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‘ Problem Statement e Goal
e Data growth drives the proliferation of machine learning and distributed e Detect similar populations in federated learning (FL).
machine |eamlﬂ9- | e Propose population-specific bias detection and correction solutions.
e Federated learning (FL) addresses data privacy concerns but worsens e Build personalized models for each population to improve

nias in models. -
e Bias refers to unfairness in model decisions, and privacy constraints in generalization.

=L hinder traditional bias mitigation approaches. e Account for FL constraints: decentralized nature, non-11D data,
e FL exacerbates bias, and classical mitigation technigues are not suitable dynamic and privacy.

due to privacy constraints.

DML Federated Learning

Evolution of DML architectures FL an overview

e (lassic DML involves grouping data together and training a

distributed ML model, but may not consider data confidentiality or e (L was proposed by Google in 2016 to address the challenge of training models on

distributed data without compromising data privacy. 2]

new regulations.
e (On-site DML trains pre-trained models on data kept at the client's e FLis atype of Distributed Machine Learning (DML) approach that emphasizes data
ocation, but performance may suffer due to clients not benefiting confidentiality.
from each other's learned models. e FL allows clients to participate in model training without sharing data by training the
e Federated Learning enables multiple clients to train the same ML model locally and sending only updates to a central server.
model without sharing data, ensuring privacy and security while R
improving performance. CTeeee=6)
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Centralized vs Distributed On-Site vs Federated Learning Architectures [1] Federated Learning steps [3]
Why care about bias in distributed machine learning? Mitigating Bias in DML systems
Definitions Impact of bias on society [4]
e Fairness: Algorithm output should not Biased ML is sexist racist and 4 _v }
disadvantage protected groups.|4 sends people wrongly to jail. |
e Bias: Systematic error leading to incorrect

v
(+) Ada p ng to changing d ata _
Vlcamngagorhms. | | aminmarngerrs.urng | | o ackboes.
(-) If not done properly it can (-)Algo t?l Idg e (-) May introduce additional
degrade the quality of the e df e cific ML computational complexity and
model. i AERH Il overhead.

Bias correction techniques

or unfair outcomes. [5]

e Sensitive attribute: Protected
characteristic used to define subgroups
for fairness analysis.[5]

Ongoing Work

e (Clustering in federated learning to detect

Fairness in DML vs Fairness in FL [6] R RO
similar subpopulations

e Propose novel bias mitigation technigues
ML paradigm that takes into account FL constraints
Classical Machine Learning Federated Learning e Fvaluate the proposed approacheg on rea|
world datasets
Comparison criteria
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