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Abstract

The morphogenesis of tissues and embryos results from a tight interplay between gene expression,
biochemical signaling and mechanics. Although sequencing methods allow the generation of cell-
resolved spatio-temporal maps of gene expression in developing tissues, creating similar maps of cell
mechanics in 3D has remained a real challenge. Exploiting the foam-like geometry of cells in embryos,
we propose a robust end-to-end computational method to infer spatiotemporal atlases of cellular forces
from fluorescence microscopy images of cell membranes. Our method generates precise 3D meshes of
cell geometry and successively predicts relative cell surface tensions and pressures in the tissue. We
validate it with 3D active foam simulations, study its noise sensitivity, and prove its biological relevance
in mouse, ascidian and C. elegans embryos. 3D inference allows us to recover mechanical features
identified previously, but also predicts new ones, unveiling potential new insights on the spatiotemporal
regulation of cell mechanics in early embryos. Our code is freely available and paves the way for
unraveling the unknown mechanochemical feedbacks that control embryo and tissue morphogenesis.

Keywords: force inference, inverse modeling, triangle mesh, cortical tension, Laplace pressure, tissue
mechanics

1 Introduction

Understanding the mechanical regulation of
embryo and tissue shape emergence is a long-
standing goal in developmental biology and bio-
logical physics. Although gene expression pattern-
ing in early embryos is increasingly documented
thanks to recent single cell sequencing methods
[1, 2], we still know very little about how cellu-
lar forces are spatio-temporally patterned within
embryos and tissues. This is due to the lack of

efficient methods for extracting cell- and time-
resolved mechanics in a systematic, tissue-wide,
and noninvasive manner.

Most experimental methods to measure
mechanics are local and time-consuming, such as
micropipette aspiration, AFM measurement, or
embedded droplet deformation [3–14], making the
generation of spatio-temporal maps of mechan-
ics tedious; others are invasive, such as laser
ablation, perturbing normal tissue development
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[15, 16]; or they probe mechanics only at the tissue
level [17–20], ignoring mechanical heterogeneities
within the multicellular structure. Interestingly,
all methods require live 3D imaging to follow the
deformation of cells, tissues, or embedded objects.
Advances in fluorescence microscopy allow us to
record the geometry of cells during the develop-
ment of an embryo in toto from the zygote to
a few hundreds of cells with a confocal micro-
scope [21] and up to thousands of cells with a
light sheet microscope [22, 23]. Attractive new
microscopy techniques have emerged to try to
quantify cellular mechanics directly, such as Bril-
louin microscopy [24, 25], or membrane tension
probes [26–28], but such methods still lack cross-
validations and remain difficult to link directly to
mechanical models of tissues.

An alternative idea that emerged a decade ago
is to infer the forces that dictate the shape of cells
directly from their geometry, solving an inverse
mechanical model. These force inference meth-
ods are based only on image analysis and do not
require tissue perturbation. They can be scaled to
hundreds or thousands of cells, allowing one to fol-
low the evolution of spatial mechanical patterning,
and have a lower entry barrier than many other
methods, as they do not require complex exper-
imental setups. Most of these inference methods
are based on the hypothesis that cells in many
embryos and tissues adopt shapes and arrange-
ments similar to bubbles in a foam, as pointed
out by D’Arcy Thompson more than a century
ago [29]. This analogy implies that the mechan-
ics of cells is dominated by tensile stresses on
their surface, which are generated by actomyosin
contractility [30]. It also assumes a quasistatic
mechanical equilibrium, where viscous relaxation
of tensions (dozens of seconds) is much slower than
typical developmental timescales (dozens of min-
utes to hours). Foam-like equilibrium underpins
two force balances, the Young-Dupré and Young-
Laplace equations (Section 2), relating interface
tensions with contact angles and cell pressures
with interface curvatures. Force inference meth-
ods have been shown to be efficient in inferring
tensions in 2D cell monolayers [31]. The first ver-
sions [32, 33] neglected Laplace’s law by assuming
straight cell interfaces, as in traditional vertex
models [34, 35]. In addition, they treated ten-
sions and pressure as independent variables, which

made the inverse problem generally underdeter-
mined and relatively sensitive to noise. Alter-
natively, segmentation of cell membranes into
2D polygonal lines to explicitly measure their
curvature [36, 37] allows successive determina-
tions of tension and pressure and makes the set
of equations generally overdetermined1. However,
high-quality images and a robust segmentation
pipeline are required, and the generalization of
this direct approach to three dimensions has not
been convincing so far [38, 39]. To avoid this issue,
an elegant 2D approach was proposed in which cell
junctions are fitted by circular arcs to find tensions
and pressure [40], taking advantage of a mapping
between an active foam and the tiling of the space
into ”circular arc polygons”2. In 3D, minimal sur-
faces have mean constant curvatures but are not
sphere portions in general, as remarked already
for foams [44], which rules out any mathematical
generalization of such an approach.

To fill the gap, we propose a robust end-to-end
computational method for performing force infer-
ence in three dimensions, starting directly from 3D
fluorescence microscopy of cell membranes. Our
pipeline includes a novel and efficient surface mesh
reconstruction method to precisely quantify cell
geometry, a robust inversion algorithm to succes-
sively infer tensions and pressures, and a set of
user-friendly 3D visualization tools. With custom
3D active foam simulations, we perform a com-
prehensive benchmarking of our pipeline and a
systematic sensitivity analysis on various tension
and pressure inversion formulas. We demonstrate
the effectiveness of our method in early embryos
of mice, C. elegans and ascidian by recovering
known mechanical characteristics and predicting
new ones.

1In the particular case where the whole tissue can be
imaged with its boundaries - as this is generally the case for
early embryos - the problem turns out to be systematically
overdetermined.

2This tiling falls actually within the class of Möbius dia-
grams [41, 42], whose mapping to 2D foams was earlier pointed
out [43]
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Fig. 1: 3D force inference procedure and resulting mechanical atlas for a 64 cell ascidian
embryo. a) 3D fluorescence microscopy image (max projection) of a 64-cell Phallusia mammillata embryo
(from [22]). b) Cell segmentation mask in one focal plane of the 3D image. c) Multicellular surface mesh
of cell interfaces. d) Schematic cell doublet illustrating the two force balances that need to be inverted:
the Young-Dupré equation that relates surface tensions γij , γik and γjk with contact angles αij , αik and
αjk, and the Young-Laplace equation that relates cell pressure difference Pj − Pi with tension γij and
the radius of the interface curvature H−1

ij . e) 3D map of relative surface tensions in the embryo, plotted
with a color code from blue (lowest) to red (highest). f) Pressure map in the embryo, normalized from
0 to 1. g) Exploded view of the surface tension map that illustrates cell-cell contact tensions within the
embryo. h) Force graph representation of the mechanical atlas, where each node represents a cell with its
associated pressure and each edge corresponds to an interface colored by its tension value. i) 3D stress
eigenvalue representation, corresponding to a stress tensor calculated per cell with the Batchelor formula.
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2 Results

Delaunay-watershed algorithm for
multimaterial mesh generation

An essential first step is to extract the precise
geometry of cells from microscopy images. Voxel-
based segmentation masks are heavy data struc-
tures that are not well adapted to measure geo-
metrical features such as contact angles or mean
curvatures. Alternatively, triangle mesh represen-
tations of cell interfaces possess several advan-
tages: they are sparse data structures that facili-
tate the retrieval of geometric quantities using a
discrete differential formula [45, 46]. They are easy
to render graphically and form basic elements for
computational modeling, such as vertex models
[47, 48] or finite element methods [49]. The surface
meshes of interest in our case are triangular, non-
manifold to account for tri-cellular junctions, and
multimaterial to keep track of the identity of each
enclosed cell or region (”material”), in the spirit
of [50]. Although triangle meshes can be generated
by discretizing voxel-based segmentation masks
directly, using marching cube algorithms [51] or
more recent methods [52], we found that previ-
ous algorithms introduced large errors in angle
measurements in general.

Therefore, we developed a novel algorithm that
robustly generates nonmanifold multimaterial sur-
face meshes from cell segmentation masks3. The
first step consists of computing a Euclidean dis-
tance transform map (EDT) [54] from the cell
segmentation mask 4, which represents a smooth
topographic map of cell (and image) boundaries
(Fig. 2a). From the distance map, we sample
points at the extrema of the elevation value using
a max-pooling operator, which serves as control
points to generate a Delaunay tessellation of the
space (triangulation in 2D or tetrahedralization in
3D). A dual Voronoi diagram is then generated
from the Delanaunay tessellation and is repre-
sented as an edge-weighted graph G = (N , E ,W),
where N is the set of nodes, representing tetrahe-
dra in the dual space (triangles in 2D), E the set of
edges between these nodes and W their associated

3in this paper we used either the deep-learning tool cellpose
[53] or preexisting segmentation masks

4This EDT map may also be predicted directly from raw
fluorescent images by training a convolutional-neural network
[55, 56]

weights. These weights are defined here accord-
ing to the average value of the integrated distance
map measured along the corresponding triangle
(or edge in 2D) in the dual space (Extended data
Fig. 2a). Seeding each region using masks, we par-
tition this graph using a watershed algorithm [57]
that separates the nodes in the graph between the
different cells and the external region5. Mapped
back on the dual Delaunay space, this partition
defines a unique surface (contour in 2D) mesh that
accurately follows cell boundaries. Our Delaunay-
watershed mesh generation algorithm works just
as well in 2D as in 3D (Fig. 2a). Since the main
purpose of this mesh generation algorithm is to
extract precise geometrical features, we generated
a set of ∼ 50 active foam simulations of embryos
with a number of cells varying from 2 to 11, which
we translated into artificial confocal fluorescent
images of size ∼ [250× 250× 250] to compare the
error generated for different geometrical measures
of interest (contact angles, mean curvature, junc-
tion length, area, and volume) by our pipeline and
state-of-the-art surface meshing techniques imple-
mented in CGAL [52]. Our Delaunay-watershed
algorithm outperforms CGAL for the retrieval of
contact angles (Fig. 2b), and cell volumes or junc-
tion lengths (Extended data Fig. 2b), while its
precision is comparable for the retrieval of inter-
face areas and mean curvatures (Extended data
Fig. 2b).

Tension and pressure balance

Once the geometry of the cells can be calculated
from the cell segmentation mesh (Extended data
Fig.1 and Supplementary Note), we have to for-
mulate the inverse mechanical problem to retrieve
the relative force of the cells from their geome-
try. A quasi-static foam-like equilibrium underpins
two stress balance equations within the tissue
(Fig. 1d). The Young-Laplace equation

pi − pj = γijHij (1)

5Other graph partitioning methods such as multicut [58],
hierarchical agglomeration [59] or Mutex watershed [60] algo-
rithms may also be envisioned, although we have not tried
them directly.
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Fig. 2: Multimaterial mesh generation algorithm. a) From a microscopy image (artificial here) in
2D (resp. 3D), we first generate a distance transform map, including the image boundaries; we then sample
points at the extremum values of this map to generate a Delaunay triangulation (resp. tetrahedralization)
of the 2D (resp. 3D) space; the average integrated elevation value along edges (resp. triangles) of this
tessellation gives weight to edges in the dual Voronoi diagram; a watershed cut algorithm [57] is applied
to this weighted graph to partition nodes into cell and exterior regions, resulting in fine in a multimaterial
nonmanifold polygonal mesh segmentation (resp. triangle surface mesh) of the original cell membrane
image. b) The geometric precision of our mesh generation algorithm is benchmarked on active foam
simulations, which are transformed into artificial images to reconstruct surface meshes. Our pipeline
reconstructs cell geometry with better precision than state-of-the-art mesh generation methods, such as
CGAL [52], as shown by the comparison of the error in the reconstructed angles as a function of the
original angle.

relates the hydrostatic pressure difference pi − pj
between cells of indices6 i and j with the inter-
face tension γij = ∥γ⃗ij∥ and the interface mean
curvature Hij , which is homogeneous along each
interface. The Young-Dupré force balance

γ⃗ij + γ⃗jk + γ⃗ki = 0⃗ (2)

states that the sum of vectorial tensions should
be zero at each tri-cellular junction line that joins
the interfaces between cells i, j and k. This vecto-
rial sum is equivalent to saying that tensions are
coplanar and form a triangle, which implies the
triangle inequality γij < γjk+γki and equivalent
relations by permutation of the indices i, j and k.

6by convention the index 0 will refer to the external medium

Non-compliance with one of these inequalities
indicates that tension balance breaks down and
predicts generically a topological transition in the
embryo or tissue. The Young-Dupré tension bal-
ance can generically be decomposed into a set of
two independent scalar equations that combine
the polar angles between the interfaces αij , αjk

and αki (Fig. 1a). In the following, we use five
different variants of tension balance that involve
cosines and sines of polar angles only, which
we named Young-Dupré, Young-Dupré projection,
Lami, inverse Lami and Lami logarithm (see
Methods 5 and Supplementary Note)

The balance of forces in a foam-like tissue of nc

cells can also be derived from the minimization of
surface energy under cell volume constraints. This
formulation is particularly adapted to numerical
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simulations on a discrete mesh [47, 48] and is based
on a Lagrangian function. Assigning an index m
to each existing interface Am between one cell and
another or the external medium, the Lagrangian
writes:

L =

nm∑
m=1

γmAm −
nc∑
k=1

pk(Vk − V0
k), (3)

where γm and Am are, respectively, the sur-
face tension and the area of the interface between
the regions am and bm where {am, bm} ∈ J0, NK2.
Vk and V0

k are the current and target volumes
in the cell k, and pk its pressure plays the role
of a Lagrange multiplier for volume conservation.
Discretized on a mesh, where areas and volumes
are functions of the positions of the nv vertices
{x⃗α}nv

α=1 (Extended data Fig.1 and Supplemen-
tary Note), optimality conditions [61] for this
Lagrangian function produce a force balance at
each vertex x⃗α

0⃗ =
∂L
∂x⃗α

=

nm∑
m=1

γm
∂Am

∂x⃗α
−

nc∑
k>1

pk
∂Vk

∂x⃗α
(4)

We define Γ = (γ1, γ2, . . . , γnm
)
T

a gener-
alized vector of tensions of size nm, and P =
(p1, p2, . . . , pnc

)
T
a generalized vector of pressures

of size nc. Inspired by projection methods [47]
used generically to solve constrained optimization
problems, from equation (4) a linear system of
equations whose solutions are - to an arbitrary fac-
tor - the tensions and pressures corresponding to
a given active foam geometry (see Supplementary
Note). It reads, in matrix form(

GΓ −BP

BΓ −GP

)
×
(
Γ
P

)
= 0, (5)

where GΓ,P are symmetric matrices of sizes,
respectively n2

m and n2
C and BΓ,P rectangular

matrices of sizes, respectively nm×nC and nC×nm

(see Supplementary Note). The linear system to
solve for pressures at given tensions GP×P = BΓΓ
is called Variational Laplace in the next. Because
the square matrix GP is full rank and, therefore,
invertible (see the Supplementary Note), we can

also write a closed-form linear system for the ten-
sions alone as

(
GΓ − BPG

−1
P BΓ

)
× Γ = 0, which

we call variational Young-Dupré.

3 Tension and pressure
inference

Tensions depend only on contact angles at tri-
junctions and are independent of cell pressures, so
here we decompose the inverse problem into two
steps, in the same spirit as [36]: first, we solve
the tensions and then determine the cell pressures
using inferred tension values. The advantage of
this two-step approach is that tensions can still
be inferred in embryos or tissues under confine-
ment or compression (such as C. elegans), where
Laplace’s force balance does not apply anymore,
since the interfaces may adopt non-uniform mean
curvatures. Importantly, tensions (and pressures)
are known up to a multiplicative (respectively, an
additive) factor. To remove this indeterminacy, we
impose that the average tensions shall be equal to
unity, which adds an equation to the system, and
we arbitrarily fix the external pressure to zero.
The tension inference problem can be generically
cast into a linear system AΓ × Γ = bΓ, where G
is a matrix of size (nΓ + 1) × nm that collects
nΓ+1 equations that relate the nm unknown ten-
sions, and bΓ = (0, . . . , 0, nm)

T
implements the

constraint on the average tensions. This system is
overdetermined and is solved in the sense of ordi-
nary least squares (OLS). Performing a systematic
benchmark of our method, we found that better
results are obtained when the nΓ tension equations
are weighted by the length of the corresponding
junction (Supplementary Note and Extended data
Fig. 3c), which is the choice taken further.

In Fig. 3, we compare the sensitivity of our
inference algorithm for the different variants of
the Young-Dupré formula (6), (7), (8), and the
variational Young-Dupré equation. By perturb-
ing vertex positions with random noise in mesh
solutions of active foam simulations (Fig. 3a),
we calculate and plot the mean square error on
the tensions inferred from this perturbed mesh
(Fig. 3b). At low noise values, we find that the
scalar Young-Dupré equation gives better results,
but this error increases then faster for larger noise.
Variational Yound-Dupré and the different Lami
variants have an error that increases faster at low
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Fig. 3: In silico validation of the force inference pipeline. a) Sensitivity analysis of different
formulas for tension and pressure inference. Active foam simulation meshes are perturbed by randomly
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tensions as a function of the intensity of the noise for the different tension formulas. c) Plot of the absolute
error on the inferred pressure as a function of the noise intensity for the Laplace and variational Laplace
formulas. d) Pipeline for benchmarking force inference: from random tension and cell volume values, a
dataset of foam-like embryo meshes is simulated, from which artificial microscopy images are generated;
then, our end-to-end pipeline is applied to regenerate a mesh and infer tension and pressure values. e)
Plot of the relative error in the inferred tensions for the different tension inference formulas applied to our
simulated embryo dataset. f) Relative errors on inferred pressures on our simulated embryo dataset with
Laplace and variational Laplace formulas. g) Self-consistent validation of the inference on the compaction
of the 8-cell mouse embryo. Surface tensions are inferred with the pipeline and averaged between the
cell-medium and cell-cell interfaces. 3D active foam simulations are performed using these tensions and
yield an in silico embryo morphology that is compared to the real embryo image.
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noise, but then reaches a lower relative plateau at
higher noise.

For pressure inference, we follow the same
approach, expressing the inverse problem as a lin-
ear system AP × P = bP , which we solve with
the OLS method. Here, we compare the tradi-
tional Laplace formula (1) and our new variational
Laplace formula (5). Interestingly, we find that
our mesh-based variational formula performs sys-
tematically better regardless of the level of noise
(Fig. 3c).

Error in inference results may originate from
deviations of cells shape from the solution of an
active foam or from an insufficient image resolu-
tion, but are also the result of an inevitable intrin-
sic noise generated by our pipeline that comes
from the segmentation and meshing operations.
To evaluate which formula may be most adapted
given this minimal and ineluctable level of noise,
we generate perfect artificial confocal microscopy
images from mesh results of active foam simu-
lations (see Supplementary Note). These images
are segmented and translated into multimaterial
meshes with our Delaunay-watershed algorithm to
ultimately infer tensions and pressures using the
various formulas introduced earlier (Fig. 3d). In
general, we find that the systematic error induced
intrinsically by our pipeline remains very low,
with the best inference results obtained with the
scalar Young-Dupré formula (6) and the varia-
tional Laplace formula (Figs. 3e-f). For all tension
and pressure inference examples shown below,
we therefore systematically use the scalar Young-
Dupré and variational Laplace formula.

4 Force inference applied to
early embryo development

To validate the biological relevance of our novel
force inference pipeline, we inferred 3D mechani-
cal atlases of mouse and ascidian embryos using
fluorescent microscopy images of cell membranes.
We first study the self-consistency of the active
foam model in compacting 8-cell mouse embryos.
Compaction corresponds to the extension of inter-
nal cell contacts that round up the embryo and
was shown by micropipette tension measurements
[5] to be characterized by a decrease in the ratio
α = γcc

2γcm
- called compaction parameter - where

γcm is the tension at the cell medium interface

of cells and γcc the tension at cell-cell contacts.
This single parameter is enough to characterize
the embryo shape and is equal to the cosine of half
the contact angle of the cell medium. Using con-
focal fluorescent images of 8-cell mouse embryos
at successive levels of compaction, we segmented
them into multimaterial meshes and inferred rela-
tive tensions. We then performed 3D active foam
simulations and compared them with the origi-
nal microscopy images (Fig. 3g), and found a very
good qualitative agreement. This confirms the rel-
evance of the active foam model hypothesis and
exemplifies the capability of our inference pipeline.

To go beyond this example, where cell-medium
and cell-cell tensions are uniform within the
embryo, we inferred spatio-temporal mechanical
atlases of the early ascidian embryo Phallusia
mammillata. We used fluorescent images of cell
membranes that were acquired with a confocal
microscope from the zygote to the 44 cell stage
(see Methods) or with a light sheet microscope
from the 64 cell stage to the late neurula (≲ 800
cells) [22]. We first focused on the shape of the
embryo from 16 cells to the early gastrula, where
divisions are reported to be asynchronous with
cell divisions that alternate between the animal
and vegetal hemispheres [62]. Recently, it was
shown in P. mammillata embryos at 16, 32 and
44 cell stages, that cells at mitosis entry have
lower apical tension than their interphase coun-
terparts located in the opposite hemisphere [6].
This striking result, in notable contrast to mitotic
cortical stiffening reported in most somatic cells
[63, 64], is again predicted by our force infer-
ence method, which finds a ratio of apical tension
between mitotic and interphase cells that is sys-
tematically lower than 1 in the 16 to 32 cell
stages (Fig. 4b). This mitotic softening alternates
between the animal and vegetal poles, as illus-
trated also from pressure maps (Extended data
Fig. 4a) further explains the overall 3D shape
of the embryo which is flatter on the side of
interphase cells (16 and 32 cells). As one would
expect from Laplace’s law, if applied globally to
the embryo approximated to a droplet, a higher
apical tension at one pole leads indeed to its
flattening. Inference not only confirms previous
results, but also predicts an unknown switch in
the 64-cell embryo, where mitotic blastomeres
have higher apical tension than their interphase
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Fig. 4: In vivo validation of the 3D tension inference. a) Illustration of the process of T1 topological
transition when one tension at a junction becomes greater than the sum of the two others. Junctions for
which inference predicts a T1 topological transition are mechanically unstable and colored red, whereas
the others are colored green. b) Plot of the percentage of unstable junctions in the embryo (blue) and the
ratio of unstable junction length to total junction length in the embryo as a function of its development
stage, defined by its number of cells. c) Left Surface tension map of the 64-cell ascidian embryo. Middle
Visualization of the surface tension residuals for each junction in the same embryo. Right Visualization
of stable (green) and unstable (red) junctions in a 64-cell ascidian embryo (P. mammillata). d) Maps of
apical tension at the animal and vegetal poles of the early ascidian embryo (P. mammillata) in the 16AS,
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less than 1 and red if it is greater than 1. Mitotic cells are indicated by a white star.
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neighbors (Fig 4. 4d, Extended data Fig. 4a) sug-
gesting that, from this stage on, cells undergo
mitotic stiffening. This mitotic stiffening persists
during gastrulation (stage 120 in Fig. 4d) and
later (Extended data Fig. 4a). This illustrates the
predictive power of our inference pipeline, which
reveals novel mechanical features that explain the
shape of cells and embryos.

To further assess the validity of our inference
method, we searched for locations in the embryo
where the hypothesis of foam-like mechanical equi-
librium may break down. An interesting idea is to
look for junctions that are unstable for the pre-
dicted tensions. In fact, when γij > γjk + γki,
we expect the junction ij to be unstable and
undergo a T1 topological transition (Fig. 4a). Any
unstable junction is therefore the sign of mechan-
ical equilibrium breakdown that can result either
1) from a too large error in tension inference or
2) from an inadequacy of the active foam model
to describe cell arrangement or geometry [65].
In a 64-cell P. mammillata embryo, we found
31 unstable junctions in a total of 569 junctions
(Fig. 4c). Interestingly, these unstable junctions
are detected exclusively close to the embryo cen-
ter, where the lengths of the junctions become
very small, and segmentation struggles to resolve
cell geometry (Fig. 4c, Extended data Fig. 4b). In
general, the percentage of unstable junctions pre-
dicted by our inference pipeline remains very low,
around ≈ 3%, throughout the development of the
ascidian embryo up to late neurula (Fig. 4b). This
represents an even lower percentage of unstable
junction length, below 1%, which confirms that
the tension equilibrium predicted by our inference
pipeline is generally satisfied. To assess the valid-
ity of the inference, it is also useful to visualize
the deviation from equilibrium using the force bal-
ance at the junctions (2). We therefore propose a
visualization of the residuals AΓ×Γ− bΓ

2 at each
trijunction, as shown in Fig. 4c and Extended data
Fig. 4b.

To further illustrate the capabilities of our
inference method, we report three aspects of early
ascidian embryo development brought to light by
our mechanical atlases. The early development of
the ascidian is characterized by its high degree
of invariance [22], and a stereotypical feature of
this invariance is the bilateral symmetry of the
embryo. However, each embryo shows a certain
degree of geometric variability between its left and

right sides, which is well reflected in the mechani-
cal asymmetry, as illustrated by the (a)symmetry
of the tension and pressure maps inferred in
Fig. 5a and Extended data Fig. 5a.

The cell fate in the ascidian embryo is also
invariant, as has been described for several
decades (reviewed in [22, 66]). At the 76-cell stage,
the animal hemisphere is composed exclusively of
ectodermal cells, while the vegetal hemisphere is
segregated into neural/notochord progenitors and
endoderm or mesoderm germ layers. We find that
this patterning of cell fate is reflected in a remark-
able manner in different regions of cell mechanics:
ectoderm and endoderm cells have lower apical
tension and lower pressure, while neural plate and
mesoderm cells form very distinct regions of higher
apical tension and pressure (Fig. 5b). This is prob-
ably due to the different mitotic history of each
lineage, since fate specification is accompanied by
an independent cell cycle timing in each specified
tissue [22, 62]. In the 76-cell stage, neural/no-
tochord and mesoderm cells have, in fact, just
undergone cell division (they are in their eighth
cell cycle), while endoderm cells were born more
than 40 minutes ago and are in the middle of inter-
phase, just before they undergo apical constriction
[67]. In the neurula stage, apical constriction has
been reported to drive neural tube closure with
greater contractility on the apical side of the nerve
cord and brain tissues [68, 69]. Consistent with
this, our inference pipeline predicts on the veg-
etal side of the embryo at 395, 702 and 758-cell
stage a high apical tension in cells located in the
anterior neural plate that are undergoing folding
(Fig. 5c arrow in the vegetal pole view, Extended
data Fig. 5b). A sagittal section of the embryo at
this stage reveals that the neural tube has more
cortical tension than the overlying epidermis of
the underlying endoderm and notochord (Fig. 5c
sagittal section); this higher tension is reflected in
a stronger accumulation of myosin II in the neural
tube compared to other tissues (Fig. 5c, myosin
sagittal section and see also [68]).

Finally, we performed tension inference in the
early C. elegans embryo from 4 to 15 cells (Fig. 6).
Unlike the ascidian and, to a certain extent, mouse
embryos, an eggshell strongly constrains the shape
of cells from the zygote stage. This confinement
has shown to be an essential cue controlling early
cell arrangement [70, 71] and makes Laplace’s law
no longer adequate to account for cell pressures,
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Fig. 5: Spatiotemporal patterning of mechanics in the ascidian embryo P. mammillata a)
Tension and pressure maps of the animal pole of two 64 cell embryos. Imperfections in the geometric
bilateral symmetry of the embryo are reflected by a corresponding asymmetry in the apical tension and
pressure of the cell. b) Tension and pressure maps at the animal and vegetal poles of a 76-cell embryo and
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Fig. 6: Force inference in C.elegans embryo. a) Pressure inference on a simulated embryo confined
in a rigid shell. The shell induces deformations in the membrane that lead to spatial changes in curva-
tures compared to those of an isolated foam. Both the Laplace and the variational Laplace formulas are
inadequate to infer correct pressures, as illustrated by the table of values. b) Surface tension can still be
inferred, as equilibrium at junctions is still verified.

which are directly affected by the mechanical resis-
tance of the shell. We confirm this characteristic
with 3D simulations of a 4 cell embryo confined
within an ellipsoid (Fig. 6a), using realistic param-
eters that we previously measured in [71]. In
this realistic simulation, we show that the mean
curvature may be locally perturbed by the shell
along cell-medium interfaces, especially for ABp
and EMS blastomeres, which precludes the use of
Laplace’s law, which assumes constant mean cur-
vature interfaces. Indeed, when we infer pressures
with the Laplace or Laplace variational formula on
this mesh, we obtain pressure predictions, which
are 20% to 30% different from the actual value in
the four blastomeres (Fig. 6a). Therefore, simul-
taneous tension and pressure inference may not
be a good strategy in this case [39], while break-
ing down the inference in two successive steps still
allows us to infer tensions independently of cell
pressures. Interestingly, we find, in agreement with
the measurements in [71], a lower cell-medium ten-
sions in P2 and EMS cells in the 4-cell stage C.
elegans embryo, and predict a general trend of
lower cell-medium cortical tension in descendants
of the P-lineage at subsequant stages of embryo
development (Fig. 6b).

5 Discussion

We presented a robust end-to-end computational
pipeline to infer relative surface tensions and pres-
sures directly from three-dimensional fluorescent
images of embryos or tissues. It is based, in
particular, on a novel and fast method for generat-
ing surface meshes from cell segmentation masks,
which allows for a more accurate extraction of
geometric features than previous approaches [52].
Therefore, our algorithm is compatible with the
latest segmentation methods [53, 72–74] and can
scale to thousands of cells. We also introduced a
novel formula for inferring pressures from a tri-
angle surface mesh, which outperforms the direct
inversion of Laplace’s law. By performing a sys-
tematic sensitivity analysis on simulated embryos,
we showed that the classic Young-Dupré formula
gives the best tension inference results for moder-
ate noise in the image or in the cell shape. Our
pipeline intrinsically achieves maximum relative
force errors of ≈ 11% from images of simulated
embryos. Additionally, we provide several visual-
ization tools to display multicellular morphology
and forces in multiple ways, including a force
graph representation of the cell aggregate and
a 3D map of cellular stress tensors (Figs. 1h-i).
The residues and predicted topological changes of
inference for each junction in the aggregate can
also be directly plotted to enable local evaluation
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of the method and/or the active foam hypothe-
sis (Fig. 4c). Subsequently, we demonstrated the
biological relevance of our approach by generating
mechanical atlases of the early ascidian embryo:
our inference method can recover characteristic
patterns of apical tension previously observed
[68], including a lower apical tension measured in
mitotic cells before 64-cell stage [6]. Interestingly,
it can also make new predictions and reveal mir-
roring patterns of cell mechanics and cell fate in
germ layers. Finally, we demonstrate the utility
of decoupling pressure and tension inference by
applying our methodology to the early C.elegans
embryo, which develops within a shell.

One forthcoming challenge will be to gener-
ate spatio-temporal mechanical atlases of various
embryos. Indeed, a temporal reference is so far
missing to calibrate the successive spatial maps
in time. As demonstrated in 2D [71], combining
static inference with the temporal measurement
of absolute forces in a single location, or imaging
phosphomyosin fluorescence intensity as a proxy
for tension, could become a generic approach to
construct temporal atlases of absolute mechanical
forces, but this needs to be repeated in 3D.

A second challenge will involve the inclusion
of junctional mechanics in the form of additional
line tension contributions at the apical surface of
cells. Indeed, blastomeres with a contact to the
cell medium acquire generally apico-basal polarity
short before the blastula stage in early embryos.
This emergence of apical polarity is generally asso-
ciated with the formation of tight junctions and
a contractile ring of actomyosin delimiting each
apical surface [75, 76], that is expected to cre-
ate additional line tensions at tricellular junctions.
The question of the uniqueness of the inverse solu-
tion will furthermore arise, since several stable
discontinuous bifurcation states can exist in the
presence of line and surface tensions [77, 78], which
will first require a in-depth theoretical effort.

A third challenge will consist of generalizing
force inference methods to more complex mechan-
ical models, such as recent active viscous surface
models [49, 77, 79–82], which naturally generate
inhomogeneous and anisotropic surface tensions,
as well as possible torques, leading to more com-
plex shapes and force balance equations. This
will be particularly important for precisely char-
acterizing the mechanics of dividing cells and
faster growing organisms, such as C. elegans, for

which the time scales of visco-active relaxation
and development may no longer be well separated.
A possible generic avenue to solve these problems
may lie in a fully variational approach, where a
mathematical loss between the microscopy images
and the meshes could be constrained by an arbi-
trary mechanical model to allow direct gradient-
based optimization of its spatio-temporal param-
eters. Our recent effort to design such an efficient
loss for comparing a mesh and an image may
begin to fill this gap [83]. Importantly, the current
force inference method we introduced will remain
a fundamental building block to this research field,
providing already accurate geometric and mechan-
ical maps, which will form an ideal initial guess
to refined but more computationally expensive
iterative methods.

With a documented and user-friendly imple-
mentation in Python [84], our 3D force inference
method can be easily applied to 3D images of
embryos or small tissues undergoing a sufficiently
slow development, and can be combined with spa-
tial ”omic” data generated in early embryos to
uncover possible mechanochemical couplings. 3D
force inference complements the growing range of
tools available for studying the mechanical prop-
erties of tissues in space and time [24, 85, 86], and
we anticipate that this approach will help eluci-
date the mechanical underpinnings of large-scale
morphogenetic movements at the cellular level
and illuminate the intricate interplay between
chemical signaling and mechanics during devel-
opment [87–89]. By revealing the developmental
forces shaping organisms, our method may open
new evo-devo studies, such as the investigation of
the mechanical differences between closely related
phylogenetic neighbors or the understanding of
the mechanical aspects contributing to the diver-
gence of developmental pathways in evolution.
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Methods

Variants of Young-Dupré formulas

Starting from the vectorial expression of the
Young-Dupré law (2) we call its decomposition
simply by Young-Dupré its decomposition with
cosines of polar angles:

γij + γjk cosαki + γki cosαjk = 0

γij cosαki + γjk + γki cosαij = 0

γij cosαjk + γjk cosαij + γki = 0 (6)

Another set involves both cosines and sines of
angles made by vectorial tensions with one direc-
tion chosen arbitrarily choose along a tension
vector, and we call it Young-Dupré projection:

γij + γjk cosαki + γki cosαjk = 0

γjk sinαki + γki sinαjk = 0 (7)
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Many other mathematically equivalent formulas
may in fact be derived from trigonometric laws
applied to the triangle formed by vectorial ten-
sions (see Supplementary Note). Here, we will also
use Lami’s theorem, which derives directly from
the law of sines and was proposed as an alternative
formula for tension inference in 2D [40, 90]:

γij
sinαij

=
γjk

sinαjk
=

γki
sinαki

(8)

To avoid divergence at small polar angles, it was
proposed to consider the same equations written
as γij sinαjk=γjk sinαij , γjk sinαki=γki sinαjk,
which we call inverse Lami, or to consider the
logarithm of the equation (8), that we call Lami
logarithm.

Biological material

The eggs of the ascidian Phallusia mammillata
were harvested from animals obtained in Sète
and kept in the laboratory in a tank of natural
seawater at 16°C. Egg preparation and microinjec-
tion have been previously described (see detailed
protocols in [91], [92]). Eggs and sperm were col-
lected by dissection. Sperm was activated in pH
9.0 seawater prior to fertilization (see the detailed
protocol in [92]). All imaging experiments were
performed at 20°C.

Plasma membrane and myosin-II
fluorescent labeling

The plasma membrane was imaged using our
characterized construct PH::Tomato [92] whereas
Myosin II was imaged using Myosin II intrabody
iMyo (called SF9::GFP in Chaigne et al., 2016,
the plasmid pRN3-SF9-GFP is a kind gift from
the M.H. Verlhac laboratory). RNAs coding for
PH::Tomato (1 µg.µL-1) and SF9/iMyo::GFP (4
µg.µL-1) were injected in unfertilized Phallusia
oocytes that were then fertilized between 2 and 12
hours after injection.

Confocal imaging of Phallusia
mammillata embryos

4D confocal imaging was performed at 20 ° C using
a Leica TCS SP8 inverted microscope equipped
with hybrid detectors and a 20×/0.8NA water
objective lens. A 3D stack was taken every minute

with a pixel size of 1µm x 1µm and a z-step of 1
µm (in order to obtain cubic voxels). The Phallu-
sia embryos shown in Fig. 4d (and Extended data
Fig. 4) from 16 cells to 32 cells were imaged in the
Team ABC laboratory, while embryos from stage
64 cells and later stages (shown in Fig. 1, Fig.
4, Fig. 5, Ext Fig 4, Ext Fig. 5) were obtained
from public data sets of segmented Phallusia
mammillata embryos published in [22].
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Extended data Fig. 1: Measurement of geometrical quantities on nonmanifold multimaterial
triangle surface meshes. a) Contact angles are calculated at each junction as the mean of dihedral
angles in each triplet of triangles that constitutes the junction. A dihedral angle is computed from the
unit normals to the two adjacent triangles. b) Junctions are lines that separate three different materials
or regions (three cells or 2 cells and the cell medium). Their length can be easily defined and measured
with our nonmanifold mesh data structure. c) Each cell is represented by a bounded volume (a discrete
manifold). We can compute their volumes and areas from our multimaterial mesh data structure with
formulas derived in the Supplementary Note. d) Mean discrete curvatures can be computed using the
cotangent formula (see Supplementary Note).
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Extended data Fig. 2: Detailed procedure and benchmarking of the Delaunay-watershed
mesh generation algorithm. a) Pipeline for mesh generation from a microscopy image (here in 2D
for graphical purposes). From the Delaunay triangulation of the image domain, we construct a graph
of the dual Voronoi diagram . The edge weights of this graph are computed by integrating the value
of the Euclidean distance map along corresponding edges that separates two triangles in the primary
domain. The watershed is performed on the dual graph, and the seeds are chosen by taking the triangles
containing the pixel with the highest EDT value in the primary domain. b) Comparison of the geometric
error obtained on interface curvatures, cell volumes, interface areas, and junctional lengths with CGAL
and our Delaunay-watershed algorithms for mesh reconstruction.
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Extended data Fig. 3: Inference sensitivity and influence of tensions formulas for pressure
inference. a) Histogram of eigenvalues of the pseudo-inverse matrices used to infer tensions and pres-
sures for the Young-Dupré, variational Young-Dupré, Laplace and Variational Laplace formulas, on our
simulated embryo dataset. The spread of the histogram is a measure of the conditioning of the matrix. b)
Comparison of the relative error on inferred pressures obtained on our simulated embryo dataset between
Laplace and variational Laplace formulas. c) Comparison of the mean relative error on inferred tensions
with and without junction length weights for the different tension inference formulas
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Extended data Fig. 4: Additional validation data of the 3D tension inference. a) Mitotic
softening and stiffening in the 16AS, 24, 32AS, 64 and 120 cell stages of the early ascidian embryo (P.
mammillata). Upper row: sagittal view of inferred apical tension. Middle and bottow rows: animal and
vegetal views of the inferred cell pressures. The ratio of mitotic to interphase apical tension is colored
green if it is less than 1 and red if it is greater than 1. The orientation of the embryo is given by arrows
Ant: anterior, Pos: posterior, Med: medial, Lat: lateral, V: vegetal, A: animal. b) Vegetal view of stable
(green) and unstable (red) junctions (Left) and tension inference residues (Right) in ascidian embryos
(P. mammillata) at 218, 320, 512 and 702 cell stages. The orientation of the embryo is given by arrows
Ant: anterior, Pos: posterior, Med: medial, Lat: lateral.

.CC-BY-NC 4.0 International licensepreprint in perpetuity. It is made available under a
this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the 

The copyright holder forthis version posted April 13, 2023. ; https://doi.org/10.1101/2023.04.12.536641doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.12.536641
http://creativecommons.org/licenses/by-nc/4.0/


24 Article Title

n = 395 cells n = 702 cellsb

0.56

Surface tension
1.63 0.53

Surface tension
1.66

a

0.50 1.58
Surface tension

0.61 1.64
Surface tension

0.53 1.59
Surface tension

0.54 1.62
Surface tension

0.60 1.48
Surface tension

0.61 1.45
Surface tension

0.59 1.55
Surface tension

0.52 1.57
Surface tension

0.58 1.67
Surface tension

1 4 7

2

3

5

6

8

9

Ant

Pos

Med Lat

Vegetal pole Animal pole Vegetal pole Animal pole

Extended data Fig. 5: Additional tension maps of ascidian P. mammillata gastrula and
neurula. a) Nine examples of apical tension maps of 64 cell gastrula (animal pole). b) Maps of apical
tensions at the animal and vegetal poles of early (Left) and late neurula ascidian embryos. The orientation
of the embryo is given by arrows Ant: anterior, Pos: posterior, Med: medial, Lat: lateral.
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