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Analytical integration of the heater and sensor 3ω signals of anisotropic bulk
materials and thin films

Jose Ordonez-Miranda,1, 2, a) Laurent Jalabert,1, 2 Yunhui Wu,2 Sebastian Volz,1, 2 and Masahiro Nomura2, 1
1)LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo, 153-8505,
Japan
2)Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505,
Japan

(Dated: 29 April 2023)

We derive and analytically integrate the models for the heater and sensor 3ω signals of the temperature field
of anisotropic bulk materials and thin films. This integration is done by using the Fourier transform and
expressing the frequency dependence of temperature in terms of the modified Bessel and Struve functions,
which are well-implemented in major computation softwares. The effects of the radiative losses and inter-
face thermal resistance are also evaluated for different frequency regimes. Further, by fitting the 3ω model
integrated over the heater and sensor widths to experimental data recorded up to 31 kHz, the thermal con-
ductivity and thermal diffusivity of a quartz glass wafer are determined for temperatures ranging from 300
to 800 K. The obtained results show that the usual log-linear approximation can induce an uncertainty of
about 5% on the thermal conductivity values. The exact integrated models are thus expected to facilitate the
accurate determination of the thermal conductivity and thermal diffusivity of anisotropic materials through
a wide spectrum of modulation frequencies and without time-consuming numerical integration.

I. INTRODUCTION

The first concept of the 3ω method was developed in
1910 by Corbino1, who applied an alternating electri-
cal current to measure the thermal diffusivity of metal
filaments. In early 1987, Cahill and Pohl2 and Birge
and Nagel3 applied this modulated electrical excitation
to generate heat and measure the thermal conductivity of
amorphous solids and the specific heat of liquids, respec-
tively. In 1990, Cahill4 further extended its application
to measure the thermal conductivity of dielectric solids
through the development of the standard 3ω method
that is widely applied nowadays. The method takes its
name from the measured voltage oscillating with a fre-
quency 3ω due to the circulation of an electrical current
modulated with a frequency ω that heats up the sam-
ple material through Joule heating5. This well-mastered
electrical heating represents one of the main advantages
of the 3ω method, which has been adapted to measure
the thermal conductivity of thin films6–10, free-standing
membranes11,12, nanowires13, and nanotubes14.

The modulated electrical heating for the 3ω method
generates thermal waves, whose propagation distance in-
creases as the modulation frequency decreases. This fre-
quency dependence allows probing the material prop-
erties at different penetration depths by recording the
real and imaginary parts (or amplitude and phase) of
the temperature fluctuations as functions of frequency.
The fitting of these 3ω signals to a proper model deter-
mines the thermal conductivity and thermal diffussivity
of solids. For bulk materials and thin films, the 3ω mod-
els are expressed in terms of integrals or approximate ex-
pressions valid for either low or high frequencies4,7,15–22.

a)Corresponding author: jose.ordonez@cnrs.fr

A semi-analytical solution of the 3ω model was also de-
rived by Gurrum et al.23, who showed that the heater
thermal conduction could be particularly important for
anisotropic materials. More recently, Duquesne et al.24

managed to integrate the 3ω model for a semi-infinite
isotropic material and expressed the temperature field
in terms of the Meijer-G function. They24 showed that
this function is related to a double integral, which al-
lowed them to rigorously derive, for the first time, the
low- and high-frequency regimes of the temperature field
involving a fundamental mathematical constant (Euler
gamma function) that was previously estimated via nu-
merical integration6,15,25. As the analytical integration
of the 3ω model in terms of easy-to-compute functions
can greatly simplify the fitting of experimental data, the
integrated expressions of this model for other material
configurations of practical interest are highly desirable,
but challenging.

The goal of this work is to derive and analytically in-
tegrate the 3ω models for anisotropic bulk materials and
thin films. This integration is done by using the Fourier
transform and expressing the temperature fields in terms
of the modified Bessel and Struve functions, which are
well-implemented in major computation softwares. In
contrast with previous works dealing with integral ex-
pressions for the 3ω model or its approximate integration
for anisotropic materials7,9, here we report the exact inte-
grated temperature field of the heater and sensor signals
of the 3ω method. Further, the effects of the radiative
losses and interface thermal resistance are also discussed
for different modulation frequencies.Th
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II. THEORETICAL MODEL

Let’s consider an anisotropic thin film deposited on an
anisotropic substrate and supporting a two-dimensional
heat conduction and radiative losses due to its uniform
thermal excitation via a heater pad, as shown in Fig.
1. This heat conduction is driven by the in-plane (km‖)
and cross-plane (km⊥) thermal conductivities of the film
(m = 1) and substrate (m = 2), while the losses are
determined by the emissivity ε of the film inside a vac-
uum chamber. Under these conditions, the temperature
T (x, y, t) distribution of the film and substrate is given
by the diffusion equation

k‖
∂2T

∂x2
+ k⊥

∂2T

∂y2
= C

∂T

∂t
, (1)

where C is the volumetric heat capacity.
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FIG. 1: Scheme of the heater and sensor deposited on a
thin film to determine its thermal properties through

the 3ω method. a and c are the half-widths of the
heater and sensor pads, both of length b.

Considering that the heater is uniformly heated with a
power P (t) and applying the Stefan-Boltzmann formula
for the radiative losses, the solution of Eq. (1) is subject
to the continuity of the heat flux and discontinuity of
temperature, as follows

−k1⊥
∂T1
∂y
|y=0+h(T1|y=0−T0) =

P (t)

2ab
H(a− |x|), (2a)

−k1⊥
∂T1
∂y
|y=d= −k2⊥

∂T2
∂y
|y=d, (2b)

T1(x, d, t)− T2(x, d, t) = −Rk2⊥
∂T2
∂y
|y=d, (2c)

Tn(−x, y, t) = Tn(x, y, t), (2d)

where H is the Heaviside function, R is the interface ther-
mal resistance between the film and substrate set at the
respective temperatures T1 and T2, and T0 is the sam-
ple room temperature. The substrate is considered to
be semi-infinite in thickness (y direction) and length (x
direction). The coefficient of radiative losses h = 4εσT 3

0 ,
with σ being the Stefan-Boltzmann constant, arises from

linearizing the Stefan-Boltzmann formula for a temper-
ature difference T1 − T0 � T0. As this far-field for-
mula is valid when the heater and sensor dimensions
are much larger than the peak wavelength of thermal
radiation (> 10 m for T0 > 300 K, as established by
Wien’s law), the definition of h = 4εσT 3

0 only applies
under these conditions. Otherwise, this definition of h
fails, but Eq. (2a) remains valid for a generalized co-
efficient of radiative losses and a film temperature rise
small with respect to its room temperature. Further, in
presence of convective losses, Eq. (2a) and hence the re-
sults obtained in this work still apply after replacing h
by h + hconv, with hconv being the coefficient of convec-
tive losses, as established by the Newton’s law of cooling.
The circulation of an electrical current I = I0 cos(ωt)
modulated in time t with a frequency ω, along the heater
of electrical resistance R0, generates an electrical power
P (t) = R0I

2 = 0.5R0I
2
0 (1 + cos(2ωt)) that splits into a

steady-state component and a temporal one oscillating
with a frequency 2ω. For this thermal excitation, the
temperature profile predicted by the linear differential
Eq. (1) reads

T (x, y, t) = ψ(x, y) + Re
(
θ(x, y)e2iωt

)
, (3)

where ψ and θ are the steady-state and modulated com-
ponents of temperature. The real and imaginary parts of
θ are the signals measured by the 3ω method and there-
fore we are going to focus on its determination from now
on. After inserting Eq. (3) into Eq. (1), one obtains

k‖
∂2θ

∂x2
+ k⊥

∂2θ

∂y2
= 2iωCθ. (4)

Equation (4) can be solved by using the method of sep-
aration of variables, which along with Eqs. (2b)-(2d),
yields

θ1 =

∞∑
n=0

An [γn sinh (S1n(d− y)) + χn cosh (S1n(d− y))]

× cos (λnx) , (5a)

θ2 =

∞∑
n=0

Ane
−S2n(y−d) cos (λnx) , (5b)

where γn = k2⊥S2n/(k1⊥S1n), χn = 1 + Rk2⊥S2n,
λnL = (n + 1/2)π, S2

mn = (km‖/km⊥)
(
λ2n + 2iω/αm‖

)
,

and αm‖ = km‖/Cm is the in-plane thermal diffusivity
of the material m. The values of λn were determined
by imposing the condition Tn(L, y, t) = T0, which is well
satisfied for samples with long lateral dimensions. The
combination of Eqs. (2a) and (5a) together with the or-
thogonality of the functions cos (λnx), for n = 0, 1, 2, ...,
provides the following expression for the parameter An

An =
P0

bL

sin (λna)

λna

1

k1⊥S1nFn + hGn
, (6a)

Fn = γn cosh (S1nd) + χn sinh (S1nd) , (6b)

Gn = γn sinh (S1nd) + χn cosh (S1nd) , (6c)
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where P0 = 0.5R0I
2
0 is the amplitude of the injected elec-

trical power. As the film length is considered to be long,
the difference λn+1 − λn = ∆λ = π/L→ 0, which allows
to convert the sums in Eqs. (5a) and (5b) into inte-
grals. For the surface temperature θ1(x, 0), this conver-
sion yields

θ1(x, 0) =
P0

πb

∫ ∞
0

sin (λa)

λa

cos (λx) dλ

k1⊥S1F/G+ h
, (7)

where F = Fn(λn → λ), G = Gn(λn → λ), and Sm =
Smn(λn → λ). According to Fig. 1 and Eq. (7), the
measurable temperature fluctuations of the heater (Th)
and sensor (Ts) pads are given by the following averages

Th =
1

2a

∫ a

−a
θ1(x, 0)dx (8a)

=
P0

πb

∫ ∞
0

(
sin (λa)

λa

)2
dλ

k1⊥S1F/G+ h
,

Ts =
1

2c

∫ l+a+2c

l+a

θ1(x, 0)dx (8b)

=
P0

πb

∫ ∞
0

sin (λa)

λa

sin (λc)

λc

cos (λ(l + a+ c)) dλ

k1⊥S1F/G+ h
.

In terms of the dimensionless integration parameter ξ =
λa, Eqs. (8a) and (8b) can conveniently be rewritten as
follows

Th = Tc

∫ ∞
0

(
sin (ξ)

ξ

)2
dξ

χ
√
ξ2 + z22 +Bi

, (9a)

Ts = Tc

∫ ∞
0

sin (ξ)

ξ

sin (ξc/a)

ξc/a

cos (βξ) dξ

χ
√
ξ2 + z22 +Bi

, (9b)

where the characteristic temperature Tc = P0/(πbk̄2),
k̄2 =

√
k2‖k2⊥ is the harmonic average of the substrate

thermal conductivities, Bi = ha/k̄2 is the Biot number,
β = 1 + (l + c)/a, and

χ =
1 + (1 + ρσ2)Γ−1 tanh

(
σ1
√
k1‖/k1⊥d/a

)
1 + ρσ2 + Γ tanh

(
σ1
√
k1‖/k1⊥d/a

) , (10)

where ρ = Rk̄2/a, σm =
√
ξ2 + z2m, zm =

√
if/fm,

fm = αm‖/(2πa
2), and Γ = k̄2σ2/(k̄1σ1). Equations

(9) and (10) thus establish that the heater and sen-
sor temperatures depend on the product k1‖k1⊥ = k̄21
and ratio k1‖/k1⊥ of the film thermal conductivities via
the parameter Γ and the hyperbolic tangent, respec-
tively. Since the integrants in Eq. (9a) and (9b) are
even functions, they can conveniently be integrated by
using the Fourier transform method. Recalling that
the Fourier transform F̃ (λ) of the function F (x) is de-

fined by F̃ (λ) =
∫∞
−∞ F (x)e−iλxdx, such that F (x) =

(2π)−1
∫∞
−∞ F̃ (λ)eiλxdλ, the integral I1 =

∫∞
0
g(x)dx

of an even function g(x) = g(−x) is given by I1 =
0.5
∫∞
−∞ g(x)dx = g̃(0)/2. Similarly, the integral I2 =∫∞

0
g(x) cos(βx)dx = 4−1

∫∞
−∞ g(x)

(
eiβx + e−iβx

)
dx =

0.5
∫∞
−∞ g(x)e−iβxdx = g̃(β)/2. These results thus estab-

lish the following identities for the integral of an arbitrary
even function ∫ ∞

0

g(x)dx =
1

2
g̃(0), (11a)∫ ∞

0

g(x) cos(βx)dx =
1

2
g̃(β). (11b)

For the sake of simplicity, we are going to apply Eqs.
(11a) and (11b) to integrate the integrals in Eqs. (9a)
and (9b) by considering that c = a and the following
particular cases:

A. Anisotropic substrate with negligible radiative losses

According to Eqs. (9a) and (9b), the 3ω temperature
fields of the heater and sensor pads on a bare anisotropic
substrate (d = 0 = R and hence χ = 1) with negligible
radiative losses (Bi = 0), are given by

Th = Tc

∫ ∞
0

(
sin (ξ)

ξ

)2
dξ√
ξ2 + z22

, (12a)

Ts = Tc

∫ ∞
0

(
sin (ξ)

ξ

)2
cos (βξ) dξ√
ξ2 + z22

. (12b)

Equations (12a) and (12b) indicate that both the heater
and sensor signals of the 3ω method can be used to deter-
mine the harmonic average of the thermal conductivity
(k̄2) and the in-plane thermal diffusivity (α2‖) involved

in the parameters Tc = P0/(πbk̄2) and f2 = α2‖/(4πa
2)

(z2 =
√
if/f2) of an anisotropic substrate. The 3ω sig-

nal therefore cannot be used to determine the cross-plane
thermal conductivity of an anisotropic substrate via Tc,
as is usually misconceived. By contrast, for an isotropic
substrate (k2‖ = k2⊥), Eq. (12a) reduces to the standard
model of the 3ω method for bulk materials.

To apply Eqs. (11a) and (11b) to integrate the in-
tegrals in Eqs. (12a) and (12b), we consider that

g(ξ) = g1(ξ)g2(ξ), with g1(ξ) = (sin(ξ)/ξ)
2

and g2(ξ) =(
ξ2 + z22

)−1/2
. The Fourier transforms of these functions

are g̃1(λ) = (π/4) (|λ+ 2|+|λ− 2|−2|λ|) and g̃2(λ) =
2K0(z2|λ|), with K0 being the modified Bessel function
of second kind and order zero. According to the convolu-
tion theorem, the Fourier transform of g(ξ) is then given
by g̃(λ) = (2π)−1

∫∞
−∞ g̃1(λ′)g̃2(λ− λ′)dλ′, which yields

g̃(λ) =
1

2

[∫ 0

−2
(2 + λ′) +

∫ 2

0

(2− λ′)
]
K0(z2|λ− λ′|)dλ′.

(13)
The combination of Eqs. (11) and (12) then establishes
that Th/Tc = 0.5g̃(0) and Ts/Tc = 0.5g̃(β), for β = 2 +
l/a > 2. According to Eq. (13), these results can be
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4

simplified and explicitly be written as follows

Th
Tc

= 2

∫ 1

0

(1− ξ)K0(2z2ξ)dξ, (14a)

Ts
Tc

=

∫ 1

0

(1− ξ) [K0(z2(β + 2ξ)) +K0(z2(β − 2ξ))] dξ.

(14b)

The integrals in Eqs. (14a) and (14b) are fully equivalent
to the corresponding ones in Eqs. (12a) and (12b) and
have the advantage that they can now be integrated ana-
lytically by using the following identities

∫
xK0(yx)dx =

−(x/y)K1(xy) and
∫
K0(yx)dx = (πx/2)N(xy), where

N(u) = K0(u)L−1(u) + K1(u)L0(u), with Kn and Ln
being the modified Bessel function of second kind and
the modified Struve function of order n, respectively. In
terms of these well-implemented functions in major cal-
culation softwares, Eqs. (14a) and (14b) takes the form

Th
Tc

= πN(2z2) +
2z2K1(2z2)− 1

2z22
, (15a)

Ts
Tc

=
π

8

[
β2
+N(z2β+) + β2

−N(z2β−)− 2β2N(z2β)
]

+
1

4z2
[β+K1(z2β+) + β−K1(z2β−)− 2βK1(z2β)] ,

(15b)

where β± = β±2. Equation (15a) is equivalent to the so-
lution found by Duquesne et al.24 in terms of the Meijer
G-function and together with Eq. (15b) provides a model
to fit 3ω experimental data for any modulation frequency,
avoiding numerical integration and low-frequency ap-
proximations that may lead to the inaccurate determi-
nation of the material thermal properties. Taking into
account that the thermal diffusivity of a great variety of
solids is within the interval (1−100) mm2s−1, the charac-
teristic frequency fc = α2‖/(4πa

2) ∼ (0.8− 80) kHz, for
the typical value of the sensor half-width a = 10 m. For
a modulation frequency (f � fc) much smaller than this
relatively high value of fc, the behavior of Eqs. (15a) and
(15b) can conveniently be obtained by using the follow-
ing series expansion of K0(2u) = − [γ + ln(u)] I0(2u) +
u2+(1+1/2)z4/(2!)2+(1+1/2+1/3)z6/(3!)2+..., where
I0(2u) = 1+u2+z4/(2!)2+z6/(3!)2+... and γ = 0.5772...
is the Euler gamma constant. After inserting this expan-
sion of K0 into Eq. (14a) and integrating term by term,
one obtains

Th
2Tc

=

∞∑
n=0

ϕn(if/fc)
n

(2n+ 1)(2n+ 2)
=

ϕ0

1 · 2
+
ϕ1

3 · 4
if

f2
+ ..., (16)

where the coefficients ϕn are given by

ϕ0 = 1 +
1

2
− γ − 1

2
ln

(
if

f2

)
, (17a)

ϕn = 1 +
1

2
+

1

3
+ ...+

1

n
− (17b)

1

(n!)2

[
1

2n+ 1
+

1

2n+ 2
− γ − 1

2
ln

(
if

f2

)]
,

for n = 1, 2, .... The zero-order approximation ϕ0 thus
exhibits a logarithmic dependence on frequency and is
extensively used to determine the thermal conductivity of
bulk materials4,24,25. This low-frequency approximation
(f � f2) is particularly suitable for the real part of Th, as
its first correction is proportional to (f/f2)2, given that
the linear dependence on frequency is purely imaginary,
as established by Eq. (16). Similarly, the zero-order
approximation of the sensor signal Ts in Eq. (15b) is
given by

Ts =
3

2
− γ − 1

2
ln

(
if

fc

)
−D(β), (18a)

D(β) =
β2
+

8
ln(β+) +

β2
−
8

ln(β−)− β2

4
ln(β)− ln(2).

(18b)

The sensor signal thus exhibits the same logarithmic fre-
quency dependence than the heater one (for a zero-order
approximation), such that their difference D(β) is fully
determined by the ratio β = 2 + l/a between the heater-
sensor distance and the sensor half-width. The function
D(β) increases monotonically with β > 2 and takes its
minimum value D(2) = 2 ln(2).

B. Anisotropic substrate with radiative losses

Here we consider that the substrate is subject to tem-
peratures much higher than its environment and hence
the radiative losses are expected to be significant. In this
case, Eqs. (9a) and (9b) reduce to the following expres-
sions ( with d = 0 = R and hence χ = 1)

Th = Tc

∫ ∞
0

(
sin (ξ)

ξ

)2
dξ

Bi +
√
ξ2 + z22

, (19a)

Ts = Tc

∫ ∞
0

(
sin (ξ)

ξ

)2
cos (βξ) dξ

Bi +
√
ξ2 + z22

. (19b)

Equation (19a) is consistent with a previous model de-
rived by Cahill4 for an isotropic bulk material and along
with Eqs. (19b) indicates that temperature profiles of
the heater and sensor decrease as the radiative losses
increase, as expected. In contrast to the lossless case
(Bi = 0), both 3ω signals of a lossy substrate do not di-
verge in the quasi-steady-state regime (f/fc → 0), but
rather they reach frequency-independent plateaus given
by (z2 → 0)

Th,s
Tc

=

∫ ∞
0

(
sin (ξ)

ξ

)2
dξ

Bi + ξ
, (20a)

Ts,s
Tc

=

∫ ∞
0

(
sin (ξ)

ξ

)2
cos (βξ) dξ

Bi + ξ
. (20b)

where the second sub-index ”s” of T stands for quasi-
steady-state regime. The integrals in Eqs. (20a) and
(20b) can be expressed in terms of the sine (Si(u) =

Th
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5∫ u
0

sin(x)dx/x) and cosine (Ci = −
∫∞
u

cos(x)dx/x) inte-
gral functions that are well-implemented in many com-
putation softwares. Taking into account that β > 2, one
obtains

2B2
i

Th,s
Tc

= π

(
Bi −

1

2
sin(2Bi)

)
− γ − ln(2Bi)

+ S(2Bi) + C(2Bi), (21a)

4B2
i

Ts,s
Tc

= S (Biβ+) + S (Biβ−)− 2S (Biβ)

+ C (Biβ+) + C (Biβ−)− 2C (Biβ)

− π

2
[sin (Biβ+) + sin (Biβ−)− 2 sin (Biβ)]

+ ln

(
β2

β2 − 4

)
, (21b)

where S(u) = sin(u)Si(u) and C(u) = cos(u)Ci(u).
Given that the thermal conductivity of a wide variety
of solids falls inside the interval (0.1 − 500) Wm−1K−1,
the maximum (ε = 1) Biot number Bi = 4aσT 3

0 /k̄2 ∼
(0.01− 61)× 10−5, for a typical value of the sensor half-
width a = 10 m and T0 = 300 K. The Biot number
for the 3ω material configuration is thus expected to be
much smaller than unity, which allows to well determine
Th,s and Ts,s in Eqs. (21a) and (21b) via their corre-
sponding linear approximations on Bi. This first-order
approximation yields

Th,s
Tc
≈ 3

2
− γ − ln(2Bi) +

π

3
Bi, (22a)

Ts,s
Tc
≈ 3

2
− γ − ln(2Bi) +

π

2
βBi −D(β), (22b)

where D(β) is defined in Eq. (18b). The simple system
of Eqs. (22a) and (22b) could thus be used to determine
both the Biot number Bi and k̄2 (via Tc = P0/(πbk̄2))
by using the very-low-frequency plateaus of the heater or
sensor temperatures.

C. Anisotropic nanofilm with radiative losses and interface
thermal resistance

Taking into account that the major contribution to the
integrals in Eqs. (9a) and (9b) arises from ξ → 0, they
can significantly be simplified for a thin film with thick-
ness much smaller than the heater half-width (d � a),
thermal conductivity much smaller than that of the
substrate (k̄1 � k̄2), and low modulation frequencies
(f � f1), as is usually the case of practical interest. Un-
der these three conditions Γ−1 tanh

(
σ1
√
k1‖/k1⊥d/a

)
≈(

k1‖/k̄2
)

(d/a)σ2
1/σ2 → 0, Γ tanh

(
σ1
√
k1‖/k1⊥d/a

)
≈(

k̄2/k1⊥
)

(d/a)σ2, and therefore Eq. (10) reduces to

χ−1 ≈ 1 + ησ2, where the dimensionless parameter η =
k̄2d/(kea) and the effective cross-plane thermal conduc-
tivity (ke) of the nanofilm is defined by d/ke = R+d/k̄1⊥.
For this nanofilm approximation of χ, ηBi = hd/ke � 1,

the expression (χσ2 +Bi)
−1 ≈ η + (σ2 +Bi)

−1
, and

therefore Eqs. (9a) and (9b) take the form

Th(d) ≈ Th(0) +
P0d

2abke
, (23a)

Ts(d) ≈ Ts(0) (23b)

where Th(0) and Ts(0) are the temperature signals gener-
ated by the bare substrate and therefore they are respec-
tively given by Eqs. (19a) and (19b), whose solutions are
obtained in subsections II.A and II.B. Equations (23a)
and (23b) are valid for a log-linear approximation on fre-
quency (up to ln(f/f1)) and a quadratic one on the film
thickness (up to (d/a)2). Considering the typical thermal
conductivity [(0.1− 500) Wm−1K−1] and thermal diffu-
sivity [(1 − 100) mm2s−1] of solids, the numerical eval-
uation of the approximate Eqs. (23a) and (23b) and of
their respective exact counterparts in Eqs. (9a) and (9b)
shows a deviation smaller than 1% for nanofilms thinner
than 300 nm and a heater half-width a = 10 m. Equation
(23a) thus represents an accurate approximation and in-
dicates that the nanofilm behaves as a thermal resistance
d/ke independent of the modulation frequency. The effec-
tive thermal conductivity ke = k1⊥/ (1 +Rk1⊥/d) < k1⊥
can therefore be determined from the temperature drop
Th(d)−Th(0) across the film, provided that the substrate
thermal properties (and hence Th(0)) are known or de-
termined via the sensor signal given by Eq. (23b). This
methodology based on two metal pads to simultaneously
measure the substrate and film thermal properties was
applied by Alvarez-Quintana and Rodriguez-Viejo26 for
determining the cross-thermal conductivity of a-SiO2 and
a-SiNx films. Therefore, the integrated models in Eqs.
(23a) and (23b) are expected to facilitate the applica-
tion of the two-pad methodology and avoid the need of
two samples with identical substrates (with and with-
out the film) to determine the film thermal properties.
Equation (23a) can thus be used to retrieve ke only (a
combination of k1⊥ and R) and reduces to a previous
expression derived in absence of interface thermal resis-
tance and radiative losses5,6,27. The fact that Eq. (23b)
is independent of the nanofilm properties is reasonable,
as the sensor signal is expected to be more sensitive to
the lateral heat conduction, which is dominated by the
substrate, for the considered high thermal conductivity
limit (k̄2 � k̄1) and low frequency regime. If the sensor
signal is not available to determine the substrate thermal
properties required to calculate Th(0), its evolution with
the modulation frequency can be measured through the
3ω signal for a heater deposited on the bare substrate. As
the measurements with and without the nanofilm might
be done with different electrical powers and/or heater
dimensions, Eq. (23a) has to be replaced by

d

ke
=

(
2abTh
P0

)
f+s

−
(

2abTh
P0

)
s

, (24)

where the subscripts ”f” and ”s” stand for film and sub-
strate, respectively. The difference in Eq. (24) is thus
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6

independent of the substrate properties and modulation
frequency. In practice, however, the right-hand side of
Eq. (24) may still depend on frequency due to experi-
mental uncertainty, and hence its average value has to
be used for determining ke

6,7.

III. RESULTS AND DISCUSSIONS

The real and imaginary parts (or amplitude and phase)
of the heater and sensor temperatures are now graph-
ically and comparatively analyzed as functions of the
modulation frequency.

Figure 2 shows the normalized real and imaginary com-
ponents of the heater and sensor temperatures for a bulk
(semi-infinite) material, as functions of the modulation
frequency. For low frequencies (f � f2), Re(Th) and
Re(Ts) exhibit a log-linear dependence on frequency and
they are well described by their corresponding zero-order
approximations (dashed lines) predicted by Eqs. (17a)
and (18a), respectively. As the frequency increases, both
Re(Th) and Re(Ts) decreases until vanishing for high
enough frequencies (f � f2). This is also the case of
Im(Th) and Im(Ts), which monotonically increase with
frequency and saturate at −π/4, for low enough frequen-
cies. The real and imaginary parts of Ts thus exhibit
pretty much the same behavior than the corresponding
ones of Th, but at lower frequencies. This frequency shift
downwards increases with β and indicates that the sensor
temperature requires lower frequencies than the heater
one to determine the material thermal properties. The
relatively low-frequency dependence of Ts thus represents
an advantage of the sensor pad, as the 3ω signal is usually
recorded with more accuracy at low frequencies6.

As the zero-order approximations of Th and Ts in Eqs.
(17a) and (18a) are commonly used to determine the
material thermal conductivity, their deviations from the
exact solutions in Eqs. (15a) and (15b) are of practi-
cal interest. The uncertainty E = |1 − Sa/S|×100% of
this low-frequency approximation (f < f2) is shown in
Fig. 3(a) for the real and imaginary parts as well as the
amplitudes and phases of Th and Ts. Sa and S repre-
sent the respective approximate and exact values of one
of these four 3ω signals. Note that the components of
Th (solid lines) generally exhibit smaller derivations that
those of Ts (dashed lines), such that E(amplitude) <
E(real part) < E(imaginary part) < E(phase). The
zero-order approximation of the amplitude of Th is there-
fore expected to yield more accurate results than its real
part, whose derivation from the exact solution tends to
10%, for f → f2. This relatively small uncertainty of
the amplitude is particularly important for the determi-
nation of the thermal diffusivity, as the real part and
amplitude of Th have similar sensitivities to this mate-
rial property, as shown in Fig. 3(b). These sensitivities
Sα = |

(
∂S/∂α2‖

)
α2‖/S|= |(∂S/∂Ω) Ω/S| are calculated

with the exact S signal and Ω = f/f2. Note that the
3ω signals of the sensor pad (dashed lines) exhibit higher
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FIG. 2: Normalized real and imaginary parts of the
temperature fields of the heater and sensor pads on top

of a bulk material, as functions of the normalized
modulation frequency. The dashed lines stand for the

zero-order approximations predicted by Eqs. (17a) and
(18a), and the continuous black line represents the

diffusion propagation length µ = a
(√

f/f2

)−1
.

Calculations were done for Bi = 0 and β = 3 (l = a),
which is chosen to keep the sensor signal observable and
emulate our experimental conditions described below.

sensitivities than the corresponding ones of the heater
pad (solid lines), even at relatively low frequencies. This
latter fact confirms the suitability of the exact sensor sig-
nal to determine the in-plane thermal diffusivity of bulk
materials, due to its natural sensitivity to the in-plane
heat conduction.

The frequency evolution of the real and imaginary
parts of the heater and sensor temperatures for a bulk
material undergoing radiative losses are shown in Fig. 4,
for two representatives Biot numbers. Note that in pres-
ence of radiative losses, both the heater and sensor signals
are practically the same than their corresponding coun-
terparts in absence of losses, for any frequency f/f2 >
10−5. As the typical values of f2 ∼ (0.8 − 80) kHz, this
inequality (f & (0.008−0.8) Hz) indicates that the radia-
tive losses are negligible for the vast majority of frequen-
cies used in practice, as estimated in the literature2,4. For
lower modulation frequencies, on the other hand, the real
parts deviate from their respective log-linear behavior ob-
tained in absence of losses and tend to a plateau, as pre-
dicted by Eqs. (22a) and (22b). This deviation increases
with the Biot number and hence its observation would
represent the signature of radiative losses. This signature
is also present in the imaginary parts, which change their
low-frequency plateau from −π/4 to zero. These plateaus
of the heater and sensor signals in presence of radiative
losses are similar to the ones induced by a substrate of
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FIG. 3: Frequency spectrum of the (a) uncertainty of
the zero-order approximation and (b) sensitivity of the
exact 3ω signals to the in-plane thermal diffusivity of a
bulk material. Calculations were done for the real and
imaginary parts, as well as the amplitude and phase of

the heater (solid lines) and sensor (dashed lines)
temperatures. The parameters β = 3 and Bi = 0 were

used.

finite thickness D. In this case, Eqs. (9) and (10) are still
valid under the replacement: tanh

(
σ1
√
k1‖/k1⊥d/a

)
→

tanh
(
σ1
√
k1‖/k1⊥d/a

)
tanh

(
σ2
√
k2‖/k2⊥D/a

)
. This

latter hyperbolic tangent related to the substrate in-
duces a low-frequency plateau that can appear at fre-
quencies comparable to or pretty different than those for
the radiation-based one, depending on the values of the
multiple properties driving their appearance.

To apply the integrated models for the heater and sen-
sor signals, we performed 3ω measurements for a quartz
glass wafer. This 500 m-thick sample with a surface
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T h / T c T s / T c

FIG. 4: Frequency evolution of normalized real (solid
lines) and imaginary (dashed lines) parts of the

temperature fields of the heater and sensor pads on top
of a bulk material undergoing radiative losses.

Calculations were done for β = 3 and two representative
values of Bi.

area of 1 cm×1 cm (model CRM 5809-a and number
25) was purchased from the National Metrology Insti-
tute of Japan with a calibrated thermal diffusivity for
temperatures ranging from 300 to 800 K28. The sam-
ple of quartz glass thus allows to test and validate our
model and experimental data in a broad temperature
range involving high temperatures that cannot be cov-
ered with common anisotropic materials, such as the
polymers PEDOT:PSS29 and Te-PEDOT:PSS30. Two
parallel and symmetric Cr/Pt (10nm/100nm thick) wires
were patterned on top of the sample by lift-off and
used as the heater and sensor with a common length
b = 976 m. The haft-widths of the heater and sensor were
a = (3.39±0.03) m and c = (3.46±0.04) m, respectively;
and their edge-to-edge distance was l = (4.11± 0.04) m.
The measurement setup is based on a classic AC half
Wheatstone bridge on the heater side and a DC Wheat-
stone bridge on the sensor side. The sample is loaded in
a vacuum station implemented with four probe tips and
operated from 300 to 827 K, which is highest temperature
for a reported 3ω measurement, to be best of our knowl-
edge. A low-noise AC current was circulated along the
heater micro resistance and modulated with frequencies
from 1 Hz to 80 kHz. At this highest frequency, the AC
temperature rise of the two patterned micro resistances
reduces to zero and therefore it was used to determine
their temperature coefficient of resistance (TCR). The
obtained TCR values of the heater and sensor at 300 K
were (110.94±3.24)×10−5 K−1 and (109.01±3.61)×10−5

K−1, respectively. The electrical resistance of the pads
(1 mm×1 mm) and of their connections to the heater and
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FIG. 5: (a) Typical fitting of the real parts of the
heating and sensor temperatures obtained for an quartz

glass wafer and (b) its corresponding fitted thermal
conductivity and thermal diffusivity. The sample and its
certified thermal diffusivity (supplier data) were bought
from the National Metrology Institute of Japan28. The
solid and dashed lines in (a) represent fittings with the
exact models (Eqs. (15a) and (15b)) and their log-linear

approximations (Eqs. (17a) and (18a)), respectively.
The error bars in (b) represent the standard deviations

obtained through a standard least-square fit.

sensor are both negligible compared to the one (150 ohm
at 300 K) of these wires, which make them suitable for
the 3ω measurements. These measurements were stabi-
lized during 10 min, for each frequency, and during 60
min, for each holder temperature.

Figure 5(a) shows the typical fitting of the real parts of
the heater and sensor temperatures recorded by our 3ω
experimental setup. We consider the fitting of the real
parts only, because they exhibit the highest sensitivity
to the thermal conductivity and thermal diffusivity (see

Fig. 3(a)) and hence allow the accurate determination of
these two thermal properties. The absence of a plateau
for the lower frequencies indicates that our measurements
are insensitive to the radiative losses, as shown in Fig. 4.
Note that the exact models in Eqs. (15a) and (15b) ac-
curately fit (solid lines) the data for all frequencies up
to 31 kHz, at which the sensor signal nearly vanishes.
The log-linear behavior of the heater and sensor signals
at low frequency is also well fitted by their corresponding
theoretical approximations in Eqs. (17a) and (18a), as
shown by the dashed lines. Considering that the heater
and sensor signals exhibit a well-defined log-linear profile
for frequencies up to 3100 and 311 Hz, respectively; the
log-linear approximation of these signals were fitted in
those frequency domains via a standard least-square fit.
Even though these low-frequency fittings are pretty much
superposed to the corresponding ones of the exact mod-
els, they overestimate the thermal conductivity values
predicted by these latter models, as shown in Fig. 5(b).
This overestimation, smaller than 5% for the heater and
sensor signals, is consistent with the uncertainty of the
log-linear approximation of the real part, as shown in Fig.
3(a). More importantly, the thermal conductivity values
fitted with the exact models for the heater and sensor
signals are mutually consistent and increase with tem-
perature, as expected for amorphous quartz glass. The
deviation of the heater-extracted thermal conductivity
from its sensor counterpart takes the largest value of 4%
at 300 K and is explained by the absence of fitting at
high enough frequencies (> 31 KHz), where obtaining ac-
curate experimental data becomes difficult. By contrast,
as the sensor signal reduces to zero at lower frequencies,
its fitting is complete and therefore the sensor-extracted
thermal conductivity values are expected to be more re-
liable than those retrieved from the heater signal. This
is also the case of the thermal diffusivity, as the sensitiv-
ity of the real parts of the heater and sensor signals to
this thermal property increases with frequency (see Fig.
3(b)). However, the deviation of the heater-extracted
thermal diffusivity from its sensor counterpart is small
(< 3%) and their absolute values are consistent with the
ones provided by the sample supplier (black points), for
temperatures ranging from 300 K to 800 K.

Finally, we point out that the temperature fields con-
sidered in this work were derived by neglecting the ther-
mal effects of the heater and sensor as well as of their
interface thermal resistance with the film or substrate.
Considering that the penetration depth of the generated
thermal waves decreases as the modulation frequency in-
creases, these effects may become important for high fre-
quency and can be integrated into the model via thermal
impedances, as detailed in the literature7,30.Th
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IV. CONCLUSIONS

We have derived and analytically integrated over the
heater and sensor widths the temperature fields of the
3ω method for anisotropic bulk materials and thin films.
This integration allows to express the frequency depen-
dence of temperature in terms of the modified Bessel and
Struve functions, which are well-implemented in major
computation softwares. We have found that: i) The usual
log-linear approximation for the temperature field at low
frequency is sensitive to an effective thermal conductiv-
ity of the nanofilm, which is lower than its real cross-
plane thermal conductivity, due to the interface thermal
resistance with the substrate. ii) For the vast majority
of modulation frequencies used in practice, the 3ω sig-
nal of solid materials is nearly independent of radiative
losses, whose effects may appear from frequencies lower
than 1 Hz mainly. iii) The frequency spectrum of the
temperature field at a sensor pad is similar to that of
the heater one, but at lower frequencies. This frequency
displacement downwards increases with the heater-sensor
distance and could facilitate the determination of the ma-
terial thermal properties due to the facility to accurately
measure the temperature signal at relatively low frequen-
cies. Further, by fitting the integrated model to our own
3ω signals recorded for modulation frequencies up to 31
KHz, the thermal conductivity and thermal diffusivity of
a quartz glass wafer have been determined for temper-
atures ranging from 300 to 800 K. The obtained results
have shown that the log-linear approximation can over-
estimate the thermal conductivity values by about 5%,
which can be avoided with the integrated exact model.
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