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Abstract

We consider a decentralized optimization problem, in which n nodes collaborate to
optimize a global objective function using local communications only. While many
decentralized algorithms focus on gossip communications (pairwise averaging), we
consider a different scheme, in which a “token” that contains the current estimate of
the model performs a random walk over the network, and updates its model using
the local model of the node it is at. Indeed, token algorithms generally benefit from
improved communication efficiency and privacy guarantees. We frame the token
algorithm as a randomized gossip algorithm on a conceptual graph, which allows
us to prove a series of convergence results for variance-reduced and accelerated
token algorithms for the complete graph. We also extend these results to the case
of multiple tokens by extending the conceptual graph, and to general graphs by
tweaking the communication procedure. The reduction from token to well-studied
gossip algorithms leads to tight rates for many token algorithms, and we illustrate
their performance empirically.

1 Introduction

Modern machine learning relies on increasingly large models that train on increasingly large datasets:
distributed optimization is thus crucial to scaling the training process. In the centralized paradigm, at
the heart of Federated Learning [Kairouz et al., 2021], the system relies on a server that aggregates
models and gradients, and manages the nodes. Although quite efficient, this setting has several draw-
backs: (i) nodes need to trust the server enough to send it sensitive data, (ii) there is a communication
bottleneck at the server, which limits scaling and (iii) training stops if the server fails.

In the decentralized setting [Boyd et al., 2006, Lopes and Sayed, 2007, Shi et al., 2015, Nedic et al.,
2017], nodes are linked by a communication graph, and directly communicate with their neighbours in
this graph instead of a central coordinator. This allows for better scaling, and is also more robust since
the server is no longer the single point of failure. Yet, due to the lack of coordination, decentralized
algorithms often require many peer-to-peer communications compared to centralized ones, and a gain
in privacy is not always guaranteed.

Token, or random-walk algorithms [Bertsekas, 1997, Ram et al., 2009, Johansson et al., 2010, Shah
and Avrachenkov, 2018, Mao et al., 2020], work in the following way: a token owns an estimate of
the model, “walks” over the graph, and sequentially visits nodes. When the token is held by a node, it
updates its model, either by computing a gradient using the node’s data, or by using the local model
of the node. Then, the token is transmitted (or “jumps”) to a new node.

Some instanciations of these algorithms can be seen as a middle-point between centralized and
decentralized algorithms. Indeed, the token plays the role of a server, since it owns the global model
and receives updates from nodes. Yet, the token is no longer attached to a physical node as in the
centralized case, but rather exchanged between computing nodes in a decentralized way.
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Besides, unlike standard centralized algorithms, each node may maintain a local parameter and update
it using local updates. In that sense, some token algorithms (such as the ones developed in this work)
closely resemble local methods, that are very popular in federated learning [McMahan et al., 2017,
Stich, 2018, Lin et al., 2018]. The main difference is that instead of exchanging information through
periodic exact averaging or gossip steps, communication is ensured through the roaming token. This
allows to easily adapt the algorithms to the features of the system, by making either more local steps
or more communication steps.

1.1 Related work

Many early works study token (or random-walk) algorithms [Bertsekas, 1997, Nedic and Bertsekas,
2001, Ram et al., 2009, Johansson et al., 2010]. Yet, they focus on stochastic (sub)gradients algorithms,
and thus lack linear convergence guarantees. The recent literature on token algorithms can be divided
into two main lines of work that reflect the two main strengths of token algorithms: communication
efficiency and privacy preservation.

Communication efficiency. Mao et al. [2020] introduce Walkman, a token algorithm based on an aug-
mented Lagrangian method. Walkman works for general graphs and is shown to be communication-
efficient provided graphs are well-connected enough. Yet, it only obtains linear convergence on
least squares problems. When Walkman uses gradients (instead of proximal operators), it requires a
step-size inversely proportional to the square of the smoothness constant of the problem, which is
impractical. Variants of Walkman guarantee communication efficiency when walking over Hamil-
tonian cycles [Mao et al., 2018]. Balthazar et al. [2020] consider the problem of distributed linear
estimation, and use a token algorithm to aggregate the measurements of all nodes.

Multiple tokens. When a single token walks the graph, there are no parallel communications. A
natural fix to speed up algorithms is to allow multiple tokens to walk the graph in parallel, as recently
done by Chen et al. [2022], whose approach is also based on an augmented Lagrangian method.

Privacy Preservation. The favorable privacy guarantees claimed by decentralized algorithms are
actually mainly proven for token algorithms. For instance, the Walkman algorithm presented above
has also been extended to guarantee privacy preservation [Ye et al., 2020]. Besides, Cyffers and
Bellet [2022] show that token algorithms satisfy a relaxation of local differential privacy, and match
the guarantees offered by a trusted central server. They give a simple algorithm for ring and complete
topologies. Similarly, Bellet et al. [2020] study the privacy guarantees of a rumour spreading
algorithm, and show that a single token spreading the rumour is optimal, while multiple tokens
achieve optimal trade-offs between privacy and speed. In this work, we focus on the convergence
guarantees of token algorithms, and leave the privacy preservation guarantees for future work.

Dual Decentralized algorithms. Our framework is based on applying the dual approach for decen-
tralized algorithms [Jakovetić et al., 2014, Boyd et al., 2011] to the analysis of token algorithms. This
dual approach leads to very fast algorithms, and in particular Scaman et al. [2017], Uribe et al. [2020]
used it to develop optimal decentralized algorithms. Then, Hendrikx et al. [2019a] showed that it can
also be used to accelerate randomized gossip, and used an augmented graph formulation to obtain
decentralized variance-reduced extensions [Hendrikx et al., 2019b, 2021, 2020].

1.2 Our contributions

As discussed in the previous section, token algorithms are still rare, and very few algorithms offer
linear convergence guarantees, let alone integrating more advanced optimization tricks such as
variance reduction or acceleration. Besides, most of the literature focuses on only one token, which is
communication-efficient but very slow. In this work, we pave the way for the design and analysis of
new efficient token algorithms, and in particular we:

1. Introduce a general framework for designing and analyzing token algorithms.

2. Give a simple algorithm with linear convergence guarantees on complete graphs that match
those of both centralized and decentralized (gossip) optimization.

3. Speed up this simple algorithm by using multiple tokens.

4. Leverage the general framework to analyze variants of the simple token algorithm, such as
stochastic gradients with variance reduction and acceleration.
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Figure 1: Left: base communication graph. Right: Conceptual graph, with modified local objectives.

5. Extend the convergence results to general graphs, by tweaking the communication protocol.

The general framework is based on the dual approach for decentralized algorithms [Jakovetić et al.,
2014, Scaman et al., 2017], and in particular Hendrikx et al. [2020], and so the algorithmic core similar,
namely Bregman coordinate descent (with some adaptations) for the simple and variance-reduced
algorithms, and Accelerated Proximal Coordinate Descent [Lin et al., 2015] for the accelerated one.

2 Conceptual graph approach for token algorithms.

2.1 Building the conceptual graph

We consider the following distributed problem, where each fi is a local function at node i:

min
θ∈Rd

n∑
i=1

[
fi(θ) +

σ

2
‖θ‖2

]
. (1)

We assume that each fi is convex and L-smooth over Rd, which writes if fi is twice differentiable
as 0 4 ∇2fi(x) 4 L Id, where Id ∈ Rd×d is the identity matrix of dimension d. The condition
number of this problem is κ = 1 + L/σ. The key idea of this paper is to reduce the analysis of token
algorithms to that of standard decentralized gossip algorithms on conceptual graphs. We follow the
dual approach for building decentralized optimization algorithms, and rewrite Problem (1) as:

min
θ∈Rn×d, u∈Rn×d, v∈Rd,

∀i, θ(i)=u(i), and u(i)=v

∑
i=1

fi(θ
(i)) +

nσ

2(n+ 1)
‖u(i)‖2 +

nσ

2(n+ 1)
‖v‖2. (2)

To write this reformulation, we have applied the consensus constraints (equality constraints for
neighbours) given by the conceptual graph represented in Figure 1 (right). To build this conceptual
graph, we add a conceptual node (with its own parameter) corresponding to the token, with local
objective nσ‖ · ‖2/2(n+ 1), and we split all local nodes into a computation part (that contains fi),
and a communication part (that contains nσ‖ · ‖2/n(n+ 1). Node that the total regularization weight
is still nσ/2. Then, all computation nodes are linked to their respective communication nodes, which
are themselves linked to the token. Splitting each node between communication and computation
part has two benefit: (i) it allows us to use the dual-free trick from Hendrikx et al. [2020], and
obtain primal updates despite the dual approach, and (ii) it allows to decouple communications and
computations. In particular, nodes can perform local steps even when they don’t hold the token.

Now that we have defined the framework, it is important to make sure that this corresponds to a token
algorithm. Updating the edge between the token and node i at time t in the conceptual graph means
that the token jumped to node i at team t. Thus, to ensure the token aspect, we must enforce that if
the edge between the token and node i is updated at time t, and the edge between the token and node
j is updated at time t+ 1, then node j has to be a neighbour of node i (since the token jumped from i
to j at time t+ 1). We apply the dual approach to Problem (2), which is inherited from the conceptual
graph, but the sampling of the edges is ruled by the actual communication graph. In a complete
graph, this does not impose any additional constraints, and this is why our convergence results are
initially derived in this setting. In arbitrary graphs, this means that the sampling of the edges (and
so the coordinate descent algorithm applied to the dual formulation) must follow a Markov Chain,
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Figure 2: An example execution of the token algorithm on the base graph (left), and the corresponding
edges updated in the conceptual graph (right). The sequence is: t = 0: local computation at node 2,
t = 1: the token jumps to node 2, t = 2: the token jumps to node 3, t = 4: local computation at node
0. Note that the updates at t = 2 and t = 3 can actually be performed in parallel since they affect
different nodes, and that the token updates its estimate with the node it arrives at after each jump.

which leads to considerably harder analyses. In Section 3.4, we present a trick to circumvent this
difficulty, which consists in not performing the update step every time the token jumps to a new node.

We will now show that this conceptual graph view allows to efficiently design fast algorithms, by
making clear links with dual approaches for decentralized optimization. This will prove especially
useful in the next section, when we introduce multiple tokens, variance-reduction and acceleration.
In the basic case (one token, full gradients), Equation (2) resembles the consensus formulation of
Walkman [Mao et al., 2020], which is also obtained through a (primal-)dual formulation. Yet, we
split each node into two subnodes to allow for local steps, and we can then harness the power of the
dual approach for decentralized optimization to significantly improve the base algorithm, as done in
Section 3.

2.2 Deriving the single token algorithm

Following Hendrikx et al. [2020], we take a dual formulation of Problem (2), and apply Bregman
block coordinate descent to obtain the simple token algorithm, which corresponds to Algorithm 1
with K = 1. This leads to dual-free updates [Lan and Zhou, 2017], which are simple to implement.
Yet, in Hendrikx et al. [2020], all communication edges are sampled at once, which would mean that
the token receives updates from all nodes at the same time. This is not possible in our case, so we
adapted the Bregman block coordinate descent algorithm to better fit the structure of Problem (2), as
detailed in Appendix A.

Algorithm 1 Token Gradient Descent(z0)

1: σ̃ = n
n+Kσ, α = 2K

L , η = min
(
σ̃pcomm

2nK ,
pcomp

nα(1+L/σ̃)

)
, ρcomm = nKη

pcommσ̃
, ρcomp = nαη

pcomp
. // Init

2: ∀i ∈ [n], θ(i)
0 = −∇fi(z(i)

0 )/σ̃; ∀k ∈ [K], θtoken,k
0 = 0 . // z0 is arbitrary but not θ0.

3: for t = 0 to T − 1 do // Run for T iterations
4: if communication step (with probability pcomm) then
5: Pick i ∼ U([n]), k ∼ U([K]) // Choose next node and token uniformly at random
6: θtoken,k

t+1 = θtoken,k
t − ρcomm(θtoken,k

t − θ(i)
t ) // Token update

7: θ
(i)
t+1 = θ

(i)
t + ρcomm(θtoken,k

t − θ(i)
t ) // Local node update

8: else
9: Pick i ∼ U([n]) // Choose one node at random

10: z
(i)
t+1 = (1− ρcomp) z

(i)
t + ρcompθ

(i)
t // Virtual node update

11: θ
(i)
t+1 = θ

(i)
t − 1

σ̃

(
∇fi(z(i)

t+1)−∇fi(z(i)
t )
)

// Local update using fi
12: return θK

Theorem 1 (Token algorithm). For ε > 0, the number of steps required by Algorithm 1 with a single
token (K = 1) and pcomp = pcomm = 1

2 to reach error ‖θt − θ?‖2 ≤ ε is of order:

Tcomp = O
(
κ log ε−1

)
and Tcomm = O

(
nκ log ε−1

)
, (3)
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where Tcomp is the expected number of gradient steps performed by each node, and Tcomm is the
expected number of communication updates (jumps) performed by the token.

Proof sketch. This result follows from the guarantees of Bregman Coordinate Descent applied to a
dual reformulation of Problem (2). We need to evaluate the relative strong convexity and directional
smoothness constants of the problem, and link them with spectral properties of the conceptual graph,
as well as the regularity of the local functions. Details can be found in Appendix B.

Implementation. Algorithm 1 requires sampling updates uniformly at random over the whole system.
This can be implemented in a decentralized fashion by sharing a random seed between all nodes. An
alternative is that all nodes wake up and perform updates following a Poisson point process.

Communication complexity. The total number of communications is of order O(nκ). This matches
the complexity of centralized algorithms, in which the server communicates once with each node
at each round, and there are O(κ) rounds in total. Yet, in terms of time, the O(n) centralized
communications can take place in parallel provided there is enough bandwidth, whereas when K = 1,
the O(n) communications from Algorithm 1 must be sequential.

Computation complexity. In average, each node performs O(κ) local computations, which is the
“right” complexity for non-accelerated algorithms. Algorithm 1 is as computationally efficient as
standard centralized or decentralized algorithms in this sense. Besides, unlike token exchanges
that need to be sequential, nodes can compute local gradient updates in parallel. Therefore, the
computation time of Algorithm 1 matches the centralized time. Instead, when using gradients,
Walkman [Mao et al., 2020, Theorem 1] requires a step-size proportional to L−2 just for convergence,
which would lead to a significantly worse computation complexity of at least O(Lκ).

Sampling variants. In Algorithm 1, one computation update corresponds to one node performing a
gradient update, without any communication involved. Note that by changing the sampling of the
dual coordinates, it is possible to design other algorithms algorithms. For instance, we can choose to
have nodes perform a local computation only when they receive the token, similarly to Walkman.
This would yield a similar rate as the one in Theorem 1, but does not allow for local steps. It would
thus not be possible for instance to perform a lot of fast communications, while slow computations
take place in parallel. Yet, our framework can also handle this variant (and many others), including
with the tricks developed in the next section.

3 Extensions of the single token algorithm

In the previous section, we have introduced the conceptual graph, and showed how it allows to
leverage the existing tools from (dual) decentralized optimization to analyze a simple yet already
efficient token algorithm. We now demonstrate the flexibility and generality of this framework by
introducing, analyzing and combining three important variants of the token algorithm: multiple
tokens, variance reduction, and acceleration.

3.1 The case of several tokens

When there is a single token walking on the graph, resources are used in an efficient way, and privacy
guarantees are strong, but mixing is very slow (up to n times slower in a complete graph for instance).
This is due to the fact that there are no parallel communications. One natural solution is to use
multiple tokens that walk the graph in parallel. Yet, this is generally harder to analyze and, to the best
of our knowledge, there only limited theory on multi-token algorithms, with convergence rates that
show actual improvement over single tokens. Our conceptual graph framework allows us to directly
extend Theorem 1 to the case of multiple tokens.

To do so, we build a different conceptual graph. Namely, we add one new node for each token, and
link all “token nodes” to the actual nodes of the network, as shown in the right part of Figure 3. Then,
we apply the dual approach to this new conceptual graph, which has a different topology but which
we know how to handle. This is how we obtain Algorithm 1 for the general case of K ≥ 1.

5



Computation nodes Communication nodes Tokens

Figure 3: Conceptual graph of size n = 3 with finite-sum local objectives (m = 3) and multiple
tokens (K = 2).

Theorem 2 (Multiple tokens). For ε > 0, the number of steps required by Algorithm 1 with
1 ≤ K ≤ n and pcomp = pcomm = 1

2 to reach error ‖θtoken,k
t − θ?‖2 ≤ ε is of order:

Tcomp = O
(
κ log ε−1

)
and Tcomm = O

( n
K
κ log ε−1

)
, (4)

where Tcomp is the expected number of gradient steps performed by each node, and Tcomm is the
number of jumps performed per token. In particular, the total communication complexity is the same
as in Algorithm 1, but now the burden is shared by K tokens that walk the graph in parallel.

Token interactions. In the formulation inherited from Figure 3, tokens interact with nodes, but not
between themselves. We can change the formulation to add interactions between tokens by adding
edges between them in the conceptual graph. This would mean that the tokens would mix information
when they meet. Yet, this would only marginally increase the connectivity of the conceptual graph,
and would thus not speedup the algorithm by more than constant factors.

3.2 Variance reduction in the finite sum case

We have seen that changing the conceptual graph on which the dual formulation is applied changes
the resulting token algorithm. In the previous section, we used this to speed-up communications by
having several tokens walk the graph in parallel. We now leverage it to speed-up computations by
avoiding local full gradient computations at each node. We now assume that each local objective
writes fi(x) =

∑m
j=1 fij(x). In this case, each full gradient requires m stochastic gradient ∇fij

computations, so Algorithm 1 requiresO(mκ) stochastic gradient in total. Instead, variance reduction
techniques [Schmidt et al., 2017, Johnson and Zhang, 2013, Defazio et al., 2014, Shalev-Shwartz,
2016] only require m + κs stochastic gradients, where κs =

∑m
j=1(1 + Lij/σ), where Lij is the

smoothness of function fij . Although mκ = κs in the worst case (where the∇fij are all orthogonal),
κs is generally smaller than mκ, leading to the practical superiority of finite-sum methods.

In our case, we introduce the finite-sum aspect by combining the conceptual graph with an augmented
graph formulation [Hendrikx et al., 2019b, 2020]. Instead of splitting each node into 2 parts,
containing respectively fi and the regularization part, as in Figure 1, we split it into a star sub-
network, with each fij linked to the regularization part, as shown if the left part of Figure 3. This new
conceptual graph leads to a new algorithm, Token Variance Reduction (TVR), that has the following
convergence guarantees:
Theorem 3 (Variance Reduction). For ε > 0, the number of steps required by TVR with 1 ≤ K ≤ n
and pcomp = κs

m−1+κs
to reach error ‖θt − θ?‖2 ≤ ε is of order:

Tcomp = O
(
(m+ κs) log ε−1

)
and Tcomm = O

( n
K
κs log ε−1

)
, (5)

where Tcomp is the expected number of stochastic gradient steps performed by each node, and Tcomm

the number of jumps performed per token. Compared to Theorem 2, the computation complexity goes
from mκ stochastic gradients (κ full gradients) to m+ κs, which is generally much smaller.

6



TVR performs the same communication steps as Algorithm 1, with slightly different computation
steps, adapted for the stochastic case: there are now m functions fij (and so parameters z(ij)), instead
of just one. The full algorithm and the proof of Theorem 3 are detailed in Appendix B.2.

3.3 Acceleration

We have seen that the conceptual graph view of token algorithms allows to naturally extend the simple
single-token batch algorithm to a multi-token variance-reduced algorithm. We now show that by
applying a different optimization algorithm to the same dual formulation, we obtain an accelerated
algorithm from the same framework. We refer the reader to Appendix C for details and derivations.
Theorem 4 (Token Accelerated Variance-Reduced). For ε > 0, the number of steps required by
Accelerated TVR with 1 ≤ K ≤ n to reach error ‖θtoken,k

t − θ?‖2 ≤ ε is of order:

Tcomp = O
(
(m+

√
mκs) log ε−1

)
and Tcomm = O

( n
K

√
κs log ε−1

)
(6)

In particular, the dependences on the objective regularity are replaced by their accelerated versions.
This matches the optimal complexities from Hendrikx et al. [2021].

Proximal oracles. This algorithm is based on Accelerated Proximal Coordinate Gradient [Lin et al.,
2015, Hendrikx et al., 2019b], and thus uses proximal operators of the functions fij instead of
gradients. Yet, this is also the case of Walkman, and it is quite cheap in case the fij are generalized
linear model of the form fij(θ) = `(x>ijθ), where ` : R 7→ R.

Continuized framework. TAVR requires each node to perform local convex combinations at each
step. This introduces global synchronization constraints, that we can get rid of using a continuized
version of the algorithm [Even et al., 2021].

3.4 General graphs

All the results presented so far are for the complete communication graph, meaning that the token can
directly jump from any node to any other, allowing to prove strong convergence rates. We now show
how to extend these results to general graphs. To do so, we analyze a slightly different communication
procedure: instead of just one jump, each token performs Njumps jumps before averaging with the
node it lands at according to Algorithm 1 (lines 6-7). If enough steps are taken, and the underlying
Markov Chain is irreducible and aperiodic, then the probability that the token lands at node j from
node i after Njumps steps is approximately equal to π?(j), where π? is the stationary distribution
of a random walk over the communication graph. In particular, by allowing multiple steps before
performing the actual communication update, all nodes can be reached from all nodes, as in the
complete graph case. The actual sampling probabilities p̃i,t depend on the node at which the token is
at time t. Yet, if p̃i,t is close enough to π?(i), we can just adapt the step-sizes in coordinate descent,
and obtain convergence regardless. Details can be found in Appendix 3.4
Theorem 5. Assume that matrix W ∈ Rn×n defining the token transitions is such that for any π0,
‖W tπ0−π?‖∞ ≤ C(1−γ)t. Then, if the token jumpsO(γ−1 log(C/ηµ)) times before performing an
averaging step, the communication complexity of Algorithm 1 (ignoring log factors) isO(nκγ log ε−1).
Theorem 3 can be adapated in the same way.

Note that these rates are for uniform stationary distribution π?(i) = n−1 for all i ∈ [n]. Rates for
non-uniform stationary distributions can also be obtained, and would depend on maxi πi/Li, so that
the algorithm is still fast if nodes that are visited less frequently have better smoothness.

Comparison with existing decentralized algorithms. Note that decentralized algorithms such as
EXTRA [Shi et al., 2015, Li and Lin, 2020] require a total ofO(E(κ+γ−1) log ε−1) communications,
whereE is the number of edges in the graph. In particular, our token algorithm is more communication
efficient even in general graphs as long as either κ or γ−1 is small compared to E/n, the average
node degree. Note that this complexity is also better than that of Walkman [Mao et al., 2020], which
depends on γ2 instead of γ, besides proving linear convergence only in limited settings.

Directed graphs time-varying graphs. With the communication-skipping variant, all that matters
is that the probability of being at node j after taking O(γ−1 log(ηµ)) steps from node i is close to
some π?(j) > 0. In particular, this does not imply the reversibility of the Markov Chain used for
communications (and so can be used for directed graphs), or even its stationarity.
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Figure 4: Convergence results for a logistic regression task on the RCV1 dataset [Lewis et al., 2004]
(d = 47236), with n = 20 nodes, and m = 9841 samples per node.

4 Experiments

In the previous section, we leveraged the conceptual graph framework to design and analyze several
(multi-)token algorithms. We now illustrate their differences in Figure 4. We use a step-size β = 1/L
for Walkman, which is much higher than the one from Mao et al. [2020]. The communication com-
plexity is the total number of token jumps (regardless of the number of tokens), and the computation
complexity is the total number of gradients (on single fij) computed. Time is obtained by setting
τcomp = 1 for computing one individual gradient and τcomm = 103 for one communication, so that
one communication is faster than computing one full local gradient. For gradient descent (GD), we
present 2 variants of the allreduce protocol: all-to-all , which has a high number of communications
n(n− 1) but small time (1) per step, and ring (sequentially averaging over a directed ring), which
has a small number of communication(2n) but high time (2n) per step. Note that a fully centralized
implementation would get both small communication complexity (2n) and time (2). Token and TVR
respectively refer to the algorithms analyzed in Theorems 2 and 3. EXTRA is a standard decentralized
algorithm [Shi et al., 2015]. Additional details can be found in Appendix D.

For the complete graph, all token algorithms have similar communication complexity. This is
consistent with our theory, and confirms that using multiple token does not hurt efficiency. We
also confirm that the communication complexity of token algorithms is lower than that of all-to-all
gradient descent (GD), and comparable to that of the efficient ring GD. Similarly, all batch algorithms
have similar computation complexities, with GD and Walkman performing slightly better. TVR is
more computationally efficient thanks to the stochastic variance-reduced updates.

In terms of time, the fastest algorithm is all-to-all gradient descent, since it performs all communica-
tions in parallel. Algorithm 1 is as fast as ring GD, since both algorithms require O(n) sequential
communications, but perform computations in parallel. Walkman is the slowest algorithm in this
setting, because it needs to perform both communications and computations sequentially (since it
does not use local updates). Note that it would be as fast as the single token algorithm for τcomm ≥ m.

8



TVR is faster than Algorithm 1 thanks to variance reduction. We also see that using several to-
kens speeds up TVR (since the communication time dominates), but not Algorithm 1 (for which
communication and computation times are of the same order).

For the ring graph, we find that the same token algorithms as for the complete graph are stable
(consistently across a wide range of m and n), and so we do not use the skip variant presented in
Section 3.4. We observe similar results to the complete graph case, although using multiple tokens
now accelerates Algorithm 1 since they allow to compensate for the worse graph connectivity. GD
and EXTRA have the same rate in this case (since κ > γ−1), and their curves are thus almost
indistinguishable.

5 Conclusion

We have presented a general framework for analyzing token algorithms, and derived several variants
such as variance-reduction and acceleration from it. All these token algorithms are competitive with
their centralized counterparts in terms of computation and communication complexities. Multiple
tokens can be used to increase the level of parallelism, and reduce the communication time.

We have also discussed a reduction from the general case to the complete communication graph case,
in which our results are proven. We claim this reduction leads to efficient algorithms for general
graphs, although these algorithms seem to waste communications. An important research direction
would be to formalize these claims, and directly analyze versions of these algorithms in which tokens
exchange information with all the nodes they visit. This would involve tight analyses of coordinate
descent with Markov Chain sampling.
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A Revisiting Bregman Coordinate Descent

The algorithmic core for the non-accelerated methods is based on Bregman Coordinate descent. Yet,
the existing theory from Hendrikx et al. [2020] was not satisfactory, as it did not allow to consider
stochastic communications: the communication block was sampled all at once, which is not possible
in the token approach.

Similarly, in general graphs, we do not know the exact sampling probability p̃i,t, but an upper bound
pi of it. We thus changed the coordinate descent algorithm to also take that into account.

We adapt the result from Hendrikx et al. [2020] to tackle these two problems in this section. First of
all, for two vectors x, y ∈ Rd, define the Bregman divergence:

Dh(x, y) = h(x)− h(y)−∇h(y)>(x− y). (7)

In order not to worry about further regularity assumptions, we assume throughout this paper that
all the functions we consider are twice continuously differentiable and strictly convex on domh,
and that ∇h(x) = miny h(y) − x>y is uniquely defined. This is not very restrictive for typical
machine learning objectives. The Bregman divergence has some interesting properties. In particular,
Dh(x, y) ≥ 0 for all x, y ∈ Rd as soon as h is convex. For i ∈ [d], we denote ei ∈ Rd the unit vector
corresponding to coordinate i. Consider the following Bregman coordinate descent algorithm, in
which the iterates are given by:

xt+1 = arg min
x

{
Vi,t(x)=̂

ηt
pi
∇if(xt)

>A†Ax+Dh(x, xt)

}
, (8)

where∇if(xt) = eie
>
i ∇f(xt), andA†A is some projection matrix, which is such thatA†A∇f(x) =

∇f(x) for all x ∈ Rd. An equivalent way to write these iterations is:

∇h(xt+1) = ∇h(xt)−
ηt
pi
A†A∇if(xt) (9)

Although we use some pi for the learning rate, we assume that coordinates are sampled according
to another distribution, namely, p̃i,t. In order to make the training stable, we assume that for all i, t,
there exist δi,t > 0 which are such that for all i,

p̃i,t(1 + δi,t) = pi. (10)

In particular, this means that the pi are not a proper probability distribution, since they don’t sum
to one. We denote ∆ =

∑d
i=1 p̃i,tδi,t, which is such that 1 + ∆ is normalizing factor of the pi.

Similarly, we denote δ = mini,t δi,t. We denote Ri = (A†A)ii and Rp = miniR
−1
i p̃i,t. We make

the following assumptions on f and h.

Assumption 1 (Regularity assumptions). Function f is µ-relatively strongly convex and Li-relatively
smooth in the direction i with respect to h, meaning that for all x, y ∈ Rd, and some vi supported by
ei:

µDh(x, y) ≤ Df (x, y), and Df (x+ vi, x) ≤ LiDh(x+ vi, x). (11)

We also make some technical assumptions, that are verified for our problem. In particular, we assume
that h and A†A are such that:

∇if(xt)
>A†A(xt − x(i)

t+1) = Ri∇f(xt)
>(xt − x(i)

t+1). (12)

Using this assumption, we first prove a technical lemma, which ensures that each step reduces the
function value:

Lemma 1 (Monotonicity). Under Assumption 1, if ηt ≤ pi
LiRi

the iterates of Equation (8) verify for
all i ∈ [d]:

f(x
(i)
t+1) ≤ f(xt). (13)
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Proof. Using Assumption 1 , we have that:

Dh(x
(i)
t+1, xt) +Dh(xt, x

(i)
t+1) =

[
∇h(x

(i)
t+1)−∇h(xt)

]>
(x

(i)
t+1 − xt)

=
ηt
pi
∇if(xt)

>A†A(xt − x(i)
t+1)

=
ηtRi
pi
∇f(xt)

>(xt − x(i)
t+1)

=
ηtRi
pi

[
Df (x

(i)
t+1, xt)− f(x

(i)
t+1) + f(xt)

]
≤ ηt
pi
Ri

[
LiDh(x

(i)
t+1, xt)− f(x

(i)
t+1) + f(xt)

]
≤ Dh(x

(i)
t+1, xt)−

ηtRi
pi

[
f(xt)− f(x

(i)
t+1)

]
,

where the last line uses that ηt ≤ pi
LiRi

. In particular:

f(x
(i)
t+1) ≤ f(xt)−Dh(xt, x

(i)
t+1) ≤ f(xt).

Theorem 6. Consider two functions f and h that verify Assumption 1. If the iterates are given by
Equation (8), and denoting for any x ∈ dom h, Lt = (1 + δ)Dφ(x, xt) + ηt

Rp
[f(xt) − f(x)], we

obtain for ηt ≤ pi
LiRi

:

Lt+1 ≤ max

(
1 + ∆− ηtµ

1 + δ
, 1−Rp

)
Lt

Note that 1+∆−ηµ
1+δ ≥ 1− ηµ ≥ 1− pi

Ri

µ
Li
≥ 1− (1+δi,t)µ

Li
Rp, so the first term generally dominates

since we generally have (1 + δi,t)µ ≤ Li unless the condition number is very small, or δi,t very large.

Proof of Theorem 6. For any x ∈ domh We start by writing the 3 points inequality:

Dh(x, xt+1) +Dh(xt+1, xt)−Dh(x, xt) = [∇h(xt)−∇h(xt+1)]>(x− xt+1)

=
ηt
pi
∇if(xt)

>A†A(x− xt+1)

=
ηt
pi
∇if(xt)

>(x− xt) +
ηt
pi
∇if(xt)

>A†A(xt − xt+1).

We now multiply everything by 1 + δi,t, leading to:

(1 + δi,t) [Dh(x, xt+1) +Dh(xt+1, xt)−Dh(x, xt)] =
ηt(1 + δi,t)

pi
∇if(xt)

>A†A(x− xt)

+
ηt(1 + δi,t)

pi
∇if(xt)

>A†A(xt − xt+1),

which we rewrite as:

(1 + δ)Dh(x, xt+1) ≤ (1 + δi,t)Dh(x, xt) +
ηt
p̃i,t
∇if(xt)

>A†A(x− xt)

+
ηt
p̃i,t
∇if(xt)

>A†A(xt − xt+1)− (1 + δi,t)Dh(x
(i)
t+1, xt),

In particular, when taking an expectation with respect to the sampling distribution, we obtain:

(1 + δ)E [Dh(x, xt+1)] ≤
d∑
i=1

piDh(x, xt)−
d∑
i=1

piDh(x
(i)
t+1, xt)

+ ηt∇f(xt)
>(x− xt) +

d∑
i=1

ηt∇if(xt)
>A†A(xt − x(i)

t+1).
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Using Assumption 1 leads to:

ηt∇if(xt)
>A†A(xt − x(i)

t+1) = ηtRi∇f(xt)
>(xt − x(i)

t+1)

= ηtRi

[
Df (x

(i)
t+1, xt)− f(x

(i)
t+1) + f(xt)

]
≤ ηtRi

[
LiDh(x

(i)
t+1, xt)− f(x

(i)
t+1) + f(xt)

]
Using that ηt ≤ pi

LiRi
, we obtain:

(1 + δ)E [Dh(x, xt+1)] ≤ (1 + ∆)Dh(x, xt) + ηt∇f(xt)
>(x− xt) +

d∑
i=1

ηtRi

[
−f(x

(i)
t+1) + f(xt)

]
.

Note that by monotonicity of the iterations (Lemma 1), f(x
(i)
t+1) ≤ f(xt) for all t, i, and so, with

Rp = miniR
−1
i p̃i,t:

d∑
i=1

Ri
p̃i,t

p̃i,t

[
−f(x

(i)
t+1) + f(xt)

]
≤ R−1

p

[
−

d∑
i=1

p̃i,tf(x
(i)
t+1) + f(xt)

]
≤ −R−1

p (E [f(xt+1)]− f(xt))

(14)
Finally, the µ-relative strong convexity of f gives:

∇f(xt)
>(x− xt) = − [f(xt)− f(x)]−Df (x, xt) ≤ −µDh(x, xt)− f(xt) + f(x) (15)

Combining everything leads to:

(1 + δ)E [Dh(x, xt+1)] +
ηt
Rp

[f(xt+1 − f(x)]

≤ 1 + ∆− ηµ
1 + δ

(1 + δ)Dh(x, xt) +
ηt
Rp

(1−Rp) [f(xt)− f(x)]

B Convergence results

B.1 Introducing the problem

In this section, we introduce the consensus problem derived from the conceptual graph, and take
its dual formulation. This section follows the same framework as Hendrikx et al. [2020]. Denoting
σ̃ = nσ

n+K , this problem writes:

min
θ∈Rn×d, u∈Rn×d, v∈Rd

∀i, ∀j, θ(ij)=u(i), ∀k, u(i)=v(j)

n∑
i=1

m∑
j=1

fij(θ
(ij)) +

σ̃

2
‖u(i)‖2 +

K∑
k=1

σ̃

2
‖v(k)‖2. (16)

Introducing Lagrangian multipliers y for each consensus constraint in the virtual part of the graph
(between center nodes u(i) and computation nodes θ(ij)), and multipliers x for the communication
part of the graph, (between center nodes u(i) and tokens v(k)), the dual problem writes:

min
x∈RnKd, y∈Rnmd

qA(x, y) +

n∑
i=1

m∑
j=1

f∗ij((Ay)(ij)), with qA(x, y) ,
1

2σ̃
(x, y)>A>A(x, y), (17)

where A ∈ R(n(m+1)+K)d×n(K+m)d is the (weighted) incidence matrix of the augmented conceptual
graph, which is such that Ae`1`2 = µ`1`2(e`1 − e`2), for any two nodes `1 and `2 (and an arbitrary
orientation), where e`1`2 is the unit vector corresponding to edge (`1, `2), and e`1 , e`2 are the unit
vectors corresponding to nodes `1 and `2. Note that we abused notations and wrote (Ay)(ij) instead
of (A(x, y))(ij), since (A(x, y))(ij) does not actually depend on x.

Matrix A has a very special structure, since it is the incidence matrix of a tripartite graph between
computation nodes, communication nodes, and token nodes. We now have to choose the weights
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of matrix A. For communication edges (between communication nodes and tokens), we make the
simple choice µik = 1. For computation edges (between communication nodes and computation
nodes), we choose:

µ2
ij = αLij , with α =

2σ̃K

κs
, (18)

where Lij is the smoothness of function fij and κs = maxi 1 +
∑m
j=1 Lij/σ̃. These choices

follow from Hendrikx et al. [2020], where we used that the “communication part” of the concep-
tual graph used to derive the token algorithm is quite specific (complete bipartite graph), and so
λmin(A>commAcomm) = K, the number of tokens, as long as K ≤ n [Brouwer and Haemers, 2011].

B.2 The TVR algorithm

We now proceed to the derivation of the DVR algorithm, and to proving its theoretical guarantees. To
achieve this, we use the Bregman coordinate descent iterations defined in the previous section, which
are of the form:

(x, y)t+1 = arg min
x,y

ηt
pi
∇i [qA((x, y)t) + F ∗(Ayt)]

>
A†Ax+Dh((x, y), (x, y)t), (19)

where F ∗(λ) =
∑
i,j f

∗
ij(λ

(ij)). We now need to define the reference function h, which we define,
following Hendrikx et al. [2020], as h(x, y) = hx(x) + hy(y), with:

∀i, j, h(ij)
y (y(ij)) =

Lij
µ2
ij

f∗ij(µijy
(ij)), and hx(x) =

1

2
‖x‖2

A†commAcomm
, (20)

where Acomm ∈ R(n+K)d×(n(m+K) is the restriction of A to communication nodes (and tokens). In
order to avoid notations clutter, we slightly abuse notations and use A†A instead in the remainder of
this section.

Algorithm 2 Token Variance Reduced (z0)

1: σ̃ = σ n
n+K α = 2Kσ̃

κs
, pcomp =

(
1 + κs

m−1+κs

)−1

, pcomm = 1− pcomp,

2: η = min
(
σ̃pcomm

2nK ,
pcomp

αn(m−1+κs)

)
, ρcomm = nKη

pcommσ̃
, ρcomp = mnαη

pcomp
. // Init

3: ∀i ∈ [n], θ(i)
0 = −

∑m
j=1∇fij(z

(i,j)
0 )/σ̃; ∀k ∈ [K], θtoken,k

0 = 0. // z0 is arbitrary but not θ0.
4: for t = 0 to T − 1 do // Run for T iterations
5: if communication step (with probability pcomm) then
6: Pick i ∼ U([n]), k ∼ U([K]) // Choose next node and token uniformly at random
7: θtoken,k

t+1 = θtoken,k
t − ρcomm(θtoken,k

t − θ(i)
t ) // Token update

8: θ
(i)
t+1 = θ

(i)
t + ρcomm(θtoken,k

t − θ(i)
t ) // Local node update

9: else
10: Pick i ∼ U([n]), j ∼ U([m]) // Choose one node and data point at random
11: z

(i,j)
t+1 = (1− ρcomp) z

(i,j)
t + ρcompθ

(i)
t // Virtual node update

12: θ
(i)
t+1 = θ

(i)
t − 1

σ̃

(
∇fij(z(i,j)

t+1 )−∇fij(z(i,j)
t )

)
// Local update using fij

13: return θK

For the computation part, the algorithm can be recovered by following the exact same steps as
Hendrikx et al. [2020, Section 2], which are themselves inspired by the dual-free updates from Lan
and Zhou [2017].

For the communication part, there is a small difference in the fact that we do not sample all coordinates
at once anymore. Instead, we sample edges of the communication graph one by one. The other
difference is that communication edges are not between node i and node k anymore, but between
node i and token k. In particular, the communication step writes:

A†Axt+1 = A†Axt −
η

σ̃pik
A†Aeije

>
ikA
>A(xt, yt). (21)
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Multiplying by A on the left and defining θt = Acomm(xt, yt) leads to:

θt+1 = θt −
η

σ̃pik
Acommeike

>
ikA
>θt, (22)

where we used the fact that the update only affects communication nodes. Therefore, when we sample
an edge between node i and token k, this leads to:

θt+1 = θt −
ηnK

pcommσ̃
Wikθt, (23)

where Wik = (ei − ek)(ei − ek)>, thus leading to the form obtained in Algorithm 2. From there, we
can prove the following convergence theorem, from which all the non-accelerated results from the
main text are derived.
Theorem 7. The iterates of Algorithm 2 verify:

‖θt − θ?‖2 ≤
(

1− ηKσ̃

κs

)t
C0, (24)

where C0 = 2σ̃L0, with L0 the Lyapunov function from Theorem 6 instantiated on the dual problem,
which thus depends on the initialization. In particular, ignoring log factors in C0, if pcomm =
pcomp = 1

2 and for any ε > 0,

Tcomp = O((m+ κs) log ε−1) and Tcomm = O(nκs log ε−1) (25)
are required in total in order to obtain ‖θt − θ?‖2 ≤ ε.

The proof of this algorithm follows several steps, that we detail in the next subsections. We first show
that the objective function defined in Equation (16), together with the reference function h defined
in Equation (20) satisfies Assumption 1, so that we can apply Theorem 6. Then, we show how to
choose the remaining parameters (and in particular pcomm and pcomp) optimally, and evaluate the
rate in terms of constants of the problem (number of nodes, number of tokens, smoothness and strong
convexity of the local functions...).

B.3 Verifying Assumption 1

We start by showing that Assumption 1 is verified in this case, which includes three parts: Equa-
tion (12), relative strong convexity, and directional relative smoothness.

B.3.1 Verifying Structural assumptions.

We first verify that the updates of our problem verify Equation (12) from Assumption 1.

1 - Computation coordinates. Computation coordinates corresponding to the edge between compu-
tation and communication subnodes in Figure 1. In particular, the graph becomes disconnected if
they are removed, thus implying that A†Aei = ei. In particular,

∇h(xt+1) = ∇h(xt)−
ηt
pi
∇if(xt). (26)

Yet, for our specific choice of h (which is such that hcomp(x) =
∑
i hcomp

(i)(x(i))), this implies that
x

(i)
t+1 − xt = vi for some vi that only has support on coordinate i, and in particular:

∇if(xt)
>A†A(xt − x(i)

t+1) = Ri∇if(xt)
>vi = Ri∇f(xt)

>vi = Ri∇f(xt)
>(xt − x(i)

t+1) (27)

2 - Network coordinates. Network coordinates have a different structure. In this case, the reference
function hcomm is the quadratic form induced by A†A, which facilitates analysis. The updates write:

A†Axt+1 = A†Axt −A†A
ηt
pi
∇if(xt) (28)

Although hcomm is not separable, we can leverage the presence of A†A to write:

∇if(xt)
>A†A(xt − x(i)

t+1) =
ηt
pi
∇if(xt)

>A†A∇if(xt) =
ηt
pi
Ri∇f(xt)

>∇if(xt).

We then use that∇f(xt) = A†A∇f(xt), leading to:

∇if(xt)
>A†A(xt − x(i)

t+1) =
ηt
pi
Ri∇f(xt)

>A†A∇if(xt) = Ri∇f(xt)
>A†A(xt − x(i)

t+1).

Now that we have proven that h and f verify the structural assumptions given by Equation (12), it
remains to evaluate the relative strong convexity and directional smoothness constants µ and Li.
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B.3.2 Relative Strong Convexity.

Since the structure of the dual problem and the reference function h are the same, we directly have
from Hendrikx et al. [2020, Appendix B.1] that the relative strong convexity constant is equal to

µ =
α

2
=

K

σ̃ +
∑m
j=1 Lij

, (29)

since the smallest eigenvalue of the communication graph is equal to K (the number of tokens) in
this case.

B.3.3 Directional Relative Smoothness.

We now evaluate the relative smoothness constants.

1 - Computation edges. In the computation case, similarly to strong convexity, we directly get
from Hendrikx et al. [2020, Appendix B.1] that L̃ij , the relative directional smoothness for virtual
node i, j (or just L̃i if there is only one virtual node), can be obtained as:

L̃ij = α

(
1 +

Lij
σi

)
, (30)

Plugging in the value of α, this leads to:

L̃ij =
2K

σ̃

σ̃ + Lij
σ̃ +

∑m
j=1 Lij

(31)

2 - Communication edges. In this case, we cannot use the results from DVR directly because the
sampling of communication coordinates is different. While DVR sampled all communication edges at
once, we only sample one at each step. In this case, we have that the directional relative smoothness
is equal to:

Df (x+∆uv, x) = ‖∆uv‖2A>ΣA = µ2
uv(σ

−1
u +σ−1

v )‖∆uv‖2 =
µ2
uv(σ

−1
u + σ−1

v )

e>uvA
†Aeuv

‖∆uv‖2A†A. (32)

In particular, for communication edges, and with the choice that µ2
uv = 1 and σu = σv = σ̃:

Df (x+ ∆uv, x) ≤ L̃uvDh(x+ ∆uv, x), with L̃uv =
2

σ̃Ruv
(33)

B.4 Convergence guarantees

We have shown in the previous subsection that we can apply Theorem 6 to obtain convergence
guarantees for our token algorithms. For the communication edges, the step-size constraint leads to:

ηt ≤
puv

RuvL̃uv
=
pcommσ̃

2nK
(34)

For the computation edges, we can set (as in the DVR article) pij ∝ 1 + Lij/σ̃. In particular, the
normalizing factor is equal to

∑n
i=1

∑m
j=1 1 + Lij/σ̃ = n(m +

∑m
j=1 Lij/σ̃) = n(m − 1 + κs),

where we recall that κs = 1 +
∑m
j=1 Lij/σ̃. Therefore, we obtain:

ηt ≤
pij

L̃ij
≤ pcompσ̃κs

2nK(m− 1 + κs)
. (35)

We want to balance pcomm and pcomp such that these two constraints match, leading to:

pcomm =
κs

m− 1 + κs
pcomp. (36)

Since pcomm = 1− pcomp, this leads to:

pcomp =

(
1 +

κs
m− 1 + κs

)−1

. (37)
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Assuming δ ≥ 0 and ∆ < ηtµ
2 , the rate of convergence of Algorithm 2 is ρ = ηtµ−∆ ≥ ηtµ/2. In

particular, we directly have that the computation complexity is equal to:

pcomp

ρ
= 4(m− 1 + κs). (38)

Similarly, the communication complexity is equal to:

pcomm

ρ
= 2nκs. (39)

B.5 Special cases

B.5.1 Complete graphs

All the theorems in the main paper are actually direct corollaries of Theorem 7. We provide below
how they can be derived in each case.

Theorem 3: We apply Theorem 7 with δ = 0 (since the graph is complete, so we know the true
sampling distribution).

Theorem 2: Whenm = 1, all the derivations remain the same, but we now have that κs = 1+Li/σ̃ =
κ, and so the computation complexity is equal to m− 1 + κs = κ.

Theorem 1: This result can be recovered by simply taking K = 1.

B.5.2 General graphs.

Consider that the transitions between nodes are ruled by matrix W , which is such that ‖W tπ0 −
π?‖∞ ≤ C(1 − γ)t for any starting distribution π0, with C > 0 a constant, π? the stationary
distribution of the random walk, and γ > 0 a constant which can be interpreted as the inverse of the
mixing time of the Markov Chain with transition matrix W . This is true as long as the underlying
Markov Chain is irreducible and aperiodic. In this case, then after O(γ−1 log(C/(ηµ)) steps, we
have that for all i:

|p̃i,t − (π?)i| ≤
ηµ

4
, (40)

so in particular by taking pi = (π?)i + ηµ
4 satisfies p̃i,t(1 + δi,t) = pi, with 0 ≤ δi,t ≤ ηµ

2 . Then,
using Theorem 6, we recover the same result as in Theorem 7, with ηµ replaced by ηµ−∆ ≥ ηµ

2 .

Note that the value of η depends on ∆, which itself depends on η, so the above derivations technically
result in a circular argument. To avoid this, one can simply use a slightly different η̃ = mini

(π?)i
LiRi

≤ η
to set the number of token jumps. In practice, we do not need to precisely evaluate these log factors,
and taking C̃γ−1 jumps with a small constant C̃ is enough.

C Acceleration

In the accelerated case, the theory does not follow directly from Theorem 7, since the algorithmic
core is different. Indeed, we use a variant of Accelerated Proximal Coordinate Gradient [Lin et al.,
2015] instead of Bregman coordinate descent on the dual formulation. Yet, we can directly reuse
the convergence results for ADFS [Hendrikx et al., 2019b, Theorem 1], which we (informally) state
below:

Theorem 8. ADFS has iteration complexity O(ρ log ε−1), with

ρ2 ≤ min
k`

λ+
min(A>Σ−1A)

Σ−1
kk + Σ−1

ll

p2
k`

µ2
k`Rk`

. (41)
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For our problem (conceptual graph), we obtain the following values for the parameters involved in
the computation of ρ when a communication edge (k, `) between a node and the token is sampled:

λ+
min(A>Σ−1A) =

K

2σ̃κs

Σ−1
kk = Σ−1

`` = σ̃−1

pk` =
pcomm

nK
µk` = 1

Rk` =
1

K
.

In the end, this leads to

ρ2
comm =

p2
comm

4n2κs
. (42)

Similarly, we have (just like in the ADFS paper, since the computation part of the graph is the same):

ρ2
comp =

p2
comp

2n2(m+
√
mκs)2

. (43)

We now fix pcomm and pcomp so that ρcomm = ρcomp, similarly to Section B.4. This leads to

pcomm =
2κs

m+
√
mκs

pcomp, (44)

and so the communication and computation complexities are respectively:
pcomm

ρcomm
= 2nκs, and

pcomp

ρcomp
=
√

2n(m+
√
mκs).

Theorem 4 is obtained by expressing these complexities in terms of per-node and per-token quantities.

D Experiments

For the experiments, we use the same setting as Hendrikx et al. [2020], meaning that we solve the
following logistic regression problem:

min
θ∈Rd

n∑
i=1

σ
2
‖θ‖2 +

m∑
j=1

1

m
log(1 + exp(−yijX>ijθ))

 , (45)

where the pairs (Xij , yij) ∈ Rd × {−1, 1} are taken from the RCV1 dataset, which we downloaded
from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html. We
choose the regularization parameter as σ = 10−5. All experiments were run on a standard laptop, but
using MPI to communicate between nodes.

Time. We choose to report ideal times: to get the execution time of an algorithm, we compute the
minimum time it takes to execute its sequence of updates, given fixed communication and computation
delays τcomm and τcomp. More specifically, we draw a sequence of actions S, and denote S` the `-th
action from this sequence, and Ti(`) the time at which node i finishes executing update `. All nodes
start from Ti(0) = 0.

• If S` is a local computation at node i, then node i increases its local time by τcomp, i.e.,
Ti(`) = Ti(`− 1) + τcomp. For j 6= i, Tj(`) = Tj(`− 1).

• If S` is a token jump from node j to node i, then Ti(`) = max(Ti(`−1), Tj(`−1)+τcomm).
For k 6= i, Tk(`) = Tk(`− 1).

The sequence S` is implemented by simply sharing a random seed between nodes. Token algorithms
could also be implemented without executing this shared schedule, but this would not strictly
correspond to Algorithm 2 since the sampling of the edges would not be i.i.d.
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Batch smoothness. Since the smoothness of the full functions fi is hard to compute, we approximated
it by taking Lbatch = 0.02×maxij Lij . Note that, following Hendrikx et al. [2020], we implemented
TVR with this batch smoothness instead of

∑
j Lij (which corresponds to taking α = 2σ̃K/κ instead

of α = 2σ̃K/κs). In particular, the communication complexity of TVR is thus proportional to κ
(similarly to that of Algorithm 1) instead of κs. We proved Theorem 3 with κs since it is simpler and
less restrictive.

Code. We provide the code used to run the experiments from Figure 4 in supplementary material. All
algorithms are coded in Python, using MPI for communications. This code has not been optimized
for efficiency, but rather aims at providing an actual implementation of token algorithms that can be
used out of the box. Due to the similarities between algorithms, we based this code on the code in the
supplementary material from Hendrikx et al. [2020].
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