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Abstract

Can adaptive strategies outperform non-adaptive ones for quantum hypothesis selection?
We exhibit problems where adaptive strategies provably reduce the number of required
samples by a factor four in the worst case, and possibly more when the actual difficulty of
the problem makes it possible. In addition, we exhibit specific hypotheses classes for which
there is a provable polynomial separation between adaptive and non-adaptive strategies – a
specificity of the quantum framework that does not appear in classical testing.

1 Introduction

We consider the hypothesis selection problem using independent measurements, where the tester is asked
to determine the hypothesis set containing the unknown quantum state ρ with high probability. This prob-
lem is ubiquitous in the quantum learning theory literature, and several variants are considered: testing
identity (O’Donnell & Wright, 2015; Bubeck et al., 2020; Chen et al., 2022c), testing closeness (Yu, 2020),
binary hypothesis testing (Hiai & Petz, 1991), (Audenaert et al., 2007; Nussbaum & Szkoła, 2009), composite
quantum hypothesis testing (Bjelaković et al., 2005). If the tester is limited to independent measurements,
the problem is very related to classical testing problems. Indeed, on the one hand, every classical testing
problem on discrete distributions can be cast into a quantum testing problem by taking diagonal quantum
states corresponding to the discrete distributions. Measuring these quantum states is equivalent to sampling
from the classical distributions. On the other hand, the quantum hypothesis selection problem can be seen
as a bandit problem (see e.g. (Garivier & Kaufmann, 2019; Lumbreras et al., 2022; Brahmachari et al.,
2023)). Born’s rule defines exactly the classical distribution of the reward when pulling a particular arm
(performing a measurement). Note that these probability distributions are not arbitrary: they are governed
by the unknown quantum state. This connection leads to an important question: Can sequential strategies
outperform non-sequential ones for some hypothesis selection problem with independent measurements? In
other words, if the tester is allowed to choose the measurement device at a given step depending on the
previous observations, would it require fewer copies of the unknown quantum state?
Moreover, measurements come with a considerable cost, so we would like to reduce the number of measure-
ments. Besides using entangled measurements which require a large quantum memory, one idea is to focus
on independent measurements and try to adapt the new devices according to the accumulated information
given by the previous outcomes. This approach has no additional cost because the number of adaptive
measurements will be always less than its non adaptive counterpart.
Classically, sequential strategies prove to have an advantage over non-sequential ones for instance for binary
hypothesis testing problems (see (Wald, 1945)), testing continuous distributions (see (Zhao et al., 2016; Bal-
subramani & Ramdas, 2015)), testing identity and closeness problems with small alphabet size (see (Fawzi
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et al., 2021; 2022)). This speedup comes, mainly, from the fact that a sequential algorithm can make compar-
isons at each step and can respond earlier once it has the enough confidence. However, sequential strategies
in the quantum setting have not only the capacity to choose the stopping time, but also to change the mea-
surement devices adaptively. We expect then a larger gap between sequential and non-sequential strategies.
To avoid confusion, sequential strategies can choose the stopping time according to the previous observations
and thus they have random stopping times, while adaptive strategies are allowed to adapt their measurement
devices at each step according to past observations. With these definitions, a strategy can be sequential and
adaptive, sequential and non-adaptive, non-sequential and adaptive, or non-sequential and non-adaptive.
When we don’t specify whether the strategy is non-sequential or sequential (resp. non-adaptive or adap-
tive), it can be both and the statement remains true.
On the other hand, non-adaptive strategies have been shown to be optimal for many interesting quantum
testing problems, including testing identity by (Chen et al., 2022a), purity testing and shadow tomography
by (Chen et al., 2021), tomography by (Chen et al., 2022b). These works suggest that adaptive/sequential
strategies cannot outperform non-adaptive non-sequential ones. The goal of the article is to show the con-
trary: there are some situations where sequential or adaptive strategies require fewer measurements than
non-adaptive non-sequential ones.

Let d be the dimension of quantum states, ε > 0 be the precision parameter and δ ∈ (0, 1/2) be the error
probability.

Contributions When the number of hypotheses m is equal to 2 and the hypotheses are simple (i.e., only
one possible state), we can precisely characterize the optimal worst case complexity for non-sequential and
sequential strategies. We show that sequential strategies outperform non-sequential ones by a factor 4. For
the lower bounds, we show how to reduce this problem to the classical testing identity problem, then apply
the lower bounds of Fawzi et al. (2022). For the sequential upper bound, we design stopping rules inspired
by time uniform concentration inequalities.
Moreover, we show that sequential algorithms can adapt to the actual difficulty for the testing mixedness
and testing closeness problems. For this, we show a lower bound on the TV-distance between the prob-
ability distributions after measurement depending on the actual 1-norm between the quantum states (see
Lemma 3.5). This inequality helps to reduce quantum testing to classical testing at the cost of a factor 1/

√
d

and can be useful for other applications.
For a number of hypotheses m ≥ 2, we prove a separation between adaptive and non-adaptive strategies for a
specific problem. The learner has the information that the unknown quantum state can be diagonalised in a
basis amongst m known orthonormal bases and would like to approximate it. We show that this problem can
be solved by adaptive algorithms using O(d log(m)/ε2) copies of ρ. On the other hand, every non-adaptive
algorithm solving this problem will require Ω(min{md/ log(m)ε2, d2/ε2}) copies of ρ. The upper bounds
follows from the shadow tomography algorithm of Huang et al. (2020). For the lower bounds, we construct
an ε-separated family of quantum states close to the maximally mixed state (I/d) and use it to encode a
message from [meΩ(d)]. A learning algorithm can be used to decode this message with the same success
probability. Hence, the encoder and decoder should share at least Ω(log(m) + d) bits of information (Fano’s
inequality (Fano, 1961)). On the other hand, after each step, we show that the correlation between the
encoder and decoder can only increase by at most O(ε2 log(m)/m + ε2/d) bits for non-adaptive strategies
and it can only increase by at most O(ε2) bits for adaptive strategies. We obtain an improvement by a
factor d or m/ log(m) for non-adaptive strategies by exploiting the randomness in the construction and the
independence of the observations at different steps.

Related work Quantum testing identity using entangled measurements is well understood (O’Donnell &
Wright, 2015; Bădescu et al., 2019): it is known that Θ(d/ε2) copies are necessary and sufficient. For
independent measurements, it starts with the work of Bubeck et al. (2020) where we have two different lower
bounds for testing mixedness problem using independent adaptive and non-adaptive measurements. This
result is generalized for general testing identity to some quantum state σ by Chen et al. (2022c). Recently
Chen et al. (2022a) show that adaptive algorithms cannot significantly outperform non-adaptive ones neither
for testing mixedness nor testing identity.
If entangled measurements are allowed, the quantum hypothesis selection problem can be solved using
poly(log(m)) copies of ρ (see (Bădescu & O’Donnell, 2021)). This poly-logarithmic complexity in m can
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be explained by the fact that ρ⊗N can be reused after measurement. In contrast, this is not possible using
independent measurement for which the state collapses after performing the measurement. In general, the
quantum hypothesis selection problem, where each hypothesis contains only one quantum state, is highly
related to the shadow tomography problem where the learner is asked to uniformly approximate the expected
values {tr(ρOi)}i∈[m] of m known observables {Oi}i∈[m] by measuring the unknown quantum state ρ. A
popular algorithm for the shadow tomography problem is given by Huang et al. (2020) and uses at most
O(log(m)d/ε2) non-sequential non-adaptive independent measurements. On the other hand, independent
adaptive strategies are shown to be useless for shadow tomography (and purity testing) by Chen et al. (2021).
Moreover, sequential adaptive strategies have been used by Li et al. (2022b) (see (Li et al., 2022a) for quantum
channel discrimination) to achieve the optimal rates given by the quantum relative entropy for both type I
and type II errors at the same time for binary hypothesis testing problem using entangled measurements.
Adaptive strategies have been considered for testing quantum channels in (Harrow et al., 2010; Pirandola
et al., 2019; Salek et al., 2022). In particular, Harrow et al. (2010) and Salek et al. (2022) provide examples
for which adaptive strategies outperform non-adaptive ones for testing quantum channels. We note that for
channels, one has the possibility to adapt the input of the channel to the previous observations, but this is
not the case for testing states. As such, it is more challenging to find a separation between adaptive and
non-adaptive strategies for testing quantum states than it is for channels.
Finally, for the tomography problem, Chen et al. (2022b) shows that adaptive independent strategies cannot
beat non-sequential non-adaptive ones and thus need at least Ω(d3/ε2) copies to learn the quantum state
ρ. However, it is unclear whether adaptivity can help for learning restricted families of states such as graph
states (Ouyang & Tomamichel, 2022). On the other hand, sequential strategies were used for (online) state
tomography by Kueng & Ferrie (2015); Youssry et al. (2019); Stricker et al. (2022); Rambach et al. (2022).

2 Preliminaries

Throughout the paper, d is the dimension of the quantum states. A quantum state is a positive semi-definite
Hermitian matrix of trace 1. We use the bra-ket notation: a column vector is denoted |ϕ⟩ and its adjoint
is denoted ⟨ϕ| = |ϕ⟩†. With this notation, ⟨ϕ|ψ⟩ is the dot product of the vectors ϕ and ψ and, for a
unit vector |ϕ⟩, |ϕ⟩⟨ϕ| is the rank-1 projector on the space spanned by the vector ϕ. The canonical basis
{ei}i∈[d] is denoted {|i⟩}i∈[d] := {|ei⟩}i∈[d]. We define the trace norm or the 1-norm of a matrix M as
∥M∥tr = 1

2 tr
(√

M†M
)

and the 2-norm as ∥M∥2 =
√

tr (M†M). An observable is a Hermitian matrix O

satisfying O ≽ 0 and I− O ≽ 0 where I is the identity matrix. Given two quantum states ρ and σ, we can
compare them using the quantum relative entropy defined as:

D(ρ∥σ) = tr(ρ(log(ρ) − log(σ)))

or the quantum Chernoff divergence defined as:

C(ρ, σ) = − log
(

inf
0≤s≤1

tr(ρ1−sσs)
)
.

The total variation (TV) distance between two probability distributions P and Q on [d] is defined as:

TV(P,Q) = 1
2

d∑
i=1

|Pi −Qi|

and the Kullback-Leibler (KL) divergence is defined as:

KL(P∥Q) =
d∑

i=1
Pi log

(
Pi

Qi

)
.

Finally, for two number p, q ∈ [0, 1], we denote KL(p∥q) = KL(Ber(p)∥ Ber(q)).

All the problems discussed in this article are special cases of the general hypothesis selection problem. Given
an unknown quantum state ρ ∈ Cd×d and m hypothesis classes {Hi}i∈[m], the learner is asked to find one of
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the hypothesis classes containing ρ with high probability. Formally, we have the promise that at least one
of the following assertions is satisfied:

ρ ∈ H1, ρ ∈ H2, . . . , ρ ∈ Hm .

An algorithm A is δ-correct for this problem if it verifies the following property:

∀i ∈ [m] : ρ /∈ Hi =⇒ P (A = i) ≤ δ .

The difference between quantum and classical testing is that in the quantum case we have the possibility
to choose a measurement (given by positive operators summing to the identity). If the quantum states are
restricted to be diagonal, we may assume the measurement is always the same and so the problem becomes
a classical testing problem (see Lemma 3.2).

The quantum state ρ is unknown, but the learner can extract classical information from it by performing a
measurement. The way the unknown quantum state ρ is measured is important and can lead to different
results about the number of copies needed for this task. A measurement is defined by a POVM (positive
operator-valued measure) with a finite number of elements: this is a set of positive semi-definite matrices
M = {Mi}i∈X acting on a Hilbert space H and satisfying

∑
i∈X Mi = IH. Each element Mi in the POVM M

is associated with the outcome i ∈ X . The tuple {tr(ρMi)}i∈X is non-negative and sums to 1: it thus defines
a probability denoted by ρ(M). Born’s rule (Born, 1926) says that the probability that the measurement on
a quantum state ρ using the POVM M will output i is exactly tr(ρMi). We distinguish between two types
of measurements depending on the considered Hilbert space:

1. An entangled measurement is given by a POVM on the Hilbert space H = (Cd)⊗N , where N
is the number of copies available of the quantum state ρ. We can measure the whole state ρ⊗N at
once. An interesting POVM related to the observable O on Cd is given by M(O) = {Mk}0≤k≤N

where Mk =
∑

x∈{0,1}N ,|x|=k O
x1 ⊗ · · · ⊗ OxN . Measuring ρ⊗N with the POVM M(O) outputs a

sample from the binomial distribution Bin(n, tr(ρO)).

2. An independent (or incoherent) measurement is given by a sequence of POVMs {Mt}t∈[N ],
each of them acts on the Hilbert space H = Cd. In this case, we measure at step t the quantum
state ρ using the POVM Mt. For instance, for an observable O, measuring ρ with the POVM
M(O) = (I − O,O) outputs a sample from the Bernoulli distribution Ber(tr(ρO)). If the POVMs
{Mt}t are fixed in advance (i.e., do not depend on the outcomes of the previous measurements), the
procedure is called non-adaptive; when Mt can be chosen depending on the results of the previous
measurements with the (Ms)s<t, we call it an adaptive algorithm. If the number of measurements
is not fixed beforehand and can be chosen as a function of the previous measurement outcomes, the
algorithm is called sequential and has a random stopping time N . In this case, the expected copy
complexity of the procedure is E (N). Otherwise, the algorithm has a fixed number of measurements
N and is called non-sequential.

In this article, we focus on algorithms using independent measurements and our goal is to assess the potential
improvement of sequential/adaptive algorithms over non-adaptive non-sequential ones.

3 Sequential improvement for problems involving two hypotheses

In this section, we focus on sequential algorithms for problems having only two hypotheses (m = 2), which
can be simple or not. The results of this Section are true for either adaptive and non-adaptive settings.

3.1 Provable constant improvement of sequential strategies

The simplest case for hypothesis selection problem with m = 2 corresponds to hypothesis sets containing
only one known quantum state. Formally, the learner would like to distinguish two hypothesis: H1 = {σ1}
and H2 = {σ2}. We want to characterize the exact number of copies the learner needs to solve this problem
using sequential and non-sequential independent measurements.
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3.1.1 Non-sequential strategies

The tester knows the quantum states σ1 and σ2 and can hence calculate the actual 1-norm between them,
denoted by ε = ∥σ1 − σ2∥tr. The optimal POVM to distinguish between σ1 and σ2 is thus given by
M = (I−O,O) (Holevo-Helstrom theorem, see (Watrous, 2018)) where 0 ≼ O ≼ I satisfies

ε = ∥σ1 − σ2∥tr = tr((σ1 − σ2)O) . (1)

Let X1, . . . , XN be the outcomes of measuring ρ by the POVM M. By Born’s rule, they follow the Bernoulli
distribution of parameter tr(ρO). Let S be the statistic given by the difference between the empirical mean
and the actual mean under H2: S = 1

N

∑N
i=1 Xi − tr(σ2O). Its expected value is tr((ρ − σ2)O) which is ε

under H1 and 0 under H2. The learner can measure ρ a sufficient number of times, compare the statistic S
with ε/2 and decide accordingly: If S ≥ ε/2 it accepts H1, otherwise it accepts H2. Following the Chernoff-
Hoeffding inequality (Hoeffding, 1963), a sufficient number of measurement for the learner to be δ-correct
is

max
{

log(1/δ)
KL(tr((σ1 + σ2)O)/2∥tr(σ1O)) ,

log(1/δ)
KL(tr((σ1 + σ2)O)/2∥tr(σ2O))

}
≤ 2 log(1/δ)

ε2 .

The latter inequality follows from Pinsker’s inequality (Fedotov et al., 2003). Note that this previous upper
bound is optimal in the worst case setting where we fix ε and take the infimum over all σ1 and σ2 satisfying
∥σ1 − σ2∥tr = ε. This first result is summarized in the following proposition:
Proposition 3.1. There is a non-sequential algorithm for testing H1 : ρ = σ1 vs H2 : ρ = σ2 using a number
of measurements

N ≤ 2 log(1/δ)
ε2 .

Moreover, there exists two quantum states σ1 and σ2 satisfying ∥σ1 − σ2∥tr = ε so that every non-sequential
algorithm distinguishing between H1 : ρ = σ1 and H2 : ρ = σ2 needs a number of measurements satisfying

lim inf
δ→0

N

log(1/δ) ≥ max
{

1
KL(1/2 + αε∥1/2) ,

1
KL(1/2 − βε∥1/2)

}
∼

ε→0

2
ε2 ,

where α ∈ (0, 1) and β ∈ (0, 1) are defined such that KL(1/2 + αε∥1/2) = KL(1/2 + αε∥1/2 + ε) and
KL(1/2 − βε∥1/2) = KL(1/2 − βε∥1/2 − ε).

For the lower bound, construct two quantum states, σ1 = I2/2 and σ2 an ε perturbation of it. For each
POVM, we show that the optimal sample complexity is at least 2 log(1/δ)

ε2 (when ε → 0), with equality iff the
POVM is the optimal one defined in Eq. (1). This reduction can be proven using the following lemma on
measurements of diagonal quantum states.
Lemma 3.2. Let D1 and D2 be two discrete distributions and ρ1 and ρ2 their corresponding diagonal
quantum states. Let M be a POVM. Measuring the quantum state ρ1 (resp. ρ2) with the POVM M can be
seen as post-processing (independent of the quantum states) of samples from the distribution D1 (resp. D2).

Hence, for each POVM, measuring the constructed quantum states σ1 and σ2 is a post-processing of samples
from D1 = Ber(1/2) and D2 = Ber(1/2 + ε). Note that this reduction (and the lower bound) works even for
entangled strategies. Once the reduction to classical testing identity is done, we can invoke the lower bound
of (Fawzi et al., 2022). The proof is deferred to App. A.1.

3.1.2 Sequential strategies

If we allow the tester to adapt the measurements and choose its stopping time according to previous obser-
vations, it can outperform (in expectation) every non-sequential algorithms by a factor 4. Precisely, it can
be proven that an expected number of measurements asymptotically equivalent to log(1/δ)

2ε2 is sufficient to
distinguish between H1 : ρ = σ1 and H2 : ρ = σ2 with probability at least 1 − δ. We use again the optimal
POVM M defined in Eq. (1) to distinguish between σ1 and σ2. Let X1, . . . , Xt ∼ Ber(tr(ρO)) the outcomes
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of measuring ρ by the POVM M. Let St = 1
t

∑t
i=1 Xi the empirical mean until the time t. Contrary to the

algorithm described in the previous subsection, a sequential algorithm can make comparisons at each time t
until the tester is confident enough to answer the correct answer H1 or H2. Under H1, the statistic St has an
expected value tr(σ1O). On the other hand, under H1, the statistic St has an expected value tr(σ2O). These
expected values are known to the tester, so it can compare at each time the statistic St with two thresholds:
tr(σ1O) − ϕ(δ, t) and tr(σ2O) + ϕ(δ, t) where ϕ(δ, t)2 = 1

2t log
(

2t(t+1)
δ

)
. If St ≤ tr(σ1O) − ϕ(δ, t), the tester

can answer H2 confidently. Similarly, it would answer H1 if St ≥ tr(σ2O) + ϕ(δ, t). However if none of
these inequalities is verified it does not answer and makes a new measurement, and so forth until the regions
defined by the thresholds coincide. The idea of comparing the statistic with time dependent thresholds has
been previously used for classical sequential testing by (Balsubramani & Ramdas, 2015; Fawzi et al., 2021;
2022). In these latter articles, it is proven that in expectation this algorithm outperform the non sequential
one by a factor 4. We adapt their result to the quantum setting in the following proposition.
Proposition 3.3. There is a sequential algorithm for testing H1 : ρ = σ1 vs H2 : ρ = σ2 using an expected
number of measurements:

E(N) ≤ log(1/δ)
2ε2 + log(1/δ)2/3 + 2 log(1/δ)1/3 + log(log(1/δ)/2ε2) + 1

ε2 .

Moreover, there are two quantum states σ1 and σ2 satisfying ∥σ1−σ2∥tr = ε so that every sequential algorithm
distinguishing between H1 : ρ = σ1 and H2 : ρ = σ2 needs a number of measurements satisfying:

E(N) ≥ log(1/δ)
min {KL (1/2 ± ε∥1/2)} ∼

ε→0

1
2ε2 .

Note that the expected stopping time is the most natural figure of merit for the sample complexity of
sequential algorithms. Moreover, using the same analysis for the algorithm, one can also obtain similar
bounds on the number of measurements with high probability.

Observe that the upper bound admits the asymptotic limit lim supδ→0
E(N)

log(1/δ) ≤ 1
2ε2 hence log(1/δ)

2ε2 is
asymptotically the worst-case optimal complexity of discriminating between two quantum states at the
limit δ, ε → 0. The correctness of the algorithm presented here is proved using the following time uniform
concentration inequality which is an application of union bound and Hoeffding’s inequality (Hoeffding, 1963):

P (∃t ≥ 1 : |St − E (St) | > ϕ(δ, t)) ≤ δ

where ϕ(δ, t) =
√

1
2t log

(
2t(t+1)

δ

)
.

The lower bound follows from the previous proof’s reduction and the lower bound on the expected number of
samples for testing uniform using sequential algorithms: Ber(1/2) vs Ber(1/2 ± ε) (see (Fawzi et al., 2022)).
The detailed proof can be found in App. A.1.

Note that Li et al. (2022b) have also established an advantage of sequential adaptive strategies over non-
adaptive non-sequential ones in terms of the error exponents. The type I error is the probability that the
testing algorithm answers the hypothesis H1 while the hypothesis H0 is the correct one while the type II
error is the probability that the testing algorithm answers the hypothesis H0 while the hypothesis H1 is the
correct one:

αN = PH0(AN = 1) and βN = PH1(AN = 0)

where N is the number of copies used. The error exponents (rates) are then given by

R0 = lim
N→∞

− log(αN )
N

and R1 = lim
N→∞

− log(βN )
N

.

Concretely, Li et al. (2022b) show that adaptive sequential strategies can achieve the best rates (at the same
time) given by the quantum relative entropy between two states for both type I and II errors. On the other
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hand, it is known that non sequential non adaptive strategies can only achieve the quantum Chernoff rate
exponent when the error probabilities are equal (Nussbaum & Szkoła, 2009; Audenaert et al., 2007). For the
particular states σ1 = I2

2 and σ2 = diag( 1
2 + ε, 1

2 − ε), we can show that the quantum relative entropy and
the quantum Chernoff divergence between σ1 and σ2 are asymptotically equivalent to:

D(σ1∥σ2), D(σ2∥σ1) ∼
ε→0

2ε2 and C(σ1, σ2) ∼
ε→0

ε2

2 .

Therefore, we can recover the factor 4 improvement by comparing the quantum relative entropy and the
quantum Chernoff divergence:

D(σ1∥σ2)
C(σ1, σ2) ,

D(σ2∥σ1)
C(σ1, σ2) ∼

ε→0

2ε2

ε2

2
= 4 .

We refer to App. A.1.3 for the detailed computations.

3.2 Sequential strategies adapt on the actual difficulty of the problem without prior knowledge

In this section, we change the previous setting by letting the second hypothesis be multiple. Precisely,
we consider the problem of testing identity with H1 = {I/d} and H2 = {ρ : ∥ρ − I/d∥tr ≥ ε} where ε
is a positive parameter. (Chen et al., 2022a) has proved that the optimal non-sequential adaptive copy
complexity is Θ(d3/2/ε2). We show that while non-sequential adaptive algorithms cannot improve the copy
complexity, sequential non-adaptive algorithms can be used to adapt to the actual difficulty of the problem.
Mainly we show the following result:
Proposition 3.4. There is a sequential algorithm for testing identity problem using a number of measure-
ments satisfying:

E (N) = O
(

min
{
d3/2 log(1/δ)

ε2 ,
d1/2 log(1/δ)
∥ρ− I/d∥2

2

})
.

In particular, the expected copy complexity can be reduced to O(rd1/2 log(1/δ)) if the quantum state ρ has
low rank r ≤ d/2 or O

(
rd1/2 log(1/δ)

∥ρ−I/d∥2
tr

)
if the trace-less matrix ρ − I/d has low rank r even if the algorithm

does not have any information about these ranks (see App. A.2). The algorithm uses random measurements
and a time-dependent stopping rule. Since we have already sequential algorithms for the classical testing
identity problem, it is sufficient to show how to reduce the quantum problem to the classical one. For a
POVM M and a quantum state ρ, let ρ(M) denotes the classical probability distribution {tr(ρMi)}i. The
following lemma captures the main ingredient of the reduction:
Lemma 3.5. For all δ > 0, let l = 1

4 log(2/δ) and U1, U2, . . . , U l ∈ Cd×d be Haar-random unitary matrices
of columns {|U j

i ⟩}1≤i≤d,1≤j≤l, M = { 1
l |U j

i ⟩⟨U j
i |}i,j is a POVM and for all quantum states ρ and σ we have

with a probability at least 1 − δ:

TV(ρ(M), σ(M)) ≥ ∥ρ− I/d∥2

20 ≥ ∥ρ− σ∥tr

20
√
r

,

where r is the rank of (ρ− σ).

It is, in general, difficult to compute the expected value of the 1-norm under Haar measure, but the 2 and
4-norms can be computed exactly with the Weingarten calculus (see Lemma D.1 and Lemma D.2), so we
use Hölder’s inequality to lower bound the 1-norm by an expression involving the 2 and 4-norms. Moreover,
this will only give a lower bound in expectation, so we sample more Haar-distributed unitaries and construct
a new measurement device by concatenating a fraction of the columns of each unitary. Then, we need to
show that the TV-distance is Lipschitz to be able to apply a concentration inequality for functions of Haar-
distributed unitaries (Theorem D.3). This is done by carefully applying the Cauchy Schwarz inequality. The
complete proof can be found at App. A.2. Sen (2006) proved a slightly weaker (by a logarithmic factor)
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lower bound on the TV distance using a POVM constructed with Gaussian random variables. Also, a
similar lower bound (in expectation) can be found in (Matthews et al., 2009) where the authors analyze the
uniform POVM and a POVM defined by a spherical 4-designs. However, for our reduction, it is important
to minimize the number of outcomes of the POVM.
Lemma 3.5 gives a POVM for which our problem reduces to testing identity: P = Un vs TV(P,Un) ≥ ε

20
√

d

with high probability, where n = 1
4d log(2/δ) and P = M(ρ). Under the alternative hypothesis H2, the TV

distance between P and Un can be lower bounded by TV(P,Un) ≥ 1
20 ∥ρ − I/d∥2. Therefore we can apply

the sequential classical testing uniform result of (Fawzi et al., 2022) to obtain a copy complexity

O
(

d3/2 log(1/δ)
max{ε2, d∥ρ− I/d∥2

2}

)
.

A matching lower bound can be obtained in the worst case setting where we are interested only in the
parameters d, ε and ∥ρ− I/d∥tr. This can be done using Markov’s inequality to transform the algorithm to
a deterministic-time one then invoking the lower bound of (Chen et al., 2022a): Any adaptive algorithm for
testing identity would require Ω(d3/2/ε2) copies of ρ.
Note that, using Lemma 3.5 and the sequential tester of (Fawzi et al., 2022), we obtain the same copy
complexity for testing closeness (i.e., testing ρ = σ vs ∥ρ − σ∥tr ≥ ε where we can measure the unknown
quantum states ρ and σ) as for testing identity. This is different from the classical case where testing
identity (Diakonikolas et al., 2017) can be done with much less copies than testing closeness (Diakonikolas
et al., 2020).

4 Provable separation between adaptive and non-adaptive strategies

In this section, we focus only on non-sequential algorithms meaning that the number of measurements is
always deterministic.

We construct a problem for which we have a separation between adaptive and non-adaptive algorithms. Let
{σ1, . . . , σm} be a set of ε-separated known quantum states. The unknown quantum state ρ is ε/3-close to
(at most) one of the quantum states σi⋆ ∈ {σ1, . . . , σm} and has the same diagonalisation basis than σi⋆ .
We aim to learn the quantum state ρ to within ε/10 with high probability. Formally, the goal is to design
an algorithm that measures a number of copies of ρ and returns a quantum state ρ̃ (an ε/10-approximation
of ρ) such that with probability (the randomness comes from the measurements and possibly the algorithm)
at least 1 − δ:

∥ρ̃− ρ∥tr ≤ ε

10 .

The problem described above is not a hypothesis selection problem in the strict sense of the term. However it
is equivalent to the following hypothesis selection problem which has the same order of copy complexity. For
i ∈ [m], let σi =

∑
λk|ϕi

k⟩⟨ϕi
k| and {σi,j}j∈[M ] an ε/10-covering of the set {ρ =

∑
k µk|ϕi

k⟩⟨ϕi
k| : TV(λ, µ) ≤

ε/3}. Our problem is equivalent to the hypothesis selection problem for {Hi,j = {B(σi,j , ε/10)}∩{ρ : ρσi,j =
σi,jρ}}i∈[m],j∈[M ]. For simplicity, we use the first formulation of the problem and refer to it as (P ).

4.1 Upper bound

In this section, we present an adaptive algorithm for the problem (P ) achieving a copy complexity strictly
less than the lower bound which holds for all non-adaptive algorithms. The first step is to determine with
high probability the closest quantum state σi⋆ to ρ, then it remains to approximate ρ by measuring it in its
basis of diagonalization.

4.1.1 Adaptive strategies.

For all i ̸= j ∈ [m], let Oi,j an observable satisfying ∥σi − σj∥tr = tr Oi,j(σi − σj). In Sec. 3.1, we have seen
that such observable Oi,j can be used to distinguish between ρ = σi and ρ = σj if one of the two hypotheses
is satisfied. The quantum state σi⋆ has the property to minimize the 1-norm between ρ and {σi}i, so it is
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Algorithm 1 Hypothesis selection problem (P ).
Input: N = O(d log(m/δ)/ε2) independent measurement on ρ and m quantum states σ1, . . . , σm.
Output: Two quantum states σi⋆ and ρ̃ satisfying with a probability at least 1 − δ: ∥σi⋆ − ρ∥tr ≤ ε/3 and

∥ρ̃− ρ∥tr ≤ ε/10 .
For all i ̸= j ∈ [m], let Oi,j an observable satisfying ∥σi − σj∥tr = tr Oi,j(σi − σj).
For all i ̸= j ∈ [m], let µi,j an ε/10 approximation of tr(ρOi,j) given by classical shadow tomography of
(Huang et al., 2020).
Let k⋆ = argminl maxi,j µi,j − tr(σlOi,j).
Let M = {|ϕi⟩⟨ϕi|}i∈[d] the POVM corresponding to the basis of diagonalisation of σk⋆ .
Measure ρ independently M = 200 log(2d+2/δ)/ε2 times using the POVM M and denote the outcomes
{Ei}1≤i≤M .

return ρ̃ =
∑

i∈[d]

(∑
j∈[M]

1Ej =i

M

)
|ϕi⟩⟨ϕi|.

natural to take the state minimizing the statistics of expected value roughly maxi,j tr Oi,j(ρ−σl) for l ∈ [m].
To do this, we need to approximate tr ρOi,j for all i ̸= j. We can use the classical shadow tomography
algorithm of (Huang et al., 2020) to predict all these events using a few number of copies of ρ:
Theorem 4.1. (Huang et al., 2020) Let (O1, . . . , Om) be a tuple of observables. There is an algorithm using
non-adaptive independent measurements requiring:

N = O
(
d log(m/δ)

ε2

)
copies of ρ to predict tr(ρOi) to within ε-error for all i = 1, . . . ,m with at most an error probability of δ.

Once we find the quantum state σi⋆ , we know the basis of diagonalization of ρ. Hence we can learn the
eigenvalues of the unknown quantum state ρ by measuring it using the measurement device corresponding
to its basis of diagonalization. This requires O(d/ε2) independent copies. The algorithm is summarized in
Alg. 1. This algorithm can be split in two phases. The first phase can be seen as an exploration phase, where
the algorithm looks for the optimal eigen-basis. It collects (non-adaptively) the information given by the
approximations µi,j of tr(ρOi,j). Then it uses this information to choose k∗ = argminl maxi,j µi,j −tr(σlOi,j).
After this step, in the second exploitation phase, the algorithm adapts its measurement device M according
to the previous information k∗ and measures only with the POVM corresponding the the eigen-basis of σk∗ .

Alg. 1 is δ-correct (detailed proof deferred to App. B). It can be split in two parts for which we independently
upper bound the copy complexity. The first part relies on the shadow tomography algorithm of (Huang et al.,
2020) and needs a number

N1 = O
(
d log(m(m− 1)/δ)

(ε/10)2

)
= O

(
d log(m/δ)

ε2

)
of copies of ρ. The second part requires a number N2 = 200 log(2d+1/δ)

ε2 of copies of ρ. Finally, the total copy
complexity of Alg. 1 is

N = N1 +N2 = O
(
d log(m/δ)

ε2

)
.

4.1.2 Non-adaptive strategies.

We can slightly modify Alg. 1 to have a non-adaptive algorithm for the problem (P ) with independent
measurements. It amounts to first measuring ρ in all the basis corresponding to the known quantum states
(σi)i and preparing m approximated quantum states (ρ̃i)i. Then the tester can look for the closest quantum
state σi⋆ and finally returns the approximated quantum state ρ̃i⋆ . This non-adaptive algorithm has a copy
complexity

mN2 +N1 = O
(
md+m log(1/δ) + d log(m/δ)

ε2

)
.
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This complexity is almost optimal for m ≤ d (see Theorem 4.2). However, it is no longer optimal for
m ≥ d since md/ε2 ≥ d2/ε2. In that case, we can still design an almost optimal non-adaptive algorithm
as follows: for each k ∈ [m], let {|ϕk

i ⟩}i an orthonormal basis of diagonalization for σk. For each k ∈ [m]
and B ⊂ [m], let Ok

B =
∑

i∈B |ϕk
i ⟩⟨ϕk

i |. We use the classical shadow tomography of (Huang et al., 2020) to
predict (tr(ρOi,j))i,j∈[m] ∪ (tr(ρOk

B)k∈[m],B⊂[m] to within ε/40 simultaneously using

O(d log(m2 +m2d)/ε2) = O((d2 + log(m))/ε2)

copies of ρ. We find the closest quantum state σi⋆ to ρ the same way as the Alg. 1 does. Next, we look for
a probability distribution λ̃ satisfying for all B ⊂ [m] :

∣∣λ̃(B) − µi⋆

B

∣∣ ≤ ε/40, where µi⋆

B is the prediction of
shadow tomography algorithm for tr(ρOi⋆

B ). Such λ̃ exists since the vector λ of eigenvalues of ρ satisfies the
following property:

tr(ρOi⋆

B ) = tr

∑
i∈[d]

λi|ϕi⋆

i ⟩⟨ϕi⋆

i |
∑
i∈B

|ϕi⋆

i ⟩⟨ϕi⋆

i |

 =
∑

i∈[d],j∈B

λi|⟨ϕi⋆

i |ϕi⋆

j ⟩|2 =
∑
i∈B

λi = λ(B),

and
∣∣λ(B) − µi⋆

B

∣∣ =
∣∣tr(ρOi⋆

B ) − µi⋆

B

∣∣ ≤ ε/40. We can thus return the quantum state ρ̃ =
∑

i∈[d] λ̃i|ϕi⋆

i ⟩⟨ϕi⋆

i |
as an approximation of ρ. We can verify that it is indeed an ε/10 approximation of ρ:

∥ρ− ρ̃∥tr ≤
d∑

i=1
|λi − λ̃i| = 2 max

B⊂[d]
λ(B) − λ̃(B)

≤ 2 max
B⊂[d]

λ(B) − µi⋆

B + 2 max
B⊂[d]

µi⋆

B − λ̃(B)

≤ 2ε/40 + 2ε/40 ≤ ε/10.

The copy complexity of this algorithm is O((d2 + log(m))/ε2 which matches (up to logarithmic factors) the
lower bound for m ≥ d.

4.2 Lower bound

In this section, we derive lower bounds for the problem (P ) both with adaptive and non-adaptive independent
measurements.

We start with a lower bound for non-adaptive algorithms that matches the copy complexity of the algorithm
presented in Sec. 4.1.2. For this section, we fix the error probability to δ = 1/3.
Theorem 4.2. There is a tuple of quantum states (σ1, . . . , σm) such that any learning algorithm with non-
adaptive independent measurements requires

N = Ω
(

min
{

md

log(m)ε2 ,
d2

ε2

})
copies of ρ to approximate ρ to at most ε/10 with at least a probability 2/3.

This result with m = d, together with the analysis of the adaptive Alg. 1 gives a nearly quadratic advantage
for adaptive algorithms over non-adaptive ones.

Sketch of the proof. We construct a large set of quantum states randomly as follows: for y ∈ {1, . . . ,m},
σy = UyΛU†

y = 2 Id − σm+1−y, where Uy is a d × d unitary matrix Haar(d)-distributed and Λ is a diagonal
matrix with entries (1±10ε)/d. Using the concentration inequality for Lipschitz functions of unitaries chosen
according to the Haar measure, we can prove that this family is ε-separated with high probability:
Lemma 4.3. Suppose that m ≤ exp(d2/3000). For y ∈ [m/2], let Uy ∼ Haar(d) and σy = UyΛU†

y . We have
with at least a probability 9/10, for all y ̸= z:

∥σy − σz∥tr > ε.
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Then, for each y, we construct an ε/10-separated family of quantum states on the sphere of center σy and
radius ε/3 which have the same eigen-basis as σy. This can be done by taking random eigenvalues and
using Hoeffding’s inequality. This leads to a family of ecd states (for some constant c) that we denote by
{ρx,y}x∈[ecd].

By definition of the problem (P ), any δ-correct non-adaptive algorithm for the problem (P ) can be used to
distinguish between the states {ρx,y}x,y with probability at least 1 − δ. Thus, we can use these quantum
states to encode a message in [ecd] × [m] to a quantum state ρ = ρx,y in the family constructed above. The
decoder receives this unknown quantum state, performs non-adaptive independent measurements, and learns
it. Therefore a δ-correct algorithm can decode with a probability of failure at most δ. By Fano’s inequality,
the encoder and decoder should share at least Ω(log(m) + d) bits of information.
Lemma 4.4 ((Fano, 1961)). The mutual information between the encoder and the decoder is at least

I ≥ 2/3 log(mecd) − log(2) ≥ Ω(log(m) + d).

The remaining and crucial part of the proof is to upper bound the mutual information for a non-adaptive
algorithm. After some manipulations, the use of Jensen’s inequality, and some elementary inequalities of the
logarithm function, we obtain an upper bound on the mutual information I of the form:

I ≤ sup
|ϕ⟩

 8N
m× ecd

∑
y∈[m/2],x∈[ecd]

⟨ϕ|(dρx,y − I)|ϕ⟩2ε2

 . (2)

The next step is to show that the right hand side of the previous inequality cannot be bigger than
O
(

(Nε2
(

log(m)
m + 1

d

))
with a probability at least 9/10. This is the object of the following lemma.

Lemma 4.5. By writing ρx,y = I
d + ε

dUyOx,yU
†
y and M = 2

m×ecd , we have with at least a probability 9/10,
for all unit vector |ϕ⟩:

1
M

∑
x∈[ecd],y∈[m/2]

⟨ϕ|(dρx,y − I)|ϕ⟩2 ≤ C log(m)
m

+ C

d
+ 2∥Ox,y∥2

m
.

This lemma can be proven by considering a concentration inequality for the function

(Uy)y 7−→ 2
m× ecd

∑
x∈[ecd],y∈[m/2]

⟨ϕ|(dρx,y − I)|ϕ⟩2 ,

then considering a 1/m-net on the unit sphere to deduce the required inequality for the previous function
uniformly on the sphere. The proof uses techniques similar to the ones of (Haah et al., 2016) and (Chen
et al., 2021). The detailed proof can be found in App. C.1.

A similar proof strategy allows to derive a lower bound on the copy complexity of adaptive strategies. The
result is stated in the next proposition.
Proposition 4.6. There is a tuple of quantum states (σ1, . . . , σm) such that any learning algorithm with
possibly adaptive independent measurements requires

N = Ω
(
d+ log(m)

ε2

)
copies of ρ to approximate ρ to at most ε/10 with at least a probability 2/3.

The proof is similar to the one for non-adaptive strategies, with the minor difference that the adaptivity
makes difficult to simplify some products, thus we cannot upper bound the mutual information as in Ineq. 2.
We use instead a Cauchy Schwarz inequality to break the dependencies created by the adaptiveness of the
algorithm. We obtain then an upper bound on the mutual information I ≤ O(Nε2). The detailed proof can
be found in App. C.2.
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This proposition along with the analysis of Alg. 1 show that the near optimal copy complexity of the
problem (P ) using adaptive independent measurements is Θ̃

(
d
ε2

)
. This latter along with Theorem 4.2 imply

the separation between adaptive and non-adaptive strategies for the problem (P ) for m ≫ 1. In other words,
knowing that the eigen-basis of the quantum state belongs to some family of bases gives an advantage to
adaptive strategies since they can find the eigen-basis, and then focus on measuring the quantum state with
the corresponding POVM. Up to our knowledge, this is the first example for which adaptive independent
strategies outperform non-adaptive ones for testing quantum states.

5 Conclusion

We have constructed hypothesis selection problems for which sequential adaptive strategies are more efficient
than non-sequential non-adaptive ones. The problem for which the advantage is the most significant is the
one presented in Sec. 4. It would be interesting to see if there are other natural problems for which such
a separation exists. We conjecture the separation would be polynomial in m for the composite hypothesis
selection problem: distinguishing between ρ ∈ {σ1, . . . , σm} and ρ ∈ {σm+1, . . . , σ2m} with high probability.
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In this appendix, we give more details and the technical lemmas needed for the proofs of the article’s main
results.

• We start by stating general tools to reduce quantum testing to classical testing in App. A along
with the proofs for upper/lower bounds on the problem of discriminating two quantum states using
sequential/non adaptive strategies.

• Then we move to prove the correctness of Alg. 1 in App. B.

• Next, we prove the lower bounds for the hypothesis selection problem (P ) in App. C.

• Finally, we group the technical lemmas we often need in App. D.

A Reduction to classical testing problems

One of the main difficulties in quantum testing is the freedom in the choice of measurement at each step. So,
to simplify the analysis of quantum testing problems, we provide some techniques permitting the reduction
to classical testing problems which are well understood.

A.1 Testing a single hypothesis vs a single hypothesis

A.1.1 Non-sequential strategies

We start by the simple remark that for diagonal quantum states, independent measurement can be seen
as a post-processing of samples from the distribution given by the diagonal elements of the quantum state.
Moreover, the stochastic map for this post-processing does not depend on the quantum state.
Lemma A.1. Let D be a discrete distribution and ρ its corresponding diagonal quantum state. Let M be a
POVM. Measuring the quantum state ρ with the POVM M can be seen as post-processing of samples from
the distribution D.

Proof. Let M = {M i}i∈[k]. For each i ∈ [k], we can write

M i =
∑
x,y

M i
x,y|x⟩⟨y|.

By Born’s rule, the probability distribution of the outcomes of the measurement of ρ by the POVM M is:

M(ρ) = {tr(ρM i)}i∈d =
{

tr
(∑

x

Dx|x⟩⟨x|
∑
x,y

M i
x,y|x⟩⟨y|

)}
i∈d

=
{∑

x

M i
x,xDx

}
i∈d

= PD,

where P = (M i
x,x)i,x is a stochastic matrix. Indeed, M i ≽ 0 implies M i

x,x = ⟨x|M i|x⟩ ≥ 0 and
∑

i M
i = I

implies ∑
i

M i
x,x =

∑
i

⟨x|M i|x⟩ = ⟨x|x⟩ = 1.

Note that the post-processing map is independent of the quantum state, hence we can generalize the state-
ment to any number of discrete distributions.
Corollary A.2. Let D1 and D2 be two discrete distributions and ρ1 and ρ2 their corresponding diagonal
quantum states. Let M be a POVM. Measuring the quantum state ρ1 (resp. ρ2) with the POVM M can be
seen as post-processing (independent of the quantum states) of samples from the distribution D1 (resp. D2).

15



We move now to the proof of the following upper and lower bound on discriminating two quantum states
using non sequential independent measurements:
Proposition A.3. There is a non-sequential algorithm for testing H1 : ρ = σ1 vs H2 : ρ = σ2 using a
number of measurements

N ≤ 2 log(1/δ)
ε2 .

Moreover, there exists two quantum states σ1 and σ2 satisfying ∥σ1 − σ2∥tr = ε so that every non-sequential
algorithm distinguishing between H1 : ρ = σ1 and H2 : ρ = σ2 needs a number of measurements satisfying

lim inf
δ→0

N

log(1/δ) ≥ max
{

1
KL(1/2 + αε∥1/2) ,

1
KL(1/2 − βε∥1/2)

}
∼

ε→0

2
ε2 ,

where α ∈ (0, 1) and β ∈ (0, 1) are defined such that KL(1/2 + αε∥1/2) = KL(1/2 + αε∥1/2 + ε) and
KL(1/2 − βε∥1/2) = KL(1/2 − βε∥1/2 − ε).

Proof. The correctness of the batch algorithm presented in Sec. 3.1.1 can be done using Chernoff-Hoeffding
inequality, if ρ = σ1 the error probability can be upper bounded as follows:

P (S − tr(σ2O) ≤ ε/2) = P (S − tr(σ1O) ≤ ε/2 − ε)
≤ P (S − tr(σ1O) ≤ −ε/2)
≤ exp(−N KL(tr(σ1O) − ε/2∥tr(σ1O))).

On the other hand, if ρ = σ2:

P (S − tr(σ2O) ≥ ε/2) ≤ exp(−N KL(tr(σ2O) + ε/2∥tr(σ2O))).

Therefore to ensure that the batch algorithm is δ-correct we need N to satisfy

N = max
{

log(1/δ)
KL(tr(σ1O) − ε/2∥tr(σ1O)) ,

log(1/δ)
KL(tr(σ2O) + ε/2∥tr(σ2O))

}
.

Moreover by Pinsker’s inequality (Fedotov et al., 2003), the right hand side is upper bounded by:

max
{

log(1/δ)
KL(tr(σ1O) − ε/2∥tr(σ1O)) ,

log(1/δ)
KL(tr(σ2O) + ε/2∥tr(σ2O))

}
≤ 2 log(1/δ)

ε2 .

For the lower bound, let d = 2, σ1 = I/2 and σ2 = diag((1 + 2ε)/2, (1 − 2ε)/2) = I/2 + εO where
O = diag(1,−1). Let A be a non sequential algorithm that distinguishes between H1 and H2 using N
measurements. Let the ith measurement be Mi = (I − Oi, Oi). Measuring ρ = σ1 (resp. σ2) with the
POVM Mi = (I − Oi, Oi) is equivalent to sampling from Ber(tr(Oi)/2) (resp. Ber(tr(Oi)/2 + εtr(OiO)).
The optimal sample complexity of testing identity: H0 : p = tr(Oi)/2 vs H1 : p = tr(Oi)/2 + εtr(OiO) is
asymptotically equivalent to (when ε → 0) (Fawzi et al., 2022):

8(tr(Oi)/2)(1 − tr(Oi)/2) log(1/δ)
ε2tr(OiO)2 = 4tr(Oi)(1 − tr(Oi)/2) log(1/δ)

ε2tr(OiO)2 .

Let’s write Oi =
(
λ1 β

β̄ λ2

)
, we have tr(OiO) = λ1 − λ2. Since 0 ≼ Oi ≼ I, we have 0 ≤ λi ≤ 1 for i = 1, 2.

Hence
4tr(Oi)(1 − tr(Oi)/2) log(1/δ)

ε2tr(OiO)2 = 2(λ1 + λ2)(2 − λ1 − λ2) log(1/δ)
ε2(λ1 − λ2)2 ≥ 2 log(1/δ)

ε2 .

This latter inequality is true since

(λ1 + λ2)(2 − λ1 − λ2) ≥ (λ1 − λ2)2 ⇐⇒ λ1(1 − λ1) + λ2(1 − λ2) ≥ 0,

16



with equality iff λi = 0, 1 for i = 1, 2. The cases λ1 = λ2 are eliminated because the sample complexity
has a denominator (λ1 − λ2). It remains the cases λ1 = 1 − λ2 ∈ {0, 1} for which Oi is a rank 1 projector.
Therefore, the optimal measurement reduces to testing uniform: Ber(1/2) vs Ber(1/2 ± ε). This problem
requires a sample complexity asymptotically equivalent to 2 log(1/δ)

ε2 . Note that we can also use Lemma A.1 to
make the desired reduction. We show how this reduction works for entangled strategies. We have σ⊗N

1 = I
2N

and σ⊗N
2 = 1

2N diag
(
(1 + 2ε)|i|(1 − 2ε)N−|i|)

i∈{0,1}N where |i| = i1 + · · · + iN . By Lemma A.1, measuring
the quantum states σ⊗N

1 (resp. σ⊗N
2 ) can be seen as post-processing of samples from the distribution D1 =

{1/2N }i∈{0,1}N (resp. D2 =
{

(1/2 − ε)|i|(1/2 + ε)N−|i|}
i∈{0,1}N ). Observe that a sample i = (i1, . . . , iN ) ∼

D1 is given by N i.i.d. random variables {ik ∼ Ber(1/2)}k∈[N ]. Similarly, a sample i = (i1, . . . , iN ) ∼ D2 is
given by N i.i.d. random variables {ik ∼ Ber(1/2 − ε)}k∈[N ]. Therefore, distinguishing σ1 from σ2 using N
entangled copies can be reduced to testing Ber(1/2) vs Ber(1/2 − ε) using N samples. This latter requires
a number of samples (Fawzi et al., 2022):

lim inf
δ→0

N

log(1/δ) ≥ max
{

1
KL(1/2 + αε∥1/2) ,

1
KL(1/2 − βε∥1/2)

}
∼

ε→0

2
ε2 ,

where α ∈ (0, 1) and β ∈ (0, 1) are defined such that KL(1/2 + αε∥1/2) = KL(1/2 + αε∥1/2 + ε) and
KL(1/2 − βε∥1/2) = KL(1/2 − βε∥1/2 − ε).

A.1.2 Sequential strategies

Discriminating two quantum states using sequential strategies can be done with fewer measurements than
non-sequential strategies. Since the reduction to lower bound is similar, we give only the proof for the upper
bound.
Proposition A.4. There is a sequential algorithm for testing H1 : ρ = σ1 vs H2 : ρ = σ2 using an expected
number of measurements:

E(N) ≤ log(1/δ)
2ε2 + log(1/δ)2/3 + 2 log(1/δ)1/3 + log(log(1/δ)/2ε2) + 1

ε2 .

Moreover, there are two quantum states σ1 and σ2 satisfying ∥σ1 −σ2∥ = ε so that every sequential algorithm
distinguishing between H1 : ρ = σ1 and H2 : ρ = σ2 with high probability needs in expectation a number

E(N) ≥ log(1/δ)
min {KL (1/2 ± ε∥1/2)}

of measurements.

Proof. The algorithm is presented in Sec. 3.1.2.

Correctness. Let’s start by showing that this algorithm is δ-correct. To this end, we need a time uniform
concentration inequality which can be obtained by Hoeffding inequality along with the union bound, recall
that St = (

∑t
i=1 Xi)/t and Xi ∼ Ber(tr(ρO)):

P (∃t ≥ 1 : |St − E (St) | > ϕ(δ, t)) ≤
∑
t≥1

P (|St − E (St) | > ϕ(δ, t))

≤
∑
t≥1

exp(−2tϕ(δ, t)2)

≤
∑
t≥1

δ

t(t+ 1)

≤ δ.
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Complexity. To obtain an upper bound on the complexity, we use the following lemma:

Lemma A.5. N a random variable taking values in N, we have for all k ∈ N∗

E(N) ≤ k +
∑
t≥k

P(N ≥ t) .

This inequality can be proved by writing E(N) =
∑

t≥0P(N ≥ t) then upper bounding the first k terms by
1.
Let α ∈ (0, 1) and k the smallest integer so that for all t ≥ k : ϕ(δ, t) ≤ αε. We focus only on the case ρ = σ1
(the other being similar), the expected stopping time of the algorithm can be controlled as follows:

E (N) ≤ k +
∑
t≥k

P(N ≥ t)

≤ k +
∑
t≥k

P(St−1 < tr(σ2O) + ϕ(δ, t− 1))

≤ k +
∑

t≥k−1
P(St − tr(σ1O) < −ε+ αε)

≤ k +
∑

t≥k−1
P(St − tr(σ1O) < −(1 − α)ε)

≤ k +
∑

t≥k−1
2 exp(−2t(1 − α)2ε2)

≤ k + 2 exp(−2(k − 1)(1 − α)2ε2)
1 − exp(−2(1 − α)2ε2)

≤ k + 2 exp(−2(k − 1)(1 − α)2ε2)
(1 − α)2ε2 .

On the other hand we have ϕ(δ, k) ≤ αε and ϕ(δ, k − 1) ≥ αε so

log
(

(k − 1)k
δ

)
≥ 2(k − 1)α2ε2.

Therefore:

k − 1 ≤ log(1/δ)
2α2ε2 + 2log(log(1/δ)/(αε)2)

α2ε2 .

Hence:

E (N)
log(1/δ) ≤ 1

2α2ε2 + 2log(log(1/δ)/(αε)2)
log(1/δ)α2ε2 + 1

log(1/δ) + 2 exp(−2(k − 1)(1 − α)2ε2)
log(1/δ)(1 − α)2ε2 ,

and by taking δ → 0, then α → 1 we obtain:

lim sup
δ→0

E (N)
log(1/δ) ≤ 1

2ε2 .

A non asymptotic upper bound can be obtained by choosing α = (1 + log(1/δ)−1/3)−1:

E(N) ≤ log(1/δ)
2ε2 + log(1/δ)2/3 + 2 log(1/δ)1/3 + log(log(1/δ)/2ε2) + 1

ε2 .

The lower bound follows from the previous reduction to testing Ber(1/2) vs Ber(1/2 ± ε) and (Fawzi et al.,
2022).
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A.1.3 Asymptotics of the quantum relative entropy and Chernoff divergence.

Recall that we consider the particular states σ1 = I2
2 and σ2 = diag( 1

2 + ε, 1
2 − ε). An asymptotic (when

ε → 0) of the quantum relative entropy between σ1 and σ2 is given by:

D(σ1∥σ2) = 1
2 log

(
1

1 + 2ε

)
+ 1

2 log
(

1
1 − 2ε

)
∼

ε→0
2ε2,

D(σ2∥σ1) =
(

1
2 + ε

)
log(1 + 2ε) +

(
1
2 − ε

)
log(1 − 2ε) ∼

ε→0
2ε2.

On the other hand, an asymptotic (when ε → 0) of the quantum Chernoff divergence between the states σ1
and σ2 can be upper bounded using the inequality log(x) ≥ (x− 1) − (x− 1)2 valid for x ∈ ( 1

2 ,∞):

C(σ1, σ2) = sup
0≤s≤1

− log(tr(σs
1σ

1−s
2 ))

= sup
0≤s≤1

− log
(

1
2(1 + 2ε)s + 1

2(1 − 2ε)s

)
≤ sup

0≤s≤1

[
1 − 1

2(1 + 2ε)s − 1
2(1 − 2ε)s

]
+
[1

2(1 + 2ε)s + 1
2(1 − 2ε)s − 1

]2

≤ sup
0≤s≤1

[2s(1 − s)ε2 + o(ε2)] + o(ε4) ∼
ε→0

ε2

2 .

Moreover, it can be lower bounded using the inequality log(x) ≤ x− 1:

C(σ1, σ2) = sup
0≤s≤1

− log
(

1
2(1 + 2ε)s + 1

2(1 − 2ε)s

)
≥ sup

0≤s≤1

[
1 − 1

2(1 + 2ε)s − 1
2(1 − 2ε)s

]
≥ sup

0≤s≤1
[2s(1 − s)ε2 + o(ε2)] ∼

ε→0

ε2

2 .

Finally C(σ1, σ2) ∼
ε→0

ε2

2 .

A.2 Testing a single hypothesis vs a multiple hypothesis

In this section, we relate the TV-distance between the distributions obtained after the measurements and
the 1-norm between the quantum states.
Lemma A.6. Let U ∈ Cd×d be a Haar-random unitary matrix of columns {|Ui⟩}1≤i≤d, M(U) = {|Ui⟩⟨Ui|}i

is a POVM and there exists a universal constant c such that for all quantum states ρ and σ we have:

E [TV(ρ(M), σ(M))] ≥ c
∥ρ− σ∥tr√

d
.

Proof. Let ξ = ρ− σ, we have U |ei⟩ = |Ui⟩ and we use Weingarten Calculus D.1 and D.2 to calculate

E
[
⟨Ui|ξ|Ui⟩2] = E [⟨Ui|ξ|Ui⟩⟨Ui|ξ|Ui⟩]

= E [tr(ξ|Ui⟩⟨Ui|ξ|Ui⟩⟨Ui|)]
= E [tr(ξU |ei⟩⟨ei|U∗ξU |ei⟩⟨ei|U∗)]
= E [tr(U∗ξU |ei⟩⟨ei|U∗ξU |ei⟩⟨ei|)]

=
∑

α,β∈S2

Wg(βα−1, d)trβ−1(ξ, ξ)trα(|ei⟩⟨ei|, |ei⟩⟨ei|)

= 1
d(d+ 1)tr(ξ2).

19



Similarly

E
[
⟨Ui|ξ|Ui⟩4] = E [⟨Ui|ξ|Ui⟩⟨Ui|ξ|Ui⟩⟨Ui|ξ|Ui⟩⟨Ui|ξ|Ui⟩]

= E [tr(ξ|Ui⟩⟨Ui|ξ|Ui⟩⟨Ui|ξ|Ui⟩⟨Ui|ξ|Ui⟩⟨Ui|)]
= E [tr(ξU |ei⟩⟨ei|U∗ξU |ei⟩⟨ei|U∗ξU |ei⟩⟨ei|U∗ξU |ei⟩⟨ei|U∗)]
= E [tr(U∗ξU |ei⟩⟨ei|U∗ξU |ei⟩⟨ei|U∗ξU |ei⟩⟨ei|U∗ξU |ei⟩⟨ei|)]

=
∑

α,β∈S4

Wg(βα−1, d)trβ−1(ξ, ξ, ξ, ξ)trα(|ei⟩⟨ei|, |ei⟩⟨ei|, |ei⟩⟨ei|, |ei⟩⟨ei|)

= 1
d(d+ 1)(d+ 2)(d+ 3)(6tr(ξ2)2 + 6tr(ξ4)).

≤ c′

d(d+ 1)(d+ 2)(d+ 3)tr(ξ2)2.

We can now conclude by Hölder’s inequality:

2E [TV(ρ(M), σ(M))] =
d∑

i=1
E [|⟨Ui|ξ|Ui⟩|]

≥
d∑

i=1

√
(E [⟨Ui|ξ|Ui⟩2])3

E [⟨Ui|ξ|Ui⟩4]

≥
d∑

i=1

√
(d−1(d+ 1)−1tr(ξ2))3

c′d−1(d+ 1)−1(d+ 2)−1(d+ 3)−1tr(ξ2)2

≥
d∑

i=1
c

√
tr(ξ2)
d

≥ c
√

tr(ρ− σ)2.

This Lemma is about the expected TV distance. Actually, we can prove that we have the same inequality
with high probability.

Lemma A.7. Let l = Θ (log(1/δ)) and U1, U2, . . . , U l ∈ Cd×d be Haar-random unitary matrices of columns
{|U j

i ⟩}1≤i≤d,1≤j≤l, M = { 1
l |U j

i ⟩⟨U j
i |}i,j is a POVM and there exists a universal constant c such that for all

quantum states ρ and σ we have with a probability at least 1 − δ:

TV(ρ(M), σ(M)) ≥ c
∥ρ− σ∥tr√

d
.
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Proof. Let f(U) = TV(ρ(M), σ(M)), we first show that f is Lipschitz by using the triangle and Cauchy
Schwarz inequalities:

2|f(U) − f(V )| =

∣∣∣∣∣∣
∑

1≤i≤d,1≤j≤l

1
l
|tr(|U j

i ⟩⟨U j
i |ξ)| − |tr(|V j

i ⟩⟨V j
i |ξ)|

∣∣∣∣∣∣
≤

∑
1≤i≤d,1≤j≤l

1
l

∣∣∣tr((|U j
i ⟩⟨U j

i | − |V j
i ⟩⟨V j

i |)ξ)
∣∣∣

≤
∑

1≤i≤d,1≤j≤l

1
l

√
tr(ξ2)

√
tr((|U j

i ⟩⟨U j
i | − |V j

i ⟩⟨V j
i |)2)

≤
√
d

l

√
tr(ξ2)

√ ∑
1≤i≤d,1≤j≤l

tr((|U j
i ⟩⟨U j

i | − |V j
i ⟩⟨V j

i |)2)

≤
√
d

l

√
tr(ξ2)

√ ∑
1≤j≤l

tr((U j − V j)2)

≤
√
d

l

√
tr(ξ2)∥U − V ∥2,HS,

hence f is L =
√

d
2l

√
tr(ξ2)-Lipschitz, therefore by Theorem D.3:

P
(

|f(U) − E (f(U))| > c

2
√

tr(ξ2)
)

≤ e− dc2tr(ξ2)
48L2 = e−lc2/24 = δ/2,

for l = 24 log(2/δ)/c2. Finally with high probability (at least 1 − δ/2) we have

TV(ρ(M), σ(M)) ≥ E (TV(ρ(M), σ(M))) − | TV(ρ(M), σ(M)) − E (TV(ρ(M), σ(M))) |

≥ c
√

tr(ξ2) − c

2
√

tr(ξ2)

≥ c

2
√

tr(ξ2)

≥ c

2
∥ρ− σ∥tr√

r
,

where r is the rank of (ρ− I/d).

Once we have the lower bound on the TV distance between the distributions obtained after performing the
measurements, we can deduce upper bounds on sequential algorithms for testing identity depending on the
rank of ρ or ρ− I/d.

Dependence in the rank of ρ− I/d From the previous lower bound on the TV-distance, we can achieve
an upper bound using the sequential tester of (Fawzi et al., 2022):

O
(

min
{

n1/2 log(1/δ)1/2

(max{ε/
√
d, ∥ρ− I/d∥2})2

,
log(1/δ)

(max{ε/
√
d, ∥ρ− I/d∥2})2

})
= O

(
d3/2 log(1/δ)

max{ε2, d∥ρ− I/d∥2
2}

)
= O

(
min

{
d3/2 log(1/δ)

ε2 ,
rd1/2 log(1/δ)
∥ρ− I/d∥2

tr

})
,

where r is the rank of (ρ− I/d) and we use Cauchy Schwarz to obtain the latter inequality.
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Dependence in the rank of ρ The proof of Lemma 3.5 permits to deduce that with high probability:

TV(P,Un) ≥ c∥ρ− I/d∥2 ≥ c

√√√√ r∑
i=1

(
λi − 1

d

)2
+ d− r

d2

≥ c

√√√√ r∑
i=1

λ2
i − 1

d
≥ c

√
1
r

− 1
d

≥ c

√
1
2r ,

where r is the rank of ρ supposed to be less than d/2 and we use Cauchy Schwarz inequality. Therefore we
can test whether ρ = σ or ∥ρ− σ∥tr > ε with probability at least 1 − δ using

O

 d1/2 log(1/δ)(
max

{
ε/

√
d, 1/

√
2r
})2

 = O
(

min
{
d3/2 log(1/δ)

ε2 , rd1/2 log(1/δ)
})

copies of ρ.

B Analysis of Alg. 1

In this section we prove the correctness of the Alg. 1. We need to show that with probability at least 1−δ/2,
Alg. 1 finds the closest quantum state σi⋆ to ρ.
Lemma B.1. For all i ̸= j ∈ [m], let µi,j an ε/10 approximation of tr(ρOi,j) given by classical shadow
tomography of (Huang et al., 2020). Let k⋆ = argminl maxi,j µi,j − tr(σlOi,j). We have with at least a
probability 1 − δ/2:

∥ρ− σk⋆∥tr ≤ ε/3.

Proof. Classical shadow tomography of (Huang et al., 2020) permits to have the following approximations

∀i ̸= j ∈ [m] : |µi,j − tr(ρOi,j)| ≤ ε/10,

with a probability at least 1 − δ/2 using only N = O(d log(m)/ε2) copies of ρ.
Let σi⋆ the closest quantum state to ρ. We want to prove that with high probability k⋆ = i⋆. We have for
all l ̸= i⋆: ∥σi⋆ − σl∥tr > ε hence:

max
i,j

µi,j − tr(σlOi,j) ≥ µi⋆,l − tr(σlOi⋆,l)

≥ tr(ρOi⋆,l) − tr(σlOi⋆,l) − ε/10
≥ tr(σi⋆Oi⋆,l) − tr(σlOi⋆,l) + tr(ρOi⋆,l) − tr(σi⋆Oi⋆,l) − ε/10
≥ ∥σi⋆ − σl∥tr − ∥ρ− σi⋆∥tr − ε/10
≥ ε− ε/3 − ε/10
> ε/2.

On the other hand

max
i,j

µi,j − tr(σk⋆Oi,j) ≤ max
i,j

µi,j − tr(σi⋆Oi,j)

≤ max
i,j

tr(ρOi,j) − tr(σi⋆Oi,j) + ε/10

≤ ∥ρ− σi⋆∥tr + ε/10
≤ ε/3 + ε/10
< ε/2.

Therefore, with high probability, k⋆ cannot be different from i⋆.
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Once we know, with high probability, the closest quantum state to ρ we can read its basis and use it to
to learn ρ. The following lemma indicates how to construct this approximation along with the number of
copies/measurements needed for this learning task.
Lemma B.2. Let ρ =

∑d
i=1 λi|ϕi⟩⟨ϕi|. Let A1, . . . , AN the outcomes of the measurement of ρ independently

by the POVM M = {|ϕi⟩⟨ϕi|}i. The quantum state

ρ̃ =
d∑

i=1

(∑N
j=1 1Aj=i

N

)
|ϕi⟩⟨ϕi|

is ε/10-close in 1-norm to ρ with a probability at least 1 − δ/2 if N = 200 log(2d+2/δ)/ε2.

Proof. ρ is a quantum state so it is a Hermitian matrix positive semi definite of trace 1. Hence, we can write
ρ =

∑d
i=1 λi|ϕi⟩⟨ϕi| where{λi}i is a probability distribution and {ϕi}i is an orthonormal basis. Therefore∑d

i=1 |ϕi⟩⟨ϕi| = I and M is a valid POVM. Measuring ρ via the POVM M is equivalent to sampling from
the distribution {tr(|ϕi⟩⟨ϕi|ρ}i = {

∑
j λjtr(|ϕi⟩⟨ϕi||ϕj⟩⟨ϕj |}i = {λi}i hence

A1, . . . , AN ∼
i.i.d.

{λi}i.

On the other hand ρ and ρ̃ have the same basis of diagonalization so the 1 norm between them is simply

∥ρ− ρ̃∥tr =
∥∥∥∥∥

d∑
i=1

λi|ϕi⟩⟨ϕi| −
d∑

i=1
λ̃i|ϕi⟩⟨ϕi|

∥∥∥∥∥
tr

=
∥∥∥∥∥

d∑
i=1

(λi − λ̃i)|ϕi⟩⟨ϕi|

∥∥∥∥∥
tr

=
d∑

i=1
|λi − λ̃i|

= 2 TV(λ, λ̃),

where {λ̃i}i = {
∑N

j=1
1Aj =i

N }i. It is well known that the TV distance can be written as:

TV(λ, λ̃) = max
B⊂[d]

(λ̃(B) − λ(B)).

Chernoff-Hoeffding((Hoeffding, 1963)) inequality implies for all B ⊂ [d] :

P

(∣∣∣∣∣
∑N

j=1 1Aj∈B

N
− λ(B)

∣∣∣∣∣ > ε

20

)
≤ 2 exp

(
−2N

( ε
20

)2
)
.

Therefore by union bound we obtain

P (∥ρ− ρ̃∥tr > ε/10) = P
(
2 TV(λ, λ̃) > ε/10

)
= P

(
∃B ⊂ [d] :

∣∣∣∣∣
∑N

j=1 1Aj∈B

N
− λ(B)

∣∣∣∣∣ > ε

20

)

≤ 2d+1 exp
(

−2N
( ε

20

)2
)
.

Finally for N = 200 log(2d+1/δ)/ε2, we have with at least a probability 1 − δ : ∥ρ− ρ̃∥tr ≤ ε/10.

Grouping the two previous Lemmas, Alg. 1 finds the closest quantum state σi⋆ and returns an ε/10-
approximation of ρ with a probability at least 1 − (δ/2 + δ/2) = 1 − δ. Finally, Alg. 1 is δ-correct.

23



C Lower bound for the problem (P )

In this section, we focus on proving lower bounds for hypothesis selection problem (P ) for non-adaptive and
adaptive strategies.

C.1 Non-adaptive strategies

We recall the theorem we want to prove:

Theorem C.1. There is a tuple of quantum states (σ1, . . . , σm) such that any learning algorithm for problem
(P) with non-adaptive independent measurements requires

N = Ω
(

min
{

md

log(m)ε2 ,
d2

ε2

})

copies of ρ.

Construction For the construction, we choose m unitary matrices {Uy}y chosen randomly from the
Haar(d) distribution, then we choose for each unitary (orthonormal basis) random eigenvalues:

Lemma C.2. Let m ≤ exp(d2/3000). Let {Uy}y∈[m/2] m/2 unitaries Haar(d) distributed. For y ∈ [m/2],

let σy = 2I/d − σm+1−y = UyΛU†
y where Λ = I

d + diag
(

{λi}i∈[d]

)
= diag

({
1+(−1)d10ε

d

}
i∈[d]

)
. We have

with a probability at least 9/10, for all y ̸= z ∈ [m]:

∥σy − σz∥tr ≥ ε.

Proof. Let y ̸= z ∈ [m/2] and 0 ≼ O ≼ I satisfying tr diag
(

{λi}i∈[d]

)
O = −5ε. Let

f(U) = tr
(
U diag

(
{λi}i∈[d]

)
U† − diag

(
{λi}i∈[d]

))
O where U ∼ Haar(d), we have E (f(U)) =

−tr diag
(

{λi}i∈[d]

)
O = 5ε (see Weingarten Calculus D.1). The function f is 20ε√

d
-Lipschitz:

|f(U) − f(V )|

= |tr(U diag
(

{λi}i∈[d]

)
U† − diag

(
{λi}i∈[d]

)
)O − tr(V diag

(
{λi}i∈[d]

)
V † − diag

(
{λi}i∈[d]

)
)O|

≤ |tr(U diag
(

{λi}i∈[d]

)
U† − V diag

(
{λi}i∈[d]

)
V †)O|

≤ ∥(U − V ) diag
(

{λi}i∈[d]

)
U†∥tr + ∥V diag

(
{λi}i∈[d]

)
(U − V )†∥tr

≤ ∥U − V ∥2∥ diag
(

{λi}i∈[d]

)
U†∥2 + ∥V diag

(
{λi}i∈[d]

)
∥2∥(U − V )†∥2

≤ 10ε
d

(∥U − V ∥2∥ diag
({

(−1)i
}

i∈[d]

)
U†∥2 + ∥V diag

({
(−1)d

}
i∈[d]

)
∥2∥(U − V )†∥2)

≤ 20ε√
d

∥U − V ∥2,

where we have used Cauchy Schwarz inequality.

Using the fact that the Haar distribution is invariant under the multiplication by a unitary and the concen-
tration inequality for Lipschitz functions D.3, the probability that the states {σy}y∈[m/2] are not ε-separated
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is upper bounded by

P (∃y, z ∈ [m/2] : ∥σy − σz∥tr ≤ ε) ≤ m2

4 P (∥σy − σz∥tr ≤ ε)

≤ m2

4 P
(

∥Uy diag
(

{λi}i∈[d]

)
U†

y − Uz diag
(

{λi}i∈[d]

)
U†

z ∥tr ≤ ε
)

≤ m2

4 P
(

∥U†
zUy diag

(
{λi}i∈[d]

)
U†

yUz − diag
(

{λi}i∈[d]

)
∥tr ≤ ε

)
≤ m2

4 P
(

∥U diag
(

{λi}i∈[d]

)
U† − diag

(
{λi}i∈[d]

)
∥tr ≤ ε

)
≤ m2

4 P
(

tr
(
U diag

(
{λi}i∈[d]

)
U† − diag

(
{λi}i∈[d]

))
O ≤ ε

)
≤ m2

4 P (f(U) − E (f(U)) ≤ ε− 5ε)

≤ m2

4 P (E (f(U)) − f(U) ≥ 4ε)

≤ m2

4 exp
(

− −16d2ε2

12 × 400ε2

)
≤ m2

4 exp
(

− d2

1000

)
,

which is smaller than 1/10 if m2 ≤ 2 exp(d2/1000)/5.

For the case when y ∈ [m/2] and z ∈ [m] \ [m/2], let x = m+ 1 − z ∈ [m/2] we have

∥σy − σz∥tr = ∥σy − 2I/d+ σx∥tr

≥ ∥σx − 2I/d+ σx∥tr − ∥σy − σx∥tr

≥ 2∥σx − I/d∥tr + ∥tr − ∥σy − σx∥tr

≥ ε.

Finally, for the case when y ∈ [m]\ [m/2] and z ∈ [m]\ [m/2], let y′ = m+1−y ∈ [m/2] and z′ = m+1−z ∈
[m/2] we have

∥σy − σz∥tr = ∥2I/d− σy′ − 2I/d+ σz′∥tr

≥ ∥σy′ − σz′∥tr

≥ ε.

We have shown how to construct the unitaries, we move to prove the existence of the eigenvalues:
Lemma C.3. There exists family of quantum states {ρx,y}|x|∈[ecd],y∈[m] (where c is a universal constant)
such that for each y ∈ [m], {ρx,y}|x|∈[ecd] is ε/5-separated and commute.

Proof. We start by writing the eigen-decomposition of the known quantum states σy as

σy = Uy

(
d∑

i=1
λy

i |i⟩⟨i|

)
U†

y .

We claim that we can choose αx
i to construct an ε/5-separated family of mecd quantum states (c is a constant

to be chosen later) of the form

ρx,y = Uy

(
d∑

i=1

(
λy

i + αx
i (2ε/3)
d

)
|i⟩⟨i|

)
U†

y ,
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for |x| ∈ [ecd] and y ∈ [m]. Note that for convenience of notation, the labels x can be positive and negative.
Moreover the distance between ρx,y and σy is exactly:

∥ρx,y − σy∥tr = ε

3 .

Concretely, we look for {αx
i }1≤i≤d,1≤|x|≤ecd/2 such that

1. αx
i = ±1,

2. α−x
i = −αx

i ,

3. αx
i + αx

i+d/2 = 0 (we suppose d is even) and

4. ∀x ̸= x′ :
∑d/2

i=1 |αx
i − αx′

i | > d(1/2 − 1/200).

The third point ensures that ρ has trace 1 while the fourth one implies ∥ρx,y − ρx′,y∥tr > ε/3 − ε/100 > ε/5.
Starting by the simple quantum states ρ1,y = σy +

∑d/2
i=1

(2ε/3)
d Uy|i⟩⟨i|U†

y −
∑d

i=d/2+1
(2ε/3)

d Uy|i⟩⟨i|U†
y and

ρ−1,y = 2I/d − ρ1,y = σm+1−y −
∑d/2

i=1
(2ε/3)

d Uy|i⟩⟨i|U†
y +

∑d
i=d/2+1

(2ε/3)
d Uy|i⟩⟨i|U†

y and we suppose that
we have constructed Q an ε-separated family of the form described above of cardinality M < ecd. Let
α1, . . . , αd/2 i.i.d. random variables taken values in {±1} with probability 1/2 each. We have by Hoeffding’s
inequality

P

∃ρx ∈ Q :
d/2∑
i=1

|αx
i − αi| ≤ d(1/2 − 1/200) OR

d/2∑
i=1

|α−x
i − αi| ≤ d(1/2 − 1/200)


= P

∃ρx ∈ Q :
d/2∑
i=1

|αx
i − αi| ≤ d(1/2 − 1/200) OR

d/2∑
i=1

|αx
i + αi| ≤ d(1/2 − 1/200)


≤ M

2 P

d/2∑
i=1

1αi=αx
i
> d/4 + d/400

+ M

2 P

d/2∑
i=1

1αi=αx
i

≤ d/4 − d/400


≤ Me−d/2000,

which is strictly less than 1 if M < ed/2000. So let’s take c = 1/2000, we deduce that

P

∀ρx ∈ Q :
d/2∑
i=1

|αx
i − αi| > d(1/2 − 1/200)

 > 0.

therefore there exists some α ∈ {±1}d verifying the desired conditions. We can repeat this construction until
Card(Q) ≥ ecd.

We have constructed the ε-separated family of quantum states {σy}y an the corresponding ε/5-separated
{ρx,y}x for all y, we can use tools from communication theory to deduce the lower bound (see (Haah et al.,
2016)). Alice encodes a message (x, y) ∈ {1, . . . , ecd} × [m] in ρx,y and sends it to Bob. To read the
message, Bob tries to approximate the quantum state that he received from Alice. We suppose that Bob
can approximate (up to ε/10 in trace norm) a state ε/3 close to one of {σy} and diagonalized in the same
basis of this quantum state with a probability at least 2/3. Bob uses N copies to decode Alice’s message
and returns (x′, y′) ∈ {1, . . . , ecd} × [m] , therefore by Fano’s inequality ((Fano, 1961)) we have the following
lower bound on the mutual information:
Lemma C.4 (Fano). The mutual information can be lower bounded:

I(X,Y : X ′, Y ′) ≥ 2/3 log(mecd) − log(2) ≥ Ω(log(m) + d).
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On the other hand we can upper bound the mutual information between (X,Y ) and (X ′, Y ′). Let I1, . . . , IN

be the outcomes of a non adaptive algorithm solving the problem (P ). By using the data-processing inequality
for the Kullback-Leibler divergence and the fact that every non adaptive algorithm for the problem (P ) can
be used as a 2/3-correct decoder we can upper bound the mutual information as follows:
Lemma C.5 (Data-processing). . The mutual information between (X,Y ) and (X ′, Y ′) is smaller than the
mutual information between (X,Y ) and (I1, . . . , IN ):

I(X,Y : X ′, Y ′) ≤ I(X,Y : I1, . . . , IN ).

The next step is to upper bound the mutual information between (X,Y ) and (I1, . . . , IN ). This latter
depends on the quantum states {σy}y, therefore it is a random variable. We will show that with at least
a probability 9/10, it is upper bounded by an expression involving the parameters of the problem. First
we start by proving the following upper bound relating the mutual information with the unitaries {Uy}y

defining the quantum states {σy}y.
Lemma C.6. For all unitaries {Uy}y, we have:

I(X,Y : I1, . . . , IN ) ≤ 4N sup
ϕ,∥ϕ∥2≤1

1
M

∑
|x|,y≤m/2

⟨ϕ|UyOx,yU
†
y |ϕ⟩2ε2,

where for (x, y), Ox,y = U†
y (dρx,y − I)Uy.

Proof. We suppose that the eigenvalues of σy have the form

λy
i = 1 + 10βy

i ε

d
,

where βy
i = ±1 satisfying

∑
i β

y
i = 0 (exactly half are equal to +1) and βy = −βm+1−y (we suppose m even).

The diagonalizing matrices {Uy}y are chosen randomly so as they satisfy Um+1−y = Uy for all y ≤ m/2 and
other conditions to be specified later.

Let us denote by Mt the POVM used at step t. Without loss of generality, we can suppose that the
non-adaptive algorithm performs only measurements of the following form:

Mt = {|ϕt
i⟩⟨ϕt

i|}i.

where we have the condition
∑

i |ϕt
i⟩⟨ϕt

i| = I implying for all i and t: ∥ϕt
i∥2 ≤ 1.

Let M = 2mecd, we can write the mutual information as follows:

I(X,Y : I1, . . . , IN ) = H

(
1
M

∑
x,y

tr((ρx,y)⊗N ⊗N
t=1 Mt)

)
− 1
M

∑
x,y

H
(
tr((ρx,y)⊗N ⊗N

t=1 Mt)
)

= 1
M

∑
x,y

∑
i1,...,iN

N∏
t=1

⟨ϕt
it

|ρx,y|ϕt
it

⟩ log
( ∏N

t=1⟨ϕt
it

|ρx,y|ϕt
it

⟩
1

M

∑
x,y

∏N
t=1⟨ϕt

it
|ρx,y|ϕt

it
⟩

)
= Σ1 + Σ2,

where Σ1 and Σ2 are defined as follows:

Σ1 = 1
M

∑
x,y

∑
i1,...,iN

N∏
t=1

⟨ϕt
it

|ρx,y|ϕt
it

⟩ log
(

N∏
t=1

⟨ϕt
it

|dρx,y|ϕt
it

⟩

)
,

Σ2 = − 1
M

∑
x,y

∑
i1,...,iN

N∏
t=1

⟨ϕt
it

|ρx,y|ϕt
it

⟩ log
(

1
M

∑
x,y

N∏
t=1

⟨ϕt
it

|dρx,y|ϕt
it

⟩

)
.

Since

ρx,y = Uy diag

{1 + (10βy
i + 2αx

i /3)ε
d

}
i∈[d]

U†
y

27



we can write

⟨ϕt
it

|ρx,y|ϕt
it

⟩ =
1 + ut,x,y

it
ε

d
,

where ut,x,y
it

= ⟨ϕt
it

|Uy diag
(

{10βy
i + 2αx

i /3}i∈[d]

)
Uy|ϕt

it
⟩ ∈ (−11, 11). Denote by Ox,y =

diag
(

{10βy
i + 2αx

i /3}i∈[d]

)
, we remark that

d∑
it=1

ut,x,y
it

=
d∑

it=1
⟨ϕt

it
|Uy diag

(
{10βy

i + 2αx
i /3}i∈[d]

)
Uy|ϕt

it
⟩ = trUy diag

(
{10βy

i + 2αx
i /3}i∈[d]

)
Uy

= tr diag
(

{10βy
i + 2αx

i /3}i∈[d]

)
=

d∑
i=1

10βy
i + 2αx

i /3 = 0.

Moreover, the couples of quantum states (ρx,y, ρ−x,y) and (ρx,y, ρx,m+1−y) are symmetric with respect to
I/d by the construction of (αx

i )i,x and (βx
i )i,x hence

ut,−x,m+1−y
it

= ⟨ϕt
it

|Um+1−y diag
({

10βm+1−y
i + 2α−x

i /3
}

i∈[d]

)
Um+1−y|ϕt

it
⟩

= ⟨ϕt
it

|Uy diag
(

{−10βy
i − 2αx

i /3}i∈[d]

)
Uy|ϕt

it
⟩

= −⟨ϕt
it

|Uy diag
(

{10βy
i + 2αx

i /3}i∈[d]

)
Uy|ϕt

it
⟩

= −ut,x,y
it

.

Suppose that ε ≤ 0.05. We can start by controlling Σ2 using Jensen’s inequality:

Σ2 = − 1
M

∑
x,y

∑
i1,...,iN

N∏
t=1

(
1 + ut,x,y

it
ε

d

)
log
(

1
M

∑
x,y

N∏
t=1

(1 + ut,x,y
it

ε)
)

≤ − 1
M

∑
x,y,i

N∏
t=1

(
1 + ut,x,y

it
ε

d

)(
1
M

∑
x,y

log
(

N∏
t=1

(1 + ut,x,y
it

ε)
))

= − 1
M

∑
x,y,i

N∏
t=1

(
1 + ut,x,y

it
ε

d

)(
1
M

∑
x,y,t

log
(
1 + ut,x,y

it
ε
))

= − 1
M

∑
x,y,i

N∏
t=1

(
1 + ut,x,y

it
ε

d

) 1
M

∑
|x|,y≤m/2,t

log
(
1 + ut,x,y

it
ε
)

+ log
(
1 − ut,x,y

it
ε
)

= − 1
M

∑
x,y,i

N∏
t=1

(
1 + ut,x,y

it
ε

d

) 1
M

∑
|x|,y≤m/2,t

log
(
1 − (ut,x,y

it
)2ε2) .
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Now, we can use the inequality − log(1 − x2) ≤ 2x2 for |x| ≤ 1/
√

2:

Σ2 ≤ − 1
M

∑
x,y,i

N∏
t=1

(
1 + ut,x,y

it
ε

d

) 1
M

∑
|x|,y≤m/2,t

log
(
1 − (ut,x,y

it
)2ε2)

≤ 1
M

∑
x,y,i

N∏
t=1

(
1 + ut,x,y

it
ε

d

) 1
M

∑
|x|,y≤m/2,t

2(ut,x,y
it

)2ε2


≤ 1
M

∑
x,y,i

N∏
t=1

(
1 + ut,x,y

it
ε

d

)∑
t

sup
ϕ,∥ϕ∥2≤1

1
M

∑
|x|,y≤m/2

2⟨ϕ|UyOx,yU
†
y |ϕ⟩2ε2


≤ N sup

ϕ,∥ϕ∥2≤1

1
M

∑
|x|,y≤m/2

2⟨ϕ|UyOx,yU
†
y |ϕ⟩2ε2.

Using the fact that
∑

it
ut,x,y

it
= 0 for all t, x, y along with the inequality (1+x) log(1+x)+(1−x) log(1−x) ≤

2x2 for |x| ≤ 1/
√

2 we can upper bound the first sum Σ1:

Σ1 = 1
M

∑
x,y,i

N∏
t=1

(
1 + ut,x,y

it
ε

d

)
log
(

N∏
t=1

(
1 + ut,x,y

it
ε
))

≤ 1
M

∑
x,y,i

N∏
t=1

(
1 + ut,x,y

it
ε

d

)∑
k

log
(

1 + uk,x,y
ik

ε
)

≤ 1
M

∑
x,y,k

∑
ik

∑
i1,...,ik−1,ik+1,...,iN

N∏
t=1

(
1 + ut,x,y

it
ε

d

)
log
(

1 + uk,x,y
ik

ε
)

≤ 1
M

∑
x,y,k

∑
ik

(
1 + uk,x,y

ik
ε

d

)
log
(

1 + uk,x,y
ik

ε
)

≤ 1
Md

∑
|x|,y≤m/2,k

∑
ik

(
1 + uk,x,y

ik
ε
)

log
(

1 + uk,x,y
ik

ε
)

+
(

1 − uk,x,y
ik

ε
)

log
(

1 − uk,x,y
ik

ε
)

≤ 1
Md

∑
|x|,y≤m/2,k,ik

2(uk,x,y
ik

ε)2

≤ 1
d

∑
k,ik

sup
ϕ,∥ϕ∥2≤1

1
M

∑
|x|,y≤m/2

2⟨ϕ|UyOx,yU
†
y |ϕ⟩2ε2

≤ 2N sup
ϕ,∥ϕ∥2≤1

1
M

∑
|x|,y≤m/2

⟨ϕ|UyOx,yU
†
y |ϕ⟩2ε2.

Finally the upper bounds on Σ1 and Σ2 imply the required upper bound on their sum Σ1 + Σ2 = I(X,Y :
I1, . . . , IN ).

Note that we need to take a supremum over all possible vectors ϕ because the learner knows the quantum
states {σy}y and so it can choose measurements dependent on the unitaries {Uy}y. We can now show that
with high probability on the choice of the unitaries {Uy}y, the latter supremum can bounded and so the
mutual information too.
Lemma C.7. Let {Uy}y m unitary matrices Haar(d) distributed. We have with a probability at least 9/10:

4N sup
ϕ,∥ϕ∥2≤1

1
M

∑
|x|,y≤m/2

⟨ϕ|UyOx,yU
†
y |ϕ⟩2ε2 = O

(
Nε2 log(m)

m
+ Nε2

d

)
.
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Proof. To upper bound the previous supremum, we use a similar approach to (Chen et al., 2021): For U ∼
Haar(d), ϕ ∈ B(0, 1) and a trace-less Hermitian matrix O, let f(ϕ,U) = ⟨ϕ|UOU†|ϕ⟩, we have E (f(ϕ,U)) =
1
d tr(O)tr(|ϕ⟩⟨ϕ|) = 0 (see Weingarten Calculus D.1) and f is 2∥O∥-Lipschitz:

|f(U) − f(V )| ≤ 2|⟨ϕ|(U − V )OU†|ϕ⟩| ≤ 2∥O∥∥U − V ∥2.

Therefore by the concentration inequality D.3:

P (|f(U)| > t) ≤ exp(−dt2/48).

Hence

P
(
|f(U)|2 > t

)
≤ exp(−dt/48).

For m/2 unitaries U1, . . . , Um/2 and λ = 2d/C for sufficiently large C. Denote by X = |f(U)|2, by Markov’s
inequality:

P

 2
m

∑
1≤y≤m/2

|f(Uy)|2 > t

 ≤ exp(−λmt/2)E
(
eλX

)m/2 ≤ exp(−λmt/2)
(

1 +
∫ ∞

0
dxλeλxe−dx/48

)m/2

≤ exp(−dmt/2C) (C ′)m/2 ≤ exp(−dmt/C +m log(C ′)),

with C ′ another constant. In order to prove an inequality valid for all ϕ ∈ B(0, 1), let’s take an η-net {ϕi}i

of size at most (1 + 2/η)2d. For ϕ ∈ B(0, 1), there is ϕi such that ∥ϕ− ϕi∥2 ≤ η. Moreover |f(ϕ,U)| ≤ ∥O∥
so ∣∣∣∣∣∣ 2

m

∑
1≤y≤m/2

f(ϕ,Uy)2 − f(ϕi, Uy)2

∣∣∣∣∣∣ ≤ 2
m

∑
1≤y≤m/2

|f(ϕ,Uy)2 − f(ϕi, Uy)2|

≤ 2
m

∑
1≤y≤m/2

2∥O∥|(⟨ϕ| − ⟨ϕi|)UyOU
†
y |ϕ⟩| ≤ 2η∥O∥2.

Therefore

P

∃ϕ : 2
m

∑
1≤y≤m/2

|f(ϕ,Uy)|2 > t+ 2η∥O∥2

 ≤ P

(
∃ϕi : 1

m

m∑
k=1

|f(ϕi, Uk)|2 > t

)
≤ (1 + 2/η)2d exp(−dmt/C +m log(C ′)).

Taking η = 1/m yields:

P

∃ϕ : 2
m

∑
1≤y≤m/2

|f(ϕ,Uy)|2 > t+ 2∥O∥2/m

 ≤ (1 + 2m)2d exp(−dmt/C +m log(C ′)).

Applying the union bound, we can obtain:

P

∃ϕ, ∃x, 2
m

∑
y≤m/2

⟨ϕ|UyOx,yU
†
y |ϕ⟩2 ≥ t+ 2∥Ox,y∥2

m

 ≤ 4ecd(1 + 2m)2d exp(−dmt/C +m log(C ′)).

Let’s take t = C log(40)+cd+2d log(1+2m)+m log(C′)
dm in order to have

P

∀ϕ, 1
M

∑
|x|,y≤m/2

⟨ϕ|UyOx,yU
†
y |ϕ⟩2 ≤ t+ 2∥Ox,y∥2

m


≥ P

∀ϕ, ∀x, 1
m

∑
y≤m/2

⟨ϕ|UyOx,yU
†
y |ϕ⟩2 ≤ t+ 2∥Ox,y∥2

m


≥ 9/10.
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Therefore we have the existence of {Uy}y such that for all y ̸= z

∥σy − σz∥tr > ε,

and

sup
ϕ,∥ϕ∥2≤1

1
M

∑
|x|,y≤m/2

⟨ϕ|UyOx,yU
†
y |ϕ⟩2 ≤

tr(O2
x,y)

d(d+ 1) + t+ 2∥Ox,y∥2

m

≤ 201
d+ 1 + C

log(40) + cd+ 2d log(1 + 2m) +m log(C ′)
dm

+ 242
m

.

Finally, we showed the existence of quantum states {σx,y}x,y such that:

I(X,Y : I1, . . . , IN ) = O
(

1
d

+ log(m)
m

)
Nε2.

To sum up, we have shown the existence of quantum states {σx,y}x,y such that:

Ω(log(m) + d) ≤ I(X,Y : X ′, Y ′) ≤ I(X,Y : I1, . . . , IN ) ≤ O
(

1
d

+ log(m)
m

)
Nε2.

We conclude that N = Ω
(

min
{

md
log(m)ε2 ,

d2

ε2

})
.

C.2 Adaptive strategies

It is important to see why this proof doesn’t work for adaptive strategies. The lower bound on the mutual
information has nothing to do with the non-adaptive/adaptive option of the algorithm so it remains true.
However, upper bounding the mutual information cannot be done the same way since now the POVM used
at time t depends on the previous outcomes. Let {ut}N

t=1 be a sequence constituted by the outcomes of
a correct adaptive algorithm. Let Mt

u<t
= {|ϕu<t

v ⟩⟨ϕu<t
v |}v the POVM used at time t given the previous

outcomes u<t. Recall that the mutual information between (X,Y ) and (I1, . . . , IN ) can be expressed as:

I(X,Y : I1, . . . , IN ) = Σ1 + Σ2.

The second sum can be upper bounded by the same technique as before (using for example Jensen’s inequality
and the inequality − log(1 − x2) ≤ 2x2) and yields the same upper bound. The first sum is more involved
because the product cannot be simplified due to the dependence between the POVMs and the previous
outcomes. To see this, we can try to simplify the first sum as far as possible:

Σ1 = 1
M

∑
x,y

∑
u1,...,uN

N∏
t=1

⟨ϕu<t
ut

|ρx,y|ϕu<t
ut

⟩ log
(

N∏
t=1

⟨ϕu<t
ut

|dρx,y|ϕu<t
ut

⟩

)

= 1
M

∑
x,y

∑
u1,...,uN

N∏
t=1

⟨ϕu<t
ut

|ρx,y|ϕu<t
ut

⟩
N∑

t=1
log
(
⟨ϕu<t

ut
|dρx,y|ϕu<t

ut
⟩
)

= 1
M

∑
x,y,k

∑
u1,...,uN

N∏
t=1

⟨ϕu<t
ut

|ρx,y|ϕu<t
ut

⟩ log
(
⟨ϕu<k

uk
|dρx,y|ϕu<k

uk
⟩
)

= 1
M

∑
x,y,k

∑
u1,...,uk

k∏
t=1

⟨ϕu<t
ut

|ρx,y|ϕu<t
ut

⟩ log
(
⟨ϕu<k

uk
|dρx,y|ϕu<k

uk
⟩
)
,
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where the last equality follows from the fact that∑
ut

⟨ϕu<t
ut

|ρx,y|ϕu<t
ut

⟩ = tr(ρx,y) = 1,

for t > k and log (⟨ϕu<k
uk |dρx,y|ϕu<k

uk ⟩) is independent from ut. But we are stuck at k, we cannot simplify the
sums on us for s < k since ⟨ϕu<s

us |ρx,y|ϕu<s
us ⟩ has common terms with ⟨ϕu<k

uk |ρx,y|ϕu<k
uk ⟩ which is inside the log

function.

In order to circumvent this difficulty, we can upper bound the kth term which poses the obstacle of simplifi-
cation. Using the inequality log(x) ≤ x− 1 for all x > −1 we obtain:

Σ1 = 1
M

∑
x,y,k

∑
u1,...,uk

k∏
t=1

⟨ϕu<t
ut

|ρx,y|ϕu<t
ut

⟩ log
(
⟨ϕu<k

uk
|dρx,y|ϕu<k

uk
⟩
)

= 1
M

∑
x,y,k

∑
u1,...,uk

k∏
t=1

⟨ϕu<t
ut

|ρx,y|ϕu<t
ut

⟩(⟨ϕu<k
uk

|dρx,y|ϕu<k
uk

⟩ − 1)

= 1
M

∑
x,y,k

∑
u1,...,uk

k∏
t=1

⟨ϕu<t
ut

|ρx,y|ϕu<t
ut

⟩(⟨ϕu<k
uk

|dρx,y|ϕu<k
uk

⟩ − 1)

= 1
M

∑
x,y,k

∑
u1,...,uk

k∏
t=1

⟨ϕu<t
ut

|
(
I

d
+ ε

Ox,y

d

)
|ϕu<t

ut
⟩⟨ϕu<k

uk
|εOx,y|ϕu<k

uk
⟩

= 1
M

∑
x,y,k

∑
u1,...,uk−1

k−1∏
t=1

⟨ϕu<t
ut

|
(
I

d
+ ε

Ox,y

d

)
|ϕu<t

ut
⟩
∑
uk

1
d

⟨ϕu<k
uk

|I + εOx,y|ϕu<k
uk

⟩⟨ϕu<k
uk

|εOx,y|ϕu<k
uk

⟩

= 1
M

∑
x,y,k

∑
u1,...,uk−1

k−1∏
t=1

⟨ϕu<t
ut

|
(
I

d
+ ε

Ox,y

d

)
|ϕu<t

ut
⟩
∑
uk

1
d

⟨ϕu<k
uk

|εOx,y|ϕu<k
uk

⟩

+ 1
M

∑
x,y,k

∑
u1,...,uk−1

k−1∏
t=1

⟨ϕu<t
ut

|
(
I

d
+ ε

Ox,y

d

)
|ϕu<t

ut
⟩
∑
uk

1
d

⟨ϕu<k
uk

|εOx,y|ϕu<k
uk

⟩2

≤ 1
M

∑
x,y,k

∑
u1,...,uk−1

k−1∏
t=1

⟨ϕu<t
ut

|
(
I

d
+ ε

Ox,y

d

)
|ϕu<t

ut
⟩ × 1

d
× tr(εOx,y)

+ 1
M

∑
x,y,k

∑
u1,...,uk−1

k−1∏
t=1

⟨ϕu<t
ut

|
(
I

d
+ ε

Ox,y

d

)
|ϕu<t

ut
⟩ × 1

d
× tr(ε2O2

x,y)

≤ 1
M

∑
x,y,k

∑
u1,...,uk−1

k−1∏
t=1

⟨ϕu<t
ut

|
(
I

d
+ ε

Ox,y

d

)
|ϕu<t

ut
⟩ × 1

d
× 112dε2

≤ 1
M

∑
x,y,k

1 × 112ε2

≤ 112Nε2,

where we use again
∑

ut
⟨ϕu<t

ut |Ox,y|ϕu<t
ut ⟩ = tr(Ox,y) = 0 for all t and

∑
uk

⟨ϕu<k
uk

|Ox,y|ϕu<k
uk

⟩2 =
∑
uk

tr(Ox,y|ϕu<k
uk

⟩⟨ϕu<k
uk

|Ox,y|ϕu<k
uk

⟩⟨ϕu<k
uk

|)

≤
∑
uk

tr(O2
x,y|ϕu<k

uk
⟩⟨ϕu<k

uk
|) = tr(O2

x,y) ≤ 112d.
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Therefore the mutual information can be upper bounded by

I(X,Y : X ′, Y ′) ≤ 121Nε2 + 2N sup
ϕ,∥ϕ∥2≤1

1
M

∑
|x|,y≤m/2

⟨ϕ|UyOx,yU
†
y |ϕ⟩2ε2

≤ 123Nε2.

Since the mutual information is always lower bounded by Ω(log(m) + d) we conclude that N = Ω((d +
log(m)/ε2). Finally, we have proven the following lower bound on adaptive strategies for hypothesis selection
problem:
Proposition C.8. Any learning algorithm with adaptive independent measurements requires

N ≥ Ω
(
d+ log(m)

ε2

)
copies of ρ to find the closest quantum state σi⋆ to ρ and approximate ρ to at most ε/10 with at least a
probability 2/3.

This Proposition implies that Alg. 1 is almost optimal and Θ̃(d/ε2) is the optimal copy complexity of
hypothesis selection problem using adaptive independent measurements.

D Technical lemmas

In this section we group technical lemmas useful for the previous proofs of this article.

D.1 Weingarten Calculus

Since we use generally a uniform POVM, which consists in sampling a Haar-unitary matrix, we need some
facts from Weingarten calculus in order to compute Haar-unitary intergrals. If π a permutation of [n], let
Wg(π, d) denotes the Weingarten function of dimension d. The following lemma is crucial for our results.
Lemma D.1. (Gu, 2013) Let U be a d×d Haar-distributed unitary matrix and {Ai, Bi}i a sequence of d×d
complex matrices. We have the following formula

E (tr(UB1U
∗A1U . . . UBnU

∗An)) =
∑

α,β∈Sn

Wg(βα−1, d)trβ−1(B1, . . . , Bn)trαγn
(A1, . . . , An),

where γn = (12 . . . n) and trσ(M1, . . . ,Mn) = Πjtr(Πi∈Cj
Mi) for σ = ΠjCj and Cj are cycles.

We need also some values of Weingarten function:
Lemma D.2. • Wg((1), d) = 1

d ,

• Wg((12), d) = −1
d(d2−1) ,

• Wg((1)(2), d) = 1
d2−1 ,

• Wg((123), d) = 2
d(d2−1)(d2−4) ,

• Wg((12)(3), d) = −1
(d2−1)(d2−4) ,

• Wg((1)(2)(3), d) = d2−2
d(d2−1)(d2−4) .

D.2 Concentration inequalities for Haar-random unitary matrices

Theorem D.3. (Meckes et al., 2013) Let M = U(d)k endowed by the L2-norm of Hilbert-Schmidt metric.
If F : M → R is L-Lipschitz, then for any t > 0

P (|F (U1, . . . , Uk) − E (F (U1, . . . , Uk)) | ≥ t) ≤ e−dt2/12L2
,

where U1, . . . , Uk are independent Haar-distributed unitary matrices.
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