many applied �elds, often with overdispersion. With mix-

tures of Poisson distributions representing an elegant and appealing modelling strategy, we

focus here on how the tail behaviour of the mixing distribution is related to the tail of the

resulting Poisson mixture. We de�ne �ve sets of mixing distributions and we identify for

each case whenever the Poisson mixture is in, close to or far from a domain of attraction

of maxima. We also characterize how the Poisson mixture behaves similarly to a standard

Poisson distribution when the mixing distribution has a �nite support. Finally, we study,

both analytically and numerically, how goodness-of-�t can be assessed with the inspection

of tail behaviour.
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1 INTRODUCTION

Count data are classically observed in many applied fields such as in actuarial science when evaluating risk and the pricing of insurance contracts
(e.g., Bartoszewicz 2005), in genetics to model the number of genes involved in phenotype variability (e.g., Anders & Huber 2010) or in ecology to
model species abundance (e.g., Wenger & Freeman 2008). While Poisson models and regression are well established choices for these type of data,
they are not suitable for overdispersed data. To overcome such limitations the use of Poisson mixture models has been proposed. This assumes
the Poisson’s intensity is no longer an unknown fixed value, but a positive random variable. A variety of mixture distributions has been already
proposed (Karlis & Xekalaki 2005) and classical examples includes the gamma distribution (Greenwood & Yule 1920), the lognormal (Bulmer 1974)
or the Bernoulli (Lambert 1992). As demonstrated by Feller (1943), Poisson mixtures are uniquely identifiable by the mixing distribution on the
Poisson parameter λ. Therefore, it suffices to take into account the behaviour of the mixing distribution when it comes to adjusting count data
with a Poisson mixture model. In particular, the mixing distribution should reflect the tail behaviour of the count data.

The field of extreme value theory allows to analyze such a behaviour through the distribution of maxima. Precisely, the tail behaviour of a random
variable can be characterizes by three domains of attraction (Resnick 1987): Weibull, Gumbel and Fréchet. Most familiar continuous distributions
can be associated to one of these domain of attraction. For discrete distributions, Anderson (1970) identified three different cases. A sample drawn
from a discrete distribution is either: (i) in a domain of attraction, (ii) "close" to the Gumbel domain of attraction or (iii) drastically fails to belong
to one such that their maxima oscillates between two increasing integers as the sample size grows to infinity. Perline (1998) provided conditions
on the mixing distribution such that the Poisson mixture remains in the Fréchet or Gumbel domain of attraction, i.e. case (i). However, they did
not investigate what type of distributions on λ causes the Poisson mixture to satisfy case (ii) or (iii). This article aims to complete their work by
identifyingwhat conditions on themixing distribution allow the Poissonmixture to be associated to the two latter cases.Moreover, we demonstrate
that their condition for the Fréchet domain of attraction is not necessary in order for the Poisson mixture to remain in this domain.
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This paper is organized as follows. Section 2 presents the extreme value theory in the Poisson mixture context and different families of mixing
distributions. Using these set of distributions, we identify when the Poisson mixture is in, close to, or far from a domain of attraction. Moreover,
we demonstrate that Poisson mixtures satisfying the latter case behave similarly to a standard Poisson distribution. In Section 3, we inspect how
those three situations can affect the goodness-of-fit when it comes to adjusting count data with a Poisson mixture. Moreover, we explore how one
can identify which type of mixing distribution can be adequate by using the generalized Pareto distribution on the excesses. We also study how
the closeness to the Gumbel domain of attraction has an impact on identifying such a mixing distribution. Finally, we provide an example where
the maxima of a Poisson mixture alternates between two values.

2 POISSON MIXTURE TAIL BEHAVIOUR

In this section, we present notations and the family of mixing distributions that is studied in this paper. Moreover, preliminary results in extreme
value theory are presented and we describe maximum domain of attraction restrictions for discrete distributions. Following this, we elaborate on
mixing distributions that allow the Poisson mixture to be either in or near a domain of attraction, or to drastically fail to belong in one. Finally, for
a Poisson mixture with a finite mixing distribution, we will prove that the asymptotic behaviour of its probability mass function behaves similarly
to that of a Poisson distribution.

2.1 Theoretical foundations

In the following, for Poisson mixtures X | λ with λ random, F , F and f will denote respectively the cumulative distribution function (cdf), the
survival function, and the probability density function (pdf) for themixing λ. Similarly,FM ,FM andPM will denote respectively the cdf, the survival
function, and the probability mass function (pmf) of the resulting Poisson mixture X . Moreover, in this paper, we restrict the mixing distributions
on λ to those with a support equal to (0, x0) for x0 ∈ R+ ∪ {∞}. Finally, we require the notion of a slowly varying function C(x) on R+, defined
by the property: for every t ∈ R+, C(tx) ∼ C(x), where g(x) ∼ h(x) means that limx→∞

g(x)
h(x)

= 1 for functions g and h.

The tail behaviour of the Poisson mixture can be studied using extreme value theory. Such a statistical approach analyzes how the maxima of
FM stabilizes asymptotically. For a general distribution G, the theory says that G belongs to a domain of attraction if there exist two normalizing
sequences an > 0 and bn such that Gn(anx + bn) converges to a non-degenerate distribution when n tends to infinity (Resnick 1987). Such a
non-degenerate distribution can only be the generalized extreme value distribution given by

lim
n→∞

Gn(anx+ bn) =

exp
[
−(1 + γx)−1/γ

]
for 1 + γx > 0 with γ ̸= 0;

exp
[
−e−x

]
for x ∈ R with γ = 0.

(1)

The three possible domains of attraction are named Weibull, Gumbel and Fréchet for γ < 0, γ = 0 and γ > 0 respectively, and will be denoted
by D−, D0 and D+. Accordingly, we will write G ∈ D where D is one of the three domains. Necessary and sufficient conditions for G to be in a
domain of attraction have been established by Gnedenko (1943). While most common continuous distributions can be associated to a domain of
attraction, this is not always the case for discrete random variables. Indeed, a necessary condition for a discrete distribution G to be in a domain
of attraction is the long-tailed property (Anderson 1970) defined by

G(n+ 1) ∼ G(n). (2)

Well known discrete distributions, such as Poisson, geometric and negative binomial, do not satisfy the above property. However, Anderson (1970)
and Shimura (2012) showed that if a discrete distribution verifies

G(n+ 1) ∼ LG(n), (3)

for L ∈ (0, 1), then G is, in a sense, "close" to the Gumbel domain. More precisely, Shimura (2012) showed that property (3) implies that G is the
discretization of a unique continuous distribution belonging to D0. On the other hand, Anderson (1970) showed that there exist a sequence bn

and α > 0 such that

lim sup
n→∞

Gn(x+ bn) ≤ exp
(
−e−αx

)
lim inf
n→∞

Gn(x+ bn) ≥ exp
(
−e−α(x−1)

)
if and only if G(n+ 1) ∼ e−αG(n). Therefore, the supremum and infimum limits of Gn(x+ bn) are bounded by two Gumbel distributions under
condition (3). The geometric and negative binomial distributions are two such examples. Finally, if the discrete distribution is a Poisson, or more
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generally such that

lim
n→∞

G(n+ 1)

G(n)
= 0, (4)

then no sequence bn can be found such that the the supremumand infimum limits ofGn(x+bn) are bounded by two different Gumbel distributions.
For this case, Anderson (1970) showed that for Yi

iid∼ G, there exists a sequence of integers In such that

lim
n→∞

P

(
max

1≤i≤n
Yi = In or In + 1

)
= 1 (5)

if and only if (4) is satisfied. Therefore, the maximum of such discrete distribution oscillates between two integers asymptotically.

2.2 Poisson mixtures categories

Since Poisson mixture distributions are discrete distributions, they are constrained to the long-tailed property (2) in order to have a domain of
attraction. Otherwise, they may be close to the Gumbel domain or with a maximum alternating between two integers. Since a Poisson mixture is
uniquely identifiable by the distribution on λ (Feller 1943), it follows that its tail behaviour depends on the latter. Therefore, we seek to identify
what conditions on the distribution of λ allow the Poisson mixture distributions to satisfy either equation (2), (3) or (4). In the following, we will
establish that Poisson mixtures with F in D+ or D− will satisfy equations (2) and (4) respectively, but for mixing distributions in D0, the Poisson
mixture may satisfy either one of the three limits depending on their behaviour. We require the following definitions and notations.

Definition 1. A distribution F has an exponential tail if for all k ∈ R, there is a β > 0 such that for x → ∞

F (x+ k) ∼ e−βkF (x). (6)

Definition 2. A distribution F satisfies the Gumbel hazard condition if its density f has a negative derivative for all x in some left neighborhood
of {∞}, limx→∞

d
dx

[
1−F (x)
f(x)

]
= 0 (the 3rd Von Mises Condition) and limx→∞

xδf(x)
1−F (x)

= 0 for some δ ≥ 1
2
.

Using Definitions 1 and 2, we focus on three distinct subsets of D0. Firstly, distributions satisfying one of these definitions are in the Gumbel
domain of attraction, see Shimura (2012) and Resnick (1987). Secondly, some distributions with finite tail are in D0, but do not belong to D− (e.g.
Gnedenko (1943)). Based on these three cases, let DE

0 , DH
0 and DF

0 denote respectively the classes of F ∈ D0 satisfying Definition 1, Definition
2, and with finite tail. These subsets of D0 are disjoint by the following Proposition.

Proposition 1. The sets DE
0 , DH

0 and DF
0 are disjoint.

Proof. Since DE
0 and DH

0 represent distributions with an infinite tail, they are both disjoint from DF
0 . To establish that DE

0 and DH
0 are disjoint, it

is sufficient to show that the condition on the hazard rate function in Definition 2 is not satisfied for the former case. By abuse of notation, we will
denote in this proof byC any slowly varying function. As noticed in Cline (1986),F has an exponential tail if and only ifF (lnx) = C(x)x−β for some
β > 0. By the monotone density theorem presented in Theorem 1.7.2. in Bingham, C.M., and Teugels (1987), we then have f(x) = C(ex)e−βx.
Therefore, the density f still has an exponential tail. Moreover, its limit given by Definition 1 converges uniformly on (ln b,∞) for every b > 0

(Resnick 1987). Then, by differentiating f with respect to k,

lim
x→∞

f ′(x+ k)

f(x)
= −βe−βk,

and fixing k = 0, we conclude that f ′(x) ∼ −βf(x). Using this property, one has for all δ > 0 that

lim
x→∞

xδf(x)

F (x)
= β lim

x→∞
xδ = ∞,

showing that the Gumbel hazard condition (Definition 2) is not satisfied.

Although these subsets are disjoint, they do not form a partition ofD0. Indeed, the Weibull distribution with cdf F (x) = 1− e
−

(
x
β

)α

is neither in
DH

0 orDE
0 when α ̸∈ (0, 1/2)∪{1}. This distribution belongs to a broader subset ofD0 namedWeibull tail which intersects withDH

0 andDE
0 ; see

Gardes and Girard (2013) for more details. We now discriminate between properties (2), (3) or (4) with respect to the domain of attraction of λ.

Theorem 1. Let FM be a Poisson mixture with λ distributed according to a cdf F and supported on (0, x0) with x0 ∈ R+ ∪ {∞}. Then for any
integer k ≥ 1,

lim
n→∞

FM (n+ k)

FM (n)
=


1 if F ∈ D+ ∪ DH

0 ,

(1 + β)−k if F ∈ DE
0 ,

0 if F ∈ D− ∪ DF
0 ,

where β > 0 is given by Definition 1 for DE
0 .
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Proof. (A) limn→∞
FM (n+k)

FM (n)
= 1: The result for DH

0 is directly established by Perline (1998). For F ∈ D+, a necessary and sufficient condition
is that F (x) = C(x)x−α with α > 0 (Gnedenko 1943). In fact, C(x) must be locally bounded since F is bounded. As presented in Karlis and
Xekalaki (2005), the survival function of the mixture is given by

FM (x) =

∞∫
0

λ⌊x⌋e−λ

⌊x⌋!
(1− F (λ))dλ =

Γ(⌊x⌋ − α+ 1)

Γ(⌊x⌋+ 1)

∞∫
0

λ⌊x⌋−αe−λ

Γ(⌊x⌋ − α+ 1)︸ ︷︷ ︸
g(x,λ)

C(λ)dλ

for x such that ⌊x⌋ − α > 0. By the definition of the Gamma function,
∫∞
0 g(x, λ)dλ = 1, and then for 0 ≤ a < b ≤ ∞, ϕ ∈ (−1, 1), and Stirling’s

formula, we have
b∫

a

λϕg(x, λ)dλ ≤
∞∫
0

λϕg(x, λ)dλ =
Γ(⌊x⌋ − α+ ϕ+ 1)

Γ(⌊x⌋ − α+ 1)
∼ ⌊x⌋ϕ.

By Theorem 4.1.4 in Bingham et al. (1987), we can conclude that FM is such that

FM (x) ∼ C(⌊x⌋)
Γ(⌊x⌋ − α+ 1)

Γ(⌊x⌋+ 1)
∼ C(⌊x⌋)⌊x⌋−α.

Furthermore, since ⌊x⌋ ∼ x, C(⌊x⌋) ∼ C(x) using the Karamata representation of C (Resnick 1987). Therefore FM ∈ D+ and FM (n + k) ∼
FM (n).

(B) limn→∞
FM (n+k)

FM (n)
= (1 + β)−k : Since F has an exponential tail, then F (x) = C(ex)e−βx for some β > 0. Using a similar argument as in

Theorem 4.1.4 in Bingham et al. (1987), we can prove that

FM (n) ∼
C(en)

(1 + β)n+1
.

Therefore,
lim

n→∞

1− FM (n+ k)

1− FM (n)
= (1 + β)−k lim

n→∞

C(en+k)

C(en)
= (1 + β)−k.

(C) limn→∞
FM (n+k)

FM (n)
= 0: Because FM (n) =

∫ x0
0

λne−λ

n!
(1− F (λ))dλ, the result as above follows since

FM (n+ k)

FM (n)
=

1∏k
i=1(n+ i)

∫ x0
0 λn+ke−λ(1− F (λ))dλ∫ x0
0 λne−λ(1− F (λ))dλ

≤
xk
0∏k

i=1(n+ i)
→ 0 when n → ∞.

Theorem 1 establishes that if F ∈ D+, then FM ∈ D+ which improves the result of Perline (1998) that adds the 1st Von Mises condition
(Resnick 1987) to proved a similar result. By relaxing such a condition, we proved that any mixing distributions inD+ allows the Poisson mixture to
remain in this domain of attraction. Analogous to this property, Shimura (2012) showed that any discretization of a continuous distribution in D+

preserves the domain of attraction. Considering the Poisson mixture as a discretization operator, we obtain another example where the Fréchet
domain of attraction is preserved. A broad set of mixing distributions in D+ can be found, for example the Fréchet, folded-Cauchy, Beta type II,
inverse-Gamma, or theGamma/Beta type II mixture (Irwin 1968). Unfortunately, examples are scarce for distributions inDH

0 . Indeed the asymptotic
behaviour of the hazard rate function in Definition 2 is quite restrictive. Examples include the lognormal, the Benktander type I and II (Kleiber &
Kotz 2003), and the Weibull distributions, with further restrictions on the parameters for the latter two cases. These type of distributions do not
encompass cases like the Gamma, even though the associatedmixing distribution belongs toD0, because it does not satisfy the additional condition
on the hazard rate function. The class DE

0 allows to describe such mixing distribution. It includes a broad class of elements among others Gamma,
Gamma/Gompertz, exponential, exponential logarithmic, inverse-Gaussian and the generalized inverse-Gaussian. As previously mentioned these
distributions are in the Gumbel domain of attraction, but from Theorem 1, the resulting Poisson mixtures do not belong to any domain of attraction.
However, we can quantify how close such Poisson mixtures are to the Gumbel domain of attraction. Indeed, if β → 0 then 1−FM (n+1)

1−FM (n)
→ 1, i.e.

it approaches a long-tailed distribution. Finally, when F has a finite tail, i.e. F ∈ D− ∪ DF
0 , the Poisson mixture cannot be close to any domain of

attraction by Theorem 1.

2.3 Asymptotic behaviour for F ∈ D−

To shed light on why the last limit in Theorem 1 is null, we complete this section by studying the asymptotic behaviour of the pmf PM when F is
in D−. Willmot (1990) studied such a behaviour when the Poisson mixture has a mixing distribution with a particular exponential tail. This result
is presented in the following Proposition.
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Proposition 2 (Willmot (1990)). Let FM be a Poisson mixture with λ distributed according to a distribution F such that its density is

f(x) ∼ C(x)xαe−βx,

where C is a locally bounded and slowly varying function on R+, and for some α ∈ R and β > 0. Then the pmf PM is such that

PM (n) ∼ C(n)nα(1 + β)−(n+α+1).

Proposition 2 indicates that when the density f behaves similarly to a Gamma distribution, then the pmf PM behaves like a negative binomial
pmf multiplied by a regular varying function. As previously mentioned, the negative binomial is an example of a distribution where equation (3) is
satisfied. This provides additional clarification on why the limit associated with an exponential tail in Theorem 1 converges to a value between 0

and 1. In the following Theorem, a similar conclusion is presented when F ∈ D−.

Theorem 2. Let FM be a Poisson mixture with λ distributed according to a distribution F ∈ D−. Then there exists an α > 0 such that

FM (n) ∼ Γ(α+ 1)C(n)n−α

(
xn+1
0

(n+ 1)!
e−x0

)
.

Proof. Using the integral representation of FM ,

FM (n) =

x0∫
0

λne−λ

n!
(1− F (λ))dλ =

xn+1
0

n!

∞∫
0

λn

(λ+ 1)n+2
e
− x0λ

λ+1

(
1− F

(
x0λ

λ+ 1

))
dλ

where the transformation λ 7→ λ
x0−λ

has been applied. By adapting the necessary and sufficient condition for the Weibull domain of attraction
(Gnedenko 1943), which is F ∈ D− if and only if x0 < ∞ and 1−F

(
x0x
x+1

)
= C(x)x−α for C a locally bounded function and slowly varying and

α > 0, we obtain

FM (n) =
xn+1
0

n!

∞∫
0

λn−α

(λ+ 1)n+2
C(λ)e

− x0λ
λ+1 dλ

and using the fact that the Beta function is such that

B(a, b) =

∞∫
0

ta−1

(t+ 1)a+b
dt,

a similar argument as in Theorem 1 provides that

FM (n) ∼
xn+1
0

n!
B(n− α+ 1, α+ 1)C(n)e

− x0n
n+1

∼
xn+1
0 e−x0

n!
C(n)

Γ(n− α+ 1)Γ(α+ 1)

Γ(n+ 2)

∼ Γ(α+ 1)C(n)n−α

(
xn+1
0 e−x0

(n+ 1)!

)
.

Using the asymptotic behaviour in Theorem 2, a similar result can be established for PM .

Corollary 1. Let FM be a Poisson mixture with λ distributed according to a cdf F ∈ D−. Then the pmf PM is such that

PM (n) ∼ Γ(α+ 1)C(n)n−α

(
xn
0

n!
e−x0

)
.

Proof. Since PM (n) = FM (n− 1)− FM (n), then

lim
n→∞

PM (n)

Γ(α+ 1)C(n)n−α
(

xn
0

n!
e−x0

) = lim
n→∞

C(n− 1)(n− 1)−α

C(n)n−α
− lim

n→∞

x0

n+ 1
= 1.

This result provides a new perspective on why the limit in Theorem 1 converges to 0 for a mixing distribution with a finite support. Indeed, as
previously mentioned, the Poisson distribution is an example such that the limit (4) is satisfied. From Theorem 2 and Corollary 1, FM and PM

behave like a Poisson distribution with mean x0 multiplied by a regular varying function. Intuitively, the mixing distribution does not put weight
everywhere on R+, so the tail of FM cannot satisfy equation (2).
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3 NUMERICAL STUDY

This section illustrates the practical implications of the theoretical results previously obtained. In particular, we highlight how themixing distribution
impacts the adjustment, how the statistical evaluation of tail distributions of count data may help to select a mixing distribution, and how the
maxima of Poisson mixtures with finite mixing distribution behave asymptotically.

3.1 Impact of mixing distribution choice on goodness of �t

To illustrate how the tail behaviour of λ affects the model adjustment, we simulated 100 samples of different Poisson mixtures with size n = 250

using the (i) Fréchet(α, β), (ii) lognormal(µ, σ), (iii) Gamma(α, β), and (iv) Uniform(0, x0) distributions on λ with densities

(i) f(x) = α
x

(
x
β

)−α
e
−

(
x
β

)−α

, α > 0, β > 0;

(ii) f(x) = 1
xσ

√
2π

e
− (ln x−µ)2

2σ2 µ ∈ R, σ > 0;

(iii) f(x) = βα

Γ(α)
xα−1e−βx, α > 0, β > 0;

(iv) f(x) =
1(0,x0)(x)

x0
,

each one being a representative of four out of five type of mixing distributions we encountered. Respectively, they are representative of elements
inD+,DH

0 ,DE
0 , and inD−. Moreover, the parameter γ from equation (1) associated to (i) and (iv) are respectively γ = 1/α, γ = −1 and γ = 0 for

(ii) and (iii). For each sample, the Poisson mixture is fitted with the same four distributions and the best model is kept using a Bayesian framework.
This is done using the language R (R Core Team 2021) and the rstan (Stan Development Team 2020) package to estimate the hyperparameters by
MCMC. The best model is then kept using the highest posterior model probability. Those probabilities are approximated using the bridge sampling
computational technique (Meng & Wong 1996) and the dedicated R package Bridgesampling (Gronau, Singmann, & Wagenmakers 2020). All
results are based on the following priors: a Gamma(1, 1) distribution for positive parameters and a Normal(0, 1) for real parameters. Moreover,
we simulated for each sample four MCMCs with 10,000 iterations each in order to ensure reasonable convergence for parameter estimation and
for the posterior model probabilities. Results are presented in Table 1.

Mixing class Mixing distribution Fréchet Lognormal Gamma Uniform
Fréchet(1,1) 89 11 0 0

D+ Fréchet(2,1) 80 18 2 0
Lognormal(1,1) 5 89 6 0

DH
0 Lognormal(0,1) 9 69 23 0

Gamma(2,1) 1 22 73 4
DE

0 Gamma(2,2) 1 23 54 22
Uniform(0,10) 0 0 26 74

D− Uniform(0,5) 0 1 38 61

Table 1 Selected model frequencies for each Poisson mixture simulation with the highest frequency in bold.

The Poisson-Fréchet mixtures stood out the most since their tail is heavier than any other of the distributions. The only competing model
seems to be the Poisson-lognormal which has a heavier tail than an exponential type distribution, but lighter than the Fréchet. The variance also
influences what model is selected. Indeed, for example, the lognormal(0,1) has a lesser variance compared to the lognormal(1,1). In the former
mixture, the Gamma seems to be able to compete against the lognormal, which is not the case for the latter. Interestingly, the Fréchet mixing
distribution is selected sparingly for lognormal data even when the variance gets larger. This fact remains true for the rest of the table since the
Fréchet distribution has a much heavier tail. By Theorem 1, we know that the Gamma distribution can get close to the Gumbel domain of attraction.
From Table 1, we see that the lognormal is a significant competitor for both simulations, which reflects the closeness to D0. However, when the
rate parameter is equal to 2, the mean and variance decrease and the uniform becomes another chosen option. This can be explained by the fact
that FM (n+1)

FM (n)
is closer to 0 when n grows to infinity. Finally, since the uniform has a finite tail, only the Gamma can compete and, again, larger

the variance the less the Gamma is selected. Based on each case, we see a diagonal effect from the heavier tail to the finite tail.
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3.2 Identifying the domain of attraction

In order to identify what domain of attraction a random variable belongs to, one can uses the peaks-over-threshold (POT) method (Coles 2001).
This technique involves the distribution of the excesses defined by Y −u|Y > u, for a suitable choice of u. Pickands (1975), Balkema and de Haan
(1974) showed that Y belongs to a domain of attraction if and only if the distribution of the excesses converges weakly to a generalized Pareto
distribution (GPD) as u tends to the right endpoint of the distribution of Y . In such cases, the corresponding cdf is given by

Hγ,σ(y) =

1−
(
1 + γ y

σ

)−1/γ if γ ̸= 0,

1− exp
(
− y

σ

)
γ = 0,

(7)

with support R+ if γ ≥ 0 or
[
0;−σ

γ

]
if γ < 0, where γ ∈ R and σ > 0 are respectively shape and scale parameters. Moreover, the γ parameter

is the same as in equation (1). Therefore, fitting a GPD to the excesses of a sample can inform us on the domain of attraction the underlying
distribution belongs to. Better yet, excesses of count data can inform us whether or not a Poisson mixture distribution belongs to a known domain
of attraction and, if so, which one. Therefore, analyzing the discrete excesses can indicate what type of mixing distribution generates the Poisson
mixture. Indeed, by Theorem 1, if the discrete excesses belong to a domain of attraction, then a mixing distribution F should be in D+ ∪ DH

0 .
Otherwise, F should either have an exponential or finite tail.

From a practical point of view, the study of discrete excesses may justify a choice of model. For example, one may hesitate between adjusting a
Poisson-lognormal or a negative binomial for their count data. In order to study how useful the discrete excesses can be, various Poisson mixtures
have been simulated. Here, we fixed the sample size to n = 1000, the threshold u to be the 95th or 97.5th empirical quantiles, and simulated 1000

samples for each mixing distribution. For each sample, the discrete excesses are extracted, and the evd R package (Stephenson 2002) is used to
estimate the GPD parameters by maximum likelihood. Based on these estimations, the modified Anderson Darling test for the goodness-of-fit is
applied. Finally, for the samples such that the GPD appears to be adequate, we testH0 : γ = 0 versusH1 : γ ̸= 0. To do so, we fit these twomodels,
evaluate the corresponding log likelihoods L1 and L0, and conclude with the deviance statistic D = 2 (L1 − L0) which follows approximately a
χ2
1 distribution under suitable conditions (Coles 2001). Results are presented in Table 2.

Mixing Class Mixing distribution u Average number of access GPD Rejection Test γ = 0 not rejected
95 48.727 0.069 0.014

Fréchet(1,1) 97.5 24.685 0.051 0.158
D+ 95 41.915 0.777 0.170

Fréchet(2,1) 97.5 21.746 0.177 0.615
95 46.750 0.126 0.720

Lognormal(1,1) 97.5 23.644 0.037 0.845
DH

0 95 41.914 0.697 0.257
Lognormal(0,1) 97.5 21.685 0.142 0.790

95 36.200 0.704 0.045
Gamma(2,1) 97.5 18.876 0.245 0.502

DE
0 95 38.015 0.833 0.052

Gamma(2,2) 97.5 16.988 0.392 0.311
95 39.124 0.641 0.028

Uniform(0,10) 97.5 18.999 0.296 0.390
D− 95 35.161 0.679 0.059

Uniform(0,5) 97.5 18.087 0.369 0.255

Table 2 Average number of excesses, rejection rate for the GPD and non-rejection rate of H0 : γ = 0 for the simulations with n = 1000 and
u = 95th or 97.5th empirical quantile.

Firstly, we notice that even if the Fréchet and lognormal distributions are inD+ andDH
0 respectively, the Fréchet(2,1) and lognormal(0,1) cases

lead to a high rejection rate for the 95th quantile threshold. However, when both cases are simulated with a threshold u equal to the 97.5th
quantile, the rate of GPD rejection diminishes. Therefore, it seems that the threshold choice has a great impact. Moreover, when u is the 97.5th
quantile, the estimation of γ is not significantly different to 0 for 79 % of the samples of the lognormal(0,1). However, 61.5 % of the samples of
the Fréchet are also significantly null. Secondly, as noted by Hitz, Davis, and Samorodnitsky (2017), the discrete excesses need a certain amount
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of variability in order to have a smooth adjustment to the GPD. Since the lognormal(1,1) has a greater variance and the Fréchet(1,1) doesn’t have a
finite expectation, this explains why these cases are well adjusted to the GPD. Finally, both Gamma and uniform cases have GPD rejection rates as
expected. Interestingly, the uniform distribution is rejected at a lesser rate then the Gamma. Again, this can be explained by the greater variance
for the uniform than the Gamma simulations.

Also, the Gamma(2,1) leads to a lower rate of rejection than the Gamma(2,2), which is reasonable since the former is closer toD0 than the latter
by Theorem 1. Indeed, if the limit in Theorem 1 (1+β)−1 approaches 0, the GPD rejection rate for the Poisson mixtures should increase. Inversely,
the rejection rate should decrease when (1+β)−1 approaches 1. To further analyze this, we simulated Poisson mixtures with a Gamma(2, β) mixing
density and let the parameter β vary from 0.1 to 8, the quantity (1 + β)−1 thus varying between 1/9 and 10/11. For each value of β, we simulate
500 samples of size n = 1000 from the Poisson mixture, fix the threshold u to the 95th empirical quantile, and calculate the proportion of samples
where the GPD is rejected with type I error α = 0.05. Results are presented in Figure 1. We can see that indeed the proportion decreases when
(1 + β)−1 moves towards 1. Between 0 and 0.5, the rejection proportion oscillates between 0.5 and 1. This can be explained by the fact that the
number of discrete excesses also oscillates when β increases, which affects the power of the test.

To adjust for the problems related to the discreteness of the excesses, it would be interesting to transform them into continuous variables. As
demonstrated by Shimura (2012), a Poisson mixture with F ∈ DH

0 is a random variable that originates from an unique continuous distribution
in D0 that has been discretized. If one can identify such a continuous distribution associated to the discrete excesses when the GPD is rejected,
then it would be reasonable to use an exponential tail mixing distribution. A jittering technique consiting of adding random noise to data has been
proposed for different discrete contexts (Coeurjolly & Trépanier 2020; Nagler 2018). A plausible approach would be a jittering for the GPD test in
order to adequately identify the type of mixing distribution associated to the discrete excesses.

Figure 1 Proportion of Gamma(2, β) Poisson mixture samples (size n = 1000) where the GPD has been rejected (α = 0.05) for the excesses (u =

95th empirical quantile) as a function of (1 + β)−1.

3.3 Maxima for Poisson mixtures with �nite tail mixing distribution

By Theorem 1, if F has bounded support (0, x0), then the Poisson mixture is short tailed, i.e. FM (n+1)

FM (n)
→ 0 as n → ∞. Therefore, according to

Anderson (1970), there exists a sequence of integers In such that equation (5) is satisfied. Moreover, by Corollary 1, the pmf PM asymptotically
behaves like a Poisson distribution and, as mentioned, the Poisson is the primary example where its maximum oscillates between two integers.
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Kimber (1983) and Briggs, Song, and Prellberg (2009) study how the sequence In can be approximated for the Poisson distribution and showed
that it grows slowly when n → ∞. Since PM behaves like the Poisson when F is in D−, the sequence In should also grow slowly. To visualise
this behaviour, we simulated Poisson mixtures with λ ∼ x0Beta(α, β). We fixed α = 2, x0 = 5, and for n ∈ {10, 102, 103, 104}, we simulated
10000 samples of FM with size n and recorded the maximum for each sample. With these maxima, we calculated the empirical probabilities, and
repeated for β ∈ {1/4, 1/2, 1, 2}. Figure 2 reports on the empirical and theoretical pmf of the simulations and the maxima of n Poisson variables
with mean x0 respectively. Interestingly, the greater β becomes, the slower the sequence In increases. Indeed, when β = 1/4, the probability

Figure 2 Maximum distributions of Poisson mixture with λ ∼ x0Beta(2, β) (black) and Poisson(x0) (red) with x0 = 5, β ∈ {1/4, 1/2, 1, 2} and
n ∈ {10, 102, 103, 104}.

distribution of the maxima looks similar to that of a Poisson(x0). For β = 2, the distribution for the Poisson mixture drastically shifts to the left.
This can be explained using Corollary 1. Indeed, we can show that PM here is such that

PM (n) ∼
Γ(α+ β)

Γ(α)
n−β

(
xn
0 e

−x0

n!

)
,

and when β approaches 0, then only the pmf of the Poisson(x0) remains. From another point of view, the density of the x0Beta(α, β) approaches
a Dirac on x0, so the Poisson mixture approaches a simple Poisson distribution.

4 CONCLUSION AND PERSPECTIVES

Overdispersed count data are commonly observed in many applied fields and Poisson mixtures are appealing to model such data. However, the
choice of the appropriatemixing distribution is a difficult task relyingmainly on empirical approaches related tomodelers subjectivity or on intensive
computational techniques combined with goodness-of-fit test or information criteria. In this paper, we showed that such a choice should respect
the relation between the tail behaviour of λ and the discrete data. Indeed, if a distribution F is in the Fréchet domain of attraction or satisfies the
Gumbel hazard condition given by Definition 2, then the discrete data should be in the same domain of attraction. Otherwise, an exponential or
finites tail should be chosen. Moreover, Theorem 1 established that Poisson mixtures with F ∈ D0 need to be separated into three subsets: DE

0 ,
DH

0 and DF
0 . Both subsets DE

0 and DH
0 have distributions belonging to a larger subset named Weibull tail (Gardes & Girard 2013). It would be

interesting to generalize Theorem 1 with this familly of mixing distributions.
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To identify whether the data distribution comes from a domain of attraction or not, we have studied the discrete excesses and their adjustment
by the GPD. Some difficulties occurred due to the discrete nature of the data. Solutions that could be explored are the use of techniques like the
jittering or the use of discrete analogues of the GPD like the discrete generalized Pareto or the generalized Zipf distribution presented in Hitz et al.
(2017). These approaches should help identify whether λ has a exponential tail or not. However, one could think about testing if λ has a bounded
support. Based on Theorem 2 and Corollary 1, the Poisson mixture with a finite mixing distribution should behave similarly to a Poisson with mean
x0. Testing whether F has a finite tail or not based on these results is a promising avenue.

In the field of extreme value theory, our Theorem 2 and the result of Willmot (1990) in Proposition 2 may provide an approach to finding
normalizing sequences such that the Poisson mixture belongs to a domain of attraction. Indeed, Anderson, Coles, and Hüsler (1997) showed that
if the Poisson’s mean λ depends on the sample size and increases with a certain rate, then it is possible to find normalizing sequences an and bn

such that the distribution is in the Gumbel domain of attraction. If λ does not depend on the sample size, then no such sequence can be found.
A similar result has been proved by Nadarajah and Mitov (2002) for the negative binomial when α is fixed and β approaches 0. Since Theorem 2
and Proposition 2 showed that Poisson mixtures with finite or exponential tail mixing distribution resemble the Poisson or the negative binomial
respectively, one could exploit these asymptotic properties to generalize the results of Anderson et al. (1997) and Nadarajah and Mitov (2002)
with various Poisson mixtures like the Poisson-inverse-Gaussian or Poisson-Beta. Similarly, generalizing the results of Kimber (1983) and Briggs et
al. (2009) concerning the sequence In for the maxima of Poisson random variables should also be explored.
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