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Choquard equation involving mixed local and nonlocal operators

G.C. Anthal∗, J. Giacomoni† and K. Sreenadh‡

Abstract

In this article, we study an elliptic problem involving an operator of mixed order with both

local and nonlocal aspects and in the presence of critical nonlinearity of Hartree type. To this

end, we first investigate the corresponding Hardy-Littlewood-Sobolev inequality and detect the

optimal constant. Using variational methods and a Pohožaev identity we then show the exis-

tence and nonexistence results for the corresponding subcritical perturbation problem.

Key words: Local-nonlocal operators, critical Choquard nonlinearity, Hardy-Littlewood-Sobolev

inequality, existence reusults, variational methods, Pohožaev identity.
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1 Introduction

The aim of the present article is to study the following problem consisting of combination of local

and nonlocal operators along with critical Choquard nonlinearity





Lu =



∫

Ω

|u(y)|2
∗
µ

|x− y|µ


 |u|2

∗
µ−2u+ λup in Ω,

u ≡ 0 in R
n \ Ω, u ≥ 0 in Ω,

(1.1)

where Ω is a bounded domain of Rn with C1,1 boundary ∂Ω, λ is a real parameter, p ∈ [1, 2∗ − 1),

n ≥ 3, 0 < µ < n, 2∗µ = (2n − µ)/(n − 2) and 2∗ = 2n/(n − 2). The mixed operator L in (1.1) is

given by

L = −∆+ (−∆)s for some s ∈ (0, 1). (1.2)

The word ”mixed” refers to the type of the operator combining both local and nonlocal features

and to the differential order of the operator. The operator L is obtained by the superposition

of the classical Laplacian (−∆) and the fractional Laplacian (−∆)s, which for a fixed parameter
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s ∈ (0, 1), is defined by

(−∆)su = C(n, s)P.V.

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy.

The term ”P.V ” stands for the Cauchy’s principal value and C(n, s) is a normalizing constant,

whose explicit expression is given by

C(n, s) =



∫

Rn

1− cos(z1)

|z|n+2s
dz




−1

.

The study of the mixed operators of the form L in (1.2) is motivated by the wide range of ap-

plications. Indeed these operators arise naturally in the applied sciences, to study the role of the

impact caused by a local and a nonlocal change in a physical phenomenon. These operators model

diffusion patterns with different time scales (loosely speaking, the higher order operator leading the

diffusion for small scales times and the lower order operator becoming predominant for large times)

and they arise for instance in bi-modal power law distribution processes, see [27]. Further applica-

tions arise in the theory of optimal searching, biomathematics and animal forging, see [14, 15] and

the references therein. See also [23, 24, 28] and the references therein for further applications.

Due to these applications and mathematical interest, the study of elliptic problems involving mixed

type of operators having both local and nonlocal features is attracting a lot of attention. The current

research has specifically focused on several problems in the existence and regularity theory. In the

following, we present a short literature review regarding existence and regularity of solutions of the

problem of the type

−∆qu+ (−∆)squ = f in Ω,

where Ω ⊂ R
n is some domain, q ∈ (1,∞), s ∈ (0, 1), −∆q and (−∆)sq are the usual q−Laplacian

and fractional q−Laplacian operators.

In the linear case q = 2, to study the structural results like existence of weak solutions, strong

maximum principle, local boundedness, interior Sobolev and Lipschitz regularity, along with various

other qualitative properties of solutions we refer to [1, 3, 7]. We also refer to [6, 9, 14, 15] and

references therein for other issues as symmetry and properties associated to the first eigenvalue. In

the nonlinear setting q 6= 2, for f = 0, Garain and Kinnunen [19] obtained the regularity results

for weak solutions in terms of local boundedness, Harnack estimates, local Hölder continuity and

semicontinuity. For the inhomogenous case, boundedness and strong maximum principle has been

established in [10] (see also [8]). The question of Hölder regularity was investigated by De Filipps-

Mingione in [12] for a large class of mixed local and nonlocal operators. Under some suitable

assumptions, the authors prove almost Lipschitz local continuity and local Höder regularity of

the gradient (see Theorem 3, 6 and 7 respectively there). We would also like to mention the

work [20] where the case of singular nonlinearity is studied. Also to study regularity theory for

nonhomogenous growth fractional problems, we refer to the work of Giacomoni-Kumar-Sreenadh

[22].
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The stirring motivation for the present paper comes from the study of nonlinear problems with

critical exponents. These problems are usually modelled as

J u = W(u) + λY(u) ∈ Ω, (1.3)

with some appropriate conditions on u. Here Ω ⊂ R
n is a domain, J is some operator (lo-

cal/nonlocal/mixed), W is a critical nonlinearity (notion of criticality changes from problem to

problem and relies on the limit of compactness inherited by the problem), Y is subcritical nonlin-

earity and λ ∈ R is a parameter. In these problems mostly we address the issue of existence and

multiplicity of the solutions with respect to the parameter λ. In the following, we present a brief

literature survey of the problems of the type (1.3).

• Local case i.e. when J = −∆: The seminal breakthrough in this case was the work of Brezis

and Nirenberg [11]. Here the authors studied the problem of the type

{
−∆u = |u|2

∗−2u+ λuq in Ω, u = 0 on ∂Ω, u > 0 in Ω (1.4)

where Ω ⊂ R
n is a bounded domain and 2∗ = 2n/(n − 2) is the critical exponent for the

embedding of H1
0 (Ω) to L

p(Ω). When λ = 0 and Ω is starshaped with respect to some point

x ∈ Ω, nonexistence of weak solutions holds. For some suitable range of λ, the authors inves-

tigate the existence of weak solutions. By developing some skill full techniques in estimating

the minimax level, the authors were able to prove the existence of nontrivial solutions for the

problem (1.4) under a linear and subcritical superlinear perturbation. Later in [2] Ambrosetti

et. al. investigated the problem (1.4) with the sublinear perturbation and established the

existence and multiplicity results depending on the parameter λ. We also refer to [21] to

study the critical exponent problem for the p-Laplacian operator.

The case of critical Choquard nonlinearity namely W =



∫

Ω

|u(y)|2
∗
µ

|x− y|µ


 |u|2

∗
µ−2u with linear

and sublinear or superlinear perturbations were studied by Gao and Yang in their works [18]

and [17] respectively and obtain the existence and multiplicity of solutions depending on some

range of λ. Here the critical exponent 2∗µ is in accordance with well known Hardy-Littlewood-

Sobolev inequality which states as under:

Proposition 1.1 Hardy-Littlewood-Sobolev inequality Let r, q > 1 and 0 < µ < n with

1/r+1/q+µ/n = 2, g ∈ Lr(Rn), h ∈ Lq(Rn). Then, there exist a sharp constant C(r, q, n, µ)

independent of g and h such that

∫

Rn

∫

Rn

g(x)h(y)

|x− y|µ
dxdy ≤ C(r, q, n, µ)|g|r |h|q. (1.5)

In particular, let g = h = |u|t then by Hardy-Littlewood-Sobolev inequality we see that,

∫

Rn

∫

Rn

|u(x)t|u(y)|t

|x− y|µ
dxdy
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is well defined if |u|t ∈ Lν(Rn) with ν = 2n
2n−µ > 1. Thus, from Sobolev embedding theorems,

we must have
2n− µ

n
≤ t ≤

2n − µ

n− 2
.

From this, for u ∈ H1(Rn) we have



∫

Rn

∫

Rn

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy




1
2∗µ

≤ C(n, µ)
1
2∗µ |u|22∗ .

We denote SH,L,C to denote the best constant associated to

SH,L,C = inf
u∈C∞

0 (Rn)\{0}

‖∇u‖2L2(Rn)
(∫
Rn

∫
Rn

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x−y|µ dxdy

) 1
2∗µ

. (1.6)

• Nonlocal case i.e., when J = (−∆)s, for some s ∈ (0, 1): Servadei and Valdinoci studied

in [31] the critical problems in the case of linear perturbation with W(u) = |u|2
∗
s−2u and

2∗s = 2n/(n − 2s), the critical exponent in the fractional Sobolev inequality. The cases of

sublinear and superlinear perturbations were handled by Barrios et. al. in their work [4]. In

both of these works the authors showed the existence and multiplicity of solutions for some

range of λ. Also the critical problem with fractional p-Laplacian was studied in [25].

The case of critical Choquard nonlinearity i.e., when W =



∫

Ω

|u(y)|2
∗
µ,s

|x− y|µ


 |u|2

∗
µ,s−2u with

linear perturbation was handled by Mukherjee and Sreenadh [26]. Here the authors proved

the following existence results depending up on different values of n and λ:

1. For n ≥ 4s, s ∈ (0, 1), the problem (1.3) has a nontrivial solution for every λ > 0 such

that λ is not an eigenvalue of (−∆)s with homogenous Dirichlet boundary condition on

R
n \ Ω.

2. For s ∈ (0, 1) and 2s < n < 4s, then there exist λ̄ > 0 such that for any λ > λ̄ different

from the eigenvalues of (−∆)s with homogenous Dirichlet boundary condition on R
n\Ω,

(1.3) has a nontrivial weak solution.

• Mixed operator case i.e., when J = L: The critical problems involving operators of mixed

type are very little explored. In this regard we can quote [5, Biagi et al]. Here the authors first

investigated the mixed Sobolev inequality and showed that the Sobolev constant in the mixed

case is actually equal to the classical Sobolev constant. They then used this information to

obtain the existence results both for linear and superlinear subcritical perturbation.

Motivated by the above discussion, in the present work we considered the problem (1.1). As far as

we know there is no result involving the mixed local and nonlocal operator with a critical nonlocal

term as the Choquard nonlinearity. We aim to bridge this gap in the present paper. As we know the

study of problems with Choquard nonlinearity is linked to the Hardy-Littlewood-Sobolev inequality,

we first investigated the inequality for the mixed operator case. More precisely, we consider a
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fractional exponent s ∈ (0, 1), an open set Ω ⊂ R
n, not necessarily bounded or connected, and all

functions u : Rn → R which vanish outside Ω, accounting for a mixed Hardy-Littlewood-Sobolev

inequality of the type

SH,L,M(Ω)

∫

Ω

∫

Ω

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy ≤ ‖∇u‖2L2(Rn) +

C(n, s)

2

∫

Rn

∫

Rn

|u(x) − u(y)|2

|x− y|n+2s
dxdy.

Here above, the constant SH,L,M(Ω) is taken to be the largest possible one for which such an

inequality holds true. Using (1.6) it is easy to see that

SH,L,M(Ω) ≥ SH,L,C .

In principle, one may suspect in fact a strict inequality occurs (because, for instance, SH,L,C is

independent of Ω, as well as of s), but this is not the case according to the following result we

prove:

Theorem 1.2 Let s ∈ (0, 1) and Ω ⊂ R
n be an arbitrary open set. Then we have SH,L,M(Ω) =

SH,L,C.

Our next result answers the question whether or not the optimal constant SH,L,M(Ω) is achieved.

It states as under:

Theorem 1.3 Let Ω ⊆ R
n be an arbitrary open set. Then the optimal constant SH,L,M(Ω) is never

achieved.

Next we address the problem (1.1). We start with the notion of weak solution for (1.1).

Definition 1.4 We say that a function u ∈ Π(Ω) (definition of Π(Ω) is given in Section 2) is a

solution of (1.1) if for all ϕ ∈ Π(Ω), we have

∫

Ω

∇u∇ϕdx+
C(n, s)

2

∫

Rn

∫

Rn

(u(x)− u(y))(ϕ(x) − ϕ(y))

|x− y|N+2s
dxdy =

∫

Ω

∫

Ω

|u(y)|2
∗
µ |u(x)|2

∗
µ−2u(x)ϕ(x)

|x− y|µ

+

∫

Ω

λupϕdx. (1.7)

According to remark 2.1, we state our first regularity result below:

Theorem 1.5 Let u ∈ Π(Ω) be a weak solution of (1.1). Then u ∈ L∞(Rn) ∩W 2,q(Ω) for any

q ∈ (1,∞) if s ∈ (0, 1/2] and q ∈
(
0, n

2s−1

)
if s ∈ (1/2, 1). Therefore u ∈ C1,ν(Ω̄) for every

ν ∈ (0, 1) if s ∈ (0, 1/2] and for ν ∈ (0, 2 − 2s) if s ∈ (1/2, 1). Further if we suppose that Ω is of

class C2,α, α ∈ (0, 1), then u ∈ C2,β(Ω̄) for any β such that 0 < β < min{s, α, n − µ}.

With the help of the regularity result, we immediately obtain the following maximum principle:

Proposition 1.6 Let α ∈ (0, 1) be as in Theorem 1.5 and suppose that ∂Ω is of class C2,α. Assume

that u ∈ C1,α(Ω̄) ∩ C2
loc
(Ω) be a nontrivial nonnegative solution of (1.1). Then u > 0 in Ω.

Our next result is the following extension of Pohožaev identity:



6

Proposition 1.7 Let s ∈ (0, 1), Ω be a C2,α domain with α as in Theorem 1.5 and u ∈ Π(Ω)

solves (1.1), then

µ− 2n

2 · 2∗µ

∫

Ω

∫

Ω

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy −

λn

p+ 1

∫

Ω

|u|p+1dx

=
2− n

2

∫

Ω

|∇u|2dx+
2s− n

2

∫

Ω

u(−∆)sudx (1.8)

−
1

2

∫

∂Ω

(
∂u

∂ν

)2

ν(x).xdσ −
Γ(1 + s)2

2

∫

∂Ω

( u
δs

)2
(ν(x).x)dσ.

Based on the above Pohožaev identity, we have the following nonexistence result of nonnegative

and nontrivial solutions on bounded and strictly star-shaped domains:

Theorem 1.8 Suppose that Ω is a strictly star shaped domain with C2,α boundary with α as in

Theorem 1.5. Then (1.1) cannot have a nontrivial solution provided the following holds

− λ

(
n

(
1

p+ 1
−

1

2

)
+ 1

)
≥ 0. (1.9)

The following Corollary is immediate:

Corollary 1.9 Let Ω be a strictly star shaped domain (with respect to the origin) with C1,1 bound-

ary. Then (1.1) cannot have a nontrivial solution provided the following holds

p ≥
n+ 2

n− 2
and λ ≥ 0 or p <

n+ 2

n− 2
and λ ≤ 0.

We want to remark that if we drop C2,α regularity of ∂Ω, it is still possible to get C2,α
loc regularity

of u but for restricted range of s as it is stated in the result below:

Theorem 1.10 Let s ∈ (0, 3/4) and Ω ⊂ R
n be a bounded domain with C1,1 boundary. Then any

nontrivial solution u of (1.1) is in C2,α
loc

(Ω) for any α ∈ (0, 1) if s ≤ 1
2 and for any α ∈ (0, 3 − 4s)

if s > 1
2 . Furthermore, the Pohožaev identity (1.8) and Theorem 1.6 hold.

Finally, we study the existence theory for the problem (1.1) with respect to the parameter λ. Let

us briefly recall the main strategy used in [18] in the case p = 1.

Due to lack of compactness caused by the critical exponent, an idea borrowed from [18] consists in

proving that the Palais Smale level lies in the range c ∈

(
0,
n+ 2− µ

4n− 2µ
S

2n−µ
n+2−µ

H,L,C

)
. In order to do so,

the crucial step is to show that

S(λ) := inf
{
‖u‖22 − λ|u|22 : u ∈ H1

0 (Ω) and ‖u‖HL = 1
}
< SH,L,C .

Now, the strict inequality S(λ) < SH,L,C is obtained in [18] via the following approach:

First, taking into account that the minimizers in the Hardy-Littlewood-Sobolev inequality are given

by Aubin-Talenti functions, one consider the function

uǫ =
ψ

(ǫ2 + |x|2)(n−2)/2
, ǫ > 0.
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where ψ ∈ C∞
c (Ω). Then, using uǫ as a competitor function, one gets (at least for n ≥ 5) that

‖uǫ‖
2
2 − λ|u|22
‖u‖2HL

= SH,L,C − dλe2 +O(ǫn−2) as ǫ→ 0+,

where d > 0 is a suitable constant. From this, choosing ǫ sufficiently small, one immediately

conclude that S(λ) < SH,L,C . A similar approach works for 1 < p < 2∗ − 1 as well, and it has also

been used in the nonlocal framework [26].

In our mixed setting the situation is quite different. In fact, in trying to repeat the above argument

as it obtained in [31], one is led to consider the following minimization problem

SH,L(λ) := inf
{
G(u)2 − λ|u|22 : u ∈ H1

0 (Ω) and ‖u‖HL = 1
}

and to prove that

SH,L(λ) < SH,L,C . (1.10)

Now since, we know from Theorem 1.2 that SH,L,M(Ω) = SH,L,C , in order to prove (1.10), it is

natural to consider the test function uǫ defined above. However, the presence of the nonlocal term

[uǫ]
2
s gives in this case

G(uǫ)
2 − λ|u|22

‖u‖2HL

= SH,L,C +O(ǫ2−2s)− dλe2 +O(ǫn−2) as ǫ→ 0+,

and the term O(ǫ2−2s) is not negligible when ǫ→ 0+. In order to get the existence of solutions we

borrowed ideas from [5] and study the properties of the map λ 7→ SH,L(λ) to obtain the inequality

(1.10).

All that being said, in the linear case p = 1 we obtain that the problem (1.1) does not admit

solution both in the range of ”small” and ”large” values of λ, but it does possess solutions for

an ”intermediate” regime values of λ. More precisely, denoting by λ1,s the smallest Dirichlet

eigenvalues of (−∆)s in a bounded open set Ω, and by λ1 be the smallest Dirichlet eigenvalue of L

in Ω, we have the following result:

Theorem 1.11 Let Ω ⊂ R
n be an open and bounded set and p = 1. There exists λ∗ ∈ [λ1,s, λ1)

such that the problem (1.1) possesses at least one solution if

λ∗ < λ < λ1.

Moreover the following nonexistence results also hold:

1. there do no exist solutions to problem (1.1) if λ ≥ λ1;

2. if 0 < λ < λ1,s, then there do not exist solutions to (1.1) in B, where

B := {u ∈ L2∗(Rn) : ‖u‖HL ≤ S
n−2
4−µ

H,L,C}.

Regarding the case of superlinear subcritical perturbation, we can follow the variational argument

in [18] to prove finally the following existence result:
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Theorem 1.12 Assume that 1 < p < 2∗ − 1, n ≥ 3 and 0 < µ < n. Then problem (1.1) has at

least one nontrivial solution provided that either

1. n > max
{
min

{
2(p+3)
p+1 , 2 + µ

p+1 , 2
(
1 + 2−2s

p−1

)}
, 2(p+1)

p

}
and λ > 0, or

2. n ≤ max
{
min

{
2(p+3)
p+1 , 2 + µ

p+1 , 2
(
1 + 2−2s

p−1

)}
, 2(p+1)

p

}
and λ is sufficiently large.

Plan of the paper: The rest of the paper is organized as follows. In Section 2 we collect the

preliminary material needed to setup the appropriate functional space. In Section 3, we focused on

the mixed order Hardy-Littlewood-Sobolev inequality and prove Theorems 1.2 and 1.3. Finally in

Section 4, we present the analysis of critical problem. This section is divided into three subsections.

In Subsection 4.1, we first focus on regularity of solutions and prove Theorem 1.5. Then with the

help of regularity result, we establish the maximum principle and prove Proposition 1.6. We

conclude this subsection by first developing the Pohožaev identity for (1.1) (see Proposition 1.7)

and then use this identity to prove Theorem 1.8. Next in Subsection 4.2, we consider the case p = 1

and complete the proof of Theorem 1.11. Finally, in Subsection 4.3, we consider the superlinear

and subcritical case and prove Theorem 1.12.

Notations: Throughout the paper, we will use the following notations:

• We denote positive constants by M,M1,M2, · · · .

• We denote the standard norm on Lp(Rn) by | · |p.

• Let V be a real Hilbert space and Φ : V → R a functional of class C1. We say that

{uk}k∈N ⊂ V is a Palais-Smale sequence at level c, usually denoted by (PS)c, for Φ if {uk}k∈N

satisfies

Φ(uk) → c and Φ′(uk) → 0, as k → ∞.

Moreover, Φ satisfies the (PS)c condition at c, if any (PS) sequence at c possesses a convergent

subsequence.

• We shall also use the following notation

‖u‖HL =



∫

Rn

∫

Rn

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy




1
2.2∗µ

.u ∈ Π(Ω),

The definition of Π(Ω) is given in Section 2.

2 Preliminaries

In this section we shall give the functional settings required to study the problem (1.1) and also

collect the notations and preliminary results required in the rest of the paper.

Let s ∈ (0, 1). For a measurable function u : Rn → R, we define

[u]s =


C(n, s)

2

∫

Rn

∫

Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy




1
2

,
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the so-called Gagliardo seminorm of u of order s.

Let Ω ⊂ R
n be an arbitrary non-empty open set, not necessarily bounded. We define the space

Π(Ω) as the completion of C∞
0 (Ω) with respect to the global norm

G(u) :=
(
‖u‖2 + [u]2s

) 1
2 , u ∈ C∞

0 (Ω),

where we denote ‖u‖2 =

∫

Rn

|∇u|2.

Remark 2.1 A few remarks are in order:

1. The norm G(·) is induced by the scalar product

〈u, v〉G :=

∫

Rn

∇u · ∇vdx+
C(n, s)

2

∫

Rn

∫

Rn

(u(x) − u(y))(v(x) − v(y))

|x− y|n+2s
dxdy,

where · denotes the usual scalar product in the Euclidean space R
n, and Π(Ω) is a Hilbert

space.

2. Note that in the definition of G(·) the L2-norm of ∇u is considered on the whole of Rn in

spite of u ∈ C∞
0 (Ω) (identically vanishes outside Ω). This is to point out that the elements

in Π(Ω) are functions defined on the entire space and not only on Ω. The benefit of having

this global functional setting is that these functions can be globally approximated on R
n with

respect to the norm G(·) by smooth functions with support in Ω.

In particular, when Ω 6= R
n, we will see that this global definition of G(·) implies that the

functions in Π(Ω) naturally satisfy the nonlocal Dirichlet condition prescribed in problem

(1.1), that is,

u ≡ 0 a.e. in R
n \Ω for every u ∈ Π(Ω). (2.1)

In order to verify (2.1), we distinguish between two cases.

Case A: When Ω is bounded. In this case, we know (see [13, Proposition 2.2]) H1(Rn) is

continuously embedded into Hs(Rn) (with s ∈ (0, 1)) i.e. there exists a constant k = k(s) > 0

such that, for every u ∈ C∞
0 (Ω) one has

[u]2s ≤ k(s)‖u‖2H1(Rn) = k(s)(‖u‖2L2(Rn) + ‖∇u‖2L2(Rn)). (2.2)

This, together with the classical Poincaré inequality, implies that G(·) and the full H1−norm

in R
n are actually equivalent in the space C∞

0 (Ω), and hence

Π(Ω) = C∞
0 (Ω)

‖·‖H1(Rn) = {u ∈ H1(Rn) : u|Ω ∈ H1
0 (Ω) and u ≡ 0 a.e. in R

n \ Ω}.

Case B: When Ω is unbounded. In this case, even if the embedding inequality (2.2) holds,

the Poincaré inequality does not hold in general. Hence, the norm G(·) is no more equivalent

to the full norm H1-norm in R
n, and Π(Ω) is not a subspace of H1(Rn).

On the other hand, by the classical Sobolev inequality we infer the existence of a constant

S > 0, independent of the set Ω, such that

S‖u‖2L2∗ (Rn) ≤ ‖∇u‖2L2(Rn) ≤ G(·)2 for every u ∈ C∞
0 (Ω), (2.3)
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where 2∗ = 2n/(n− 2) is the critical Sobolev exponent. Now (2.3) implies that every Cauchy

sequence in C∞
0 (Ω) with respect to the norm G(·) is also a Cauchy sequence in the space

L2∗(Rn). As a consequence, since the functions in C∞
0 (Ω) identically vanish out of Ω, we

obtain

Π(Ω) = {u ∈ L2∗(Rn) : u ≡ 0 a.e. in R
n \ Ω, ∇u ∈ L2(Rn) and [u]s <∞}.

3 Mixed Hardy-Littlewood- Sobolev inequality

Here we are interested to find the sharp constant in the Hardy-Littlewood-Sobolev inequality defined

by

SH,L,M (Ω) = inf
u∈C∞

0 (Ω)\{0}

G(u)2

(∫
Rn

∫
Rn

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x−y|µ dxdy

) 1
2∗µ

. (3.1)

Recall that for any Ω ⊂ R
n, the best constant in the classical Hardy-Littlewood-Sobolev inequality

is given as

SH,L,C(Ω) = inf
u∈C∞

0 (Ω)\{0}

‖∇u‖2L2(Ω)
(∫
Ω

∫
Ω

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x−y|µ dxdy

) 1
2∗µ

. (3.2)

Let us first recall properties of SH,L,C(Ω). For a proof of these properties we refer to [18]

Remark 3.1 1. For N ≥ 3 and for every open set Ω of Rn, we have SH,L,C(Ω) = SH,L,C.

2. SH,L,C(Ω) is never achieved except when Ω = R
n.

3. If Ω = R
n, then SH,L,C is achieved by the family of functions

A = {Vt,x0 = t
2−n
2 U((x− x0)/t) : t > 0, x0 ∈ R

n},

where U(y);= c(1 + |y|2)
2−n
2 .

We are now ready to prove Theorem 1.2

Proof of Theorem 1.2: From the definition of G(u), the inequality SH,L,M (Ω) ≥ SH,L,C is clear.

Next we prove the reverse inequality. First note that SH,L,M(Ω) is translation invariant and so we

can assume without loss of generality that 0 ∈ Ω. Now let r > 0 be such that Br(0) ⊆ Ω. Then for

any u ∈ C∞
0 (Ω), there exists k0(u) ∈ N such that

supp(u) ⊆ Bkr(0), for any k ≥ k0.

Now setting uk := k
n−2
2 u(kx), for k ≥ k0 we see that

supp(uk) ⊆ Br(0) ⊆ Ω.

Now by definition of SH,L,M(Ω) we have for every k ≥ k0 that

SH,L,M(Ω) ≤
G(uk)

2

‖uk‖
2
HL

=
‖∇u‖2L2(Rn)

‖u‖2HL

+ k2s−2 [u]2s
‖u‖2HL

.
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Let k → ∞ and using 0 < s < 1, we obtain

SH,L,M(Ω) ≤
‖∇u‖2L2(Rn)

‖u‖2HL

.

By the arbitrariness of u ∈ C∞
0 (Ω) and the fact that SH,L,C is independent of the set Ω, we finally

infer that

SH,L,M(Ω) ≤ SH,L,C .

Hence we have proved the required equality. �

We are now in the position of proving Theorem 1.3.

Proof of Theorem 1.3: Suppose on the contrary that there exists a nonzero function v ∈ Π(Ω)

such that ‖v‖HL = 1 and

G(v) = SH,L,M (Ω) = SH,L,C .

Noting that ∇u ∈ L2(Ω) , we infer that

SH,L,C ≤ ‖v‖2 ≤ ‖v‖2 + [v]2 = SH,L,C ,

which implies that [v]s = 0. As a consequence, the function u0 must be constant in Ω, which

contradicts the fact that ‖v‖HL = 1. �

Remark 3.2 Even if Theorem 1.3 show that the constant SH,L,M (Ω) = SH,L,C is never achieved

in the space Π(Ω) (independently of the set Ω). In the particular case Ω = R
n we can prove that

SH,L,C is achieved ’in the limit’: more precisely, if A = {Vt,x0} is as in Remark (3.1)-3, we have

G(Vt,x0)
2 → SH,L,C as t→ ∞.

Indeed,

|U(y)| ≤M min{1, |y|2−n} and |∇U(y)| ≤M min{|y|, |y|1−n},

for some M > 0. Therefore (up to renaming M line after line),

[U(y)]2s =

∫

Rn

∫

Rn

|U(x+ z)− U(x)|2

|z|n+2s
dxdz

≤

∫

Rn

∫

B1

∣∣∣∣∣∣

1∫

0

∇U(x+ tz) · zdt

∣∣∣∣∣∣

2

dxdz

|z|n+2s
+ 2

∫

Rn

∫

Rn\B1

(
|U(x+ z)|2 + |U(x)|2

) dxdz

|z|n+2s

≤M

∫

Rn

∫

B1

1∫

0

min{|x+ tz|2, |x+ tz|2(1−n)}
dxdzdt

|z|n+2s−2
+ 4

∫

Rn

∫

Rn\B1

|U(y)|2
dydz

|z|n+2s

≤M

∫

Rn

∫

B1

1∫

0

min{|y|2, |y|2(1−n)}
dydzdt

|z|n+2s−2
+M

∫

Rn

∫

Rn\B1

min{1, |y|2(2−n)}
dzdy

|z|n+2s
,
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which is finite.

Hence, U ∈ Π(Rn) and consequently Vt,x0 ∈ Π(Rn) for every t > 0 and x0 ∈ Rn. Moreover, recalling

that

Vt,x0(x) = t
2−n
2 U

(
x− x0
t

)
and ‖Vt,x0‖HL = ‖U‖HL = 1,

and by arguing as in the proof of Theorem 1.2 we have

G(Vt,x0)
2 = G(Vt,0)

2 = ‖U‖2 + t2−2s[U ]2s.

From this, since U = V1,0 is an optimal function in the classical Hardy-Littlewood- Sobolev inequal-

ity, by letting t→ 0 we obtain

G(Vt,x0)
2 → ‖U‖2 = SH,L,C .

4 Study of Critical problems

In this section, we will study the problem (1.1) and focus on the existence and nonexistence of

solutions. Throughout this section, we assume that Ω ⊆ R
n is a bounded open set. We inherit all

the definitions and notations of Sections 2 and 3.

Remark 4.1 Some remarks are in order.

1. Firstly, since Ω ⊆ R
n is bounded, we have

Π(Ω) = {u ∈ H1(Rn) : u|Ω ∈ H1
0 (Ω) and u ≡ 0 a.e. in R

n \Ω}.

As a consequence, the assumption u ∈ Π(Ω) contains the Dirichlet condition u ≡ 0 a.e. in

R
n \ Ω.

2. We also observe that Definition 1.4 is well-posed, in the sense that all the integrals in (1.7)

are finite. Indeed, if u, ϕ ∈ Π(Ω), we have
∣∣∣∣∣∣

∫

Ω

∇u∇ϕdx+
C(n, s)

2

∫

Rn

∫

Rn

(u(x)− u(y))(ϕ(x) − ϕ(y))

|x− y|N+2s
dxdy

∣∣∣∣

≤‖u‖‖ϕ‖ + [u]s[ϕ]s ≤ 2G(u)G(ϕ) <∞.

Moreover, since Π(Ω) →֒ L2∗(Rn) and p < 2∗ − 1, using classical Hardy-Littlewood-Sobolev

and Hölder’s inequality (and taking into account that u, v = 0 a.e. in R
n \ Ω) we also have

∫

Ω

∫

Ω

|u(x)|2
∗
µ |u(y)|2

∗
µ−2u(y)ϕ(y)

|x− y|µ
dxdy + λ

∫

Ω

upϕdx

≤C(N,µ)|u|22∗ |ϕ|2∗ + |λ||ϕ| 2∗

2∗−p
<∞.

Before proceeding, we want to introduce the energy functional associated to equation (1.1) defined

for any u ∈ Π(Ω) by

Jλ(u) =
1

2
G(u)2 −

1

2 · 2∗µ

∫

Ω

∫

Ω

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy −

λ

p+ 1

∫

Ω

up+1dx.
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Then using Mixed Hardy-Littewood-Sobolev inequality [5] and assumptions on µ, n and p, we

observe that Jλ ∈ C1(Π(Ω),R) and for any u, ϕ ∈ Π(Ω) one has

〈J ′
λ(u), ϕ〉 =

∫

Rn

∇u · ∇ϕdx+
C(n, s)

2

∫

Rn

∫

Rn

(u(x)− u(y))(ϕ(x) − ϕ(y))

|x− y|n+2s
dxdy

−

∫

Ω

∫

Ω

|u(x)|2
∗
µ |u(y)|2

∗
µ−2u(y)ϕ(y)

|x− y|µ
dxdy − λ

∫

Ω

upϕdx.

This shows that u is a weak solution of (1.1) if and only if u is a critical point of the functional Jλ.

With Definition 1.4 in hand, we first establish regularity and nonexistence results of the nonnegative

solution of (1.1).

4.1 Regularity of solutions and Pohožaev identity

We begin this subsection by establishing the

Proof of Theorem 1.5: We start by proving the L∞ estimate. Here we closely follow the proof

of [26, Theorem 6.2]. We choose a constant m > 1 and ρ > 0 small (an appropriate choice of ρ is

given later in the proof) so that for any x ∈ R
n, w(x) := u(x)/m ∈ Π(Ω) satisfies the following:

∫

Rn

∇w∇ϕ+
C(n, s)

2

∫

Rn

∫

Rn

(w(x) − w(y))(ϕ(x) − ϕ(y))

|x− y|n+2s

≤

∫

Ω

∫

Ω

|w(y)|2
∗
µ |w(x)|2

∗
µ−2w(x)ϕ(x)

|x− y|µ
dydx (4.1)

+λ

∫

Ω

wpϕdx, (4.2)

for every 0 ≤ ϕ ∈ Π(Ω) and |w|∗2µ = ρ. Next, for every k ∈ N, we set

Dk = 1− 2−k, wk := w −Dk, vk := w+
k := max{vk, 0} and V̄k := |vk|2∗µ .

Note that using Dominated Convergence theorem, we have

lim
k→∞

V̄k =



∫

Ω

[(w − 1)+]2
∗
dx




1
2∗

. (4.3)

We claim that

lim
k→∞

V̄k = 0. (4.4)

Then combining (4.3) and (4.4), we will obtain that u ∈ L∞(Ω). Now to prove (4.4), will show

that V̄k satisfy the following inequality for some M > 0

V̄k ≤Mθk+1, with θ ∈ (0, 1). (4.5)

To obtain (4.5), we first observe that since u ∈ Π(Ω) and Ω is bounded, wk ∈ H1
loc(R

n). Further-

more, since u ≡ 0 a.e. in R
n \ Ω, we also have

wk = w −Dk = −Dk < 0 on R
n \Ω
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and thus vk = w+
k ∈ Π(Ω). It is a simple observation that vk satisfies

|vk(x)− vk(y)|
2 ≤ (wk(x)− wk(y))(vk(x)− vk(y)) (4.6)

and ∫

RN

∇w∇vk =

∫

RN

∇wk∇vk =

∫

Rn∩{u>Dk}

|∇vk|
2 =

∫

Rn

|∇vk|
2dx. (4.7)

Now for any k ∈ N, Dk+1 > Dk and so wk+1 < wk a.e. in R
n. Also let

Ck := Dk+1/(Dk+1 −Dk) = 2k+1 − 1 for any k ∈ N.

We claim that for any k ∈ N

w < Ckvk on {vk+1 > 0}. (4.8)

To see this, let x ∈ {vk+1 > 0}. Then w(x) > Dk+1 > Dk, so vk(x) = w(x)−Dk and

Ckvk(x) = w(x) +
Dk

Dk+1 −Dk
(w(x)−Dk+1) > w(x).

Notice also that wk+1(x)−wk+1(y) = w(x)−w(y), for any x, y ∈ R
n. From this, (4.6), (4.7), (4.8)

and testing (4.1) with ϕ = vk+1, we get

G(vk+1)
2 ≤

∫

Ω

∫

Ω

|w(y)|2
∗
µ |w(x)|2

∗
µ−2w(x)vk+1(x)

|x− y|µ
dydx+ λ

∫

Ω

wpvk+1dx

=

∫

{vk+1(x)>0}

∫

Ω

|w(y)|2
∗
µ |w(x)|2

∗
µ−2w(x)vk+1(x)

|x− y|µ
dydx+ λ

∫

{vk+1(x)>0}

wpvk+1dx

≤C
2∗µ−1

k

∫

{vk+1(x)>0}

∫

Ω

|w(y)|2
∗
µ |vk(x)|

2∗µ−1vk+1(x)

|x− y|µ
dydx+ λCp

k

∫

{vk+1(x)>0}

vp+1
k dx

≤C
2∗µ−1

k

∫

{vk+1(x)>0}

∫

Ω

|w(y)|2
∗
µ |vk(x)|

2∗µ

|x− y|µ
dydx

+ λ2(k+1)p|vk|
p+1
2∗ |{vk+1(x) > 0}|κp,n , (4.9)

where κp,n = ((1− p)n+ 2(p + 1)) /(n−2). Let us consider the first integral on the right hand side

above inequality and we see that

∫

{vk+1(x)>0}

∫

Ω

|w(y)|2
∗
µ |vk(x)|

2∗µ

|x− y|µ
dydx ≤




∫

{vk+1(x)>0}

∫

{w(y)≥Dk+1}

+

∫

{vk+1(x)>0}

∫

{w(y)<Dk+1}




|w(y)|2
∗
µ |vk(x)|

2∗µ

|x− y|µ
dydx = T1 + T2 (say). (4.10)

Now using (4.8) and classical Hardy-Littlewood-Sobolev inequality, we have

T1 =

∫

{vk+1(x)>0}

∫

{w(y)≥Dk+1}

|w(y)|2
∗
µ |vk(x)|

2∗µ

|x− y|µ
dydx

≤C
2∗µ
k

∫

{vk+1(x)>0}

∫

{w(y)≥Dk+1}

|vk(y)|
2∗µ |vk(x)|

2∗µ

|x− y|µ
dydx ≤ C

2∗µ
k C(n, µ)|vk|

2·2∗µ
2∗ . (4.11)
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Next, again using Hölder’s inequality we obtain

T2 =

∫

{vk+1(x)>0}

∫

{w(y)<Dk+1}

|w(y)|2
∗
µ |vk(x)|

2∗µ

|x− y|µ
dydx

≤D
2∗µ
k+1

∫

{vk+1(x)>0}

|vk(x)|
2∗µ

∫

Ω

dy

|x− y|µ
dx

≤MD
2∗µ
k+1

∫

{vk+1(x)>0}

|vk(x)|
2∗µdx ≤MD

2∗µ
k+1|{vk+1 > 0}|

µ
2n |vk|

2∗µ
2∗ . (4.12)

Using (4.10), (4.11), (4.12) and Mixed Sobolev inequality in (4.9), we get

S|vk+1|
2
2∗ ≤G(vk+1)

2

≤C
2∗µ−1

k

(
C

2∗µ
k C(n, µ)|vk|

2·2∗µ
2∗ +MD

2∗µ
k+1|{vk+1 > 0}|

µ
2n |vk|

2∗µ
2∗

+λ2(k+1)p|vk|
p+1
2∗ |{vk+1(x) > 0}|κp,n

)
. (4.13)

Now it is easy to see that

{vk+1(x) > 0} ⊂ {vk > 2−(k+1)}.

Thus

V̄ 2∗

k = |vk|
2∗
2∗ ≥

∫

{vk>2−(k+1)}

v2
∗

k ≥ 2−2∗(k+1)|{vk+1 > 0}|. (4.14)

Now if λ > 0, using (4.14), we conclude from (4.13) that

S|vk+1|
2
2∗ ≤C

2∗µ−1

k

(
C

2∗µ
k C(n, µ)|vk|

2·2∗µ
2∗ +MD

2∗µ
k+12

µ2∗(k+1)
2n |vk|

2∗
2∗

+λ2(k+1)(p+2∗κp,n)|vk|
2∗
2∗

)

≤2(2
∗
µ−1)(k+1)

(
22

∗
µ(k+1)C(n, µ)|vk|

2·2∗µ
2∗ +M2

µ2∗(k+1)
2n |vk|

2∗

2∗

+λ2(k+1)(p+2∗κp,n)|vk|
2∗

2∗

)

≤2(2
∗
µ−1)(k+1) max

{
22

∗
µ(k+1)C(n, µ),M2

µ2∗(k+1)
2n

+λ2(k+1)(p+2∗κp,n)
}
×
(
|vk|

2·2∗µ
2∗ + |vk|

2∗

2∗

)
. (4.15)

Otherwise if λ ≤ 0, then using (4.13) and (4.14) we have

S|vn+1|
2
2∗ ≤C

2∗µ−1
n

(
C

2∗µ
n C(N,µ)|vn|

2·2∗µ
2∗ +MD

2∗µ
n+12

µ2∗(n+1)
2N |vn|

2∗

2∗

)

≤2(2
∗
µ−1)(n+1)

(
22

∗
µ(n+1)C(N,µ)|vn|

2·2∗µ
2∗ +M2

µ2∗(n+1)
2N |vn|

2∗
2∗

)

≤2(2
∗
µ−1)(n+1)max

{
22

∗
µ(n+1)C(N,µ),M2

µ2∗(n+1)
2N

}
×
(
|vn|

2·2∗µ
2∗ + |vn|

2∗

2∗

)
. (4.16)
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Therefore using definition of V̄k in (4.15) and (4.16), we get

V̄k+1 ≤ Rk+1

(
V̄

2∗µ
k + V̄

2∗

2
k

)
, (4.17)

where

R =





(
1 +

1

S

(
2(2

∗
µ−1)max

{
22

∗
µC(n, µ),M2

µ
2n , 2(p+κp,n)

})1/2)
if λ > 0,

(
1 +

1

S

(
2(2

∗
µ−1)max

{
22

∗
µC(n, µ),M2

µ
2n

})1/2)
if λ ≤ 0.

Note that R > 1 and also 2∗µ > 1.

Now we assume δ > 0 is so small that

δ
2∗

2
−1 <

1
(
22

∗
µR
) 1

(2∗/2)−1

. (4.18)

We also fix θ ∈


δ 2∗

2
−1,

1
(
22

∗
µR
) 1

(2∗/2)−1


. Since R > 1 and 22

∗
/2 > 1, we get θ ∈ (0, 1). Moreover,

δ
2∗

2
−1 ≤ θ and 22

∗
µRθ

2∗

2
−1 ≤ 1. (4.19)

Now we give our choice of ρ, namely we choose ρ = δθ. We show that V̄k satisfies (4.5) with

M = 2δ. We shall apply mathematical induction to prove our claim. First note that

V̄0 = |w+|2∗ ≤ |w|2∗ = ρ ≤ bδ ≤ 2ρ = 2δθ,

which is (4.5) with k = 1. Let us now suppose that (4.5) is true for k and let us prove it for k + 1.

Using (4.17) and (4.19), we have

V̄k+1 ≤R
k+1

(
V̄

2∗µ
k + V̄

2∗

2
k

)
≤ 22

∗
µ+1Rk+1(δθk+1)

2∗

2

≤2δ
(
22

∗
µRθ

2∗

2
−1
)k+1

δ
2∗

2
−1θk+1 ≤ 2δθk+2.

This completes the induction and so our claim (4.4) holds and thus u ∈ L∞(Ω). Further since

u ≡ 0 on R
n \Ω, u ∈ L∞(Rn). Next we show that u ∈ C1,α(Ω̄) for some α ∈ (0, 1). For this, noting

that since 0 < µ < n and Ω is bounded, we have

∣∣∣∣∣∣

∫

Ω

|u(y)|2
∗
µ

|x− y|µ
dy

∣∣∣∣∣∣
≤|u|

2∗µ
∞




∫

Ω∩{|x−y|<1}

dy

|x− y|µ
+

∫

Ω∩{|x−y|≥1}

dy

|x− y|µ




≤|u|
2∗µ
∞




∫

Ω∩{r<1}

rn−1−µ + |Ω|


 <∞.

Hence the right hand side of (1.1) is in L∞(Ω). Now if s ∈ (0, 1/2] we use [34, Theorem 1.4] and

conclude that u ∈W 2,p(Ω) for every p ∈ (1,∞) and so u ∈ C1,ν(Ω̄) for any ν ∈ (0, 1). On the other

hand if s ∈ (1/2, 1) using [9, Theorem 2.7] we conclude that u ∈ W 2,p(Ω) for every p ∈
(
1, n

2s−1

)

and so u ∈ C1,ν(Ω̄) for ν ∈ (0, 2 − 2s). Next according to Riesz potential regularity we show that
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v =

∫

Ω

|u(y)|2
∗
µ

|x− y|µ
dy ∈ C0,β(Ω̄) with β < min{s, n − µ}. Let γ ∈ (0, n) such that µ = n − γ. Note

that since u ∈ L∞(Rn) and u ≡ 0 in R
n \ Ω, we have |u|2

∗
µ , v ∈ L∞(Ω). Using [30, Proposition 1.4

(iii)] (see also [33]), we get v ∈ C0,β(Ω̄) with β < min{s, γ}. Thus we see that right hand side of

(1.1) is in C0,β(Ω̄). Now using C2,α regularity of ∂Ω and applying [9, Theorem 2.8], we conclude

that u ∈ C2,β̃(Ω̄) for β̃ ≤ min{β, α}. �

Now we will make use of Theorem 1.5 and complete the

Proof of Proposition 1.6: Suppose that there exists x0 ∈ Ω such that u(x0) = 0. Then since

u ≥ 0 in Ω, u = infx∈Ω̄ u(x). Then since u ∈ C2,α(Ω̄), −∆u(x0) ≤ 0. Again since u is nontrivial

and continuous, u > 0 on Br(y0) for some y0 ∈ R
n and r > 0. From here, it is easy to conclude that

(−∆)su(x0) < 0 and hence left hand side of (1.1) is strictly negative at x0. This is a contradiction

since the right hand side of (1.1) evaluated at x0 is zero. �

Next we prove the Pohožaev identity (1.8) and give the

Proof of Proposition 1.7: Since u is a solution it satisfies (1.1) and from Theorem 1.5, u ∈

C2,α(Ω̄) for some α ∈ (0, 1). Multiplying (1.1) by (x · ∇u) and integrating, we get

−

∫

Ω

(x · ∇u)∆u+

∫

Ω

(x · ∇u)(−∆)su =

∫

Ω

(x · ∇u)



∫

Ω

|u(y)|2
∗
µ

|x− y|µ


 |u|2

∗
µ−1dx

+ λ

∫

Ω

(x · ∇u)updx. (4.20)

Since u ∈ C2,α(Ω̄) ∩ C1,α(Ω̄) for α ∈ (0, 1) we have

−

∫

Ω

∆u(∇u · x)dx =
2− n

2

∫

Ω

|∇u|2 −
1

2

∫

∂Ω

(
∂u

∂ν

)2

ν(x) · xdσ. (4.21)

Now for x ∈ Ω̄, define δ(x) = dist(x, ∂Ω). Then we see that u/δ ∈ C0,α(Ω̄) for some α ∈ (0, 1).

Indeed, the regularity of u/δ is the same as that of
∂u

∂ν
. Now since u ∈ C1,α(Ω̄) for some α ∈ (0, 1)

and Ω is C1,1,
∂u

∂ν
∈ C0,α(Ω̄) for some α ∈ (0, 1) and so is u/δ. Thus we are entitled to use Theorems

1.4 and 1.6 of [29] and get
∫

Ω

(x · ∇u)(−∆)su =
2s− n

2

∫

Ω

u(−∆)sudx−
Γ(1 + s)2

2

∫

∂Ω

( u
δs

)2
(ν(x).x)dσ. (4.22)

Using [18, Proposition 6.2], we also have
∫

Ω

(x · ∇u(x))

∫

Ω

|u(y)|2
∗
µ

|x− y|µ
dy|u(x)|2

∗
µ−1dx =

µ− 2n

2.2∗µ

∫

Ω

∫

Ω

|u(y)|2
∗
µ |u(x)|2

∗
µ

|x− y|µ
dxdy. (4.23)

Lastly,
∫

Ω

(x · ∇u)updx =

∫

Ω

x · ∇

(
1

p+ 1
up+1

)
dx = −

n

p+ 1

∫

Ω

up+1dx. (4.24)

Substituting (4.21), (4.22), (4.23) and (4.24) in (4.20) we obtain (1.8). �
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Now we can prove Theorem 1.8.

Proof of Theorem 1.8: Let u be a nonnegative weak solution of (1.1). Then u satisfies

‖u‖2 + [u]2s =

∫

Ω

∫

Ω

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy + λ

∫

Ω

|u|p+1dx.

Using this in (1.8), we have

(s− 1)[u]2s −
1

2

∫

∂Ω

(
∂u

∂ν

)2

ν(x).xdσ −
Γ(1 + s)2

2

∫

∂Ω

( u
δs

)2
(ν(x).x)dσ

=− λ

(
n

(
1

p+ 1
−

1

2

)
+ 1

)∫

Ω

|u|p+1.

Now using the facts that Ω is strictly star shaped and (1.9), we have u ≡ 0. This is a contradiction

to the fact that u is nontrivial. �

Finally we complete this subsection by giving the

Proof of Theorem 1.10: Let s ∈ (0, 3/4). We will show that (−∆)su ∈ C0,β(Ω) for some

β ∈ (0, 1). Firstly, if s ∈ (0, 12 ], using that u ∈ C1,α(Ω̄) and u ≡ 0 in R
n \ Ω, we have that

u ∈ C0,1(Rn). Let K ⊂ Ω be a compact set and let η be a cut-off function, that is, η ∈ C∞
0 (Ω)

such that η(x) ∈ [0, 1] for every x ∈ Ω, suppη ⊂ Ω, and η(x) = 1 for every x ∈ K and suppose

v = uη. Since u ≡ 0 in R
n \Ω, we conclude that v ∈ C1,ν(Rn), with any ν ∈ (0, 1) if s ≤ 1

2 and any

ν ∈ (0, 2 − 2s) if s > 1
2 . Then using [32, Proposition 2.6-(ii)], we obtain (−∆)sv ∈ C0,β(Rn) with

β ∈ (0, 1) if s ≤ 1
2 and β ∈ (0, 3 − 4s) if s > 1

2 . Also for any x ∈ K we have

(−∆)su(x) = (−∆)sv(x) +

∫

Rn

u(y)(1 − η(y))

|x− y|n+2s
dy

and since the integral on the right hand side of above equation is smooth in K, we conclude that

u ∈ C0,β(K) and since the choice of K is arbitral u ∈ C0,β
loc (Ω) with β as above. Finally by elliptic

regularity theory, we get u ∈ C2,β
loc (Ω).

Next we prove the Pohožaev identity (1.8). First note that (4.22), (4.23) and (4.24) holds in this

case also. Thus we only need to prove (4.21). For this, let Ω̃ ⊂⊂ Ω be relatively compact. Then

since u ∈ C2,α
loc (Ω), we have Now using by parts, we have

−

∫

Ω̃

∆u(∇u · x)dx =

∫

Ω̃

∇u∇(∇u · x)dx−

∫

∂Ω̃

∂u

∂ν
∇u(x) · xdσ. (4.25)

Since u ∈W 2,2(Ω)∩C1,α(Ω̄), we obtain by taking the limit Ω̃ → Ω in (4.25) and using Dominated

convergence theorem that

−

∫

Ω

∆u(∇u · x)dx =

∫

Ω

∇u∇(∇u · x)dx−

∫

∂Ω

∂u

∂ν
∇u(x) · xdσ. (4.26)

We have

∂

∂xj
(∇u · x) =

∂

∂xj

(
n∑

i=1

∂u

∂xi
xi

)
=

n∑

i=1

∂2u

∂xj∂xi
xi +

∂u

∂xj
,
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so that

∇u · ∇(∇u · x) =
n∑

j=1

∂u

∂xj

(
n∑

i=1

∂2u

∂xj∂xi
xi +

∂u

∂xj

)

=

n∑

i=1

∂

∂xi


1

2

n∑

j=1

(
∂u

∂xj

)2

xi + |∇u|2

=
1

2
∇(|∇u|2) · x+ |∇u|2.

Thus
∫

Ω

∇u∇(∇u · x)dx =

∫

Ω

1

2
∇(|∇u|2) · x+ |∇u|2

=

∫

Ω

|∇u|2 −
n

2

∫

Ω

|∇u|2 +
1

2

∫

∂Ω

|∇u|2ν(x) · xdσ. (4.27)

Now we notice that since u = 0 on ∂Ω, we have ∇u(x) = ∂u
∂ν (x).ν(x) for every x ∈ ∂Ω, so that

|∇u| =
∣∣∂u
∂ν

∣∣ and ∇u ·x =
∂u

∂ν
ν(x) ·x on ∂Ω. Taking this into account and inserting (4.27) in (4.26),

we have (4.21). �

From now on we assume that λ > 0. Under this assumption and taking into account all the

discussion carried out so far, we can start our study of the solvability of problem (1.1). To this

end, since the linear case p = 1 and the superlinear case p > 1 present some significant differences,

we treat these cases separately.

4.2 The linear case p = 1

We begin by studying the solvability of (1.1) in the linear case, that is, p = 1. As we shall see, the

existence of solutions to problem (1.1) for a given λ > 0 is related to the first Dirichlet eigenvalues

of (−∆)s and of L, which are simple and we recall their characterization below:

Definition 4.2 Let Ω be a bounded open set. We define

1. the first Dirichlet eigenvalue of (−∆)s in Ω as follows

λ1,s := inf{[u]2s : u ∈ C∞
0 (Ω) and |u|2 = 1}; (4.28)

2. the first Dirichlet eigenvalue of L in Ω as

λ1 := inf{G(u)2 : u ∈ C∞
0 (Ω) and |u|2 = 1}. (4.29)

Before starting the proof of Theorem 1.11, we recall (for the sake of completeness) the main

properties of λ1,s and λ1.

Remark 4.3 We recall that since Ω is bounded both λ1,s and λ1 are achieved in the space Π(Ω).

This means

there exists v0 ∈ Π(Ω) : |v0|2 = 1 and [v0]
2
s = λ1,s > 0,
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and there exists w0 ∈ Π(Ω) : |w0|2 = 1 and G(w0)
2 = λ1 > 0.

Also the above functions v0 and w0 can be chosen to be nonnegative and then using regularity

results and maximum principle, we have v0, w0 are strictly positive in Ω. Lastly, since v0 and w0

are constrained minimizers of u 7→ [u]2s and u 7→ G(u)2 respectively, by the Lagrange Multiplier rule

we easily see that
∫

Rn

∫

Rn

(v0(x)− v0(y))(ϕ(x) − ϕ(y))

|x− y|N+2s
dxdy = λ1,s

∫

Ω

v0ϕ for every ϕ ∈ Π(Ω),

and

∫

Ω

∇w0∇ϕdx+

∫

Rn

∫

Rn

(w0(x)− w0(y))(ϕ(x) − ϕ(y))

|x− y|N+2s
dxdy

=λ1

∫

Ω

w0ϕdx for all ϕ ∈ Π(Ω).

We now begin the proof of Theorem 1.11. We shall give the proof through several independent

results. To begin with, we prove a lemma linking the existence of solutions to (1.1) with the

existence of constrained minimizer for a suitable functional. To this end, for any u ∈ Π(Ω), we

define

Pλ(u) := G(u)2 − λ|u|22. (4.30)

We also define the manifold V(Ω) := Π(Ω) ∩H(Ω), where

H(Ω) := {u ∈ L2∗(Rn) : ‖u‖HL = 1}.

Note that the above set is well defined by Hardy-littlewood Inequality (see Proposition 1.1). Then

we have the following lemma.

Lemma 4.4 For every λ > 0, we define

SH,L(λ) := inf
u∈V(Ω)

Pλ(u).

We assume that SH,L(λ) > 0 and that SH,L(λ) is achieved, that is, there exists some function

ψ ∈ V(Ω) such that Pλ(ψ) = SH,L(λ).

Then, there exists a solution to (1.1).

Before giving the proof of Lemma 4.4, we list in the next remark some properties of the number

SH,L(λ) which will be used later.

Remark 4.5 From the definition of SH,L(λ) we easily infer that

(i) SH,L(λ) ≤ SH,L,C := inf
u∈C∞

0 (Rn)\{0}

‖u‖2

(
∫

Rn

∫

Rn

|u(x)|
2∗µ |u(y)|

2∗µ

|x−y|µ
dxdy

) 1
2∗µ

for every λ > 0;

(ii) SH,L(λ) ≤ SH,L(ν) for every 0 < ν ≤ λ.

Also, owing to the definition of λ1 in (4.29) (and recalling that λ1 is achieved in the space Π(Ω)),

it is easy to see that

SH,L(λ) ≥ 0 ⇐⇒ 0 < λ ≤ λ1.



21

We are now ready to give the proof of Lemma 4.4.

Proof of Lemma 4.4 From assumptions, we know that there exists ψ ∈ V(Ω) a constrained

minimizer for the functional Pλ, that is,

Pλ(ψ) = SH,L(λ).

Since Pλ(|ψ|) ≤ Pλ(ψ), without loss of generality we assume that ψ ≥ 0 a.e. in Ω. Now using the

Lagrange Multiplier Rule, there exists ν ∈ R such that
∫

Ω

∇ψ∇ϕ+

∫

Rn

∫

Rn

(ψ(x)− ψ(y))(ϕ(x) − ϕ(y))

|x− y|n+2s
dxdy

=ν

∫

Ω

∫

Ω

|ψ(y)|2
∗
µ |ψ(x)|2

∗
µ−2ψ(x)ϕ(x)

|x− y|µ
dxdy + λ

∫

Ω

ψϕ for all ϕ ∈ Π(Ω). (4.31)

Using ψ as test function in (4.31), we get

ν = ν‖ψ‖
2∗µ
HL = G(ψ)2 − λ‖ψ‖22 = Pλ(ψ) = SH,L(λ) > 0.

As a consequence, setting u = SH,L(λ)
(n−2)

2n+4−2µψ, we see that u ≥ 0 a.e. in Ω and for every ϕ ∈ Π(Ω)

using (4.31) we have
∫

Ω

∇u∇ϕ+

∫

Rn

∫

Rn

(u(x)− u(y))(ϕ(x) − ϕ(y))

|x− y|n+2s
dxdy

=

∫

Ω

∫

Ω

|u(y)|2
∗
µ |u(x)|2

∗
µ−2u(x)ϕ(x)

|x− y|µ
dxdy + λ

∫

Ω

uϕ.

This completes the proof. �

As we see in Lemma 4.4, sign of the real number SH,L(λ) plays an important role to study the

solvability of problem (1.1). The following result combined with Remark 4.5 provide further infor-

mations in this regard:

Lemma 4.6 For every 0 < λ ≤ λ1,s, we have

SH,L(λ) = SH,L,C > 0.

Proof. Let λ ∈ (0, λ1,s) be given. Using Remark 4.5, we already know that SH,L(λ) ≤ SH,L,C .

Now to prove the reverse inequality, using the definition of λ1,s in (4.28), for any u ∈ C∞
0 (Ω)∩H(Ω),

we have

Pλ(u) = ‖u‖2 + ([u]2s − λ|u|22) ≥ ‖u‖2 + (λ1,s − λ)|u|22 ≥ ‖u‖2.

As a consequence, since C∞
0 (Ω) is dense in Π(Ω), we obtain

SH,L(λ) = inf{Pλ(u) : u ∈ C∞
0 (Ω) ∩H(Ω)}

≥ inf{‖u‖2 : u ∈ C∞
0 (Ω) ∩H(Ω)} = SH,L,C .

Thus we get the desired result. �



22

By combining Lemma 4.6 and Remark 4.5 we have the following

1. SH,L(λ) = SH,L,C for every 0 < λ ≤ λ1,s;

2. SH,L(λ) ≥ 0 for every 0 < λ ≤ λ1;

3. SH,L(λ) < 0 for every λ > λ1.

Lemma 4.7 The mapping λ 7→ SH,L(λ) is continuous from left on (0,∞).

Proof. To prove the left continuity, let λ0 > 0 and ǫ > 0 be given. By definition of SH,L(λ0)

there exists v = vǫ,λ0 ∈ V(Ω) such that

SH,L(λ0) ≤ Pλ0(v) < SH,L(λ0) +
ǫ

2
.

From this, using the monotonicity of SH,L(·), for every λ < λ0 we obtain

0 < SH,L(λ)− SH,L(λ0) ≤Pλ(v)− SH,L(λ0) = (Pλ0(v) − SH,L(λ0)) + (λ0 − λ)|v|22

<
ǫ

2
+ (λ0 − λ)|v|22.

As a consequence, setting δǫ := ǫ/(2|v|22), we conclude that

0 < SH,L(λ)− SH,L(λ0) < ǫ for every λ0 − δǫ < λ ≤ λ0.

This proves that SH,L(·) is continuous from the left at λ0. �

In the light of results obtained so far, we can prove Theorem 1.11.

Proof of Theorem 1.11: To begin with, we define

λ∗ := sup{λ > 0 : SH,L(µ) = SH,L,C for all 0 < µ < λ}.

On account of Lemma 4.6, we see that λ1,s ≤ λ∗. Again since SH,L(λ1) = 0 (see Remark 4.3) and

using Lemma 4.7, we conclude that λ∗ ∈ [λ1,s, λ1). We treat the following three cases separately.

Case 1: 0 < λ ≤ λ1,s. Arguing by contradiction, let us suppose there exists a solution to problem

(1.1) such that u ∈ B. Now set w =
u

‖u‖HL
. Then we have

Pλ(w) =
1

‖u‖2HL

Pλ(u) =
1

‖u‖2HL

(G(u)2 − λ|u|22) = ‖u‖
2∗µ−2

HL ≤ SH,L,C .

As a consequence of Lemma 4.6, we obtain

Pλ(w) ≤ SH,L,C = SH,L(λ).

This implies that SH,L(λ) is achieved at w. Now using λ ≤ λ1,s, we have

SH,L,C ≤ ‖w‖2 = Pλ(w)− ([w]2s − λ|w|22) ≤ Pλ(w) = SH,L,C

which shows that SH,L,C is achieved.

On the other hand, since Ω is a bounded domain we know that SH,L,C is never achieved and so we

have a contradiction.
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Case 2: λ∗ < λ < λ1. Then owing to the definition of λ∗, we can find 0 < µ < λ such that

SH,L(µ) < SH,L,C and so from Remark 4.5-(ii) SH,L(λ) < SH,L,C . Then noting that Brezis Lieb

Lemma type hold for ‖ · ‖HL (see [18, Lemma 2.2]) and following proof of [11, Lemma 1.2] we see

that SH,L(λ) is achieved. Next we show that SH,L(λ) > 0. Now after renormalization of u, we have

SH,L(λ) = Pλ(u). In particular, since λ < λ1, we obtain

SH,L(λ) = |u|22

[
G(u)2

|u|22
− λ

]
≥ |u|22(λ1 − λ) > 0.

Now we have proved that SH,L(λ) is strictly positive and is achieved, we are then entitled to apply

Lemma 4.4, ensuring there exists a solution to (1.1).

Case 3: λ ≥ λ1. Arguing by contradiction, let us assume that there exists a solution to (1.1).

Then by Maximum principle (see Proposition 1.6), we have u > 0 a.e. in Ω. By Remark 4.3 we

know there exists w0 ∈ Π(Ω) such that w0 > 0 a.e. in Ω and

∫

Ω

∇w0∇ϕdx+

∫

Rn

∫

Rn

(w0(x)− w0(y))(ϕ(x) − ϕ(y))

|x− y|N+2s
dxdy

=λ1

∫

Ω

w0ϕdx for all ϕ ∈ Π(Ω).

Taking ϕ = u above, we get

λ1

∫

Ω

w0u =

∫

Ω

∇w0∇ϕdx+

∫

Rn

∫

Rn

(w0(x)− w0(y))(ϕ(x) − ϕ(y))

|x− y|N+2s

=

∫

Ω

∫

Ω

|w0(y)|
2∗µ |w0(x)|

2∗µ−2w0(x)u(x)

|x− y|µ
dydx+ λ

∫

Ω

uw0dx

>λ

∫

Ω

uw0dx

but this is a contradiction to λ > λ1. This concludes the proof. �

4.3 The superlinear case

In this subsection we study the case 1 < p < 2∗ − 1 and prove Theorem 1.12. We will employ

Mountain Pass Theorem to obtain the existence of a solution. As in the purely local case (see [17])

the main difficulty to apply Mountain Pass Theorem consists in proving the validity of a (PS)c

condition at a level c ∈ R. Precisely, we have to prove that the Palais Smale condition holds for

any c strictly below the Mountain Pass first critical level (given in Lemma (4.10)).

In the next lemma, we show that Jλ possesses the Mountain Pass geometry.

Lemma 4.8 If 1 < p < 2∗ − 1 and λ > 0, then the functional Jλ satisfies the following properties:

1. There exists α, σ > 0 such that Jλ(u) ≥ α for G(u) = σ.

2. There exists e ∈ Π(Ω) with G(e) > σ such that Jλ(e) < 0.

Proof. The proof is standard and is thus omitted. �
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Lemma 4.9 Let 1 < p < 2∗ − 1, λ > 0. If {uk}k∈N is a (PS)c sequence of Jλ, then {uk} is

bounded. Let u0 ∈ Π(Ω) be the weak limit of {uk}k∈N, then u0 is a weak solution of problem (1.1).

Moreover, Jλ(u0) ≥ 0.

Proof. First note that Jλ(|u|) ≤ Jλ(u), u ∈ Π(Ω), without loss generality we assume that {uk}k∈N

is a sequence of nonnegative functions. Since {uk}k∈N is a (PS)c sequence, we can easily findM > 0

such that

|Jλ(uk)| ≤M, |〈J ′
λ(uk), uk/G(uk)〉| ≤M.

From here it is easy standard to show that {uk} is bounded in Π(Ω) (see for instance [17, Lemma

2.2]). Since Π(Ω) is a Hilbert space, we can assume that up to a subsequence, there exists v ∈ Π(Ω),

v ≥ 0 a.e. in Ω such uk ⇀ v weakly in Π(Ω) and uk → v a.e. in Ω. Rest of the proof follows

similarly as the proof of [17, Lemma 2.2]. �

In the next lemma, we give the threshold value below which the energy functional J+
λ satisfies the

(PS)c condition. This will play an important role in applying the critical point theorems.

Lemma 4.10 Assume that 1 < q < 2∗ − 1 and λ > 0. If {uk}k∈N is a (PS)c sequence of Jλ with

c <
n+ 2− µ

4n− 2µ
S

2n−µ
n+2−µ

H,L,C , (4.32)

then {uk}k∈N has a convergent subsequence.

Proof. The proof is similar as the proof of [17, Lemma 2.4]. �

Lemma 4.11 There exists wǫ such that

sup
s≥0

Jλ(swǫ) <
n+ 2− µ

4n− 2µ
S

2n−µ
n−µ+2

H,L,C (4.33)

provided that either

1. n > max
{
min

{
2(p+3)
p+1 , 2 + µ

p+1 , 2
(
1 + 2−2s

p−1

)}
, 2(p+1)

p

}
and λ > 0, or

2. n ≤ max
{
min

{
2(p+3)
p+1 , 2 + µ

p+1 , 2
(
1 + 2−2s

p−1

)}
, 2(p+1)

p

}
and λ is sufficiently large.

Proof. Let V (x) =
[n(n− 2)]

n−2
4

(1 + |x|2)
n−2
2

. Then we know from [18] that V is a minimizer of SH,L,C .

Assume that Bδ ⊂ Ω ⊂ B2δ and let η ∈ C∞
0 (Ω) be such that 0 ≤ η ≤ 1, η(x) = 1 in Bδ and

η(x) = 0 in R
n \Ω. We define, for ǫ > 0,

Vǫ(x) := ǫ
2−n
2 V

(x
ǫ

)
and vǫ(x) := η(x)Vǫ(x). (4.34)

Then from [5, p22] and [17, Lemma 2.5], we know that as ǫ→ 0

‖vǫ‖
2 = C(n, µ)

n−2
2n−µ

·n
2 S

n
2
H,L,C +O(ǫn−2), (4.35)

∫

Ω

∫

Ω

|vǫ(x)|
2∗µ |vǫ(x)|

2∗µ

|x− y|µ
≥ C(n, µ)

n
2 S

2n−µ
2

H,L,C −O(ǫn−
µ
2 ), (4.36)
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and defining νs,n = min{n− 2, 2 − 2s}

[vǫ]s = O(ǫνs,n). (4.37)

Now we argue as in [17] and consider the following two cases:

Case 1. n > max
{
min

{
2(p+3)
p+1 , 2 + µ

p+1 , 2
(
1 + 2−2s

p−1

)}
, 2(p+1)

p

}
.

First by the proof of [16, Lemma 4.1], since p > 1 and n > 2(p+1)
p , we know n < (n− 2)(p+1) and

then as ǫ→ 0

|vǫ|
p+1
p+1 = O(ǫn−

(n−2)(p+1)
2 ) +O(ǫ

(n−2)(p+1)
2 ) = O(ǫn−

(n−2)(p+1)
2 ). (4.38)

Using the estimates in (4.35), (4.36), (4.37) and (4.38), we have

Jλ(svǫ) =
s2

2
G(vǫ)

2 −
λsp+1

p+ 1
|vǫ|

p+1
p+1 −

s2·2
∗
µ

2 · 2∗µ
‖vǫ‖HL

≤
s2

2

(
C(n, µ)

n−2
2n−µ

·n
2 S

n
2
H,L,C +O(ǫνs,n)

)
−
λsp+1

p+ 1
O(ǫn−

(n−2)(p+1)
2 )

−
s2·2

∗
µ

2 · 2∗µ

(
C(n, µ)

n
2 S

n
2
H,L,C −O(ǫn−

µ
2 )
)

:=f(s).

Note that f(s) → −∞ as s → ∞ and f is increasing near 0. Thus there exists sǫ > 0 such that

sup
s>0

f(s) is achieved at some sǫ. Then clearly sǫ satisfies the following

sǫ <


C(n, µ)

n−2
2n−µ

·n
2 S

n
2
H,L,C +O(ǫνs,n)

C(n, µ)
n
2 S

2n−µ
2

H,L,C −O(ǫn−
µ
2 )




1
2·2∗µ−2

:= SH,L,C(ǫ)

and it is easy to see that there exists s0 > 0 independent of ǫ such that for all ǫ > 0 small enough

sǫ > s0. Notice that the function

s→
s2

2

(
C(n, µ)

n−2
2n−µ

·n
2 S

2n−µ
2

H,L,C +O(ǫνs,n)

)
−
s2·2

∗
µ

2 · 2∗µ

(
C(n, µ)

n
2 S

2n−µ
2

H,L,C −O(ǫn−
µ
2 )

)

is increasing on [0, SH,L,C(ǫ)], we have

max
s≥0

Jλ(svǫ) ≤f(sǫ)

=
s2ǫ
2

(
C(n, µ)

n−2
2n−µ

·n
2 S

n
2
H,L,C +O(ǫνs,n)

)
−
s
2·2∗µ
ǫ

2 · 2∗µ

(
C(n, µ)

n
2 S

n
2
H,L,C −O(ǫn−

µ
2 )
)

−O(ǫn−
(n−2)(p+1)

2 )

≤
S2
H,L,C(ǫ)

2

(
C(n, µ)

n−2
2n−µ

·n
2 S

n
2
H,L,C +O(ǫνs,n)

)

−
S
2·2∗µ
H,L,C(ǫ)

2 · 2∗µ

(
C(n, µ)

n
2 S

n
2
H,L,C −O(ǫn−

µ
2 )
)
−O(ǫn−

(n−2)(p+1)
2 )
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=
n+ 2− µ

4n− 2µ




C(n, µ)
n−2
2n−µ

·n
2 S

n
2
H,L,C +O(ǫνs,n)

(
C(n, µ)

n
2 S

2n−µ
2

H,L,C −O(ǫn−
µ
2 )

) n−2
2n−µ




2n−µ
n+2−µ

−O(ǫn−
(n−2)(p+1)

2 )

≤
n+ 2− µ

4n− 2µ
S

2n−µ
n+2−µ

H,L,C +O(ǫmin{νs,n,n−
µ
2
})−O(ǫn−

(n−2)(p+1)
2 )

≤
n+ 2− µ

4n− 2µ
S

2n−µ
n+2−µ

H,L,C ,

since s0 < sǫ < SH,L,C(ǫ), (4.38) and n > min
{

2(p+3)
p+1 , 2 + µ

p+1 , 2
(
1 + 2−2s

p−1

)}
.

Case 2. n ≤ max
{
min

{
2(p+3)
p+1 , 2 + µ

p+1 , 2
(
1 + 2−2s

p−1

)}
, 2(p+1)

p

}
.

Again since for any fixed ǫ in (4.34) Jλ(svǫ) → −∞ as s → +∞, we have that max
s≥0

Jλ(svǫ) is

achieved at some sλ,ǫ and sλ,ǫ satisfies

sλ,ǫG(vǫ)
2 = λspλ,ǫ|vǫ|

p+1
p+1 + s

2·2∗µ−1

λ,ǫ ‖vǫ‖
2·2∗µ
HL ,

which implies

G(vǫ)
2 = λsp−1

λ,ǫ |vǫ|
p+1
p+1 + s

2·2∗µ−2

λ,ǫ ‖vǫ‖
2·2∗µ
HL .

Thus sλ,ǫ → 0 as λ→ ∞. Then

max
s≥0

Jλ(svǫ) =
s2λ,ǫ
2

G(vǫ)
2 −

λsp+1
λ,ǫ

p+ 1
|vǫ|

p+1
p+1 −

s
2·2∗µ
λ,ǫ

2 · 2∗µ
‖vǫ‖

2·2∗µ
HL → 0

as λ→ ∞, which easily yields the desired conclusion for this case. �

Proof of Theorem 1.12 Combining Lemmata 4.8, 4.9, 4.10, 4.11 and using Mountain Pass Theo-

rem without the (PS) condition, we conclude that J+
λ has a critical value c ∈

(
0,
n+ 2− µ

4n− 2µ
S

2n−µ
n−µ+2

H,L,C

)

and thus the problem (1.1) has a nontrivial solution. �
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