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Revisiting Gradient Clipping:
Stochastic bias and tight convergence guarantees

Anastasia Koloskova * 1 Hadrien Hendrikx * 2 Sebastian U. Stich 3

Abstract
Gradient clipping is a popular modification to
standard (stochastic) gradient descent, at every it-
eration limiting the gradient norm to a certain
value c > 0. It is widely used for example
for stabilizing the training of deep learning mod-
els (Goodfellow et al., 2016), or for enforcing
differential privacy (Abadi et al., 2016). Despite
popularity and simplicity of the clipping mech-
anism, its convergence guarantees often require
specific values of c and strong noise assumptions.

In this paper, we give convergence guarantees
that show precise dependence on arbitrary clip-
ping thresholds c and show that our guarantees are
tight with both deterministic and stochastic gradi-
ents. In particular, we show that (i) for determin-
istic gradient descent, the clipping threshold only
affects the higher-order terms of convergence, (ii)
in the stochastic setting convergence to the true
optimum cannot be guaranteed under the standard
noise assumption, even under arbitrary small step-
sizes. We give matching upper and lower bounds
for convergence of the gradient norm when run-
ning clipped SGD, and illustrate these results with
experiments.

1. Introduction
This paper focuses on solving general minimization problem
of the form

min
x∈Rd

{f(x) := Eξ∼D[fξ(x)]} , (1)

where f is a possibly non-convex, and possibly stochastic
function. This setting covers many applications, e.g. it cov-
ers optimizing deterministic functions if fξ ≡ f ∀ξ. It also
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covers minimizing the empirical loss in machine learning
applications, where D represents the uniform distribution
over training datapoints, and fξ(x) is the loss of model x
on the datapoint ξ.

We focus on gradient descent methods with gradient clip-
ping for solving (1). Given a clipping radius c > 0, step-size
η > 0, and starting from a point x0 ∈ Rd the gradient clip-
ping algorithm performs the following iterations:

xt+1 = xt − ηgt , with gt = clipc(∇fξ(xt)) , (2)

where gt is a clipped stochastic gradient, and the clipping
operator is defined as

clipc(u) = min

(
1,

c

‖u‖

)
u , for u ∈ Rd. (3)

Gradient clipping is widely used to stabilize the training of
neural networks, by preventing large occasional gradient
values from harming it (Goodfellow et al., 2016). This is
particularly useful for mitigating outliers in the training data,
and training recurrent models (Pascanu et al., 2012; 2013),
in which the noise can induce very large gradients.

Gradient clipping is also an essential part of privacy-
preserving machine learning. The widely-used Gaussian
Mechanism (Dwork & Roth, 2014) adds noise to the indi-
vidual gradients to add uncertainty about their true value.
Yet, it requires the gradients to have bounded norms for the
privacy guarantees to hold. In practice, bounded gradients
are enforced through clipping (Abadi et al., 2016).

Gradient clipping has already been widely studied, as we
detail in the next section. However, many works choose a
specific value for the clipping threshold c in order to guar-
antee convergence. This suggests that c should be carefully
tuned in practice, which is highly undesirable, in particular
since the clipping threshold might be dictated by other (e.g.,
privacy) concerns. Besides, most works impose strong as-
sumptions on the stochastic gradient noise, through either
large batches (and thus small stochastic noise), angle condi-
tions, or uniform boundedness of the norm, that might not
hold in practice.

In this work, we precisely characterize how the clipping
threshold c affects the convergence properties of clipped-
SGD for any clipping threshold c.
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We consider deterministic and stochastic functions sepa-
rately, as clipping affects these two settings in different
ways.

In the deterministic case, clipping only changes the magni-
tude of the applied gradients, but not their direction. This
means that clipped gradient descent can reach the critical
points of f , however slower. Intuitively, as the algorithm
converges, the gradients become small in magnitude and are
not clipped eventually. This means that clipping affects only
the speed during the first phase when the gradients are large
in magnitude. The main challenge is to tightly characterize
this overhead.

In the stochastic case, the story is different: the individual
stochastic gradients can be large even though the expected
gradient is small. Even at the critical points of f , where the
expected (full) gradient is zero, there is some probability that
individual stochastic gradients are clipped. Moreover, as we
do not assume any symmetry of the stochastic gradients, the
expected clipped gradient might be non-zero even at critical
points of f , forcing the algorithm to drift from these critical
points. The direct consequence of this is that clipped SGD
does not converge to the critical points of f in general, but
only to some neighborhood. The bias introduced by clipping
directly depends on the noise variance σ2 and the clipping
parameter c, that we precisely define in Section 1.1. As we
will further detail in Section 1.2, existing works circumvent
this difficulty either by using large clipping thresholds or
large mini-batches, or by making strong assumptions on the
noise such as uniform boundness, restricted angles between
stochastic gradients, etc., and usually requiring specific val-
ues for c. Instead, we tightly analyze the convergence of
clipped SGD and characterize precisely the bias introduced
by clipping without any additional assumptions.

More specifically, our contributions are the following:

• For stochastic gradients, we show that clipped SGD un-
der the ’heavy-tailed’ assumption does not converge to
the critical points of f in general, but only to a neigh-
bourhood of size min{σ, σ2/c}, measured in terms of
the gradient norm.

• We show that this neighborhood size is tight: clipped
SGD reduces the gradient norm up to min{σ2, σ2/c}
indeed, provided the step-size is small enough.

• We frame our results using the (L0, L1)-smoothness as-
sumption (Zhang et al., 2019), a standard relaxation of
smoothness that is well suited to analyzing clipped algo-
rithms.

Through these results, we aim at painting a thorough and
accurate landscape of the convergence guarantees of clip-
ping under the same assumptions as standard SGD, and for
any clipping threshold c. Our goal is that these improved

bounds will allow to tighten guarantees for all downstream
applications, e.g. privacy, that use clipped-SGD convergence
results as black box. Indeed, the clipping threshold is often
viewed as an external parameter of the problem in these
cases, whereas our flexible guarantees allow to optimize the
bounds for c and trade-off convergence speed (or precision)
and application-specific requirements.

1.1. Main assumptions

Before discussing related work we will first state the as-
sumptions we use in our work.

Assumption on smoothness. The widely used smoothness
assumption in the optimization literature (e.g. Nesterov et al.,
2018) is the following:
Assumption 1.1 (Smoothness). Function f satisfies

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ , ∀x,y ∈ Rd .

Despite its widespread use, this assumption can be restric-
tive, as the constant L must capture the worst-case smooth-
ness. Zhang et al. (2019) experimentally discovered that for
various deep learning tasks, the local smoothness constant L
decreases during training, and is proportional to the gradient
norm. They reported that the local curvature (smoothness)
in the final stages of training could be 1000 times smaller
than the curvature at the initialization point (for LSTM train-
ing on the PTB dataset). (L0, L1)-smoothness (Zhang et al.,
2019; 2020a) has been proposed as a natural relaxation of
the classical smoothness assumption.
Assumption 1.2 ((L0, L1)-smoothness). A differentiable
function f : Rd → R is said to be (L0, L1)-smooth if it
verifies for all x,y ∈ Rd with ‖x− y‖ ≤ 1

L1
:

‖∇f(x)−∇f(y)‖ ≤ (L0+‖∇f(x)‖L1) ‖x− y‖ . (4)

We use this as the main assumption in our work. This as-
sumption recovers the standard smoothness Assumption 1.1
by taking L1 = 0. However, taking L1 > 0 allows to obtain
smooth-like properties for functions that would otherwise
not be smooth, such as x 7→ ‖x‖3. Moreover, it is possible
that L-smooth functions are (L0, L1)-smooth with both of
the constants L0, L1 significantly smaller than L, such as
for the exponential function x 7→ ex.

Note that the imposed bound ‖x− y‖ ≤ 1
L1

in (4) is es-
sential, as otherwise the global growth of the gradients
would be similarly restricted as for standard smooth func-
tions (thereby excluding functions such as the mentioned
x 7→ ‖x‖3).

In their work on clipping algorithms, Zhang et al. (2019)
used a slightly stronger smoothness condition that required
second-order differentiability. For twice-differentiable func-
tions f , they defined (L0, L1)-smoothness as∥∥∇2f(x)

∥∥ ≤ L0 + L1 ‖∇f(x)‖ , ∀x ∈ Rd. (5)
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Table 1. Comparison of key assumptions and illustration of complexity estimates in the non-convex deterministic case (variance σ2 = 0).
reference smoothness variance bound clipping threshold further assumptions rate (non-convex, σ = 0)

Zhang et al. (2019) 2nd-order (L0, L1) uniform bd. c = Θ(min{L0,
L0

L1
}) O

(
1√
ηTc

)
Zhang et al. (2020a) (L0, L1) uniform bd. c = Θ(max{ε, L0

L1
}) O

(
1√
ηT

)
Chen et al. (2020) L expectation arbitrary pos. skewness O

(
1√
ηT

+ 1
ηTc +

√
ηLc2

)
Qian et al. (2021) (L0, L1) expectation arbitrary pos. alignment O

(
1√
ηT

+ 1
ηTc +

√
ηL0c2 +

√
ηL1c3

)
ours (L0, L1) expectation arbitrary O

(
1√
ηT

+ 1
ηTc

)

Later, Zhang et al. (2020a) noticed that the weaker Assump-
tion 1.2 is sufficient for the study of clipping algorithms.
We adopt their notion in our work.

Assumption on stochastic variance. Many works in clip-
ping literature (Zhang et al., 2019; 2020a; Yang et al., 2022)
assume the following

Assumption 1.3 (Uniform boundness). We say that the
stochastic noise of fξ is uniformly bounded by σ2 if for all
x ∈ Rd,

Pr
[
‖∇fξ(x)−∇f(x)‖2 ≤ σ2

]
= 1. (6)

While this assumption allows to simplify the analysis of
clipping algorithms, this is a very strong assumption.

Using this Assumption 1.3 and taking a large enough clip-
ping radius (c > σ), it is ensured that at the critical points
of f (i.e. points with ∇f(x) = 0), no stochastic gradient
is clipped, allowing for the algorithm to converge to the ex-
act critical points, and thus simplifying theoretical analysis
in (Zhang et al., 2019; 2020a; Yang et al., 2022).

The uniform boundness assumption, as defined in (6), can
be a strong assumption since it must hold for a worst-case
stochastic sample, which may not always be reflective of
real-world scenarios. For instance, if gradients are perturbed
by Gaussian noise, the assumption of uniform boundness
does not hold. Additionally, in machine learning applica-
tions where ∇fξ(x) represents gradients of a model x at
different datapoints ξ from a dataset ξ ∈ D, a uniform
bound on σ may be large if the dataset D has even one
outlier point.

In this work, we use the following weaker and more standard
variance definition instead (Lan, 2012; Dekel et al., 2012),
sometimes called heavy tailed noise (Gorbunov et al., 2020).

Assumption 1.4 (Bounded variance). We say that the vari-
ance of fξ is bounded by σ2 if for all x ∈ Rd

E
[
‖∇fξ(x)−∇f(x)‖2

]
≤ σ2. (7)

Note that uniform boundedness implies bounded variance
(with the same constant), but not the other way round.

1.2. Related work

The literature on gradient clipping is already extensive and
still very active. We present the contributions most relevant
for our work below and displayed a selection in Table 1.

Clipping stabilizes learning. Gradient clipping was orig-
inally proposed in (Mikolov, 2012) in order to tackle the
gradient explosion problem in training of recurrent neural
networks. Zhang et al. (2019) proposed to theoretically
explain the question why clipped SGD improves the sta-
bility of (stochastic) first-order methods, by imposing a
relaxed second-order (L0, L1)-smoothness assumption (see
Equation (5)), and showing the convergence advantages of
clipped SGD over unclipped SGD. However they rely on
the strong Assumption 1.3 for the stochastic variance and
chose the clipping threshold to a specific large enough value.
The favorable convergence guarantees were then refined
by Zhang et al. (2020a), while still relying on Assump-
tion 1.3 on the stochastic noise. Mai & Johansson (2021)
show that this is also the case in the non-smooth setting.

Noise assumptions. Gradient clipping is often analyzed
under uniform boundness Assumption 1.3 on the stochastic
noise of the gradients in combination with choosing a large
enough clipping threshold c > σ (Zhang et al., 2019; 2020a;
Yang et al., 2022). Choosing large enough values of c simpli-
fies the theoretical analysis. However, in some applications
the choice of the clipping threshold c might be dictated by
other constraints, such as privacy constraints. Especially
because in many practical applications the stochastic noise
is heavy-tailed (Zhang et al., 2020b) it would entail large
values of σ, and thus c.

To avoid the uniformly bounded noise assumption, some
works impose other strong assumptions on the distribution
of stochastic gradients. For instance, Qian et al. (2021) re-
strict the angle between stochastic gradients and the true
gradient, and Chen et al. (2020) impose a symmetry assump-
tion on the distribution of the stochastic gradients. Gorbunov
et al. (2020) analyze clipping under bounded variance (see
Assumption 1.4), however, they impose a strong assump-
tion of the size of the minibatches used to scale linearly
with T , thus making the effective stochastic variance to be
diminishing with the number of iterations T as O

(
σ2

T

)
.



Revisiting Gradient Clipping

In this paper we take a different route from all these works,
and analyse clipped SGD under the much weaker bounded
variance assumption. Yet, instead of converging to the exact
critical points of f , we quantify how large the drift due to
clipping is, and thus obtain guarantees for any values of the
batch size and c.

Noiseless case. Since the bulk of the assumptions concern
the stochastic noise, our setting is the same as the papers
mentioned above in the deterministic setting. However, in
this case, we give sharper guarantees, essentially proving
that clipping does not affect the leading convergence terms.

Clipped Federated Averaging. Zhang et al. (2022) study
clipping for the FedAvg (McMahan et al., 2016) algorithm,
by clipping the model differences sent to the server. How-
ever, bounded gradients are needed, and the convergence
rate does not recover the rate of FedAvg when the clipping
threshold c → ∞. Moreover, clipped FedAvg is biased
even when using deterministic gradients. Liu et al. (2022)
also study a clipped-FedAvg-like algorithm, and get rid of
bias issues through assuming symmetric noise distributions
around their means.

Differentially private SGD. Differential privacy has be-
come the gold standard for protecting privacy, thus raising
interest from the stochastic optimization community (Chaud-
huri et al., 2011; Song et al., 2013; Duchi et al., 2014).
However, to ensure differential privacy, boundedness of the
stochastic gradients (Wang et al., 2017; Bassily et al., 2019;
Das et al., 2022) (or a related condition, such as Lipschitz-
ness of the objective function) has to hold. This is rarely
true in practice, but instead enforced via clipping, such as
in the DP-SGD algorithm (Abadi et al., 2016). Indeed, Lip-
schitzness requires the gradients to be bounded, whereas
smoothness only requires boundedness of the Hessian. Al-
though smoothness implies Lipschitzness on a bounded
domain, this bound is usually very conservative and leads
to poor guarantees.

Bagdasaryan et al. (2019) experimentally measure the ef-
fect of DP-SGD (clipping and additional noise) on model
accuracy. They observe that the gradients do not converge
to zero norm, so that the assumptions under which exact
convergence is shown are often not verified indeed. Be-
sides, underrepresented classes have higher gradient norm
(so DP-SGD affects fairness).

2. Deterministic Setting
In this section we consider gradient clipping algorithm (2)
with full (deterministic) gradients, i.e. with

∇fξ(x) ≡ ∇f(x) , ∀ξ ∈ D,∀x ∈ Rd. (8)

In this setting, the clipping operator (3) only changes the
magnitude of the applied gradients, without changing its
direction (as opposed to taking the expectation of clipped

stochastic gradients). Thus, we can expect convergence to
the exact minima, resp. critical points, of the function f . It
still remains unclear how much does such a change in the
magnitude of the gradients affect the convergence speed of
the algorithm.

In our theoretical results we show that the drastic slow down
happens only if the function f is strongly convex, in which
case the initial conditions (distance to optimum) are not for-
gotten linearly anymore once clipping is applied. However,
the leading term in the error ε is unaffected. If the function
f is either convex or non-convex, the clipping threshold c
does not affect the leading term of convergence, and affects
only the higher-order terms.

2.1. Non-convex functions

Theorem 2.1 (non-convex). If f satisfies Assumption 1.2,
then clipped gradient descent (2) with deterministic gradi-
ents (8) and with stepsize η ≤ [9(L0 + cL1)]−1 guarantees
an error:

1

T

T∑
t=1

‖∇f(xt)‖ ≤ O

(√
F0

ηT
+

F0

ηTc

)
, (9)

where T is the number of iterations, F0 = f(x0)− f?.

This theorem is a consequence of Theorem 3.3 for σ = 0.

Comparison to the unclipped gradient descent. The
convergence rate of gradient descent (without clipping) as-
suming the standard L-smoothness Assumption 1.1 is equal
to (Ghadimi & Lan, 2013):

1

T

T∑
t=1

‖∇f(xt)‖2 ≤ O

(
F0

ηT

)
, (10)

where the stepsize must be smaller than η ≤ 1
L . In the

future discussion we will assume that L0 + cL1 ≤ L, as
we can always choose L1 to be zero. In many cases, both
L0 and L1 are significantly smaller than L (as discussed
in Section 1.1). Thus, compared to the unclipped gradient
descent, clipped gradient descent (2):

(i) allows for larger stepsizes η (up to the constant 9 in
the stepsize constraint). This result is due to the refined
(L0, L1) smoothness assumption and such an improve-
ment in the stepsize has the same spirit as the discovery
made by Zhang et al. (2019) for the (L0, L1) second-
order smoothness assumption (5), although their bound
on the stepsize is different.

(ii) has an additional term F0

ηTc that depends on the clipping
radius c. This term is of the order 1

T , while the leading
(the slowest decreasing, asymptotically dominating) term
is of order 1√

T
.

If c is small, this term will slow down the algorithm
significantly. However, when c is chosen larger than
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the final target accuracy ε, clipping affects the conver-
gence speed only by a constant factor. Intuitively, this
is because the number of steps when clipping happens
is only a constant fraction of the total required number
of iterations to converge.1 As we frequently know the
final target accuracy, our result shows that the clipping
threshold could be set to avoid the adversarial effect of
clipping. However, in practice the clipping threshold
might be dictated by other needs.

(iii) has the different convergence measure
1
T

∑T
t=1 ‖∇f(xt)‖ instead of 1

T

∑T
t=1 ‖∇f(xt)‖2

that is more commonly used (e.g. in (10) for unclipped
gradient descent).

Comparison to the prior work. We summarized differ-
ences to the prior works in Table 1. Zhang et al. (2019)
and Zhang et al. (2020a) analyzed gradient clipping un-
der a stronger uniformly bounded variance assumption 1.3
while setting the clipping threshold c to some specific, large
enough values. Qian et al. (2021) and Chen et al. (2020)
analyse clipped SGD under arbitrary choice of the clip-
ping threshold c. In particular, assuming deterministic
gradients, Qian et al. (2021) obtain the convergence rate
of O

(√
F0

ηT + F0

ηTc + c
√
ηL0 + c3/2

√
ηL1

)
, that is strictly

worse than ours in Theorem 2.1. Chen et al. (2020) prove the
rate O

(√
F0

ηT + F0

ηTc + c
√
ηL
)

without stochastic noise,

which is worse than our result by the constant term c
√
ηL

that is not decreasing in T . Notably, this terms prevents the
error from converging to 0 under constant step-sizes, which
can be obtained in the deterministic setting, as we show
above.

2.2. Convex functions

We now prove an equivalent theorem when f is convex, i.e.
assuming additionally:
Assumption 2.2 (Convexity). Function f satisfies

f(x)− f(y) ≤ 〈∇f(x),x− y〉 , ∀x,y ∈ Rd .

Theorem 2.3 (convex). If f is L-smooth (Assumption 1.1),
(L0, L1) smooth (Assumption 1.2) and convex (Assump-
tion 2.2), then clipped gradient descent (2) with determin-
istic gradients (8) and with stepsize η ≤ (L0 + cL1)−1

guarantees an error:

f(xT )− f? ≤ O

(
R2

0

ηT
+

R4
0L

η2T 2c2

)
, (11)

where R2
0 = ‖x0 − x?‖2, f? = f(x?), and

x? = arg minx f(x).

1Formally: because the final accuracy ε =
√
F0/ηT+F0/ηTc ≥√

F0/ηT , and thus if clipping threshold is larger than that,
c ≥

√
F0/ηT , then the convergence speed

√
F0/ηT + F0/ηTc ≤

2
√
F0/ηT is affected only by a constant.

In comparison, under the same assumptions as in Theo-
rem 2.3, unclipped gradient descent converges at the rate

f(xT )− f? ≤ O

(
R2

0

ηT

)
under the condition that the stepsize is smaller than η ≤
L−1 (Nesterov et al., 2018). Similarly to the non-convex
case, convergence rate of the clipped gradient descent is
slowed down by the higher-order term R4

0L
η2T 2c2 . Yet, again,

it is enough to set the clipping threshold c bigger than the
final target accuracy ε (multiplied by

√
L this time) to avoid

the slowdown effect of this term, since for high accuracies
more time is actually spent using unclipped gradients.

Also, similarly to the non-convex case, clipped GD allows
for the larger stepsizes η that would result in the faster
convergence.

2.3. Strongly convex functions

In this section we consider strongly-convex functions f .

Assumption 2.4 (strong-convexity). There exists a constant
µ > 0 such that function f satisfies for all x,y ∈ Rd,

f(x)− f(y) +
µ

2
‖x− y‖22 ≤ 〈∇f(x),x− y〉 .

Similarly to the convex and non-convex cases, clipping does
not affect the leading term of convergence (as ε→ 0) as we
show in the following theorem. This is due to the fact that
for any fixed c > 0, gradients are eventually never clipped.

Theorem 2.5 (Strongly convex case). If f is µ-strongly
convex (Assumption 2.4), L-smooth (Assumption 1.1) and
(L0, L1) smooth (Assumption 1.2), then clipped gradient de-
scent (2) with deterministic gradients (8) and with stepsize
η ≤ (L0 + cL1)−1 needs at most

T = O

(
1

µη
log

(
R2

0

ε

)
+
R0

cη
min

(√
L

µ
,
LR0

c

))
(12)

iterations to reach accuracy R2
T ≤ ε, where L and R2

t are
as in Theorem 2.3.

Compared to the unclipped case, there is an extra term in the
strongly convex case, which does not decrease with ε and
corresponds to the overhead of clipping. This means that
during the initial phase of convergence, when the gradients
are clipped, the convergence speed is sublinear, and one
would have to set c = O (1/log( 1

ε )) in order for the clipping
do not affect the convergence speed, that is much larger than
in the non-convex and convex cases.

Intuitively, since the clipped gradient norm is fixed, the it-
erates can actually move only up to ηc each step towards
the optimum. If the initial distance to the optimum R0 hap-
pened to be large, in the best case scenario, one would need



Revisiting Gradient Clipping

at least R0

ηc steps to reach the optimum. The dependency on
c for the first term in the min is tight.2

Note that after a constant (independent of ε) number of
iterations, the algorithm converges linearly, at a rate that
depends on (L0+cL1) only, that can be significantly smaller
than the dependency on L in the GD convergence rate.

3. Stochastic Functions
In the deterministic setting gradient clipping achieves con-
vergence to the exact minimizer or a stationary point, respec-
tively, and clipping only affects initial convergence speed.
Yet, this does not hold in the stochastic setting where clip-
ping introduces unavoidable bias. The main reason behind
this is that the expectation of the clipped stochastic gradients
is different (in both norm and direction) from the clipped
true gradient.

While it was known before that the clipped SGD does not
converge under the bounded variance Assumption 1.4 (Chen
et al., 2020), in this section we will precisely characterize
lower bounds on the error that clipped SGD can achieve,
and then we provide upper bounds that match our lower
bounds.

3.1. Unavoidable Bias Introduced by Clipping

If the gradient clipping algorithm converges, it has to
be towards its fixed points, i.e. to points x? such that
E [clipc(∇fξ(x?))] = 0. This is achieved in the limit of
small step-sizes (to counter stochastic noise).

We now formally show a lower bound that states that fixed
points of clipped SGD are not necessary optimal or criti-
cal points of the objective function f . In fact, there exist
stochastic gradient noise distributions under which critical
points of clipped SGD are σ far away from critical points
of f .

Theorem 3.1 (Small clipping radius). For any σ2 ≥ 0
and c ≤ 2σ, there exists a function f and a noise distri-
bution with (expected) variance σ2, (Definition 1.4), such
that for all the fixed-points of clipped-SGD x? (which verify
E [clipc(∇fξ(x?))] = 0) it holds that ‖∇f(x?)‖ ≥ σ/12.

Note that as the step-size becomes smaller and smaller,
clipped SGD will converge to a point such that
E [clipc(∇fξ(x))] = 0 (if such a point exists), and so in
particular ‖∇f(x)‖ will not converge to 0.

2Formally, consider the function x 7→ 1
2
x2 and initial iterate

x0 = 1. Suppose we aim to reach a target accuracy ε < 1
4

with
clipping threshold c < 1

2
. We see that unless |x| < c, the gradient

f ′(x) = x will get clipped to value c, and hence after 1
2c

iterations,
cannot reach a point with norm smaller than 1

2
and squared norm

less than 1
4

respectively.

Proof sketch. We define the stochastic function

fξ(x) =
1

2

{
(x+ a)2 w. p. p
x2 w. p. (1− p)

where a > 0 and p < 1/2. The expected function is thus
f(x) = 1

2 [p(x+ a)2 + (1− p)x2].

The result is then obtained by choosing a = 4σ and p =
(2 −

√
3)/4 < 1/4 is such that p(1 − p) = 1/16. The

statement follows by using the standard algebra, as detailed
in Appendix C.5.

The previous impossibility result holds when the clipping
radius is small (c < 2σ). We further show that by taking a
larger clipping radius c, we can reduce the neighborhood
size to which clipped-SGD converges from σ to σ2

/c, but
cannot completely eliminate it.

Theorem 3.2 (Large clipping radius). For any σ2 ≥ 0 and
c ≥ 2σ, there exists a function f , a noise distribution with
(expected) variance σ2 (Def. 1.4) and a point x? such that
E [clipc(∇fξ(x?))] = 0 and ‖∇f(x?)‖ ≥ σ2

/6c.

Proof sketch. We use the same function as Theorem 3.1,
this time with a = 2c and p(1− p) = σ2/a2.

Uniformly bounded noise. Note that this lower bound
crucially relies on the noise being bounded by σ in expec-
tation (assumption 1.4). Indeed, the results hinge on the
fact that stochastic gradients are clipped with probability
p, thus introducing a bias. If we keep this Bernoulli noise
but increase c, then this bias would completely disappear
for c ≈ a, because then the clipping radius would be larger
than the uniform bound on variance. It might be possible
to circumvent this and get a stronger lower bound (there
exists a noise distribution such that for all clipping radiae)
by using more complex fat-tail noise distributions.

We now provide the convergence rates that match these
lower bounds.

3.2. Convergence results

We first introduce the central result of this paper: the con-
vergence of clipped SGD.

Theorem 3.3. If f is smooth (but not necessarily con-
vex) and we run clipped SGD for T steps with step-size
η ≤ 1/[9(L0 + cL1)], then mint∈[0,T ] E ‖∇f(xt)‖ is up-
per bounded by

O

(
min

{
σ,
σ2

c

}
+
√
η(L0 + cL1)σ +

√
F0

ηT
+

F0

ηTc

)
,

where F0 = f(x0)− f?.



Revisiting Gradient Clipping

0 25 50 75 100 125 150 175 200
iteration

10 2

10 1

no
rm

 o
f t

he
 g

ra
di

en
t

learning rate = 10

no clipping
c = 10 1

c = 10 2

c = 10 3

(a) Constant stepsize, target ε = 10−2

0 1000 2000 3000 4000 5000
iteration

10 3

10 2

10 1

no
rm

 o
f t

he
 g

ra
di

en
t

learning rate = 10

no clipping
c = 10 1

c = 10 2

c = 10 3

c = 10 4

(b) Constant stepsize, target ε = 10−3
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(c) Tuned stepsize for target ε = 10−2

Figure 1. Deterministic clipped gradient descent on the w1a dataset. We investigate the dependence of the convergence rate on the
clipping parameter c. In Figures (a) and (b) we see that as soon as the clipping threshold is smaller or equal to the target gradient norm
ε, the convergence speed is affected only by a constant. In Figure (c), we see that as the clipping threshold c decreases, the best tuned
stepsize (tuned to reach ε = 10−2 fastest) decreases. These observations in accordance to the theory in Theorem 2.3.

The convergence rate contains four terms: the first term does
not decrease with neither the stepsize η nor the number of
iterations T and it is due to unavoidable bias, as explained
in the previous section. Due to Theorems 3.1, 3.2 this term
is tight and cannot be improved. The second term is the
stochastic noise term that decreases with the stepsize, and
the last two terms are the optimization terms that describe
how clipping affects convergence when the stochastic noise
is zero.

Comparison to the unclipped SGD. Under the standard
smoothness assumption 1.1, unclipped SGD requires the
stepsize to be smaller than η ≤ L−1 and it converges at the
rate (Bottou et al., 2018)

ET ≤ O

(√
ηLσ +

√
F0

ηT

)
.

where3 ET :=
(

1
T

∑T
t=0 ‖∇f(xt)‖2

) 1
2

. In comparison to
the unclipped SGD, clipped SGD (2),

• Has an unavoidable bias term min
{
σ, σ

2

c

}
that we dis-

cussed in detail in the previous Section 3.1.
• Has a smaller stochastic noise term, as L0 + cL1 ≤ L.
• Similarly to the deterministic case, has an additional

higher-order term F0/ηTc.

We want to highlight that the bias term min
{
σ, σ

2

c

}
in

our convergence rate is tight. This implies in particular
that under general expected bounded noise assumption 1.4,
clipped SGD cannot converge to the exact critical points of
f , but the convergence neighborhood size decreases with in-
creasing c. As discussed in the related work section, several
strategies exist to mitigate this effect: increase the batch size
(Gorbunov et al., 2020); or increase the clipping threshold,
(which requires knowledge of σ).

3Note that ET ≥ mint∈[0,T ] E ‖∇f(xt)‖.

Similarly to Zhang et al. (2019), clipped SGD improves
over unclipped SGD the dependence on the smoothness
parameter from L to L0. In contrast to Zhang et al. (2019)
in our work we do not assume specific values of c, and use
a weaker expected bounded noise Assumption 1.4.

The complete proof of Theorem 2.5 can be found in Ap-
pendix C. We now give an intuitive proof sketch of Theo-
rem 3.3.
Proof sketch (Theorem 3.3). The proof is split into two dif-
ferent cases, depending on how big c is compared to σ.

Case c ≤ 4σ. In this case, according to the lower bound in
Theorem 3.1, we can only show convergence of the gradient
norm up to Θ(σ). To achieve this, we only need to consider
the case when the gradients have ‖∇f(xt)‖ ≥ 6σ, since oth-
erwise the convergence to Θ(σ) is already achieved. We can
show that in the case of large gradients (i.e. ‖∇f(xt)‖ ≥
6σ), the standard convergence results hold under uniformly
bounded noise, because the gradient norm is large enough
to compensate the (fixed) variance.

Case c ≥ 4σ. In this case, we analyze clipped SGD as
some form of biased gradient descent. After some manipu-
lations, we obtain descent terms such as equation (32) from
Appendix C, and a bias term that writes as

Bt = ‖E [clipc(∇fξ(xt))]− clipc(∇f(xt))‖2 . (13)

Using that the clipping operation is a projection on a convex
set (on a ball of a radius c), then we can bound this term
directly as Bt ≤ σ2. In particular, we can cancel it with
descent terms when ‖∇f(xt)‖ is large enough.

When ‖∇f(x)‖ ≤ c/2, then we can be more precise. In
particular we can show that the probability that the stochas-
tic gradient is clipped is smaller than σ2/c2. Using this, we
can refine the estimate of the bias as

Bt ≤ 8
σ4

c2
+ 32

σ4

c4
‖∇f(x)‖2 . (14)
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The σ4/c2 is the bias term that we find in the convergence
rate, but the ‖∇f(x)‖2 term can be canceled with descent
terms (that are also proportional to this) provided σ4/c4 is
small enough.

3.3. Extension to differentially private SGD

In differentially private SGD (Abadi et al., 2016) every
individual stochastic gradient in the batch is getting clipped
individually before averaging the gradients over the batch,
i.e. the algorithm is

xt+1 = xt − η

(
1

B

∑
i∈Bt

clipc(∇fξi(xt)) + zt

)
, (15)

where zt ∼ N
(

0,
σ2

DP
d I
)

is the additional noise due to dif-
ferential privacy.

As detailed in Appendix C.4 we can extend our analysis
to this algorithm in a straightforward way and show that
T iterations of (15) allow to obtain gradient norm smaller
than:

O

(
Lη

c
σ2

DP +
√
LησDP + min

(
σ2,

σ4

c2

)
+ ηL

σ2

B
+
F0

ηT
+

F 2
0

η2T 2c2

)
.

where B is the mini-batch size, and L = L0 +
maxt ‖∇f(xt)‖L1, corresponding to the smoothness con-
stant according to the standard L-smoothness assumption.

Similarly to the clipped-SGD algorithm considered
previously, DP-SGD also suffers from a bias term
min

(
σ2, σ

4
/c2
)
. Lower bounds in Theorems 3.1, 3.2 ap-

ply to DP-SGD, so this bias is also tight and unavoidable.

In comparison to the clipped SGD (2), DP-SGD has addi-
tional terms related to the injected privacy noise σDP, and
the stochastic noise (fourth term) is reduced by a factor B
due to mini-batching.

In order to have the formal privacy guarantees, one has
to set the variance of additional DP noise appropriately,

(Abadi et al., 2016) prove that for σDP ≥ Ω

(
cd

√
T log 1

δ

ε

)
DP-SGD is (ε, δ)-differentially private.

Related to prior work on DP-SGD that incorporate clipping
in the convergence analysis (Chen et al., 2020; Yang et al.,
2022), our convergence rates are proven only assuming
bounded variance in expectation (Def. 1.4) and without
extra assumptions on the noise. They showcase the effect of
the clipping threshold on the convergence of DP-SGD.

4. Experiments
In this section, we investigate the performance of gradient
clipping on logistic regression on the w1a dataset (Platt,

1998). The goal is to highlight our theoretical results.

Deterministic setting. In the deterministic setting, one of
our insights was that clipping does not degrade performance
too much as long as the clipping threshold is bigger than
the final target accuracy. We test this in Figures 1(a), 1(b),
by plotting the clipped-GD with different values of c, for
different target accuracies. We see that to reach accuracy
10−3, all values of c (except from c = 10−4) perform rela-
tively well. However, choosing c = 10−3 is not advisable if
we only want to reach an error ε = 10−2, as can be seen in
Figure 1(b) (note the different scaling of the x-axis in both
plots).

In Figure 1(c), we investigate the dependence between the
clipping threshold c and the step-size. We tune the stepsize
separately for each clipping parameter c over a logarithmic
grid between 10−1 and 104, ensuring that the optimal value
is not at the edge of the grid. The best stepsize is selected
as the one that reaches the target gradient norm ε = 10−2

the fastest. In Figure 1(c) we see that choosing smaller
clipping radius allows for larger step-sizes, which speeds-up
convergence overall.

In particular, we have verified that in the deterministic set-
ting, clipping does not harm learning as long as the threshold
is not too small compared to the target accuracy. Besides,
clipping stabilizes learning, thus allowing for larger step-
sizes, and thus faster convergence.

Stochastic setting. The results for clipped-SGD are plotted
in Figure 2. They also verify the theory, since larger learning
rates are always better when using clipping (compared to
unclipped). It is also interesting to note that the curves are
basically determined by the product cη, which is how large
the step is when clipping happens. However, we see that
in this case, with such small values of c, clipped-SGD does
not quite reach the performance of vanilla SGD.

5. Conclusion

In this paper, we have rigorously analyzed gradient clip-
ping, both in the deterministic setting and under standard
noise assumptions. While previous works focus on exact
convergence under strong assumptions (in particular, of-
ten for a fixed clipping threshold), we tightly characterized
(with both upper and lower bounds) the bias introduced by
clipped-SGD for any clipping threshold.

Our work paves the way for better understanding clipping
when used with other algorithms, such as accelerated or
momentum methods or FedAvg. In particular, it can lead to
an improved analysis of privacy guarantees in applications
that rely on clipped SGD as an underlying black box, on the
one hand for existing, but also future applications.
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Figure 2. Stochastic gradient descent (with batch size = 1) on the w1a datasets. Without clipping, decreasing the stepsize allows to achieve
smaller gradient norm (left). However, decreasing the stepsize with clipping does not allow to achieve better gradient norm, but even
degrades its final norm (right). Similarly, increasing the clipping threshold c allows to reduce the final accuracy, as predicted by theory.
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A. Implications of (L0, L1) smoothness
Lemma A.1. If Assumption 1.2 holds, then it also holds that

f(y)− f(x) ≤ ∇f(x)>(y − x) +
(L0 + ‖∇f(x)‖L1)

2
‖x− y‖2 , ∀x,y ∈ Rd with ‖x− y‖ ≤ 1

L1
. (16)

For the proof see (Zhang et al., 2020a), Appendix A.1.

Lemma A.2. If Assumption 1.2 holds, then it also holds that

‖∇f(x)‖2 ≤ 2(L0 + L1 ‖∇f(x)‖) (f(x)− f?) ∀x ∈ Rd ,

where f? = infx f(x).

Proof of Lemma A.2. We start the proof by applying the previous Lemma A.1 for y = x− 1
L0+‖∇f(x)‖L1

∇f(x). Note that

‖x− y‖ = ‖∇f(x)‖
L0+‖∇f(x)‖L1

≤ 1
L1

and we can apply the inequality:

f? ≤ f
(
x− 1

L0 + ‖∇f(x)‖L1
∇f(x)

)
(16)
≤ f(x)− 1

2(L0 + ‖∇f(x)‖L1)
‖∇f(x)‖2 ,

and rearranging gives us the desired property.

B. Deterministic proofs
This section contains the main proofs from the paper. We skip the non-convex proof, since it will be a direct consequence of
the stochastic result.

B.1. Convex case (Theorem 2.3)

Defining αt = min{1, c
‖∇f(xt)‖} we have:

‖xt+1 − x?‖2 ≤ ‖xt − x? − ηαt∇f(xt)‖2 = ‖xt − x?‖2 + η2α2
t ‖∇f(xt)‖2 − 2αtη〈∇f(xt),xt − x?〉

≤ ‖xt − x?‖2 + η2α2
t ‖∇f(xt)‖2 − 2ηαt (f(xt)− f?) .

We consider two cases: when clipping happens, and when clipping does not happen.

Case 1: αt = 1, meaning that ‖∇f(xt)‖ ≤ c. Then

‖xt+1 − x?‖2 ≤ ‖xt − x?‖2 + η2 ‖∇f(xt)‖2 − 2η (f(xt)− f?) .

Using the implication of (L0, L1) smoothness and convexity in Lemma A.2,

‖∇f(xt)‖2 ≤ 2(L0 + L1 ‖∇f(xt)‖) (f(xt)− f?) ≤ 2(L0 + L1c) (f(xt)− f?) .

Further,

‖xt+1 − x?‖2 ≤ ‖xt − x?‖2 + 2(L0 + L1c)η
2 (f(xt)− f?)− 2η (f(xt)− f?)

and by setting η ≤ 1
2(L0+L1c)

we obtain

‖xt+1 − x?‖2 ≤ ‖xt − x?‖2 − η (f(xt)− f?) .

Case 2: αt = c
‖∇f(xt)‖ meaning that ‖∇f(xt)‖ > c

‖xt+1 − x?‖2 ≤ ‖xt − x?‖2 + η2c2 − 2η
c

‖∇f(xt)‖
(f(xt)− f?)
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If it holds that η2c2 ≤ η c
‖∇f(xt)‖ (f(xt)− f?), then we will get

‖xt+1 − x?‖2 ≤ ‖xt − x?‖2 − η c√
2L

√
(f(xt)− f?) (17)

Lets now see under which stepsizes the condition η ≤ 1
c‖∇f(xt)‖ (f(xt)− f?) holds by upper bounding the rhs. By (L0, L1)

smoothness (and Lemma A.2) we know that (f(xt)− f?) ≥ ‖∇f(xt)‖2
2(L0+L1‖∇f(xt)‖) and thus

1

c ‖∇f(xt)‖
(f(xt)− f?) ≥

1

2(L0
c

‖∇f(xt)‖ + L1c)
≥ 1

2(L0 + L1c)

where the last inequality is because c
‖∇f(xt)‖ ≤ 1 by our assumptions on αt in this case. This means that using stepsize

η ≤ 1
2(L0+L1c)

, it will hold that η ≤ 1
c‖∇f(xt)‖ (f(xt)− f?) and thus (17) will hold.

Summing the two cases. We define T1 the set of iterations when clipping does not happen and T2 as set of iterations when
clipping happens. Taking the average over T + 1 iterations

1

T + 1

∑
t∈T1

(f(xt)− f?) +
1

T + 1

∑
t∈T2

c√
2L

√
f(xt)− f? ≤

‖x0 − x?‖2

η(T + 1)

This means that both (i)

1

T + 1

∑
t∈T1

(f(xt)− f?) ≤
‖x0 − x?‖2

η(T + 1)

and (ii)

1

T + 1

∑
t∈T2

√
f(xt)− f? ≤

‖x0 − x?‖2
√

2L

ηc(T + 1)

for the first inequality (i) using that x2 ≥ 2εx− ε2 for any ε, x > 0, and defining for simplicity A := ‖x0−x?‖2
η(T+1) we get

1

T + 1

∑
t∈T1

(
2ε
√
f(xt)− f? − ε2

)
≤ A

and thus,

1

T + 1

∑
t∈T1

√
f(xt)− f? ≤

A

2ε
+
ε

2

Choosing ε =
√
A, we get

1

T + 1

∑
t∈T1

√
f(xt)− f? ≤

√
A ≤

√
‖x0 − x?‖2

η(T + 1)

This implies that

1

T + 1

T∑
t=0

√
f(xt)− f? ≤

√
R2

0

η(T + 1)
+

R2
0

√
2L

ηc(T + 1)

We further use that f(xt+1) ≤ f(xt) and get a last-iterate convergence rate

√
f(xT )− f? ≤

√
R2

0

η(T + 1)
+

R2
0

√
2L

ηc(T + 1)

Squaring both of the sides, and using that (a+ b)2 ≤ 2a2 + 2b2 ∀a, b, we get

f(xT )− f? ≤ 2R2
0

η(T + 1)
+

4LR4
0

η2c2(T + 1)2
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B.2. Strongly convex case (Theorem 2.5)

Recursive argument. First, since the strongly convex function is also convex, we can apply the result of the previous
theorem here to get

f(xT )− f? ≤ 2R2
0

ηT
+

4LR4
0

η2c2T 2

We remind that R0 = ‖x0 − x?‖. Using strong-convexity, we also know that

f(xT )− f? ≥ µ

2
R2
t ,

Thus,

R2
t ≤

4R2
0

µηT
+

8LR4
0

µη2c2T 2

Thus, to get R2
t ≤

R2
0

2 , it is enough to take t ≥ max{ 16µη ,
6R0

√
L

ηc
√
µ } (as both terms become less that R2

0/4).

Repeating this argument, we can see the iteration complexity can be bounded by

T = O

(
1

µη
log

(
R2

0

ε

)
+
R0

√
L

ηc
√
µ

)
.

Small gradients. Let us start again from the convex bound (Theorem 2.3). Now, we will instead use that:

‖∇f(xt)‖2 ≤ 2L (f(xt)− f?) ≤ 2L
R2

0

ηt

(
1 +

R2
0L

c2ηt

)
.

Now introduce t0 which is such that:

t0 =
8LR2

0

ηc2
, (18)

then we have that for all t ≥ t0:
‖∇f(xt)‖ ≤ c. (19)

In particular, we know that no clipping happens after t0, and so we obtain the standard linear convergence rate, so that the
final convergence time is:

T = O

(
1

ηµ
log

(
R2

0

ε

)
+
LR2

0

ηc2

)
(20)

Comparing the two rates. Note that no rate is better than the other, and we can use one or the other depending on the
relationship between c and

√
LµR0.

C. Stochastic proofs.
We now proceed to the proof of Theorem 3.3. The proof will be in two parts: we will first prove convergence up to σ2, and
then refine this for large values of c.

C.1. Preliminaries

We now state a very simple lemma, which is direct but at the core of our decomposition, and so we highlight it here.

Lemma C.1. For any α > 0 and u ∈ Rd, the following holds:

−∇f(x)>u = −α
2
‖∇f(x)‖2 − 1

2α
‖u‖2 +

1

2α
‖u− α∇f(x)‖2 (21)
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C.2. First part of the proof: convergence up to σ (small c)

In this section for simplicity we assume that c < 4σ and prove that the gradient norm converges up to a level σ. Note that
this assumption on c is not restrictive since the case c > 4σ is covered by the other part of the proof, in which we show
better convergence to O(σ

2

c ).

Large gradients. Let us start by assuming that ‖∇f(xt)‖ ≥ 6σ. Note that numerical constant is (relatively) arbitrary and
could be tightened, but we choose it high to keep the proof clean and simple.

We start the analysis by using (L0, L1) smoothness property from Lemma A.1. Note that for any stepsize η < 1
L0+cL1

it
holds that ‖xt+1 − xt‖ = η‖g(xt)‖ ≤ ηc ≤ 1

L1

f(xt+1)− f(xt) ≤ −η∇f(xt)
>g(xt) +

η2(L0 + ‖∇f(xt)‖L1)

2
‖g(xt)‖2

≤ −η∇f(xt)
>g(xt) +

η2(L0 + ‖∇f(xt)‖L1)

2
c2

≤ −η∇f(xt)
>g(xt) +

η2(L0 + cL1)

2
c ‖∇f(xt)‖ (22)

where the last inequality is because we assumed that c ≤ 4σ ≤ ‖∇f(xt)‖.
Uniformly bounded variance, def. 1.3. In this case, let us first assume that strong variance holds with constant 3, i.e., that
‖∇fξ(xt)−∇f(xt)‖ ≤ 3σ with probability one. In this case, we can write, where αξ = min (1, c/ ‖∇fξ(xt)‖):

−∇f(xt)
>g(xt) = −αξ ‖∇f(xt)‖2 − αξ∇f(xt)

> (∇fξ(xt)−∇f(xt))

≤ −αξ ‖∇f(xt)‖2 + αξ ‖∇f(xt)‖ ‖∇fξ(xt)−∇f(xt)‖

≤ −αξ ‖∇f(xt)‖2 + 3αξ ‖∇f(xt)‖σ

≤ −αξ
2
‖∇f(xt)‖2 ,

where the last line follows from the fact that σ < ‖∇f(xt)‖ /6. In particular, using the strong variance assumption, we
know that ‖∇fξ(xt)‖ ≤ 2 ‖∇f(xt)‖, so that αξ ≥ min(1, c/(2 ‖∇f(xt)‖)) ≥ c/(2 ‖∇f(xt)‖). In particular:

−∇f(xt)
>∇fξ(xt) ≤ −

c

4
‖∇f(xt)‖ . (23)

Then, we can plug this into Equation (22), which leads to:

E [f(xt+1)]− f(xt) ≤ −
ηc

4
(1− 2η(L0 + cL1)) ‖∇f(xt)‖ (24)

In particular, choosing η ≤ (4[L0 + cL1])
−1, we obtain:

ηc

8
‖∇f(xt)‖ ≤ f(xt)− f(xt+1). (25)

Bounded variance in expectation, Def 1.4. In this case, we cannot write the same inequalities as before with probability
1. However, we can still guarantee the bound with large enough probability. We define δ = 1{‖∇fξ(x)−∇f(x)‖ > 3σ}.
We will use conditional expectations to write

E
[
−αξ∇f(x)>∇fξ(x)

]
≤ p(δ = 0)E

[
−αξ∇f(x)>∇fξ(x)|δ = 0

]︸ ︷︷ ︸
:=T1

+p(δ = 1)E
[
−αξ∇f(x)>∇fξ(x)|δ = 1

]︸ ︷︷ ︸
:=T2

We bound the first term T1 the same way as in previous case of uniformly bounded noise. For the second term, by
Cauchy-Schwartz inequality, and defining α = min (1, c/ ‖∇f(x)‖) we write

T2 = E
[
−αξ∇f(x)>∇fξ(x)|δ = 1

]
≤ ‖∇f(x)‖E [‖αξ∇fξ(x)‖ |δ = 1] ≤ α ‖∇f(x)‖2

where the last inequality is because we assumed that the full gradients are large ‖∇f(x)‖ > 6σ, but the clipping threshold
is small c ≤ 4σ. Thus, the full gradients would always get clipped, and ‖α∇f(x)‖ = c ≥ ‖αξ∇fξ(x)‖. We remind that
αξ = min (1, c/ ‖∇fξ(x)‖).
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Now, it just remains to bound p(δ = 1). Using Markov inequality, we have that:

p(δ = 1) = p(‖∇fξ(x)−∇f(x)‖2 > 9σ2) ≤ 1/9. (26)

Similarly, p(δ = 0) = 1− p(δ = 1) ≥ 8/9. In the end, we obtain that:

−E
[
∇f(x)>g(x)

]
≤ −c

(
1

4
× 8

9
− 1

9

)
‖∇f(x)‖ = − c

9
‖∇f(x)‖ (27)

We further plug the result into (22), and obtain

E [f(xt+1)]− f(xt) ≤ −
ηc

9

(
1− 9η

2
(L0 + cL1)

)
‖∇f(xt)‖ , (28)

and so with η ≤ (9[L0 + cL1])
−1, we obtain:

E [f(xt+1)]− f(xt) ≤ −
ηc

18
‖∇f(xt)‖ . (29)

Final convergence. If for at least one iteration t it happens that the gradient norm is small ‖∇f(xt)‖ ≤ 6σ, then it simply
holds that

min
t∈[1,T ]

E ‖∇f(xt)‖2 ≤ O
(
σ2
)
.

Otherwise, for all t iterations the gradient norm is large ‖∇f(xt)‖ > 6σ and thus (29) holds for all the iterations. Averaging
over 1 ≤ t ≤ T + 1, we obtain

1

T + 1

T∑
t=0

‖∇f(xt)‖ ≤ O

(
f(x0)− f?

ηcT

)
, (30)

Combining these two cases we conclude that

min
t∈[1,T ]

E ‖∇f(xt)‖2 ≤ O

(
σ2 +

f(x0)− f?

ηcT

)
,

C.3. Second part of the proof: convergence up to σ2/c (large c).

In this second part we assume that the clipping radius is large, c ≥ 4σ. Although, the algorithm (2) clips the stochastic
gradients ∇fξ(xt), for the proof we will consider the two cases based on the full gradient ∇f(xt): when the full gradient
∇f(xt) is clipped and when it is not clipped.

Similarly to previous case, we start by using (L0, L1) smoothness

f(xt+1)− f(xt) ≤ −η∇f(xt)
>g(xt) +

η2(L0 + ‖∇f(xt)‖L1)

2
‖g(xt)‖2 (31)

First case, full gradient is clipped ‖∇f(xt)‖ > c.
In this case, we use (21) with α = c

‖∇f(xt)‖ and u = g(xt). Since α∇f(xt) = clipc(∇f(xt)), this leads to

−∇f(xt)
>g(xt) = − c

2
‖∇f(xt)‖ −

1

2α
‖g(xt)‖2 +

1

2α
‖g(xt)− clipc(∇f(xt))‖2 (32)

We now use that g(xt) = clipc(∇fξ(xt)), and use that clipping is a projection on onto a convex set (ball of radius c), and
thus is Lipshitz operator with Lipshitz constant 1, we write

−∇f(xt)
>Eg(xt) ≤ −

c

2
‖∇f(xt)‖ −

1

2α
E
[
‖g(xt)‖2

]
+

1

2α
E ‖∇fξ(xt)−∇f(xt)‖2

≤ − c
2
‖∇f(xt)‖ −

1

2α
E
[
‖g(xt)‖2

]
+
σ2

2c
‖∇f(xt)‖

= − 1

2α
E
[
‖g(xt)‖2

]
− c

2
‖∇f(xt)‖

(
1− σ2

c2

)
≤ −‖∇f(xt)‖

2c
E
[
‖g(xt)‖2

]
− c

4
‖∇f(xt)‖ ,
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where in the last line we used that σ2
/c2 ≤ 1/2 and α ≤ 1. Plugging this into (31) we get

E [f(xt+1)]− f(xt) ≤ −
η ‖∇f(xt)‖

2c
E
[
‖g(xt)‖2

]
− ηc

4
‖∇f(xt)‖+

η2(L0 + ‖∇f(xt)‖L1)

2
E
[
‖g(xt)‖2

]
= −ηc

4
‖∇f(xt)‖ −

η ‖∇f(xt)‖
2c

E
[
‖g(xt)‖2

]
(1− ηcL1) +

η2L0

2
E
[
‖g(xt)‖2

]
≤ −ηc

4
‖∇f(xt)‖ −

η

2
E
[
‖g(xt)‖2

]
(1− ηcL1) +

η2L0

2
E
[
‖g(xt)‖2

]
= −ηc

4
‖∇f(xt)‖ −

η

2
E
[
‖g(xt)‖2

]
(1− η[L0 + cL1]) .

In particular, choosing η ≤ (L0 + cL1)−1, we obtain:

c

4
‖∇f(xt)‖ ≤

f(xt)− Ef(xt+1)

η
(33)

Note that we do not obtain variance terms, but similarly to the previous section it is because we have assumed that the norm
of the gradient is larger than σ, then the noise term can be hidden in the gradient norm term.

Second case, c > ‖∇f(xt)‖ > c/2. The proof follows very closely the previous case with the difference that the full
gradient ∇f(xt) is not clipped. We use Equation (21) with α = 1. This leads to

−∇f(xt)
>Eg(xt) = −1

2
‖∇f(xt)‖2 −

1

2
E ‖g(xt)‖2 +

1

2
E ‖g(xt)−∇f(xt)‖2

≤ −1

2
‖∇f(xt)‖2 −

1

2
E ‖g(xt)‖2 +

σ2

2

Where on the last line we used that clipping is Lipshitz operator with constant 1, as it is a projection on a convex set. We
now use that −‖∇f(xt)‖ ≤ −c/2 for the first term and 1 ≤ ‖∇f(xt)‖ /c for the last term:

−∇f(xt)
>Eg(xt) ≤ −

1

2
E ‖g(xt)‖2 −

c

4
‖∇f(xt)‖+

σ2

2c
‖∇f(xt)‖

≤ −1

2
E ‖g(xt)‖2 −

c

4
‖∇f(xt)‖

(
1− 2

σ2

c2

)
≤ −1

2
E ‖g(xt)‖2 −

c

8
‖∇f(xt)‖ ,

where in the last line we used that σ2/c2 ≤ 1/4. Similarly to the previous case, we plug it into (31) and use that
−1 ≤ −‖∇f(xt)‖c we have that

Ef(xt+1)− f(xt) ≤ −
η ‖∇f(xt)‖

2c
E
[
‖g(xt)‖2

]
− cη

8
‖∇f(xt)‖+

η2(L0 + ‖∇f(xt)‖L1)

2
E
[
‖g(xt)‖2

]
≤ −cη

8
‖∇f(xt)‖ −

η

2
E
[
‖g(xt)‖2

](‖∇f(xt)‖
c

(1− ηcL1)− ηL0

)
≤− cη

8
‖∇f(xt)‖ −

η

2
E
[
‖g(xt)‖2

](1

2
− η[L0 + cL1]

)
where on the last line we used that ‖∇f(xt)‖ > c/2. Using that η ≤ 1

2 (L0 + cL1)−1

c

8
‖∇f(xt)‖ ≤

f(xt)− Ef(xt+1)

η
(34)

Third case, ‖∇f(xt)‖ < c/2. In this case, we do not have convergence to the exact optimum.

We start by defining δt = 1{‖∇fξ(xt)‖ > c} is the indicator function that at time step t the stochastic gradient is getting
clipped. We will start by showing that Eδt ≤ 4σ2

c2 .

Eδt = Pr[δt = 1] = Pr [‖∇fξ(xt)‖ > c] ≤ Pr
[
‖∇fξ(xt)−∇f(xt)‖ >

c

2

]
≤ 4σ2

c2
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where the last inequality is due to Markov’s inequality. The first inequality is because ‖∇fξ(xt)‖ ≤ ‖∇fξ(xt)−∇f(xt)‖+
‖∇f(xt)‖ ≤ ‖∇fξ(xt)−∇f(xt)‖+ c

2 .

Now that we have Eδt ≤ 4σ2

c2 we can use it to bound the difference ‖∇f(xt)− Eg(xt)‖2

‖∇f(xt)− Eg(xt)‖2 =

∥∥∥∥E(1− c

‖∇fξ(xt)‖

)
∇fξ(xt)δt

∥∥∥∥2
≤ E [δt]

2 E

[
δt

E [δt]

(
1− c

‖∇fξ(xt)‖

)2

‖∇fξ(xt)‖2
]

≤ E [δt]E
[
δt ‖∇fξ(xt)‖2

]
≤ 2E [δt]E

[
‖∇fξ(xt)−∇f(xt)‖2 δt

]
+ 2E [δt]E

[
δt ‖∇f(xt)‖2

]
≤ 2E [δt]E

[
‖∇fξ(xt)−∇f(xt)‖2

]
+ 2E [δt]

2 ‖∇f(xt)‖2

≤ 8σ4

c2
+

32σ4

c4
‖∇f(xt)‖2 (35)

where on the second line we used Jensen’s inequality since the squared norm is convex function, and on the third line that(
1− c

‖∇fξ(xt)‖

)
δt ≤ δt since δt is non-zero only when ‖∇fξ(xt)‖ > c. We also used δt ≤ 1 on the fifth line.

We further use (21) with α = 1 and u = Eg(xt), we get

−∇f(x)>Eg(xt) = −1

2
‖∇f(x)‖2 − 1

2
‖Eg(xt)‖2 +

1

2
‖Eg(xt)−∇f(x)‖2

≤ −1

2
‖∇f(x)‖2 − 1

2
‖Eg(xt)‖2 +

4σ4

c2
+

4σ2

c2
‖∇f(xt)‖2

σ≤ c4
≤ −1

4
‖∇f(x)‖2 − 1

2
‖Eg(xt)‖2 +

4σ4

c2

Plugging this into (31), we get

Ef(xt+1)− f(xt) ≤ −
η

4
‖∇f(x)‖2 − η

2
‖Eg(xt)‖2 +

4ησ4

c2
+
η2(L0 + ‖∇f(xt)‖L1)

2
E ‖g(xt)‖2 (36)

≤ −η
4
‖∇f(x)‖2 +

4ησ4

c2
+ η2(L0 + cL1)E ‖g(xt)−∇f(xt)‖2 + η2(L0 + cL1) ‖∇f(xt)‖2

η≤ 1
8(L0+cL1)

≤ −η
8
‖∇f(x)‖2 +

4ησ4

c2
+ η2(L0 + cL1)σ2

for η ≤ 1
8(L0+cL1)

. We thus get

1

8
‖∇f(xt)‖2 ≤

f(xt)− Ef(xt+1)

η
+ η(L0 + cL1)σ2 +

4σ4

c2
. (37)

In particular, we have:

• One variance term that fades with the step-size.

• One bias term that remains even for very small step-sizes.

Wrapping up. We now combine the three cases above. Defining T1 is the set of indices with ‖∇f(xt)‖ ≥ c
2 (we note

that this covers the first and the second cases from above, but both of them leads to the same final inequality (34)), and T2 is
the set of indices with ‖∇f(xt)‖ < c

2 , this inequality (37) holds. Summing up over all the indices 1 ≤ t ≤ T + 1, we get

1

8(T + 1)

(∑
t∈T1

cE ‖∇f(xt)‖+
∑
t∈T2

E ‖∇f(xt)‖2
)
≤ f(x0)− f?

η(T + 1)
+ η(L0 + cL1)σ2 +

4σ4

c2
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This means that both (i)

1

8(T + 1)

∑
t∈T1

cE ‖∇f(xt)‖ ≤
f(x0)− f?

η(T + 1)
+ η(L0 + cL1)σ2 +

4σ4

c2

and (ii)

1

8(T + 1)

∑
t∈T2

E ‖∇f(xt)‖2 ≤
f(x0)− f?

η(T + 1)
+ η(L0 + cL1)σ2 +

4σ4

c2

for the last inequality using that x2 ≥ 2εx− ε2 for any ε, x > 0, and defining for simplicity A := 8 f(x0)−f?
ηT + 8η(L0 +

cL1)σ2 + 32σ4

c2 we get

1

T + 1

∑
t∈T2

(
2εE ‖∇f(xt)‖ − ε2

)
≤ A

and thus,

1

T + 1

∑
t∈T2

E ‖∇f(xt)‖ ≤
A

2ε
+
ε

2

Choosing ε =
√
A, we get

1

T + 1

∑
t∈T2

E ‖∇f(xt)‖ ≤
√
A ≤

√
8
f(x0)− f?
η(T + 1)

+
√

8η(L0 + cL1)σ2 +

√
32σ4

c2

Summing up the two cases again, and using that σc ≤
1
4 we get

1

T + 1

T∑
t=0

E ‖∇f(xt)‖ ≤ O

(√
f(x0)− f?

ηT
+
f(x0)− f?

ηcT
+
√
η(L0 + cL1)σ +

σ2

c

)

C.4. Differentially Private SGD

C.4.1. MODIFICATION TO THE PROOF TO INCLUDE MINI-BATCHES

Using g(xt) = 1
B

∑
ξ∈Bt clipc(∇fξ(xt)), the proof is exactly the same as in the previous case, with the only difference in

the case where c ≥ 4σ and small gradients (third case) ‖∇f(xt)‖ < c
2 . Starting with equation (36), we obtain:

Ef(xt+1)− f(xt) ≤ −
η

4
‖∇f(x)‖2 − η

2
‖Eg(xt)‖2 +

4ησ4

c2
+
η2(L0 + ‖∇f(xt)‖L1)

2
E ‖g(xt)‖2

≤ −η
4
‖∇f(x)‖2 − η

2
‖Eg(xt)‖2 +

4ησ4

c2
+
η2(L0 + cL1)

2
E ‖g(xt)− Eg(xt)‖2 +

η2(L0 + cL1)

2
‖Eg(xt)‖2

We now estimate the term variance term E ‖g(xt)− Eg(xt)‖2 more tightly in order to get the variance reduction due to the
batch size B.

E ‖g(xt)− Eg(xt)‖2 = E

∥∥∥∥∥ 1

B

∑
i∈Bt

clipc(∇fξi(xt))− Eg(xt)

∥∥∥∥∥
2

=
1

B2

∑
i∈Bt

E ‖clipc(∇fξi(xt))− Eg(xt)‖2

≤ 1

B2

∑
i∈Bt

2E ‖clipc(∇fξi(xt))−∇f(xt)‖2 +
2

B
‖∇f(xt)− Eg(xt)‖2

(35)
≤ 2σ2

B
+

2

B

[
8σ4

c2
+

8σ2

c2
‖∇f(xt)‖2

]
≤ 2σ2

B
+

2

B

[
σ2

2
+ 2σ2

]
≤ 6

σ2

B
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where we used that ‖∇f(xt)‖ ≤ c
2 and that σ ≤ c

4 . The rest of the proof is exactly the same as before, by substituting now
the σ2 term with σ2

B , we would arrive at the convergence rate of

1

T

T∑
t=0

E ‖∇f(xt)‖ ≤ O

(√
f(x0)− f?

ηT
+
f(x0)− f?

ηcT
+
√
η(L0 + cL1)

σ√
B

+
σ2

c

)

C.4.2. MODIFICATION TO THE PROOF TO INCLUDE STOCHASTIC NOISES

The gradients applied in DP-SGD (15) have the form g(xt) + zt, where zt is a Gaussian noise with variance σDP. In order
to add this additional Gaussian noise, we would need to modify the first step of the proof, that is using (L0, L1) smoothness

Ef(xt+1)− f(xt) ≤ −η∇f(xt)
>g(xt) +

η2(L0 + ‖∇f(xt)‖L1)

2
‖g(xt)‖2 +

η2(L0 + ‖∇f(xt)‖L1)

2
σ2

DP

The rest of the proof remains the same, with having an additional σ2
DP term in the convergence. We thus would arrive to the

following convergence rate where for simplicity we define L = L0 + maxt ‖∇f(xt)‖L1

O

(
Lη

c
σ2

DP +
√
LησDP + min

(
σ,
σ2

c

)
+
√
ηL

σ√
B

+

√
F0

ηT
+

F0

ηTc

)
.

C.5. Lower bound

We now prove the lower bound.

Proofs of Theorems 3.1 and 3.2. Let us consider the simple noise aB(p), where a > 0 and B(p) is a Bernoulli random
variable with mean p ≤ 1/2. Consider a function such that the stochastic gradients are of the form:

∇fξ(x) = x+ aB(p) (38)

Now consider x = −pc/(1−p). The stochastic gradient at x when the Bernoulli is 0 is not clipped, since |x| = pc/(1−p) ≤
c. Yet, the stochastic gradient for positive values of the Bernoulli random variable is:

∇fa(x) = −pc/(1− p) + a ≥ a− c ≥ c. (39)

In particular, we have that:

E [clipc(∇fξ(x))] = (1− p)x+ pc = (1− p)× (−pc)/(1− p) + pc = 0. (40)

Let us now evaluate∇f(x). We have:

∇f(x) = x+ pa = p

(
a− c

1− p

)
. (41)

Small c. Now fix a clipping radius c, such that c ≤ 2σ, and take a = 4σ. We choose p(1 − p) = 1/16, so that
p = (2−

√
3)/4 ≤ 1/4. In this case,

∇f(x) = p

(
a− c

1− p

)
≥ p

(
4σ − 2σ × 4

3

)
≥ (2−

√
3)σ

3
≥ σ

12
. (42)

Large c. Now fix a clipping radius c, such that c ≥ σ and c ≤ a/2. To ensure that the noise has variance σ2, p has to be
such that:

p(1− p) = σ2/a2 ≤ 1/16 (43)

Thus, we have that p ≤ 1/4 (since we chose p < 1/2). In particular, also using that c ≤ a/2:

∇f(x) =
σ2

a2(1− p)

(
a− c

1− p

)
≥ σ2

3a(1− p)
≥ σ2

3a
(44)

It now remains to choose a = 2c (which satisfies all previous conditions), and we obtain:

∇f(x) ≥ σ2

6c
(45)


