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Bias mitigation for collaborative  
& ethical learning on dynamic data

DML

Fairness in Distributed Machine Learning

Evolution of DML architectures FL an overview 

● FL was proposed by Google in 2016 to address the challenge of training models on 
distributed data without compromising data privacy. [2]

● FL is a type of Distributed Machine Learning (DML) approach that emphasizes data 
confidentiality.

● FL allows clients to participate in model training without sharing data by training the 
model locally and sending only updates to a central server.

● Classic DML involves grouping data together and training a 
distributed ML model, but may not consider data confidentiality or 
new regulations.

● On-site DML trains pre-trained models on data kept at the client's 
location, but performance may suffer due to clients not benefiting 
from each other's learned models.

●  Federated Learning enables multiple clients to train the same ML 
model without sharing data, ensuring privacy and security while 
improving performance.

(Chowdhury et al.,2018)
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● Data growth drives the proliferation of machine learning and distributed 
machine learning. 

● Federated learning (FL) addresses data privacy concerns but worsens 
bias in models. 

● Bias refers to unfairness in model decisions, and privacy constraints in 
FL hinder traditional bias mitigation approaches. 

● FL exacerbates bias, and classical mitigation techniques are not suitable 
due to privacy constraints.

Problem Statement
● Detect similar populations in federated learning (FL).
● Propose population-specific bias detection and correction solutions.
● Build personalized models for each population to improve 

generalization.
● Account for FL constraints: decentralized nature, non-IID data, 

dynamic and privacy.

Goal 

         Federated Learning

Fairness in DML vs Fairness in FL [6]  

Ongoing Work 

References

Federated Learning steps [3]Centralized vs Distributed On-Site vs Federated Learning Architectures [1]

Impact of bias on society [4]
Biased ML is sexist, racist and 
sends people wrongly to jail.

          Definitions 
● Fairness:  Algorithm output should not 

disadvantage protected groups.[4]
● Bias: Systematic error leading to incorrect 

or unfair outcomes. [5]
● Sensitive attribute: Protected 

characteristic used to define subgroups 
for fairness analysis.[5]

Bias correction techniques 

ML paradigm

Comparison criteria 

 
   Classical Machine Learning       Federated Learning 

Data     -Full Access to data 
    -Homogeneous dataset
     -Centralized in one location 

-Data remains local 
-Non-IDD data 
-Distributed among clients

Source of Bias - Historical Bias
- Human Bias
- Measurement Bias
- Representation Bias 

Classical one + :
- Data heterogeneity 
-Aggregation 
-Client selection 

Applicable Bias 
mitigation techniques 

All Techniques are directly applicable   Need to be adjusted to fit FL 
constraints

● Clustering in federated learning to detect 
similar subpopulations 

● Propose novel bias mitigation techniques 
that takes into account FL constraints 

● Evaluate the proposed approaches on real 
world datasets  
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