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A CAHN–HILLIARD MODEL BASED ON
MICROCONCENTRATIONS

SAMUEL FOREST1, ALAIN MIRANVILLE2

Abstract. Our aim in this paper is to study a Cahn–Hilliard type system based
on microconcentrations. We prove the existence and uniqueness of solutions to
this system and then prove the convergence of the solutions to those of the original
Cahn–Hilliard equation as a small parameter goes to zero, on finite time intervals.

1. Introduction

The Cahn–Hilliard equation is a fundamental equation in materials science and
describes phase separation processes in binary alloys (see [1], [2] and [12]). More
precisely, it describes the rapid separation of phases in a binary alloy (one speaks
of spinodal decomposition and coarsening). We refer the interested reader to [10]
for a review on the mathematical analysis of this equation, as well as several of its
variants.

We can note that the original derivation of the Cahn–Hilliard equation essentially
is phenomenological. As a consequence, several approaches were proposed to derive
this equation or proper approximated models. We can mention in particular [4], [8],
[11] and [13].

An extension of the Cahn–Hilliard model was proposed in [15] involving a nonlocal
concentration variable in addition to the standard concentration. It was motivated
by a free energy potential, proposed in earlier literature, with long-range interactions
between particles in the form of a kernel function defined in a finite region around the
material point. The fully nonlocal theory was replaced by a differential form in which
the additional concentration is solution to a Helmholtz-type equation coupled with
the standard concentration. The nonlocal concentration variable was interpreted as
a weighted average of the standard concentration over a finite neighbourhood. This
nonlocal formulation was also used in [16] for phase changes in electrode particles of
lithium-ion batteries.
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to the Cahn–Hilliard equation.
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The theory was reinterpreted in [7] in terms of a quadratic free energy density func-
tional involving the difference between the local and nonlocal concentrations and the
gradient of the nonlocal concentration. The additional concentration variable was
called microconcentration referring to micro-continuum theories initiated by Eringen
[5]. In Eringen’s micromorphic continuum theory for instance, a microdeformation
variable is introduced in addition to the standard deformation and the difference
between micro and macro-deformations is penalized in the free energy density func-
tional. Similarly, the free energy potential in [7] includes the square of the norm of
the microconcentration gradient and the square of the difference between micro and
standard concentrations. The coefficient in front of the last term can be interpreted
as a penalty modulus. It was suggested in [7] that the microconcentration field con-
verges to the solution to the Cahn–Hilliard equation for large values of the penalty
modulus. No actual proof of this conjecture was however provided in [7].

The microconcentration model was further used in [3] in an application to lithium-
ion batteries, coupled with finite deformation elastoplasticity. The computational
advantage of the microconcentration approach, compared to the standard Cahn–
Hilliard model, is that less regularity of shape functions is required for the concen-
tration variables in a finite element setting [9].

Our aim in this paper is to prove the aforementioned convergence. We also prove
the existence of solutions to the Cahn–Hilliard model based on microconcentrations
and obtain error estimates on the difference of the solutions to this model and the
original Cahn–Hilliard equation, on finite time intervals.

2. Setting of the problem and notation

We consider the following initial and boundary value problem in a bounded and
regular domain Ω of Rn, n = 1, 2 or 3, with boundary Γ:

(2.1)
∂u

∂t
+ ∆2v −∆f(u) = 0,

(2.2) u = v − ε∆v,

(2.3)
∂u

∂ν
=
∂v

∂ν
=
∂∆v

∂ν
= 0 on Γ,

(2.4) u|t=0 = u0,

where ν is the unit outer normal to Γ and ∂w
∂ν

= ∇w ·ν denotes the normal derivative
on Γ. Furthermore, ε > 0 is expected to be small (it is related to the inverse
of the penalty modulus mentioned in the introduction); in particular, we assume,
throughout this paper, that
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(2.5) 0 < ε ≤ ε0 < 1.

Finally, we take, for simplicity, f(s) = s3 − s and note that f ′ ≥ −1.

Remark 2.1. In the above equations, u is the order parameter, while v is the
microconcentration. In particular, in the presence of the microconcentration, the
total (Ginzburg–Landau type) free energy associated with the problem reads (see
[7])

Ψ(u, v,∇v) =

∫
Ω

(
1

2ε
(u− v)2 +

1

2
|∇v|2 + F (u)) dx,

where the potential F is such that F ′ = f . Proceeding as in the classical Cahn–
Hilliard theory, the chemical potential µ is then defined as a variational derivative
of the free energy with respect to u, yielding, in view of the definition (2.2) of the
microconcentration,

µ =
1

ε
(u− v) + f(u) = −∆v + f(u).

We thus see that both u and v enter the definition of the chemical potential. Further-
more, when ε = 0, i.e., in the absence of the microconcentration, then we (formally)
have u = v and we recover the classical Cahn–Hilliard framework.

We set, for w ∈ L1(Ω),

〈w〉 =
1

Vol(Ω)

∫
Ω

w(x) dx

and, for w ∈ H1(Ω)′,

〈w〉 =
1

Vol(Ω)
〈w, 1〉H1(Ω)′,H1(Ω),

where 〈·, ·〉 denotes the duality product. Furthermore, we set, whenever it makes
sense,

w = w − 〈w〉.
Integrating (formally) (2.1) over Ω, we have, owing to (2.3),

(2.6)
d

dt
〈u〉 = 0.

Integrating then (again formally) (2.2) over Ω, we obtain
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(2.7) 〈u〉 = 〈v〉,
so that, also,

(2.8)
d

dt
〈v〉 = 0.

We thus have the conservation of mass, both for the concentration u and the micro-
concentration v.

Let A be the operator defined by

〈Au,w〉H1(Ω)′,H1(Ω) = ((∇u,∇w)), ∀w ∈ H̄1(Ω),

for u given in H̄1(Ω), where ((·, ·)) denotes the usual L2-scalar product, with associ-
ated norm ‖ · ‖, and

H̄1(Ω) = {w ∈ H1(Ω), 〈w〉 = 0}.
We also set

L̄2(Ω) = {w ∈ L2(Ω), 〈w〉 = 0}.
The operator A is an unbounded linear, selfadjoint and positive operator with com-
pact inverse and is an isomorphism from H̄1(Ω) onto its dual. Furthermore,

D(A) = {w ∈ H2(Ω) ∩ H̄1(Ω),
∂w

∂ν
= 0 on Γ}

and Au = h, u ∈ D(A), h ∈ L̄2(Ω), is equivalent to

−∆u = h,
∂u

∂ν
= 0 on Γ.

We will thus write −∆ instead of A in what follows, meaning that we consider
that this operator acts on functions with null spatial average; of course, it can also
be defined on functions with nonvanishing spatial average. We refer the interested
reader to, e.g., [10] for more details on this.

Having this, we can rewrite, equivalently, (2.1) in the (weaker) form

(2.9) (−∆)−1∂u

∂t
−∆v + f(u) = 0,

noting that 〈∂u
∂t
〉 = 0. Considering (2.9) instead of (2.1), we only keep one boundary

condition on v, namely,



CAHN–HILLIARD MODEL 5

(2.10)
∂v

∂ν
= 0 on Γ.

Remark 2.2. Note that it follows from (2.1)-(2.2) that

(2.11)
∂

∂t
(v − ε∆v) + ∆2v −∆f(v − ε∆v) = 0,

which we can rewrite in the equivalent weaker form

(2.12)
∂

∂t
((−∆)−1v + εv)−∆v + f(〈u0〉+ v − ε∆v) = 0,

where we emphasize that −∆ acts on functions with null spatial average. Also recall
that

〈u〉 = 〈v〉 = 〈u0〉, t ≥ 0.

Alternatively, we can rewrite (2.2) in the equivalent form

(2.13) 〈v〉 = 〈u0〉, v = (I − ε∆)−1u,

allowing us to rewrite (2.9) in the equivalent form

(2.14) (−∆)−1∂u

∂t
−∆(I − ε∆)−1u+ f(〈u0〉+ u) = 0.

This shows that we can rewrite (2.1)-(2.4) as an equivalent problem for the sole
unknown u (resp., v).

We set ‖ · ‖−1 = ‖(−∆)−
1
2 · ‖; ‖ · ‖−1 is a norm on {v ∈ H1(Ω)′, 〈v〉 = 0} which is

equivalent to the usual H1(Ω)′-norm. More generally, we denote by ‖ · ‖X the norm
on the Banach space X.

Throughout this paper, the same letters c and c′ denote (nonnegative or positive)
constants which may vary from line to line, or even in a same line, and which are
independent of ε (but may depend on ε0).

3. A priori estimates

The estimates below are formal, but can be justified within a proper Galerkin
scheme (see Section 4).

Multiplying (2.9) by ∂u
∂t

and integrating over Ω and by parts, we have, recalling

that 〈∂u
∂t
〉 = 0,
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d

dt

∫
Ω

F (u) dx− ((∆v,
∂u

∂t
)) + ‖∂u

∂t
‖2
−1 = 0,

where F (s) =
∫ s

0
f(ξ) dξ. Noting that it follows from (2.2) that

(3.1)
∂u

∂t
=
∂v

∂t
− ε∆∂v

∂t
,

we obtain

(3.2)
d

dt
(‖∇v‖2 + ε‖∆v‖2 + 2

∫
Ω

F (u) dx) + 2‖∂u
∂t
‖2
−1 = 0.

This yields the decay of the total free energy, together with estimates on u in
L∞(R+;L4(Ω)), on v in L∞(R+;H2(Ω)) and on ∂u

∂t
in L2(R+;H1(Ω)′). Note indeed

that it follows from Young’s inequality that

F (s) =
1

4
s4 − 1

2
s2 ≥ 1

8
s4 − c.

It also follows from (3.1) that ∂v
∂t

belongs to L2(R+;H1(Ω)), noting that ∂
∂ν

∂v
∂t

= 0 on

Γ. Furthermore, the estimates on u and ∂u
∂t

are uniform with respect to ε, owing to
(2.5), while only the estimate on v in L∞(R+;H1(Ω)) is uniform. Note however that

ε
1
2v is bounded, uniformly with respect to ε, in L∞(R+;H2(Ω)).

Remark 3.1. Recall that, when ε = 0, then (formally) v = u and (3.2) reads

(3.3)
d

dt
(‖∇u‖2 + 2

∫
Ω

F (u) dx) + 2‖∂u
∂t
‖2
−1 = 0,

which is precisely the energy decay for the original Cahn–Hilliard equation.

We next multiply (2.9) by −∆u and find, recalling that f ′ ≥ −1,

(3.4)
1

2

d

dt
‖u‖2 + ((∆u,∆v)) ≤ ‖∇u‖2.

Noting that −∆v = 1
ε
(u− v), we have

(3.5)
1

2

d

dt
‖u‖2 +

1

ε
‖∇u‖2 ≤ ‖∇u‖2 +

1

ε
((∇u,∇v)).

Writing, employing Young’s inequality,

1

ε
|((∇u,∇v))| ≤ 1

ε
‖∇u‖‖∇v‖
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≤ 1

2
(
1

ε
− 1)‖∇u‖2 +

1

2ε(1− ε)
‖∇v‖2,

we find

(3.6)
d

dt
‖u‖2 + (

1

ε
− 1)‖∇u‖2 ≤ 1

ε(1− ε)
‖∇v‖2,

which yields

(3.7)
d

dt
(ε‖u‖2) + (1− ε0)‖∇u‖2 ≤ 1

1− ε0

‖∇v‖2.

This gives, in view of (2.5), an estimate on u in L2(0, T ;H1(Ω)), T > 0 given, which
is uniform with respect to ε. Writing now, in view of (2.2),

∆u = ∆v − ε∆2v,

we deduce from (3.4) that

(3.8)
d

dt
‖u‖2 + ‖∆v‖2 + ε‖∇∆v‖2 ≤ 2‖∇u‖2,

which gives an estimate on v in L2(0, T ;H3(Ω)); this estimate is not uniform with

respect to ε. However, ε
1
2v is bounded, uniformly with respect to ε, in this space

and we have a uniform (with respect to ε) estimate on v in L2(0, T ;H2(Ω)).

4. Existence and uniqueness of solutions

We consider the initial and boundary value problem

(4.1) (−∆)−1∂u

∂t
−∆v + f(〈u0〉+ u) = 0,

(4.2) 〈u〉 = 〈v〉 = 〈u0〉, t ≥ 0,

(4.3) u = v − ε∆v,

(4.4)
∂v

∂ν
= 0 on Γ,

(4.5) u|t=0 = u0,

where u = 〈u0〉+ u and v = 〈u0〉+ v, which we rewrite, equivalently, as
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(4.6)
∂

∂t
((−∆)−1v + εv)−∆v + f(〈u0〉+ v − ε∆v) = 0,

(4.7) 〈u〉 = 〈v〉 = 〈u0〉, t ≥ 0,

(4.8) u = v − ε∆v,

(4.9)
∂v

∂ν
= 0 on Γ,

(4.10) u|t=0 = u0,

where, again, u = 〈u0〉+ u and v = 〈u0〉+ v
We have the following.

Theorem 4.1. We assume that (2.5) holds and that u0 ∈ H1(Ω) and εu0 ∈ H2(Ω).
Then (4.1)-(4.5) possesses a unique weak solution (u, v) such that, ∀T > 0,

u ∈ L∞(R+;L4(Ω)) ∩ L2(0, T ;H1(Ω)),
∂u

∂t
∈ L2(R+;H1(Ω)′),

v ∈ L∞(R+;H2(Ω)) ∩ L2(0, T ;H3(Ω)),

∂v

∂t
∈ L2(R+;H1(Ω)).

Furthermore, u ∈ C([0, T ];L4(Ω)w) and v ∈ C([0, T ];H2(Ω)), where the index w
denotes the weak topology.

Remark 4.2. Note that when we will pass to the limit below, we will no longer
need, at the limit, u0 ∈ H2(Ω). However, we will still need u0 ∈ H1(Ω), since (3.2)
formally reduces to (3.3) at the limit.

Proof. Uniqueness:

Let (u1, v1) and (u2, v2) be two solutions with initial data u1,0 and u2,0, respectively,
such that 〈u1,0〉 = 〈u2,0〉. We set (u, v) = (u1, v1)−(u2, v2) and u0 = u1,0−u2,0. Then,
(u, v) solves

(4.11) (−∆)−1∂u

∂t
−∆v + f(u1)− f(u2) = 0,

(4.12) u = v − ε∆v,
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(4.13) 〈u〉 = 〈v〉 = 0, t ≥ 0,

(4.14)
∂v

∂ν
= 0 on Γ,

(4.15) u|t=0 = u0.

We multiply (4.11) by u and have, recalling that f ′ ≥ −1,

(4.16)
1

2

d

dt
‖u‖2

−1 + ((u,−∆v)) ≤ ‖u‖2.

Note that it follows from (4.12) that

((u,−∆v)) = ‖∇v‖2 + ε‖∆v‖2

and

‖u‖2 = ‖v‖2 + 2ε‖∇v‖2 + ε2‖∆v‖2.

We thus deduce that

1

2

d

dt
‖u‖2

−1 + ‖∇v‖2 + ε‖∆v‖2 ≤ ‖v‖2 + 2ε‖∇v‖2 + ε2‖∆v‖2

and (2.5) yields, employing the Poincaré–Wirtinger inequality,

(4.17)
d

dt
‖u‖2

−1 + (1− ε0)ε‖∆v‖2 ≤ c‖∇v‖2.

Writing next

‖u‖2
−1 = ‖(−∆)−

1
2 (v − ε∆v)‖2

= ‖v‖2
−1 + 2ε‖v‖2 + ε2‖∇v‖2,

it follows that

(4.18)
d

dt
‖u‖2

−1 ≤
c

ε2
‖u‖2

−1.

Gronwall’s lemma finally yields the continuous (with respect to the H1(Ω)′-norm)
dependence on the initial data, as well as the uniqueness, for u. The uniqueness for
v follows.

Existence:

Let (wi)i∈N be an orthonormal in L̄2(Ω) and orthogonal in H̄1(Ω) basis formed
of eigenvectors of the operator −∆ associated with Neumann boundary conditions



10 S. FOREST, A. MIRANVILLE

and acting on functions with null spatial average. We call 0 < λ1 ≤ λ2 ≤ · · · the
associated eigenvectors and set Wm = Span{w1, · · ·, wm}.

We look, setting w0 = 1

Vol(Ω)
1
2

, for

vm = c0w0 + vm, c0 = Vol(Ω)
1
2 〈u0〉,

vm =
m∑
i=1

ci,mwm,

such that

(4.19)
d

dt
(((−∆)−1vm + εvm, w)) + ((∇vm,∇w)) + ((f(〈u0〉+ vm− ε∆vm), w)) = 0,

∀w ∈ Wm,

(4.20) vm|t=0 = v0,m,

where

(4.21) v0,m − ε∆v0,m = u0,m,

(4.22) u0,m = Pmu0,

Pm being the orthogonal projector onto Wm (for the L2(Ω)-norm). This means that

(4.23) u0,m =
m∑
i=1

((u0, wi))wi

and, if

(4.24) v0,m =
m∑
i=1

diwi,

then it follows from (4.21) that

m∑
i=1

(1 + ελi)diwi =
m∑
i=1

((u0, wi))wi,

so that

(4.25) di =
1

1 + ελi
((u0, wi)), i = 1, · · ·,m.

Finally, having solved (4.19)-(4.20), we set
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(4.26) um = 〈u0〉+ um,

(4.27) um = vm − ε∆vm,

meaning that

(4.28) um =
m∑
i=1

(1 + ελi)ci,mwi.

Now, taking w = wi in (4.19), we have

(4.29) (
1

λi
+ ε)c′i,m + λici,m + gi(C) = 0,

(4.30) ci,m(0) =
1

1 + ελi
((u0, wi)),

i = 1, · · ·,m, where

C =


c1,m

·
··

cm,m

 , g(C) =


g1(C)
·
·
·

gm(C)

 ,

i.e.,

g(C) =


((f(〈u0〉+

∑m
j=1(1 + ελj)cj,mwj), w1))

·
·
·

((f(〈u0〉+
∑m

j=1(1 + ελj)cj,mwj), wm))

 .

In particular, we can rewrite (4.29)-(4.30) in the form

(4.31) C ′ = G(C),

(4.32) C(0) = C0,

where
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G(C) = −


λ1

1+ελ1
g1(C) +

λ21
1+ελ1

·
·
·

λm
1+ελm

g1(C) + λ2m
1+ελm


and

C(0) =


c1(0)
·
·
·

cm(0)

 .

We can easily prove that G is locally Lipschitz continuous, so that the Cauchy–
Lipschitz theorem yields the existence and uniqueness of the maximal solution to
(4.31)-(4.32).

It thus follows from the above that we actually have the existence and uniqueness
of the maximal solution to

(4.33)
d

dt
(((−∆)−1um, w)) + ((∇vm,∇w)) + ((f(um), w)) = 0, ∀w ∈ Wm,

(4.34) um = vm − ε∆um,

(4.35) um|t=0 = u0,m,

where

(4.36) um = 〈u0〉+ um, vm = 〈u0〉+ vm.

We can now repeat the a priori estimates performed in the previous section, which
are now fully justified at the approximated level, and pass to the limit. Here, the
passage to the limit, as well as the continuity on u and v, is standard. In particular,
as far as the nonlinear term f(um) is concerned, we can note that it follows from
standard Aubin–Lions compactness results that, at least for a subsequence that we
do not relabel,

um → u in L4(Ω× (0, T )) weakly and a.e.,

for a proper u, which implies that
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f(um)→ f(u) a.e. and f(um) is bounded in L
4
3 (Ω× (0, T )).

Therefore, f(um)→ f(u) in L
4
3 (Ω× (0, T )) weakly (see, e.g., [6]), which is sufficient

to pass to the limit in the weak formulation. Furthermore, since, e.g.,

u ∈ L2(0, T ;H1(Ω)) and
∂u

∂t
∈ L2(0, T ;H1(Ω)′),

then u ∈ C([0, T ];L2(Ω)) and the weak continuity follows from the Strauss lemma
(see, e.g., [14]).

�

5. Convergence to the Cahn–Hilliard equation

We call (uε, vε) the solution to (4.1)-(4.5), as given in Theorem 4.1. Note that
(uε, vε) solves, for T > 0 given,

(5.1)
d

dt
(((−∆)−1uε, w))+((∇vε,∇w))+((f(uε), w)) = 0 in L1(0, T ), ∀w ∈ H̄1(Ω),

(5.2) uε = vε − ε∆vε in L2(0, T ;H1(Ω)),

(5.3) 〈uε〉 = 〈u0〉, t ≥ 0, in L2(0, T ),

(5.4) uε|t=0 = u0 in L4(Ω)w.

It follows from the uniform (with respect to ε) a priori estimates derived in Section
3 and standard Aubin–Lions compactness results that, at least for a subsequence that
we do not relabel, there exist (u0, v0) and ϕ such that, in particular,

uε → u0 in L∞(0, T ;L4(Ω)) weak star, in L2(0, T ;H1(Ω)) weakly and a.e.,

∂uε

∂t
→ ∂u0

∂t
in L2(0, T ;H1(Ω)′) weakly,

vε → v0 in L∞(0, T ;H1(Ω)) weak star and L2(0, T ;H2(Ω)) weakly

and

ε
1
2vε → ϕ in L∞(0, T ;H2(Ω)) weak star and L2(0, T ;H3(Ω)) weakly.

Actually, writing

uε = vε + ε
1
2 (−ε

1
2 ∆vε),

we can see that
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v0 = u0.

Having this, it is now standard to pass to the limit in (5.2)-(5.4) to find, at the
limit,

(5.5)
d

dt
(((−∆)−1u0, w))+((∇u0,∇w))+((f(u0), w)) = 0 in L1(0, T ), ∀w ∈ H̄1(Ω),

(5.6) 〈u0〉 = 〈u0〉, t ≥ 0, in L2(0, T ),

(5.7) u0|t=0 = u0 in L4(Ω)w,

i.e., u0 is solution to the original Cahn–Hilliard equation. In particular, the con-
vergence of the nonlinear term f(uε) is similar to what was done in the previous
section.

Noting finally that the solution to the Cahn–Hilliard equation is unique, we see
that the whole sequence (uε, vε) converges.

We have thus proved the following.

Theorem 5.1. Under the assumptions of Theorem 4.1, the solution (uε, vε) to
(4.33)-(4.35) converges in L∞(0, T ;L4(Ω)) weak star (for uε) and L2(0, T ;H1(Ω))
weakly (for vε) to the solution u0 to the original Cahn–Hilliard equation, ∀T > 0.

We also have the following.

Theorem 5.2. We assume that the assumptions of Theorem 4.1 hold. Let (uε, vε)
and u0 be the solutions to (4.1)-(4.5) and to the original Cahn–Hilliard equation,
respectively, with the same initial datum u0. Then, ∀T > 0,

‖uε − u0‖L∞(0,T ;H1(Ω)′) ≤ cT ε
1
2 ,

‖vε − v0‖L2(0,T ;H1(Ω)) ≤ cT ε
1
2 ,

where cT is independent of ε.

Proof. We can rewrite the Cahn–Hilliard equation in the following equivalent form:

(5.8) (−∆)−1∂u
0

∂t
−∆v0 + f(u0) = 0,

(5.9) u0 = v0,

(5.10) 〈u0〉 = 〈u0〉, t ≥ 0,
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(5.11)
∂u0

∂ν
= 0 on Γ,

(5.12) u0|t=0 = u0.

Next, set (u, v) = (uε, vε)− (u0, v0). Note that

(5.13) 〈u〉 = 〈v〉 = 0, t ≥ 0.

Furthermore, (u, v) solves

(5.14) (−∆)−1∂u

∂t
−∆v + f(uε)− f(u0) = 0,

(5.15) u = v − ε∆vε,

(5.16)
∂v

∂ν
= 0 on Γ,

(5.17) u|t=0 = 0.

Multiplying (5.14) by u, we obtain, noting once more that f ′ ≥ −1,

(5.18)
1

2

d

dt
‖u‖2

−1 − ((u,∆v)) ≤ ‖u‖2.

Note that, employing the interpolation inequality

‖u‖2 ≤ ‖u‖−1‖∇u‖,
we can write, owing to (5.15),

(5.19) ‖u‖2 ≤ ‖u‖−1‖∇v‖+ ε‖u‖−1‖∇∆vε‖.

Moreover, employing again (5.15), we can see that

(5.20) − ((u,∆v)) = ‖∇v‖2 − ε((∇v,∇∆vε)).

It thus follows from (5.18)-(5.20) that

1

2

d

dt
‖u‖2

−1 + ‖∇v‖2 ≤ ‖u‖−1‖∇v‖+ ε‖u‖−1‖∇∆vε‖+ ε‖∇v‖‖∇∆vε‖,

which yields, employing Young’s inequality,
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(5.21)
d

dt
‖u‖2

−1 + ‖∇v‖2 ≤ c(‖u‖2
−1 + ε2‖∇∆vε‖2).

Applying Gronwall’s lemma to (5.21) leads to

‖u‖2
−1 ≤ cT ε

2

∫ T

0

‖∇∆vε‖2 ds, t ∈ [0, T ], T > 0 given,

so that, recalling that ε
1
2‖∇∆vε‖ is bounded, independently of ε, in L2(0, T ),

‖u(t)‖−1 ≤ cT ε
1
2 ,

where cT is independent of ε. Integrating next (5.21) over (0, T ), we find, similarly,∫ T

0

‖∇v‖2 ds ≤ cT ε,

where cT is independent of ε, which finishes the proof.
�

Remark 5.3. We can obtain a similar result if we take

uε|t=0 = u0
ε, u

0|t=0 = u0,

where

‖uε0 − u0‖−1 ≤ ε
1
2 .

6. The case of logarithmic nonlinear terms

We now take

f(s) = −c0s+ c1 ln(
1 + s

1− s
), s ∈ (−1, 1), 0 < c1 < c0.

Note that the condition c1 < c0 is made to ensure that the potential

F (s) =

∫ s

0

f(ξ) dξ

= −c0

2
s2 + c1((1 + s) ln(1 + s) + (1− s) ln(1− s))

has a double-well structure. These functions satisfy

(6.1) f ′ ≥ −c0, F ≥ −c2, c2 ≥ 0,

(6.2) f(s)(s−m) ≥ c3(m)(|f(s)|+ F (s))− c4(m), s, m ∈ (−1, 1),



CAHN–HILLIARD MODEL 17

where c3(m) > 0 and c4(m) ≥ 0 depend continuously on m (see, e.g., [10]).

Remark 6.1. Such a logarithmic potential was already proposed in [2] and is the
thermodynamically relevant one. In particular, the logarithmic terms correspond to
the entropy of mixing.

We then consider, for N ∈ N, N ≥ 2, the C1-functions defined on the real line by

fN(s) =


f(1− 1

N
) + f ′(1− 1

N
)(s− 1 + 1

N
), s > 1− 1

N
,

f(s), s ∈ [−1 + 1
N
, 1− 1

N
],

f(−1 + 1
N

) + f ′(−1 + 1
N

)(s+ 1− 1
N

), s < −1 + 1
N
.

In particular,

(6.3) f ′N ≥ −c0, FN ≥ −c5, c5 ≥ 0,

and, for N large enough,

(6.4) fN(s)(s−m) ≥ c6(m)(|fN(s)|+ FN(s))− c7(m), s ∈ R, m ∈ (−1, 1),

where c6(m) > 0 and c7(m) ≥ 0 are independent of N and FN(s) =
∫ s

0
fN(ξ) dξ;

here, the constants c6(m) and c7(m) depend continuously on m.
We next introduce the approximated problems

(6.5)
∂uN
∂t

+ ∆2vN −∆fN(uN) = 0,

(6.6) uN = vN − ε∆vN ,

(6.7)
∂uN
∂ν

=
∂vN
∂ν

=
∂∆vN
∂ν

= 0 on Γ,

(6.8) uN |t=0 = u0.

The existence and uniqueness of the solution to (6.5)-(6.8) can be proved as in
Section 2, noting that fN has a linear growth at infinity and is of class C1.

We can also perform the same a priori estimates as in Section 2. In particular, we
have

(6.9)
d

dt
(‖∇vN‖2 + ε‖∆vN‖2 + 2

∫
Ω

FN(uN) dx) + 2‖∂uN
∂t
‖2
−1 = 0,

(6.10)
d

dt
(ε‖uN‖2) + (1− ε0)‖∇uN‖2 ≤ 1

1− ε0

‖∇vN‖2
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and

(6.11)
d

dt
‖uN‖2 + ‖∆vN‖2 + ε‖∇∆vN‖2 ≤ 2‖∇uN‖2.

Next, it follows from (6.5) that

fN(uN) = −(−∆)−1∂uN
∂t

+ ∆vN ,

which yields, in view of the above estimates, that fN(uN) ∈ L2(Ω × (0, T )), T > 0
given. Furthermore, we can write

|〈fN(uN)〉| ≤ c

∫
Ω

|fN(uN)| dx

and it follows from (6.2), taking s = uN and m = 〈uN〉(= 〈u0〉), that

|〈fN(uN)〉| ≤ c((fN(uN), uN)) + c′

= c((fN(uN), uN)) + c′ ≤ c‖fN(uN)‖‖uN‖+ c′,

which yields that 〈fN(uN)〉 ∈ L2(0, T ), so that, finally, we recover the full L2-norm
and deduce that fN(uN) ∈ L2(Ω× (0, T )).

These estimates allow to pass to the limit N → +∞ in the equations, following
[10]. Here, again, the only difficulty is to pass to the limit in the nonlinear term
fN(uN). First, it follows from the above that fN(uN) is bounded, independently of
N , in L1(Ω× (0, T )). Then, it follows from the explicit expression of fN that, for N
large enough,

(6.12) meas(EN,M) ≤ ϕ(
1

N
), N ≤M,

where

EN,M = {(x, t) ∈ Ω× (0, T ), |uM(x, t)| > 1− 1

N
}

and

ϕ(s) =
c

|f(1− s)|
, s ∈ (0, 1).

Note indeed that, taking N (and, thus, M) large enough (also note that f and fN
are odd),
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c ≥
∫ T

0

∫
Ω

|fM(uM)| dx dt ≥
∫
EN,M

|fM(uM)| dx dt

≥ meas(EN,M)f(1− 1

N
).

We can now pass to the limit M → +∞ (employing Fatou’s lemma) and then
N → +∞ (noting that lims→0 ϕ(s) = 0) in (6.12) to find

meas{(x, t) ∈ Ω× (0, T ), |u(x, t)| ≥ 1} = 0,

so that

(6.13) − 1 < u(x, t) < 1 for a.a. (x, t) ∈ Ω× (0, T ).

Next, it follows from the almost everywhere convergence of uN to u (that again follows
from standard Aubin–Lions compactness results and holds at least for a subsequence
that we do not relabel), (6.13) and the explicit expression of fN that

(6.14) fN(uN(x, t))→ f(u(x, t)) for a.a. (x, t) ∈ Ω× (0, T ).

Finally, since fN(uN) is bounded, independently of N , in L2(Ω × (0, T )), it follows
from (6.14) that fN(uN) → f(u) in L2(Ω × (0, T )) weakly, which allows to pass to
the limit in the variational formulation.

We thus have the following.

Theorem 6.2. We assume that (2.5) holds and that u0 ∈ H1(Ω) and εu0 ∈ H2(Ω),
with −1 < u0(x) < 1 for a.a. x ∈ Ω. Then (6.5)-(6.8) possesses a unique weak
solution (u, v) such that, ∀T > 0,

u ∈ L∞(R+;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

∂u

∂t
∈ L2(R+;H1(Ω)′),

v ∈ L∞(R+;H2(Ω)) ∩ L2(0, T ;H3(Ω)),

∂v

∂t
∈ L2(R+;H1(Ω)).

Furthermore, u ∈ C([0, T ];L2(Ω)), v ∈ C([0, T ];H2(Ω)) and

−1 < u(x, t) < 1 for a.a. (x, t) ∈ Ω× (0, T ).
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One open problem is now to pass to the limit as ε → 0. More precisely, we can
pass to the limit and see that the solution to (6.5)-(6.8) converges to the solution u0

to a problem of the form (we consider here a weak form of the equations)

(6.15) (−∆)−1∂u
0

∂t
−∆v0 + ξ = 0,

(6.16) u0 = v0,

(6.17) 〈u0〉 = 〈u0〉, t ≥ 0,

(6.18)
∂u0

∂ν
= 0 on Γ,

(6.19) u0|t=0 = u0.

The difficulty is then to prove that ξ = f(u0). Recall that to prove that fN(uN)
converges to f(u), one uses the explicit form of the approximated functions fN . This
argument can no longer be employed to study the convergence of f(uε) and prove
that, at the limit,

−1 < u0(x, t) < 1 for a.a. (x, t) ∈ Ω× (0, T ), T > 0.

Remark 6.3. Writing (uN,ε, vN,ε) the solution to (6.5)-(6.8), we can prove, proceed-
ing as in the previous section (recall that fN has a linear growth at infinity), that
(uN,ε, v, N ε) converges to (uN , vN) as N → +∞, where (uN , vN) is solution to the
Cahn–Hilliard system

(6.20) (−∆)−1∂u
N

∂t
−∆vN + fN(uN) = 0,

(6.21) uN = vN ,

(6.22) 〈uN〉 = 〈u0〉, t ≥ 0,

(6.23)
∂uN

∂ν
= 0 on Γ,

(6.24) uN |t=0 = u0.

We can then pass to the limit N → ∞ and deduce (following [10]) that (uN , vN)
converges to the solution (u0, v0) to the Cahn–Hilliard system with a logarithmic
nonlinear term f ,
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(6.25) (−∆)−1∂u
0

∂t
−∆v0 + f(u0) = 0,

(6.26) u0 = v0,

(6.27) 〈u0〉 = 〈u0〉, t ≥ 0,

(6.28)
∂u0

∂ν
= 0 on Γ,

(6.29) u0|t=0 = u0.

In that case, we have the separation property

−1 < u0(x, t) < 1 for a.a. (x, t) ∈ Ω× (0, T ), T > 0.
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