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We consider the planning problem of a consolidation carrier that seeks to plan effective transportation operations in the presence of uncertainty in shipment sizes. We presume the carrier seeks to execute regular operations with respect to the geographical routing of vehicles and shipments. However, the carrier can respond to volatility in shipment sizes by effectively scheduling shipment and vehicle dispatches, as well as acquiring additional vehicle capacity at a premium. We present a mathematical model of this planning problem as well as of a related planning problem wherein vehicle and shipment dispatch scheduling decisions must be made before shipment sizes are known. Based on an extensive computational study, we estimate the savings potential of scheduling flexibility and characterize situations when those savings may be significant.

Finally, we identify tactics for designing a transportation network that will position it to benefit from schedule flexibility.

Introduction

Freight transportation contributes to the health and success of global economies, and in multiple ways [START_REF] Gabriel | Service network design in freight transportation[END_REF].

As an example, it plays a key role in the production and distribution of finished goods to consumer markets.

Transportation activities also have negative externalities, such as traffic congestion, air pollution, and greenhouse gas emissions. For these reasons, optimizing decision-making related to transportation activities is critical. In this study, we focus on improving the efficiency of road freight transport systems, which constitute a major share of inland freight transport [START_REF]Share of road in inland freight transport on the rise[END_REF]. Specifically, we focus on ground-based consolidation carriers such as Less-than-truckload (LTL) freight transportation carriers. Such carriers transport shipments that are small relative to vehicle capacity through a terminal network to facilitate grouping them into the same vehicle movements and reduce transportation costs. Such carriers often experience variability in the number and sizes of shipments they must transport. In this paper we investigate whether deferring the scheduling of vehicle and shipment moves within a terminal network until after uncertainty in shipment attributes is revealed, which we refer to as flexible scheduling, is an effective hedge against this uncertainty.

Service network design (SND) problems [START_REF] Wieberneit | Service network design for freight transportation: a review[END_REF][START_REF] Gabriel | Service network design[END_REF] can inform the tactical transportation planning processes of consolidation-focused carriers. They determine the physical transportation moves of shipments and vehicles within a terminal network that minimize vehicle transportation costs while satisfying customer expectations with respect to service. Recent years have seen a growing interest in the literature regarding scheduled SND (SSND) problems [START_REF] Boland | The continuous-time service network design problem[END_REF][START_REF] Boland | The price of discretizing time: a study in service network design[END_REF][START_REF] Hewitt | The flexible scheduled service network design problem[END_REF], in which temporal attributes and scheduling decisions related to vehicles and shipments are modeled. More specifically, such models capture when shipments are available and due as well as the synchronization of shipments in space and time necessitated by consolidation.

While transportation systems are inherently subject to many sources of uncertainty, such as shipment sizes, travel times, or capacities, much of the SND and SSND-related literature focuses on deterministic variants wherein parameter values are assumed to be known with certainty, e.g. Zhu et al. [START_REF] Zhu | Scheduled service network design for freight rail transportation[END_REF], Boland et al. [START_REF] Boland | The continuous-time service network design problem[END_REF], Fontaine et al. [START_REF] Fontaine | Scheduled service network design with resource management for two-tier multimodal city logistics[END_REF], Marshall et al. [START_REF] Marshall | Interval-based dynamic discretization discovery for solving the continuous-time service network design problem[END_REF], or Hewitt [START_REF] Hewitt | The flexible scheduled service network design problem[END_REF]. However, high-quality solutions to deterministic variants may lead to poor performance or even be infeasible in a stochastic environment as observed by Lium et al. [START_REF] Lium | A study of demand stochasticity in service network design[END_REF]. The classical approach to recognizing sources of uncertainty during the decision-making process in a SND/SSND context is with two-stage stochastic programming [START_REF] Hewitt | Stochastic network design[END_REF]. Typically, the network is designed in the first stage of such models (i.e. vehicle movements are determined) and shipments are routed in the second stage given that network and the realization of all parameter values, as in Crainic et al. [START_REF] Gabriel Crainic | Progressive hedging-based metaheuristics for stochastic network design[END_REF][START_REF] Gabriel Crainic | Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design[END_REF], Hewitt et al. [START_REF] Hewitt | Scheduled service network design with resource acquisition and management under uncertainty[END_REF], Crainic et al. [START_REF] Gabriel Crainic | Partial benders decomposition: general methodology and application to stochastic network design[END_REF]. The majority of literature considers uncertainty in shipment sizes [START_REF] Hewitt | Stochastic network design[END_REF].

Generally speaking, second-stage decisions in a two-stage stochastic program are referred to as recourse decisions [START_REF] John | Introduction to stochastic programming[END_REF]. Recourse decisions that model a carrier routing shipments once it knows shipment sizes can enable it to react to variability in a cost-effective manner [START_REF] Lium | A study of demand stochasticity in service network design[END_REF]. However, such recourse decisions also allow for a shipment to follow a different path in different realizations of shipment sizes. In some contexts, such as when facilities in the network must be configured to handle the shipments that are routed through it, such variability in shipment paths is not feasible. Even when variability in shipment paths is feasible, carrier operations will not be regular, which can potentially lead to degradations in the efficiency and quality of those operations.

In this paper, we propose a new variant of the Stochastic SSNDP (SSSNDP) under uncertainty in shipment sizes that is inspired by the needs of Less-than-truckload freight transportation carriers that seek to execute regular operations with respect to physical transportation. More specifically, the carrier seeks to commit to a level of vehicle capacity on each physical transportation move as well as determine a single path for each shipment that it will travel on in all realizations of shipment sizes. However, the carrier has two sets of recourse decisions when shipment sizes are revealed. The first set of recourse decisions involves acquiring additional vehicle capacity at a cost premium.

The second set of recourse decisions involves scheduling when shipments and vehicles dispatch on transportation moves. Much of the related literature e.g. Bai et al. [START_REF] Bai | Stochastic service network design with rerouting[END_REF], Hewitt et al. [START_REF] Hewitt | Scheduled service network design with resource acquisition and management under uncertainty[END_REF], Müller et al. [START_REF] Philipp Müller | Intermodal service network design with stochastic demand and short-term schedule modifications[END_REF] presumes that the carrier determines both the network and the schedule before having full visibility of shipment volumes (i.e. in the first stage of the stochastic program). This assumption is appropriate for settings in which the carrier must commit to a schedule either to its internal operational team or to external providers, e.g. scheduled ships/airplanes in maritime/air transportation. However, in transportation modes such as trucking, there may be more flexibility with respect to scheduling, and delaying such decisions until after shipment sizes are revealed may lead to increased consolidation and reduced transportation costs.

To the best of our knowledge, schedule flexibility in the context of regular physical operations has not yet been studied in the literature on consolidation-based freight transportation carriers. The goal of this paper is to fill the gap in the literature by (i) evaluating the savings potential of schedule flexibility for a carrier seeking to execute regular physical operations and (ii) identifying how schedule flexibility is leveraged to achieve savings.

As such, we believe the contribution of this paper is threefold. First, it introduces a mathematical model of the planning problem we consider, which we refer to as the Stochastic Scheduled Service Network Design with Flexible Schedules (SSSNDFS). Second, through computational experiments, we compare solutions to the SSSNDFS with those of a model where schedule flexibility is not allowed to estimate the savings potential of schedule flexibility. Third, through qualitative analysis, we perform a structural comparison of solutions to the SSSNDFS and the non-flexible scheduling model to help practitioners understand how to plan a freight transportation system when schedule flexibility is an option.

The remainder of the paper is organized as follows. In Section 2, we review the relevant literature. In Section 3, we formally define the problem we consider and present a mixed integer programming formulation of that problem. In Section 4, we present the methodology we use for studying schedule flexibility and its impact on planning decisions. In Section 5, we report and discuss the results of an extensive computational study. Conclusions and avenues for future work are presented in Section 6.

Literature review

In this paper we propose a mathematical model of a new variant of the stochastic SSND in which (i) the physical network is designed with demands only known in distribution and, (ii) after demands are revealed, the network is scheduled. We then analyze solutions to instances of that model to derive insights into managerial tactics for mitigating uncertainty. Thus, in this section we review the relevant literature with respect to two criteria. The first is papers that propose mathematical models and recourse opportunities for variants of the stochastic SSND that consider different decision-making processes. The second is papers that analyze solutions to a variant (or variants) of a stochastic SSND to develop managerial insights into mitigating uncertainty. We do not review papers whose primary contribution is algorithmic, such as Hoff et al. [START_REF] Hoff | A metaheuristic for stochastic service network design[END_REF], or Jiang et al. [START_REF] Jiang | Soft clusteringbased scenario bundling for a progressive hedging heuristic in stochastic service network design[END_REF][START_REF] Jiang | Lagrange dual bound computation for stochastic service network design[END_REF]. We first focus on decision-making processes already modeled in a stochastic SSND context. We then turn our attention to managerial insights derived from solving two-stage stochastic SND and SSND variants.

Decision-making processes modeled in the literature

One way to explicitly incorporate uncertainty within a decision-making process is to formulate a two-stage mixed integer stochastic linear program [START_REF] Küçükyavuz | An introduction to two-stage stochastic mixed-integer programming[END_REF] in which decision variables decompose into a set of first-stage decisions and a set of second-stage decisions. The first-stage decisions are made before the realization of random events while the second-stage decisions are taken once the values of uncertain parameters are revealed. Consequently, the definition of these variable sets reflect the decision framework one aims to model, including the recourse options of the decision-maker. Two-stage stochastic programs have received attention in many application contexts. One context relevant to this paper is production planning [START_REF] Mula | Models for production planning under uncertainty: A review[END_REF], particularly models that defer scheduling the use of capacity to the second stage. However, we focus this literature review on their use in the context of SSNDs and refer the interested reader to Crainic et al. [START_REF] Gabriel Crainic | Progressive hedging-based metaheuristics for stochastic network design[END_REF] and Crainic et al. [START_REF] Gabriel Crainic | Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design[END_REF] for studies focusing on two-stage stochastic SND variants wherein scheduling decisions are not made. We also note that some works, as those of Ng and Lo [START_REF] Ng | Robust models for transportation service network design[END_REF], Wang and Qi [START_REF] Wang | Service network design considering multiple types of services[END_REF][START_REF] Wang | Robust service network design under demand uncertainty[END_REF], Xiang et al. [START_REF] Xiang | Robust service network design problem under uncertain demand[END_REF], propose robust optimization approaches to incorporate uncertainty into SSNDs. We also note that like this paper, Crainic et al. [START_REF] Gabriel Crainic | Modeling demand uncertainty in two-tier city logistics tactical planning[END_REF] evaluate the impacts of different recourse strategies in a freight transportation setting. However, unlike this paper, they consider a planning model that is relevant to a city logistics setting. Thus, we next review models that capture different decision-making processes in a stochastic SSND context. Lium et al. [START_REF] Lium | Correlations in stochastic programming: A case from stochastic service network design[END_REF] introduce the first model of a stochastic SSND problem and consider uncertainty in demands, as is the case for most papers found in the literature. In this model, first-stage decisions determine the timing and location of services provided while second-stage decisions route commodities or outsource some or all of their transportation to a third party. The model also addresses empty service repositioning and includes design-balance constraints, which were studied by Pedersen et al. [START_REF] Michael Berliner Pedersen | Models and tabu search metaheuristics for service network design with asset-balance requirements[END_REF] in a deterministic context. [START_REF] Wang | Stochastic scheduled service network design in the presence of a spot market for excess capacity[END_REF] extend the model presented in Lium et al. [START_REF] Lium | Correlations in stochastic programming: A case from stochastic service network design[END_REF] and investigate selling excess capacity on a spot market as a recourse decision.

Wang and Wallace

Building off the deterministic version of Crainic et al. [START_REF] Gabriel Crainic | Scheduled service network design with resource acquisition and management[END_REF], Hewitt et al. [START_REF] Hewitt | Scheduled service network design with resource acquisition and management under uncertainty[END_REF] study an SSND problem with demand uncertainty that integrates tactical planning with strategic decisions. First-stage decisions are related to fleet sizing, the selection of itineraries for resources (e.g. drivers), and the timing and location of owned services, as well as services outsourced via long-term contracts and spot markets. Second-stage decisions route commodities. Lo et al. [START_REF] Hong K Lo | Ferry service network design under demand uncertainty[END_REF] study a stochastic SND variant arising in the maritime industry.

They model the problem using the concept of regular service reliability. They guarantee that the regular services -i.e. the service scheduled before the uncertainty is revealed -cover the demand up to a certain level of reliability. Consequently, the level of service reliability needs to be balanced for cost-effectiveness.

While demand is the main source of uncertainty studied in the literature, some articles focus on twostage stochastic SSND problems with uncertainty regarding travel times. For example, Lanza et al. [START_REF] Lanza | Scheduled service network design with quality targets and stochastic travel times[END_REF] propose a mathematical model for a SSND with quality targets expressed as penalties in the objective function regarding service lateness and delivery lateness. Demir et al. [START_REF] Demir | A green intermodal service network design problem with travel time uncertainty[END_REF] study an intermodal stochastic SSND variant including both fixed schedules services, such as trains or boats, and non-scheduled services, such as trucks. They propose a continuous-time mixed-integer linear programming formulation with two stochastic parameters: travel times and demand volumes. Due to certain services departing according to fixed schedules, travel time realizations may cause path unfeasibility. As a result, the mathematical model incorporates chance constraints ensuring path feasibility.

The papers discussed above do not consider recourse decisions involving the design of the network. We next discuss articles that do. Bai et al. [START_REF] Bai | Stochastic service network design with rerouting[END_REF] extend the model of Lium et al. [START_REF] Lium | A study of demand stochasticity in service network design[END_REF] to consider rebalancing services within the second stage. First-stage decisions determine the timing and location of the services provided. Like the model in [START_REF] Lium | A study of demand stochasticity in service network design[END_REF], second-stage decisions route commodities (potentially outsourcing them to a third party). However, in Bai et al. [START_REF] Bai | Stochastic service network design with rerouting[END_REF] there are also second-stage decisions that can change the destination of services as long as services are balanced. Müller et al. [START_REF] Philipp Müller | Intermodal service network design with stochastic demand and short-term schedule modifications[END_REF] extend the model of Bai et al. [START_REF] Bai | Stochastic service network design with rerouting[END_REF] by allowing the acquisition of extra services or the cancellation of excess services in the second stage and relaxing the constraints that model rebalancing services. Müller et al. [START_REF] Philipp Müller | Intermodal service network design with stochastic demand and short-term schedule modifications[END_REF] also propose a two-phase matheuristic. The reviewed mathematical models are summarized in Table 1. In that table, we identify the stochastic parameters as well as the first and second-stage decisions associated to each mathematical model.

Known managerial insights for mitigating uncertainty

We next review literature that derives managerial insights into mitigating uncertainty by analyzing solutions to variants of a stochastic SSND. Lium et al. [START_REF] Lium | Correlations in stochastic programming: A case from stochastic service network design[END_REF] study how demand correlation should impact decision-making. They investigate three types of correlation in demand: no correlation, strongly positive correlation, and mixed correlations. In that context, they identify two mitigating tactics: (1) flexibility, the ability to adapt to uncertainty by re-routing commodities, and (2) robustness, the ability to reduce costs through effective design decisions. They observe that different types of demand correlation require different mitigating tactics. Namely, that strongly positively correlated demands require more robust solutions while other correlations require more flexible solutions. Lium et al. [START_REF] Lium | A study of demand stochasticity in service network design[END_REF] further investigate the structure of optimal stochastic solutions and identify two other features that serve as hedges against uncertainty: (1) consolidation, routing commodities in time and space so they can be transported by the same vehicle, and, (2) path-sharing, designing a network that induces more paths linking O-D pairs. [START_REF] Ledvina | A new approach for vehicle routing with stochastic demand: Combining route assignment with process flexibility[END_REF]) that the use of consistent routes yields significant benefits in practical operations, Liu et al. [START_REF] Liu | Stochastic service network design: The value of fixed routes[END_REF] investigate the impact of fixing some of the routes followed by vehicles before uncertainty is revealed. Experiments reveal that, on top of improving service efficiency and driver satisfaction, fixing some of the vehicle routes leads to a significant reduction in costs in an uncertain environment.

While limiting routing options is a common approach used by carriers to reduce the operational complexity and increase the quality of service, to the best of our knowledge, none of the articles found in the literature study flexibility in scheduling services as a recourse option. This paper fills this gap in the literature by modeling this management tactic and then deriving managerial insights from solving instances of the resulting model.

Problem description and mathematical formulation

In this section, we first define the problem considered in this paper. We then present a mathematical model of that problem.

Problem definition

We consider a freight transportation carrier that operates a fixed set of terminals to facilitate the transportation of a fixed set of shipments from their origin terminals to their destination terminals. Each shipment has a delivery window that dictates the earliest time at which it can be picked up at its origin terminal and the latest time at which it can be delivered to its destination terminal. The carrier must determine for each shipment a path through the terminal network from its origin to its destination. It also must determine a dispatch time for each move in that path that agrees with its time window and travel times. The carrier must also plan sufficient vehicle capacity to transport shipments. Because shipment sizes are typically small relative to vehicle capacity, the carrier seeks to transport many shipments in the same vehicle, which in turn reduces transportation moves and costs.

We focus on a planning context wherein the carrier seeks to commit to a baseline physical network for an extended period of time, wherein a physical network consists of the path taken by each shipment and an aggregate level of vehicle capacity for transportation between terminals. We presume that the carrier does not know shipment sizes with certainty when it commits to a baseline network, but does have a statistical distribution for shipment sizes.

Once shipment sizes have been observed, the carrier can schedule shipment and vehicle moves. In addition, we presume that the carrier can acquire additional vehicle capacity at a higher cost than when part of the baseline plan. We presume the carrier must execute the capacity it committed to in the baseline plan. The goal of the carrier is to design a baseline physical network wherein the cost of the transportation capacity it commits to and the expectation of transportation costs with respect to different realizations of shipment sizes is minimized.

Mathematical model

To model this problem, we represent the terminal network of a carrier with the directed network D = (N , A), wherein N is the set of nodes representing physical terminals. The directed arc set A contains arcs (i, j) that represent movement between terminals i, j ∈ N . Associated with each arc is a per-service cost f ij , a capacity u ij , a per-unit of shipment measurement cost, c ij , and a travel time, τ ij . Additional capacity acquired after shipment sizes are revealed is done at a premium that is reflected by the multiplier α ≥ 1.

The carrier seeks to transport a set of commodities K through its terminal network. Associated with each commodity k is an origin terminal, o k , a destination terminal, d k , the earliest time it is available at its origin terminal, e k , and the latest time it is due at its destination terminal, l k . We note that in practice individual shipments that have the same origin terminal, available time, destination terminal, and due time are often consolidated into a single shipment with respect to routing. Thus, each of these commodities may model multiple individual shipments.

Before having complete visibility of shipment volumes, the carrier selects a path for each commodity. A path consists of a sequence of terminals to be visited, starting at the commodity origin terminal and ending at the commodity destination terminal. Formally, a path for commodity k is defined as p = (v p 1 , ..., v p rp+1 ), where

r p + 1 ∈ N (r p + 1 ≥ 2) is the number of terminals visited, v p i ∈ N is the i-th terminal of the sequence, v p 1 = o k , and v p rp+1 = d k .
To each path p is also associated a sequence of arcs to be traversed (a p 1 , ..., a p rp ) with a p n = (v p n , v p n+1 ) ∈ A. The minimum duration of a path is computed as rp i=1 τ v p i v p i+1 , i.e. the sum of travel times over the sequence of arcs, and a path p associated with commodity k is feasible if it satisfies

rp i=1 τ v p i v p i+1 ≤ l k -e k .
The per-unit of shipment measurement cost of a path p is referred to as c p , and is obtained by summing the per-unit of shipment measurement cost over all arcs in the sequence. For each commodity k ∈ K, this set of candidate paths is referred to as P k .

While the size of each shipment is not known with certainty when the physical network is designed, a joint distribution, Ω, of their sizes is known. We let ω represent a realization from that joint distribution and the parameter s k ω represent the size of commodity k in realization ω.. We associate the probability π ω with outcome ω ∈ Ω.

Regarding scheduling a network, we consider a discretization of time, T , used to create a time-expanded version, D T = (N T , A T ∪ H T ), of the physical network D = (N , A). The node set, N T , consists of nodes of the form (i, t), i ∈ N , t ∈ T that represent activities occurring at the physical terminal i at time t. The arc set consists of two forms of arcs. The first set A T , often referred to as travel arcs, includes arcs of the form ((i, t), (j, t ′ )), i ̸ = j, (i, j) ∈ A, t ′ ≥ t + τ ij represents dispatching from terminal i at time t to arrive at terminal j at time t ′ . The second set H T , often referred to as holding arcs, includes arcs of the form ((i, t), (i, t ′ )), t, t ′ ∈ T , i ∈ N , t ′ > t, represents waiting at terminal i from time point t to time point t ′ .

Regarding decision variables on the physical network, we let y ij ∈ N, (i, j) ∈ A, denote the number of services that travel from terminal i to terminal j, and we let x k p ∈ {0, 1}, k ∈ K, p ∈ P k indicate whether or not the path p is selected for commodity k.

Scheduling decisions correspond to the time-expanded network and are made after shipment volumes are revealed. As such, the scheduling decisions are duplicated for each scenario ω ∈ Ω. We let y tt ′ ω ij ∈ N, ((i, t), (j, t ′ )) ∈ A T , ω ∈ Ω denote the number of committed-to services, i.e. services allocated from terminal i to terminal j in the physical network, that dispatch from i at time t to arrive at j at time t ′ in scenario ω. Similarly, we let z tt ′ ω ij ∈ N, ((i, t), (j, t ′ )) ∈ A T , ω ∈ Ω denote the additional number of services that perform that same move, and at a cost premium. We also let

x tt ′ kω ij ∈ {0, 1}, k ∈ K, ((i, t), (j, t ′ )) ∈ A T ∪ H T , ω ∈ Ω represent
whether commodity k moves from terminal i at time t to terminal j at time t ′ . We formulate the Stochastic Scheduled Service Network Design with Flexible Schedules (SSSNDFS) as follows:

χ * F S = minimize (i,j)∈A f ij y ij + ω∈Ω π ω   k∈K p∈P k c k p s k ω x k p + ((i,t),(j,t ′ ))∈A T αf ij z tt ′ ω ij   subject to p∈P k x k p = 1 ∀k ∈ K, (1) 
(j,t ′ )|((i,t),(j,t ′ ))∈A T ∪H T x tt ′ kω ij - (j,t ′ )|((j,t ′ ),(i,t))∈A T ∪H T x t ′ tkω ji =            1 (i, t) = (o k , e k ) -1 (j, t ′ ) = (d k , l k ) 0 o.w. ∀(i, t) ∈ N T , ∀k ∈ K, ∀ω ∈ Ω, ( 2 
) k∈K s k ω x tt ′ kω ij ≤ u ij (y tt ′ ω ij + z tt ′ ω ij ) ∀((i, t), (j, t ′ )) ∈ A T , ∀ω ∈ Ω, (3) 
t,t ′ ∈T :((i,t),(j,t ′ ))∈A T x tt ′ kω ij = p∈P k :(i,j)∈p x k p ∀(i, j) ∈ A, ∀k ∈ K, ∀ω ∈ Ω, (4) 
t,t ′ ∈T :((i,t),(j,t ′ ))∈A T

y tt ′ ω ij = y ij ∀(i, j) ∈ A, ∀ω ∈ Ω, (5) 
x k p ∈ {0, 1} ∀p ∈ P k , ∀k ∈ K, (6) 
y ij ∈ N ∀(i, j) ∈ A, (7) 
x tt ′ kω ij ∈ {0, 1} ∀((i, t), (j, t ′ )) ∈ A T ∪ H T , ∀k ∈ K, ∀ω ∈ Ω (8) y tt ′ ω ij ∈ N ∀((i, t), (j, t ′ )) ∈ A T , ∀ω ∈ Ω, (9) 
z tt ′ ω ij ∈ N ∀((i, t), (j, t ′ )) ∈ A T , ∀ω ∈ Ω. ( 10 
)
The objective function seeks to minimize the cost of the first-stage decisions and the expected value of the second-stage costs. Here, first-stage decisions are the selection of shipment paths as well as the service capacity commitment, whose costs are reflected by the first term of the objective function. While shipment path decisions are made in the first stage, the resulting costs depend on the realization of shipment sizes and thus must be computed in the second stage. As such, the second term of the objective is the expectation of these costs. Finally, the third term of the objective computes the expected cost of additional service commitment.

Constraints (1) enforce selecting a single path per commodity, which guarantees that all shipments are transported from their origins to their destinations. Constraints (2) are classical flow balance constraints associated with the time-expanded network flow decisions, for each scenario. Constraints (3) ensure sufficient service capacity, whether committed-to or additional, is dispatched to transport commodities, for each scenario. Constraints (4) ensure that paths followed by shipments in the time-expanded network correspond to the associated physical route selected in the first stage, for each scenario. Constraints [START_REF] Boland | The continuous-time service network design problem[END_REF] ensure that the capacity committed to is executed, for each scenario. Constraints ( 6) and ( 7) define the physical network decision variables and their domains. Constraints (8), [START_REF] Fontaine | Scheduled service network design with resource management for two-tier multimodal city logistics[END_REF], and [START_REF] Marshall | Interval-based dynamic discretization discovery for solving the continuous-time service network design problem[END_REF], define the time-expanded network decision variables and their domains.

Methodology for estimating the value of flexible schedules

In this section, we present our methodology for estimating and understanding the value of having flexibility in scheduling transportation as modeled by the SSSNDFS. Our methodology involves solving instances of two benchmark models that vary in the flexibility they allow with respect to scheduling vehicle and shipment dispatches. These benchmark models are constructed so that an instance of the SSNSNDFS can be used as an instance of each benchmark model. Thus, we can compare the objective function values of optimal solutions to these benchmark models to that of an optimal solution of the SSSNDFS. Also, to understand how flexability is leveraged we compute statistics based on solutions to the different models. We begin the section with a presentation of the benchmark mathematical models and then formally present these statistics.

Benchmark mathematical models

We next present the two benchmark mathematical models we solve to measure the savings potential of scheduling flexibility. In both benchmarks the physical paths of shipments is presumed to be chosen before shipment sizes are revealed. The first benchmark model reflects a decision-making process in which shipments and committed-to vehicles must also be scheduled before shipment sizes are revealed. In this model, the only recourse action is to acquire additional vehicle capacity. The second benchmark model allows for more flexibility as only committed-to vehicles must be scheduled in advance of knowing shipment sizes. In this model there are two recourse actions. The first is to schedule the dispatch of shipments on the paths indicated by first-stage decisions. The second is to acquire additional vehicle capacity.

We refer to our first benchmark model as the Stochastic Scheduled Service Network Design with Rigid Schedules (SSSNDRS) as scheduling flexibility is not present. The SSSNDRS reflects a decision-making process in which the physical paths for shipments, timing of shipment dispatches, and location and timing of committed-to services, are determined in the first stage. Once the realization of shipment sizes is revealed, the only recourse option is to acquire additional capacity at a cost premium. Conceptually, this can be modeled by adding the following constraints to the model of the SSSNDFS presented in Section 3.2:

x tt ′ kω1 ij = x tt ′ kω2 ij , ∀((i, t), (j, t ′ )) ∈ A T , ∀k ∈ K, ∀ω 1 ∈ Ω, ∀ω 2 ∈ Ω, ω 1 ̸ = ω 2 (11) 
y tt ′ ω1 ij = y tt ′ ω2 ij , ∀((i, t), (j, t ′ )) ∈ A T , ∀ω 1 ∈ Ω, ∀ω 2 ∈ Ω, ω 1 ̸ = ω 2 (12) 
Alternately, one can formulate the problem with different, and fewer, first and second-stage decision variables. Namely, by replacing the second-stage variables x tt ′ kω ij and y ttω ij by first-stage variables x tt ′ k ij and y tt ij and adapting the constraints accordingly. This alternative mathematical formulation is used for the computational experiments and described in Appendix B. We let χ * RS denote the optimal objective function value of the SSSNDRS.

We refer to our second benchmark model as the Stochastic Scheduled Service Network Design with Semi-Rigid Schedules (SSSNDSRS) as scheduling flexibility is only present for the timing of shipment dispatches.

Conceptually, this second benchmark can be formulated by adding constraints [START_REF] Hewitt | Stochastic network design[END_REF] to the SSSNDFS. Like the SSSNDRS, there is an alternate formulation with different first and second-stage variables that we use in our computational experiments. We let χ * SRS denote the optimal objective function value of the SSSNDSRS.

Statistics for comparing solutions

We next define measures for analyzing differences between solutions to the SSSNDFS and the SSSNDRS.

Similarly defined measures can be used to compare solutions to the SSSNDFS and SSSNDSRS. We do not state all these explicitly for the sake of brevity.

First, regarding objective function values, we compute for a given instance the gap

V F S = χ * RS -χ * F S χ * RS .
We recall that the SSSNDRS models a decision process in which the physical location and timing of the committed-to services are set in the first stage, and the SSSNDFS reflects a decision process in which the scheduling of the committed-to services is delayed to the second stage. Thus, every solution to the SSSNDRS is feasible for the SSSNDFS, and χ * F S is no greater than χ * RS . Subsequently, we have V F S ≥ 0. We will use this V F S statistics to measure the value of leveraging flexibility in the scheduling of vehicle and shipment dispatches. Relatedly, we define the gap

V F S semi = χ * RS -χ * SRS χ *

RS

to represent the savings potential of only having flexibility in scheduling shipment dispatch times.

In both models we consider, transportation costs are primarily reduced by consolidating commodities into the same scheduled dispatch. Therefore, our structural comparison of solutions will primarily focus on commodity consolidations. First, for solutions to the models we consider, we let pk represent the path p ∈ P k such that xk pk = 1. Given that, for each arc (i, j) ∈ A of the physical network, we let K ij denote the set of commodities whose physical paths traverse (i, j). More precisely,

K ij = {k ∈ K | xk pk = 1, (i, j) ∈ pk }.
Regarding vehicle capacity, we let ȳij denote the committed-to capacity on an arc in a solution to one of the models we consider. For a solution to the SSSNDFS, we let ȳij correspond to the value of the decision variable y ij . For a solution to the SSSNDRS of SSSNDSRS, we abuse notation and let ȳtt ′ ij represent the value of the decision variable y tt ′ ij in that solution. We then let ȳij = t,t ′ ∈T :((i,t),(j,t ′ ))∈A T ȳtt ′ ij , We define a physical dispatch as ϕ ij = {K ij , ȳij }. For a given physical dispatch ϕ ij , we let C(ϕ ij ) represent its total cost related to the operations on arc (i, j), and is computed as

C(ϕ ij ) = ω∈Ω π ω k∈Kij :(i,j)∈ pk c k ij s k ω + f ij ȳij + ω∈Ω π ω (t,t ′ )∈T :((i,t),(j,t ′ ))∈A T αf ij ztt ′ ij .
The first, second, and third term reflect the cost of product flows, the cost of committed-to services, and the expected cost of additional capacity acquired through recourse, respectively.

Computational study

In our computational study, we seek to (i) estimate the cost savings associated with allowing for flexibility in the scheduling of shipment and vehicle dispatches, and (ii) understand how that flexibility is leveraged to generate such savings. To do so, we perform experiments involving solving instances of the SSSNDRS, SSSNDSRS, and SSSNDFS derived from the operations of a US-based Less-than-truckload freight transportation carrier. In this section, we first describe the instances used. We then assess the value of scheduling flexibility and analyze the structural differences between rigid solutions and their flexible counterparts. We next derive managerial insights into how to manage a transportation system when flexibility is an option.

Finally, we assess the value of stochastic solutions (V SS).

Regarding the computational setting, all three mathematical models are implemented in C++ and solved using CPLEX v22.1 configured with a 1% MIP tolerance and to use a single thread and at most 32 GB of RAM. All instances are solved on an Intel E5-2683 processor with a 2.1GHz CPU. We solve instances of the SSSNDRS or SSSNDSRS with a time limit of twelve hours. As such solutions are feasible for the SSSNDFS we use them as initial solutions to the corresponding instance of that model. Instances of the SSSNDFS are solved with a time limit of four hours.

Instances

We note that the same data is required for an instance of the SSSNDRS, SSSNDSRS, and SSSNDFS. Thus, in this section we describe how we generate such data, which, abusing terminology, we refer to as an instance.

We randomly generate instances based on a portion of the network of a United States-based LTL carrier.

More precisely, the network consists of six terminals (e.g. |N | = 6) and 30 physical moves between terminals (e.g. |A| = 30). The service capacity, u ij , of all arcs is 22000 units. This value was provided by the carrier.

Similarly, the fixed costs f ij and variable costs c ij were provided by the carrier. However, we consider instances with different premiums, α, for acquiring additional vehicle capacity on the spot market. Specifically, we consider the values 1.10, 1.20, 1.30, 1.40, and 1.50 for α. Travel times for physical transportation moves were also provided by the carrier. We consider a time horizon of 5 days, discretized into periods that reflect two hours. We generated instances that vary in the number of commodities, K. Specifically, we consider sets of 50, 75, or 100 commodities.

Shipment consolidation requires synchronization of both physical routing and scheduling. We consider two network configurations in our experimental study to isolate the effects of these two requirements. In the first, consolidation primarily requires scheduling synchronization. In the second, consolidation requires both routing and scheduling synchronization. In both configurations, there are three terminals which only serve as origin or destination points for shipments (i.e. they are spokes). In one of the two configurations, one of the other three terminals can serve as a transfer point for commodities (i.e. it is a breakbulk) whereas the other two are also spokes. A transfer point can be an intermediate terminal in the path for a commodity. As such, in this configuration there are only two physical paths a shipment can take. The first is the path that consists of transporting the commodity directly from it origin to its destination. The second is the path that originates in the commodity origin, travels to the transfer, and then travels to the destination. Formally, we have that the set P k in this configuration consists of the paths (o k , d k ) and (o k , bb, d k ) for all commodities k.

As such, consolidation in this network configuration primarily requires scheduling synchronization. We refer to this network configuration as 1BB.

In the other configuration, the other three terminals can serve as transfer points for shipments (i.e. they are breakbulks). Thus, we refer to this network configuration as 3BB. In this configuration there can be more than two paths for each commodity. More precisely, we constructed the set P k for each commodity k with at most five paths from o k to d k . When more than five such paths are present in the network, we chose the five shortest with respect to travel time. Unlike the 1BB configuration, consolidation in this network configuration requires both routing and scheduling synchronization.

For a given network configuration and set of commodities, we consider instances that represent different degrees of uncertainty. As noted above, commodities can model the aggregation of multiple shipments. Thus, while there may be uncertainty in both the number of shipments the carrier must transport and the size of each shipment, we model uncertainty in commodity sizes as a proxy for both.

Specifically, we consider six normal distributions N (µ, σ 2 ). The first three distributions have a mean value µ of 7000, and a variance σ 2 of 3500, 7000, and 10500, respectively. The last three distributions have a mean value µ of 10000, and a variance σ 2 of 5000, 10000, and 15000, respectively. Thus, we consider two means and three coefficients of variation. Finally, we note that as we consider only a portion of the carrier network we consider commodity sizes that reflect aggregations of shipments originating in and/or destined for terminals outside of the sub-network considered.

As the durations of commodity time windows influence consolidation opportunities, we consider instances where these durations differ. For each commodity k ∈ K, we define its minimum time window scenarios which are generated via sampling. Finally, recalling that 3BB instances involve more commodity paths than 1BB instances, and thus yield mathematical models that are more difficult, note that we designed 3BB instances with shorter commodity time windows than their 1BB counterparts to maintain computational tractability. The instances are available at https://bitbucket.org/sbeliere/dataset_sssndrs_ sssndfs/src/master/.

Value of scheduling flexibility

We first present results from solving instances of the SSSNDRS and SSSNDFS and an analysis of those results. We first focus on the savings potential of leveraging flexibility in the scheduling of shipment and vehicle dispatches. We note that we only compute savings for instances wherein the SSSNDRS could be solved to optimality. However, we do not restrict ourselves to instances wherein the SSSNDFS could be solved to optimality as well. As such, the savings we report are potentially under-estimates as they are based on some SSSNDFS solutions that are not provably optimal. In total, the SSSNDRS could be solved to optimality, and the V F S computed accordingly, for 306 of the 540 instances. We observe that the average V F S for instances in the 1BB configuration is 1.71% while for those in the 3BB configuration is 1.66%.

Going further, we report in Table 2 the distribution of instances based on the V F S and for each network configuraiton. A disaggregated version of these results is provided in Appendix C. We see that over 30% of the instances in the 1BB configuration have a V F S that is greater than 2%, with nearly 9% having a V F S greater than 4%. Turning to the 3BB configuration we again see that over 30% of the instances have a V F S that is greater than 2%. We conclude that while the V F S may be less than 2% on average there are indeed instances in which it is much greater. Thus, we next study which instance parameters correlate to high values of the V F S.

V F S 0-1% 1-2% 2-3% 3 
To quantify the variability of an instance, we categorize each instance by the coefficient of variation of the statistical distribution used to generate shipment sizes: CV = µ/σ 2 . Figures 1, 2 and 3 report the average and the maximum V F S value for all instances that have the same CV value, the same α value, and the same number of commodities |K|, respectively. Figure 4 reports the average and the maximum V F S value for all the 1BB instances that have the same value ϵ. Figure 5 reports the average and the maximum V F S value for all the 3BB instances that have the same value ϵ. In Figure 1, we see that the greater the variability in shipment sizes, the greater the savings opportunity for leveraging flexibility. Similarly, Figure 2 illustrates that the savings potential of scheduling flexibility increases with α, which suggests that scheduling flexibility is more beneficial as the cost of acquiring additional vehicle capacity on the spot market is greater. Unsurprisingly, we observe in Figures 3,4, and 5 that the V F S increases with the number of consolidation opportunities, which is correlated both with the number of commodities and the duration of the commodity time windows.

The results show that the savings potential of scheduling flexibility can be high, with a reduction of transportation costs of 5% in multiple instances. In addition, Figures 4 and5 suggest that a network that contains more physical routing options for commodities does not lessen the impact of scheduling flexibility, as for ϵ = 10, the V F S of the 3BB instances are generally higher than that of 1BB instances. Overall, we conclude that the instance parameters having the greatest impact on the V F S are the number of commodities and the duration of the commodity time windows.

We next seek to identify attributes of a solution to the SSSNDRS that indicate that solving the SSSNDFS would yield significant savings. In Table 3 we report results for three categories of instances based on the V F S. We place in the first category instances wherein V F S = 0, meaning solving the SSSNDFS does not yield any savings. In the second category, we consider instances wherein 0 < V F S < 1%, meaning solving the SSSNDF yields some savings, but they are not large. Finally, the third category consists of instances wherein V F S > 1%.

For a given instance and solution to the SSSNDRS we let ztt ′ ωRS ij represent the value of the decision variable z tt ′ ij that models the use of ad-hoc capacity in that solution. In Table 3, we report the number of instances in each category, as well as three different perspectives on the use of ad-hoc capacity in solutions based on the corresponding V F S. All three metrics yield the same conclusion. Namely, the greater a solution to the SSSNDRS relies on ad-hoc capacity, the greater the likelihood that solving the SSSNDFS will yield savings as well as the greater the magnitude of those savings.

Recalling that the objective functions of the SSSNDRS and the SSNDFS consist of the same three terms, we investigate (i) the fraction of the total cost incurred from each term, as well as (ii) the change in each term from the rigid to the flexible solution. We refer to the first term, ((i,t),(j,t ′ ))∈A T f ij y tt ′ ij for the SSSNDRS and (i,j)∈A f ij y ij for the SSSNDFS, as the cost of committed-to capacity. We refer to the second term, ω∈Ω π ω ((i,t),(j,t ′ ))∈A T αf ij z tt ′ ω ij , as the cost of ad-hoc capacity. Finally, we refer to the third term, ω∈Ω π ω k∈K p∈P k c k p s k ω x k p , as the cost of commodity flows. Figures 6 and7 report the distribution of the cost amongst the aforementioned objective function terms, for the SSSNDRS and the SSNDFS, respectively.

We note that Figures 6 and7 are based on instances in which the V F S is greater than 1%. Overall, we observe that rigid and flexible solutions yield different distributions of solution costs. On average, the fraction of committed-to-capacity cost is smaller for rigid solutions, while the fraction of ad-hoc capacity cost is greater.

Going further, for a given instance we compute the relative gap in each objective function term between the solution to the SSSNDRS and the solution to the SSSNDFS. For committed-to capacity, we compute

( (i,j)∈A f ij y ij -((i,t),(j,t ′ ))∈A T f ij y tt ′ ij )/ ((i,t),(j,t ′ ))∈A T f ij y tt ′ ij .
We report an average of this gap in column ∆ cost of committed-to capacity of Table 4. The other columns are computed similarly. A negative gap indicates that the cost of the flexible solution is lower than that of the rigid solution for that term. Like the figures above, we report in Table 4 averages over instances in which the V F S is greater than 1%.

We see that, on average, the savings induced by scheduling flexibility are due to a reduction of the cost of ad-hoc capacity. On the other hand, the overall increase of the committed-to-capacity cost suggests that whether or not schedule flexibility is considered significantly influences first-stage decisions made on the physical network. In the next section, the structural differences between rigid and flexible solutions are ∆ cost of ∆ cost of ∆ cost of committed-to capacity ad-hoc capacity commodity flows ∆ total cost 2.45% -20.51% 1.78% -2.47% studied in more detail.

To further investigate the evolution of the objective function terms from the rigid solutions to the flexible solutions, we provide a scatter plot of the instances wherein the V F S is greater than 1% in Figure 8. To understand whether savings induced by scheduling flexibility come from a reduction in the committed-tocapacity costs or the ad-hoc capacity costs, the scatter plot shows the relative gap of committed-to-capacity cost vs. the relative gap of the ad-hoc capacity cost with a variable marker color. Specifically, the darker the marker, the higher the V F S. These results suggest that there are numerous ways to adjust committed-to and ad-hoc capacity decisions to transform optimal rigid solutions into cheaper flexible ones, and thus take advantage of scheduling flexibility. Indeed, while Table 5 indicates that, on average, savings induced by scheduling flexibility come from a reduction of ad-hoc capacity costs and an increase of committed-to-capacity costs, the scatter plot shows that the instances with V F S ≥ 1% can be decomposed into three categories. Specifically, we observe markers (i) whose abscissa and intercept are strictly lower than 0, (ii) whose abscissa is negative and whose intercept is positive, and (iii) whose abscissa is positive and whose intercept is negative. The first category reflects instances for which savings come from a reduction of both committed-to-capacity and ad-hoc capacity costs. The second category reflects instances with an increase of ad-hoc capacity cost compensated by a reduction of the committed-to-capacity cost. The third category reflects instances with an increase of committed-to-capacity cost compensated by a reduction of the ad-hoc capacity cost. The number of markers in each category is non-negligible. This illustrates that there is not a single best managerial tactic for leveraging scheduling flexibility and thus an optimization model is required to achieve its full savings potential.

Finally, we consider our second benchmark model that allows for flexibility in scheduling shipment dispatch times. We report in Table 5 the V F S semi , which captures the savings potential of only having flexibility in scheduling shipment dispatch times, and the V F S, averaged over instances with the same number of commodities.

|K| 50 75 100

V F S semi 0.64% 1.21% 2.01%

V F S 0.93% 1.91% 3.77% We see in Table 5 that while flexibility in scheduling shipment dispatch times enables some savings, flexibility in scheduling both shipment and vehicle dispatch times can lead to even greater reductions in transportation costs.

Structural analysis

We next seek to gain insights into how scheduling flexibility enables reducing transportation costs. To do so, we analyze structural differences between SSSNDRS and SSSNDFS solutions. We restrict our attention to instances such that V F S ≥ 1%, i.e., instances for which schedule flexibility yields large savings.

We first assess whether or not taking scheduling flexibility into account impacts the physical paths chosen for commodities. In Table 6, column % commodities with different paths provides averages of the percentage of commodities whose physical path differs between the SSSNDRS solution and the SSSNDFS solution. These averages are computed over instances based on the same network configuration. For these commodities, the three last columns of Table 6 reports the percentage of commodities whose physical path has fewer, the same number of, or more, arcs in the SSSNDFS solution.

We observe that taking scheduling flexibility into account yields different physical paths for a small fraction of the commodities. For these commodities, paths are generally longer in the SSSNDFS solution, For each instance, we let

meaning
ϕ RS ij = {K RS ij , ȳRS ij } and ϕ F S ij = {K F S ij , ȳF S ij
} denote the physical dispatches performed for the SSSNDRS solution and the SSSNDFS solution, respectively. Recall that, for a given physical arc (i, j) ∈ A, consolidation opportunities are the same in the SSSNDRS solution and SSSNDFS solution when

K F S ij = K RS ij .
Averaged over all instances and physical dispatches ϕ ij , we have that K RS ij ̸ = K F S ij , i.e., consolidation opportunities differ from the SSSNDRS solution to the SSSNDFS solution, 12.17% of the time. For these physical dispatches, we have on average that |K RS ij | = 5.25 while |K F S ij | = 6.6. In other words, flexible solutions have as many or more commodities flowing per physical arc than their rigid counterparts. This confirms that a good strategy to reduce costs through scheduling flexibility is to increase consolidation opportunities.

Nevertheless, it is intuitive to expect that delaying scheduling decisions leads to a reduction of transportation costs, even when consolidation opportunities are unchanged. To isolate this effect, we turn our attention to physical arcs for which consolidation opportunities are the same between the SSSNDRS solution and the SSSNDFS solution. Averaged over all instances and physical dispatches ϕ ij , we have that

K RS ij = K F S ij , i.e.
, consolidation opportunities are the same from the SSSNDRS solution to the SSSNDFS solution, 87.83% of the time. In Table 7, we distinguish such physical dispatches into three cases: those for which the committed-to capacity is the same in both solutions, lesser in the SSSNDFS solution, or greater in the SSSNDFS solution. The first line indicates the frequency of each case, the second line reports the average variation of the committed-to-capacity, and the third line reports the average variation of the total physical dispatch cost, i.e., ∆C( We first observe that the total cost associated with a dispatch is, on average, lower in each of the three cases. The most recurring case is the one where the same committed-to-capacity is allocated in both solutions. As in that case, committed-to-capacity and commodity flow costs are similar in the rigid and flexible solution, savings comes from a reduction of ad-hoc capacity costs, showing that scheduling flexibility enables better use of committed-to-vehicles. While the case where the flexible solution decreases committedto capacity compared to the rigid solution is the least frequent, it is also the one with the greatest savings.

ϕ ij ) = (C F S (ϕ ij ) -C RS (ϕ ij ))/C RS (ϕ ij ). ȳF S ij = ȳRS ij ȳF S ij < ȳRS ij ȳF S ij >
Finally, the third column indicates that when a solution to the SSSNDFS increases committed-to-capacity, it do so in a way that is more than offset by a significant reduction in the use of ad-hoc capacity.

Next, we consider committed-to capacity in aggregate. Namely, we consider the quantity ȳF S = (i,j)∈A ȳij for a solution to the SSSNDFS model and the analogous quantity ȳRS for a solution to the SSSNDRS model.

We compute the relative gap in these committed-to capacity levels as ∆ ȳ = (ȳ F S -ȳRS )/ȳ F S . We report these gaps in Table 8 averaged over all instances with V F S ≥ 1%. In addition to reporting this average over all arcs, we report over arcs that originate or terminate at a breakbulk, i.e., Breakbulk arcs, and over arcs between two spokes, i.e. Direct arcs.

∆ ȳ

Breakbulk arcs Direct arcs 2.68% 3.66% -7.68% We see that overall, solutions to the flexible model commit to more capacity. Interestingly, while aggregated committed-to-capacity increases on Breakbulk arcs as scheduling flexibility is allowed, it decreases sharply on direct arcs.

Synthesis and managerial insights

In this section, we summarize our findings from the previous sections. Regarding the savings potential of having flexibility in the scheduling of shipment and vehicle dispatches, which we measured with the V F S statistic, we conclude the following.

• The savings from scheduling flexiblity are greatest for a freight transportation carrier that transports large numbers of shipments or is unable to accurately forecast the sizes of the shipments it will transport.

• A freight transportation carrier that serves customers that do not require short delivery times will likely realize savings from scheduling flexibility.

• A freight transportation carrier that leverages scheduling flexibility can expect a reduction in the use of ad-hoc capacity.

• A freight transportation carrier that often relies on the use of ad-hoc capacity can likely achieve savings by accommodating scheduling flexibility in its operations.

Regarding tactics for achieving the savings enabled by flexibility in the scheduling of shipment and vehicle dispatches, we conclude that a freight transportation carrier should

• route shipments on longer paths that go through intermediate/breakbulk terminals.

• place greater emphasis on consolidation when choosing physical paths for shipments.

• allocate less vehicle capacity to direct arcs.

We note that the second tactic is similar to an observation made by Lium et al. [START_REF] Lium | A study of demand stochasticity in service network design[END_REF] when identifying tactics for hedging against uncertainty in shipment sizes in service network design.

Value of considering uncertainty

We next quantify the impact of incorporating uncertainty within the decision-making process. To do so, we simulate a case wherein the carrier determines the transportation operations using a deterministic model based on a single estimate of shipment sizes. Specifically, we consider a single mean scenario ω obtained by averaging the shipment sizes across all the scenarios. We solve the deterministic model based on the mean scenario to derive first-stage decisions, and we then solve all the scenario subproblems where those first-stage decisions are fixed. We combine the cost of the first-stage decisions derived from the deterministic model with the scenario subproblem costs and we denote the resulting objective function value as χ * F S . We assess the value of considering uncertainty by computing the V SS introduced by Birge [START_REF] John R Birge | The value of the stochastic solution in stochastic linear programs with fixed recourse[END_REF]. The V SS measures the absolute difference in objective function value between the stochastic solution and the deterministic solution in the stochastic environment, i.e. V SS = χ * F S -χ * F S . To get a clear understanding of the value of considering uncertainty, we also compute a relative value V SS ∆ = V SS/ χ * F S . As before, we restrict our attention to the instances for which the SSSNDRS could be solved to optimality as we use that optimal solution as a warm start for the SSSNDFS. This corresponds to the 306 instances considered in Tables C.13a, C.13b, C.13c, C.14a, C.14b and C.14c. For these instances, we solve the deterministic model based on the mean scenario and the subsequent scenario subproblems with a time limit of twelve hours. We note that we only compute the V SS ∆ for the 140 instances for which the deterministic model based on the mean scenario and the subsequent scenario subproblems could all be solved to optimality within the time limit.

Recalling that the SSSNDFS solutions used to perform the comparison are not necessarily optimal, the numbers we report potentially underestimate the value of considering uncertainty. Tables 9a, 9b and 9c report results for the 1BB network configuration and ϵ = 10, ϵ = 11, and ϵ = 12, respectively. Tables 10a, 10b and 10c report results for the 3BB network configuration and ϵ = 8, ϵ = 9, and ϵ = 10, respectively.

Each table provides statistics averaged over instances with the same premium value and the same number of commodities. The statistics reported are the number of instances for which the value of uncertainty could be accurately assessed, as well as the values of V SS and V SS ∆ . We observe that, overall, the V SS increases with the number of commodities, regardless of the network configuration. We also find that the V SS is higher for the second network configuration, 3BB. We summarize our managerial insights based on the V SS as follows.

• A freight transportation carrier that transports large numbers of shipments will likely realize savings by explicitly modeling uncertainty when their operations accommodate scheduling flexibility.

• A freight transportation carrier that executes a dense network in that there are many potential paths in the network for a given shipment will likely realize savings from explicitly modeling uncertainty when their operations accommodate scheduling flexibility.

Conclusions and future work

In this paper, we considered the planning problem of a consolidation carrier that seeks to plan effective transportation operations in the presence of uncertainty in shipment sizes. While the carrier seeks to execute regular operations with respect to the geographical routing of vehicles and shipments, it can respond to volatility in shipment sizes by effectively scheduling shipment and vehicle dispatches as well as by acquiring additional vehicle capacity. We presented a mathematical model of this planning problem as well as of two related planning problems in which less or no scheduling flexibility is available. These latter models served as our benchmark for estimating the savings potential of having flexibility in the scheduling of shipment and vehicle dispatches.

We reported on an extensive computational study based on instances derived from the operations of a United States-based Less-than-truckload freight transportation carrier. We presented an estimate of the savings potential of scheduling flexibility as well as characterized situations when those savings may be significant. We compared solutions to the newly proposed model and one of the benchmarks to identify tactics for designing a transportation network that will position it to benefit from schedule flexibility.

Regarding future work, our computational study clearly identified that the newly proposed model is computationally challenging to solve. Beyond the results reported in this paper we also conducted experiments with instances based on networks with more terminals (e.g. 11). Less than 20% of the corresponding instances of the SSSNDRS and SSSNDFS could be solved by an off-the-shelf solver in a 12 hour time limit.

For both models, this computational difficulty can be partially attributed to the presence of second-stage decision variables that are binary and/or integer. As these decision variables are duplicated for each scenario this leads to instances of the model with large numbers of binary decision variables that are difficult to solve for an off-the-shelf optimization solver. The presence of binary decision variables in the second stage also complicates the use of classical algorithmic techniques for two-stage stochastic programs like Benders decomposition as they rely on linear programming duality. Thus, our primary next step in this line of research is to design computationally effective algorithmic techniques for solving large-scale instances of the model proposed in this paper.

A secondary next step is to retain, but somewhat relax, the presumption of regular physical operations and consider a model wherein there is a limited opportunity for shipment paths to vary by scenario. An example of a management policy we will consider modeling is that a shipment can follow at most two paths but that one of them must be followed at least 95% of the time. Such a policy would reflect the desire to execute regular operations but leave some flexibility for extreme cases. Finally, as noted in the literature review, the problem of acquiring and scheduling the use of capacity under uncertainty arises in many operational contexts. One avenue of future work is to identify whether there are tactics for hedging against uncertainty in this decision-making process that are effective in multiple contexts.

(j,t ′ )|((i,t),(j,t ′ ))∈A T ∪H T

x tt ′ k ij - The objective aims to minimize the sum of the path-variable costs, the committed-to-capacity costs, and the expected cost of the additional services required. Constraints (B.1) enforce selecting a single path per commodity, which guarantees that all shipments are transported from their origins to their destinations. For a given network configuration and fixed values of α and ϵ, the V F S increases systematically with the number of commodities. Similarly, for a given network configuration, a fixed value of α, and a fixed number of commodities, the V F S increases with ϵ in most cases. Specifically, there are thirteen instance classes for which the V F S is between 3% and 4%, six instance classes for which the V F S is between 4% and 5%, and one instance class for which the V F S exceeds 5%. These results suggest that allowing scheduling flexibility can lead to significant transportation cost savings, especially when the number of consolidation opportunities is high. On the other hand, instances yielding significant V F S are combinatorially more difficult, as demonstrated by values in column No. inst. solved, which motivates the interest in developing specialized solution algorithms for the SSSNDFS. In particular, we note that 96% of the instances with 50 commodities are solved, against 64% and 21% of the instances with 75 and 100 commodities, respectively.

(
We also note that 3BB instances are combinatorially more difficult than their 1BB counterparts, as the SSSN DRS is solved optimally for 70% of the 3BB instances, against 42 % for the 3BB instances. Finally, these results suggest that increasing the geographical routing options do not mitigate the impact of scheduling flexibility, as for ϵ = 10, the V F S of the 3BB instances appears to be higher than that of 1BB instances.

  d k -e k as the duration of the associated shortest path (o k , d k ). Abusing notation, we denote the duration of such shortest path as τo k d k . To compute commodity time windows, we use a parameter ϵ that characterizes the number of periods to add to each minimum time window. Specifically, for each commodity k ∈ K, the corresponding time window has a duration of τo k d k + ϵ periods. Given a value of parameter ϵ, for a given instance and each commodity k ∈ K, the corresponding available time e k is chosen uniformly in the interval [0, |T | -τo k d k -ϵ], and the corresponding due time d k is calculated as e k + τo k d k + ϵ. To summarize, we consider 540 instances, each of which we can use as an instance of the SSSNDRS, SSSNDSRS, and the SSSNDFS. 270 instances are generated for the 1BB network configuration, with the aforementioned parameters taking the values: |K| = {50, 75, 100}, α = {1.10, 1.20, 1.30, 1.40, 1.50}, (µ, σ 2 ) = {(7000, 3500), (7000, 7000), (7000, 10500), (10000, 5000), (10000, 10000), (10000, 15000)}, and ϵ = {10, 11, 12}. 270 instances are generated for the 3BB network configuration, with the aforementioned parameters taking the values: |K| = {50, 75, 100}, α = {1.10, 1.20, 1.30, 1.40, 1.50}, (µ, σ 2 ) = {(7000, 3500), (7000, 7000), (7000, 10500), (10000, 5000), (10000, 10000), (10000, 15000)}, and ϵ = {8, 9, 10}. Each instance considers 25
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Constraint (B. 2 )

 2 and (B.3) guarantees that the time-expanded network flow variables match the commodity paths. Constraints (B.4) ensure sufficient service capacity, whether committed-to or additional, is dispatched to transport product, for each scenario. Constraints (B.5), (B.6), (B.7), and (B.8) define the decision variables and their domains.
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Table 2 :

 2 % of instances by network configuration and V F S

Table 3 :

 3 Attributes of solutions to SSSNDRS by value of V F S

			% arcs (i, j) such that	% scenarios ω such that	
	V F S	No. of instances	ztt ′ ωRS ij	> 0 for some ω ∈ Ω	ztt ′ ωRS ij	> 0 for some (i, j) ∈ A	avg ztt ′ ωRS ij
	= 0	18		59.93%		17.98%	0.21
	0 < V F S < 1%	103		69.61%		26.75%	0.33
	≥ 1%	185		81.15%		38.75%	0.52

Table 4 :

 4 Impact of flexibility on different cost categories

Table 5 :

 5 Savings by level of flexibility, 1BB instances

  they are likely to visit more intermediate terminals, leading to an increase in the consolidation

			% of different paths
	Network	% commodities	fewer same number	more
	configuration with different paths	arcs	of arcs	arcs
	1BB	1.70%	8.01%	0.00% 91.99%
	3BB	1.92% 18.61%	5.19% 76.19%
	opportunities.			

Table 6 :

 6 Comparison of commodity paths from both solutions

  ȳRS

				ij
	Frequency	89.65%	2.02%	8.33%
	Capacity variation	0.00%	-23.77%	32.69%
	Cost variation	-1.53%	-9.84%	-4.22%

Table 7 :

 7 Comparison of physical dispatches that offer the same consolidation opportunities in both solutions

Table 8 :

 8 Change in aggregate committed-to capacity

Table 9 :

 9 V SS averaged over instances with the 1BB network configuration

			No. inst.					No. inst.					No. inst.
	α	|K|	solved	V SS V SS ∆	α	|K|	solved	V SS V SS ∆	α	|K|	solved	V SS V SS ∆
	110 50	4 403.29 3.52%	110 50	1 686.13 6.45%	110 50	1 297.44 3.08%
		75	0	-	-		75	0	-	-	75	0	-	-
		100	0	-	-		100	0	-	-	100 0	-	-
	120 50	4 435.97 3.74%	120 50	3 510.73 4.71%	120 50	1 280.57 2.86%
		75	0	-	-		75	0	-	-	75	0	-	-
		100	0	-	-		100	0	-	-	100 0	-	-
	130 50	4 493.46 4.16%	130 50	2 576.26 5.14%	130 50	1 295.42 2.96%
		75	0	-	-		75	0	-	-	75	0	-	-
		100	0	-	-		100	0	-	-	100 0	-	-
	140 50	4 554.66 4.61%	140 50	4 568.59 5.22%	140 50	1 319.37 3.15%
		75	0	-	-		75	0	-	-	75	0	-	-
		100	0	-	-		100	0	-	-	100 0	-	-
	150 50	4 624.54 5.12%	150 50	3 634.30 5.73%	150 50	1 370.11 3.59%
		75	0	-	-		75	0	-	-	75	0	-	-
		100	0	-	-		100	0	-	-	100 0	-	-
		(a) Instances with ϵ = 8			(b) Instances with ϵ = 9			(c) Instances with ϵ = 10

Table 10 :

 10 V SS averaged over instances with the 3BB network configuration

  j,t ′ )|((j,t ′ ),(i,t))∈A T ∪H T tt ′ k ij ≤ u ij (y tt ′ ij + z tt ′ ω ij ) ∀((i, t), (j, t ′ )) ∈ A T , ∀ω ∈ Ω, (B.4)x k p ∈ {0, 1} ∀p ∈ P k , ∀k ∈ K, (B.5)x tt ′ k ij ∈ {0, 1} ∀((i, t), (j, t ′ )) ∈ A T ∪ H T , ∀k ∈ K, (B.6)y tt ′ ij ∈ N ∀((i, t), (j, t ′ )) ∈ A T , (B.7) z tt ′ ω

		x t ′ tk ji =	     	1 -1 (i, t) = (d k , l k ) (i, t) = (o k , e k )	∀(i, t) ∈ N T , ∀k ∈ K,
			    	0	o.w.
					(B.2)
	x tt ′ k ij =		x k p ∀(i, j) ∈ A, ∀k ∈ K,	(B.3)
	t,t ′ ∈T :((i,t),(j,t ′ ))∈A T	p∈P k :(i,j)∈p		
	s ω k x			
	k∈K			

ij ∈ N ∀((i, t), (j, t ′ )) ∈ A T , ∀ω ∈ Ω. (B.8)

Table C .

 C 13: Savings results averaged over instances with the 1BB network configuration No. inst. % inst.

									No. inst.	% inst.					No. inst. % inst.		
	α	|K|	solved	solved	Gap	V F S	α	|K|	solved	solved	Gap	V F S	α	|K|	solved	solved	Gap	V F S
	110 50	5/6 83.33% 1.58% 0.52%	110 50	4/6	66.67% 1.36% 0.99%	110 50	3/6 50.00% 1.51% 0.90%
		75	1/6 16.67% 1.38% 1.02%		75	2/6	33.33% 1.67% 2.16%		75	1/6 16.67% 2.44% 1.79%
		100	0/6	0.00%	-	-		100	1/6	16.67% 2.03% 2.69%		100	0/6	0.00%	-	-
	120 50	5/6 83.33% 1.44% 0.64%	120 50	5/6	83.33% 1.49% 1.09%	120 50	5/6 83.33% 1.65% 1.54%
		75	3/6 50.00% 1.73% 1.04%		75	2/6	33.33% 1.66% 2.63%		75	1/6 16.67% 2.22% 2.25%
		100	1/6 16.67% 2.19% 2.15%		100	1/6	16.67% 2.18% 3.03%		100	0/6	0.00%	-	-
	130 50	5/6 83.33% 1.22% 0.78%	130 50	5/6	83.33% 1.32% 1.24%	130 50	5/6 83.33% 1.55% 1.58%
		75	3/6 50.00% 1.71% 1.50%		75	2/6	33.33% 1.74% 3.06%		75	2/6 33.33% 2.83% 2.38%
		100	0/6	0.00%	-	-		100	1/6	16.67% 1.93% 3.57%		100	0/6	0.00%	-	-
	140 50	5/6 83.33% 1.25% 0.84%	140 50	6/6 100.00% 1.62% 1.19%	140 50	5/6 83.33% 1.53% 1.70%
		75	3/6 50.00% 1.69% 1.87%		75	3/6	50.00% 2.03% 2.94%		75	2/6 33.33% 2.43% 3.64%
		100	1/6 16.67% 3.04% 2.14%		100	1/6	16.67% 2.20% 3.95%		100	0/6	0.00%	-	-
	150 50	5/6 83.33% 1.22% 1.01%	150 50	6/6 100.00% 1.51% 1.25%	150 50	5/6 83.33% 1.42% 1.90%
		75	3/6 50.00% 1.78% 2.20%		75	2/6	33.33% 1.44% 3.88%		75	3/6 50.00% 2.66% 3.75%
		100	1/6 16.67% 3.29% 2.45%		100	1/6	16.67% 2.82% 4.51%		100	0/6	0.00%	-	-
		(a) Instances with ϵ = 8			(b) Instances with ϵ = 9			(c) Instances with ϵ = 10	

Table C .

 C 14: Savings results averaged over instances with the 3BB network configuration
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Appendix A. Examples of when scheduling flexibility leads to savings

We present three examples that illustrate how scheduling flexibility enables reducing transportation costs.

For each example, we display the optimal solutions to the SSSNDFS and the SSSNDRS and we show that the total transportation cost decreases as scheduling flexibility is leveraged. The three examples are derived from the same physical graph that includes two nodes a and b, as well as a transportation arc from a to b, with a vehicle capacity u ab = 3, a travel time τ ab = 1, a per-committed-to-vehicle fixed cost f ab = 10, and a flow variable cost c ab = 1. The static network is depicted in In this example, a third commodity k 3 with a looser time window than that of k 1 and k 2 , is introduced.

Assuming that shipments dispatches must be scheduled before shipment sizes are revealed, the decisionmaker must determine in advance whether to consolidate k 3 with k 1 or with k 2 . Either decision yields one scenario subproblem where three vehicles are required and another scenario subproblem where two vehicles are enough. As such, the optimal solution to the SSSNDRS consists in acquiring two committed-to vehicles 

Appendix B. SSSNDRS mathematical formulation

The variables defining this mathematical formulation of the SSSNDRS are conceptually the same as those for the mathematical formulation of the SSSNDFS, but in the case of the commodity and vehicle scheduling variables (x ktt ′ ω ij , y tt ′ ω ij ) they do not vary by scenario. However, the z tt ′ ω ij variables that model the acquisition of additional capacity remain the same. The SSSNDRS is formulated as follows.

χ * RS = minimize

Appendix C. Additional results on the value of scheduling flexibility

As the results presented in Section 5.2 provide trends regarding the impact that the different parameters have on the V F S, we propose a disaggregated view of these results to gain further insights. We again present results from solving instances of the two models and an analysis of those results. Tables C