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Abstract

Wasserstein distributionally robust estimators have emerged as powerful models
for prediction and decision-making under uncertainty. These estimators provide
attractive generalization guarantees: the robust objective obtained from the train-
ing distribution is an exact upper bound on the true risk with high probability.
However, existing guarantees either suffer from the curse of dimensionality, are re-
stricted to specific settings, or lead to spurious error terms. In this paper, we show
that these generalization guarantees actually hold on general classes of models, do
not suffer from the curse of dimensionality, and can even cover distribution shifts
at testing. We also prove that these results carry over to the newly-introduced
regularized versions of Wasserstein distributionally robust problems.

1 Introduction

1.1 Generalization and (Wasserstein) Distributionally Robust Models

We consider the fundamental question of generalization of machine learning models. Let us denote
by fθ the loss induced by a model parametrized by θ for some uncertain variable ξ (typically a data
point). When ξ follows some distribution P, seeking the best parameter θ writes as minimizing the
expected loss

min
θ∈Θ

Eξ∼P[fθ(ξ)] .

We usually do not have a direct knowledge of P but rather we have access to samples (ξi)
n
i=1

independently drawn fromP. The empirical risk minimization approach then consists in minimizing
the expected loss over the associated empirical distribution Pn = 1

n

∑n
i=1δξi (as a proxy for the

expected loss over P), i.e.,

min
θ∈Θ

Eξ∼Pn [fθ(ξ)]

(
=

1

n

n∑

i=1

fθ(ξi)

)
.

Classical statistical learning theory ensures that, with high probability, EP[fθ] is close to EPn
[fθ] up

to O(1/√n) error terms, see e.g., the monographs Boucheron et al. (2013); Wainwright (2019).

A practical drawback of empirical risk minimization is that it can lead to over-confident decisions
(when EPn [fθ] < EP[fθ], the real loss can be higher that the empirical one (Esfahani and Kuhn,
2018)). In addition, this approach is also sensitive to distribution shifts between training and ap-
plication. To overcome these drawbacks, an approach gaining momentum in machine learning is
distributionally robust optimization, which consists in minimizing the worst expectation of the loss
when the distribution lives in a neighborhood of Pn:

min
θ∈Θ

sup
Q∈U(Pn)

Eξ∼Q[fθ(ξ)] (1)
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where the inner sup is thus taken overQ in the neighborhoodU(Pn) of Pn in the space of probability
distributions. Popular choices of distribution neighborhoods are based on the Kullback-Leibler (KL)
divergence (Laguel et al., 2020; Levy et al., 2020), kernel tools (Zhu et al., 2021a; Staib and Jegelka,
2019; Zhu et al., 2021b), moments (Delage and Ye, 2010; Goh and Sim, 2010), or Wasserstein dis-
tance (Shafieezadeh Abadeh et al., 2015; Esfahani and Kuhn, 2018). If P ∈ U(Pn), distributionally
robust models can benefit from direct generalization guarantees as,

sup
Q∈U(Pn)

Eξ∼Q[fθ(ξ)] ≥ Eξ∼P[fθ(ξ)]. (2)

Thus, for well-chosen neighborhoods U(Pn), distributionally robust objectives are able to provide
exact upper-bounds on the expected loss over distribution P, i.e., the true risk.

Wasserstein distributionally robust optimization (WDRO) problems correspond to (1) with

U(Pn) = {Q ∈ P(Ξ) :W(Pn,Q) ≤ ρ} ,

where W(Pn,Q) denotes the Wasserstein distance between Pn and Q and ρ > 0 controls the re-
quired level of robustness around Pn. As a natural metric to compare discrete and absolutely contin-
uous probability distributions, the Wasserstein distance has attracted a lot of interest in both machine
learning (Shafieezadeh Abadeh et al., 2015; Sinha et al., 2018; Shafieezadeh-Abadeh et al., 2019; Li
et al., 2020; Kwon et al., 2020) and operation research (Zhao and Guan, 2018; Arrigo et al., 2022)
communities; see e.g., the review articles Blanchet et al. (2021); Kuhn et al. (2019).

WDRO benefits from out-of-the-box generalization guarantees in the form of (2) since it inherits the
concentration properties of the Wasserstein distance. More precisely, under mild assumptions on P
(Fournier and Guillin, 2015), W(Pn,P) ≤ ρ with high probability as soon as ρ ∼ 1/n1/d where d
denotes the dimension of the samples space. Thus, a major issue is the prescribed radius ρ suffers
from the curse of the dimensionality: when d is large, ρ decreases slowly as the number of samples
n increases. This scaling is overly conservative for WDRO objectives since Blanchet et al. (2022);
Blanchet and Shapiro (2023) prove that a radius behaving as 1/

√
n is asymptotically optimal.

1.2 Contributions and related works

In this paper, we show that WDRO provides exact upper-bounds on the true risk with high proba-
bility. More precisely, we prove non-asymptotic generalization bounds of the form of (2), that hold

for general classes of functions, and that only require ρ to scale as 1/
√
n and not 1/n1/d. To do

so, we construct an interval for the radius ρ for which it is both sufficiently large so that we can go
from the empirical to the true estimator (i.e., at least of the order of 1/

√
n) and sufficiently small so

that the robust problem does not become degenerate (i.e., smaller than some critical radius, that we
introduce as an explicit constant). Our results imply proving concentration results on Wasserstein
Distributionally Robust objectives that are of independent interest.

This work is part of a rich and recent line of research about theoretical guarantees on WDRO for
machine learning. One of this first results, Lee and Raginsky (2018), provides generalization guar-
antees, for a general class of models and a fixed ρ, that, however, become degenerate as the radius
goes to zero. In the particular case of linear models, WDRO models admit an explicit form that
allows Shafieezadeh-Abadeh et al. (2019); Chen and Paschalidis (2018) to provide generalization
guarantees (2) with the right scaling for the radius 1/

√
n.The case of general classes of models

is more intricate. Sinha et al. (2018) showed that a modified version of (2) holds at the price of
non-negligible error terms. Gao (2022); An and Gao (2021) made another step towards broad gen-
eralization guarantees for WDRO but with error terms that vanish only when ρ goes to zero.

In contrast, our analysis provides exact generalization guarantees without additional error terms,
that hold for general classes of functions and allow for a non-vanishing uncertainty radius to cover
for distribution shifts at testing. Moreover, our guarantees also carry over to the recently introduced
regularized versions of WDRO (Wang et al., 2021; Azizian et al., 2023), whose statistical properties
have not been studied yet.

This paper is organized as follows. In Section 2, we introduce notations and our blanket assumptions.
In Section 3, we present our main results, an idea of proof, and discussions. The complete proofs
are deferred to the appendix.
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2 Setup and Assumptions

In this section, we formalize our setting and introduce Wasserstein Distributionally Robust risks.

2.1 Wasserstein Distributionally Robust risk functions

In this paper, we consider as a samples space Ξ a subset of Rd equipped with the Euclidean norm
‖·‖. We rely on Wasserstein distances of order 2, in line with the seminal work Blanchet et al.
(2022) on generalization of WDRO. This distance is defined for two distributions Q,Q′ in the set of
probability distributions on Ξ, denoted by P(Ξ), as

W2(Q,Q
′) :=

(
inf

π∈P(Ξ×Ξ),π1=Q,π2=Q′
E(ξ,ζ)∼π

[
1

2
‖ξ − ζ‖2

])1/2

where P(Ξ×Ξ) is the set of probability distributions in the product space Ξ×Ξ, and π1 (resp. π2)
denotes the first (resp. second) marginal of π.

We denote by f : Ξ → R the loss function of some model over the sample space. The model may
depend on some parameter θ, that we drop for now to lighten the notations; instead, we consider
a class of functions F encompassing our various models and losses of interest (we come back to
classes of parametric models of the form F = {fθ : θ ∈ Θ} in Section 3.4).

We define the empirical Wasserstein Distributionally Robust risk R̂ρ2 (f) centered on Pn and simi-
larly the true robust riskRρ2(f) centered on P as

R̂ρ2(f) := sup
Q∈P(Ξ)

W 2
2 (Pn,Q)≤ρ2

Eξ∼Q [f(ξ)] and Rρ2(f) := sup
Q∈P(Ξ)

W 2
2 (P,Q)≤ρ2

Eξ∼Q [f(ξ)] . (3)

Note that R̂ρ2 (f), which is based on the empirical distribution Pn, is a computable proxy for the
true robust risk Rρ2 (f). Note also that the true robust risk Rρ2 (f) immediately upper-bounds the
true (non-robust) risk Eξ∼P [f(ξ)] and also upper-bounds Eξ∼Q [f(ξ)] for neighboring distributions
Q that correspond to distributions shifts of magnitude smaller than ρ in Wasserstein distance.

2.2 Regularized versions

Entropic regularization of WDRO problems was recently used in Wang et al. (2021); Blanchet and
Kang (2020); Piat et al. (2022); Azizian et al. (2023). Inspired by the entropic regularization in
optimal transport (OT) (Peyré and Cuturi, 2019, Chap. 4), the idea is to regularize the objective by
adding a KL divergence, that is defined, for any transport plan π ∈ P(Ξ× Ξ) and a fixed reference
π ∈ P(Ξ× Ξ), by

KL(π |π) =
{∫

log dπ
dπ dπ whenπ ≪ π

+∞ otherwise.

Unlike in OT though, the choice of the reference measure in WDRO is not neutral and introduces
a bias in the robust objective (Azizian et al., 2023). For their theoretical convenience, we take
reference measures that have Gaussian conditional distributions

πσ(dζ|ξ) ∝ 1ζ∈Ξ e
− ‖ξ−ζ‖2

2σ2 dζ, for all ξ ∈ Ξ (4)

where σ > 0 controls the spread of the second marginals, following Wang et al. (2021); Azizian

et al. (2023). Then, the regularized version of R̂ρ2(f) (WDRO empirical risk) is given by

R̂ε
ρ2(f) := sup

π∈P(Ξ×Ξ),π1=Pn

E(ξ,ζ)∼π[ 12‖ξ−ζ‖2]≤ρ2

Eξ∼π2 [f(ξ)]− εKL(π |πn
σ ) with πn

σ = Pn(dξ)πσ(dζ|ξ) (5)

and similarly, the regularized version ofRρ2(f) is given by

Rε
ρ2 (f) := sup

π∈P(Ξ×Ξ),π1=P

E(ξ,ζ)∼π[ 12‖ξ−ζ‖2]≤ρ2

Eξ∼π2 [f(ξ)]− εKL(π |πσ ) with πσ = P(dξ)πσ(dζ|ξ). (6)

These regularized risks have been studied in terms of computational or approximation properties,
but their statistical properties have not been investigated yet. The analysis we develop for WDRO
estimators is general enough to carry over to these settings.
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2.3 Blanket assumptions

Our analysis is carried under the following set of assumptions that will be in place throughout the
paper. First, we assume that the sample space Ξ ⊂ R

d is convex and compact, which is in line with
previous work, e.g., (Lee and Raginsky, 2018; An and Gao, 2021).

Assumption 1 (On the set Ξ). The sample space Ξ is a compact convex subset of Rd.

Second, we require the class of loss functions F to be sufficiently regular. In particular, we assume
that they have Lipschitz continuous gradients.

Assumption 2 (On the function class). The functions of F are twice differentiable, uniformly
bounded, and their derivatives are uniformly bounded and uniformly Lipschitz.

Finally, we assume that Pn is made of independent and identically distributed (i.i.d.) samples of P
and that P is supported on the interior of Ξ (which can be done without loss of generality by slightly
enlarging Ξ if needed).

Assumption 3 (On the distributions). Pn = 1
n

∑n
i=1 δξi where ξ1, . . . , ξn are i.i.d. samples of P.

We further assume that there is some R > 0 such that P satisfies suppP+B(0, R) ⊂ Ξ.

3 Main results and discussions

The main results of our paper establish that the empirical robust risk provide high probability bounds,
of the form of (2), on the true risk. Since the results and assumptions slightly differ between the
WDRO models and their regularized counterparts, we present them separately in Section 3.1 and
Section 3.2. In Section 3.3, we provide the common outline for the proofs of these results, the
proofs themselves being provided in the appendix. Finally, in Section 3.4, we detail some examples.

3.1 Exact generalization guarantees for WDRO models

In this section, we require the two following additional assumptions on the function class. The
first assumption is common in the WDRO litterature, see e.g., Blanchet et al. (2022); Blanchet and
Shapiro (2023); Gao (2022); An and Gao (2021).

Assumption 4. The quantity inff∈F EP

[
‖∇ f‖2

]
is positive.

The second assumption we consider in this section makes use of the notation d(ξ, A), for a set
A ⊂ Ξ and a point ξ ∈ Ξ, to denote the distance between ξ and A, i.e., d(ξ, A) = infζ∈A‖ξ − ζ‖.
Assumption 5.

1. For any R > 0, there exists ∆ > 0 such that,

∀f ∈ F , ∀ζ ∈ Ξ, d(ζ, argmax f) ≥ R =⇒ f(ζ)−max f ≤ −∆ .

2. The following growth condition holds: there exist µ > 0 and L > 0 such that, for all
f ∈ F , ξ ∈ Ξ and ξ∗ a projection of ξ on argmax f , i.e., ξ∗ ∈ argminargmax f‖ξ − ·‖,

f(ξ∗) ≥ f(ξ) + µ

2
‖ξ − ξ∗‖2 − L

6
‖ξ − ξ∗‖3 .

The first item of this assumption has a natural interpretation: we show in Lemma A.7, that it is
equivalent to the relative compactness of the function space F w.r.t. to the distance

D(f, g) := ‖f − g‖∞ +DH(argmax f, argmax g) ,

where DH denotes the (Hausdorff) distance between sets and ‖f‖∞ := supξ∈Ξ|f(ξ)| is the in-
finity norm. The last one is a structural assumption on the functions F that is new in our context
but is actually very close the so-called parametric Morse-Bott condition, introduced in of bilevel
optimization (Arbel and Mairal, 2022), see Section A.5.

We now state our main generalization result for WDRO risks.

4



Theorem 3.1. Under Assumptions 4 and 5, there is an explicit constant ρc depending only on F
and P such that for any δ ∈ (0, 1) and n ≥ 1, if

O
(√

1 + log 1/δ

n

)
≤ ρ ≤ ρc

2
−O

(√
1 + log 1/δ

n

)
(7)

then, there is ρn = O
(√

1+log 1/δ
n

)
such that, with probability 1− δ,

∀f ∈ F , R̂ρ2 (f) ≥ Eξ∼Q [f(ξ)] for all Q such that W 2
2 (P,Q) ≤ ρ(ρ− ρn) . (8)

In particular, with probability 1− δ, we have

∀f ∈ F , R̂ρ2(f) ≥ Eξ∼P [f(ξ)] . (9)

The second part of the result, (9), is an exact generalization bound: it is an actual upper-bound on
the true risk Eξ∼P[f(ξ)], that we cannot access in general, through a quantity that we can actually
compute with Pn. The first part of the result, (8) gives us insight into the robustness guarantees
offered by the WDRO risk. Indeed, it tells us that, when ρ is greater than the minimal radius

ρn ∝ 1/
√
n by some margin, the empirical robust risk R̂ρ2(f) is an upper-bound on the loss even

with some perturbations of the true distribution. Hence, as long as ρ is large enough, the WDRO
objective enables us to guarantee the performance of our model even in the event of a distribution
shift at testing time. In other words, the empirical robust risk is an exact upper-bound on the true
robust riskRρ(ρ−ρn)(f) with a reduced radius.

The range of admissible radiuses is described by (7). The lower-bound, roughly proportional to
1/
√
n, is optimal, following the results of Blanchet et al. (2022). The upper-bound, almost in-

dependent of n, depends on a constant ρc, that we call critical radius and that has an interesting
interpretation, that we formalize in the following remark. Note, finally, that, the big-O notation in
this theorem has a slightly stronger meaning1 than the usual one, being non-asymptotic in n and δ.

Remark 3.2 (Interpretation of critical radius). The critical radius ρc, appearing in (7), is defined by

ρ2c := inf
f∈F

Eξ∼P

[
1

2
d2(ξ, argmax f)

]
.

It can be interpreted as the threshold at which the WDRO problem w.r.t. P starts becoming degen-
erate. Indeed, when ρ2 ≥ Eξ∼P

[
1
2d

2(ξ, argmax f)
]

for some f ∈ F that we fix, the distribution Q
given by the second marginal of the transport plan π defined by,

π(dξ, dζ) := P(dξ)δζ⋆(ξ)(dζ) where ζ⋆(ξ) ∈ argmin
ζ∈argmax f

d2(ξ, ζ) ,

satisfies

W 2
2 (P,Q) ≤ E(ξ,ζ)∼π

[
1

2
‖ξ − ζ‖2

]
= Eξ∼P

[
1

2
d2(ξ, argmax f)

]
≤ ρ2 .

As a consequence, the robust problem is equal to

Rρ2(f) = sup
Q∈P(Ξ)

W 2
2 (P,Q)≤ρ2

Eξ∼Q [f(ξ)] = max
ξ∈Ξ

f(ξ) .

Thus, when the radius exceeds ρc, there is some f such that the robust problem becomes degenerate
as it does not depend on P nor ρ anymore.

Finally, note that we can obtain the same generalization guarantee as Theorem 3.1 without Assump-
tion 5 at the expense of losing the above interpration on the condition on the radius. More precisely,
we have the following result.

Theorem 3.3. Let Assumption 4 hold. For any δ ∈ (0, 1) and n ≥ 1, if ρ satisfies (7), and if,
in addition, it is smaller than a positive constant which depends only on P, F and Ξ, then both
conclusions of Theorem 3.1 hold.

1Eg., ρn=O

(

√

1+log 1/δ
n

)

means that ∃C > 0 such that ρn ≤ C
√

1+log 1/δ
n

for all δ ∈ (0, 1) and n ≥ 1.
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This theorem can be compared to existing results, and in particular with Gao (2022); An and Gao
(2021). These two papers provide generalization bounds for WDRO under a similar assumption
on F and a weakened version of Assumption 3. However, these generalization bounds involve
extra error terms, that require ρ to be vanishing. In comparison, with a similar set of assumptions,
Theorem 3.3 improves on these two issues, by allowing ρ not to vanish as n→∞ and by providing
the exact upper-bound (9). Allowing non-vanishing radiuses is an attractive feature of our results
that enables us to cover distribution shifts.

3.2 Regularized WDRO models

The analysis that we develop for the standard WDRO estimators is general enough to also cover the
regularized versions presented in Section 2.2. We thus obtain the following Theorem 3.4 which is the
first generalization guarantee for regularized WDRO. This theorem is very similar to Theorem 3.1
with still a couple of differences. First, the regularization leads to ambiguity sets defined in terms
of W2,τ (P, ·), the regularized Wasserstein distance to the true distribution P, defined, for some
regularization parameter τ > 0, as

W 2
2,τ (P,Q) := inf

{
Eπ

[
1

2
‖ξ − ζ‖2

]
+ τ KL(π |πσ) : π ∈ P(Ξ× Ξ), π1 = P, π2 = Q

}

where πσ appears in the definition of the regularized robust risk (6). Besides, the regularization
allows us to avoid Assumptions 4 and 5 to show our generalization result.

Theorem 3.4. For σ = σ0ρ with σ0 > 0, ε = ε0ρ with ε0 > 0 such that ε0/σ
2
0 is small enough

depending on F , P, Ξ, there is an explicit constant ρc depending only on F , P and Ξ such that for
all δ ∈ (0, 1) and n ≥ 1, if

O
(√

1 + log 1/δ

n

)
≤ ρ ≤ ρc

2
−O

(
1√
n

)
, and ρc ≥ O

(
1

n1/6
+

(
1 + log 1/δ

n

)1/4
)
,

then, there are τ = O(ερ) and ρn = O
(√

1+log 1/δ
n

)
such that, with probability at least 1− δ,

∀f ∈ F , R̂ε
ρ2(f) ≥ Eξ∼Q [f(ξ)] for all Q such that W 2

2,τ (P,Q) ≤ ρ(ρ− ρn) (10)

Furthermore, when σ0 and σ are small enough depending on P and Ξ, with probability 1− δ,

∀f ∈ F , R̂ε
ρ2(f) ≥ Eξ∼PEζ∼πσ(·|ξ) [f(ζ)] .

The first part of the theorem, (10), guarantees that the empirical robust risk is an upper-bound on
the loss even with some perturbations of the true distribution. As in OT, the regularization added to
the Wasserstein metric induces a bias that may preventW 2

2,τ (P,P) from being null. As a result, the
second part of the theorem involves a smoothed version of the true risk: the empirical robust risk
provides an exact upper-bound the true expectation of a convolution of the loss with πσ.

A few additional comments are in order:

• Our result prescribes the scaling of the regularization parameters: ε and σ should be taken
proportional to ρ.

• The critical radius ρc has a slighlty more intricate definition, yet the same interpretation as
in the standard WDRO case inRemark 3.2; see Section D.2.

• The regularized OT distances do not suffer from the curse of dimensionality (Genevay et al.,
2019). However this property does not directly carry over to regularized WDRO. Indeed,
we cannot choose the same reference measure as in OT and we have to fix the measure
πσ , introducing a bias. As a consequence, we have to extend the analysis of the previous
section to obtain the claimed guarantees that avoid the curse of dimensionality.

3.3 Idea of the proofs

In this section, we present the main ideas of the proofs of Theorem 3.1, Theorem 3.3, and Theo-
rem 3.4. The full proofs are detailed in appendix; we point to relevant sections along the discussion.
First, we recall the duality results for WDRO that play a crucial role in our analysis. Second, we
present a rough sketch of proofs that is common to both the standard and the regularized cases.
Finally, we provide a refinement of our results that is a by-product of our analysis.
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Duality in WDRO. Duality has been a central tool in both the theoretical analyses and compu-
tational schemes of WDRO from the onset (Shafieezadeh Abadeh et al., 2015; Esfahani and Kuhn,
2018). The expressions of the dual of WDRO problems for both the standard case (Gao and Kley-
wegt, 2016; Blanchet and Murthy, 2019) and the regularized case (Wang et al., 2021; Azizian et al.,
2023) can be written with the following dual generator function φ defined as

φ(f, ξ, λ, ε, σ) :=

{
supζ∈Ξ

{
f(ζ) − λ

2 ‖ξ − ζ‖2
}

if ε = 0

ε log
(
Eζ∼πσ(·|ξ) exp

(
f(ζ)−λ‖ξ−ζ‖2/2

ε

))
if ε > 0 ,

(11)

where λ is the dual variable associated to the Wasserstein constraint in (3), (5) and (6). The effect
of regularization appears here clearly as a smoothing of the supremum. Note also that this function
depends on the conditional reference measures πσ(·|ξ) but not on other probability distributions.
Then, under some general assumptions (specified in Section 2.3 in appendix), the existing strong
duality results yield that the (regularized) empirical robust risk writes

R̂ε
ρ2(f) = inf

λ≥0
λρ2 + Eξ∼Pn [φ(f, ξ, λ, ε, σ)] , (12)

and, similarly, the (regularized) true robust risk writes

Rε
ρ2 (f) = inf

λ≥0
λρ2 + Eξ∼P [φ(f, ξ, λ, ε, σ)] . (13)

These expressions for the risks are the bedrock of our analysis.

Sketch of proof. In both the standard case and the regularized case, our proof is built on two main
parts: the first part is to obtain a concentration bound on the dual problems that crucially relies on a
lower bound of the dual multiplier; the second part then consists in establishing such a lower bound.
All the bounds are valid with high probability, and we drop the dependency on the confidence level
δ of the theorems for simplicity.

For the first part of the proof (Section B), we assume that there is a deterministic lower-bound λ > 0
on the optimal dual multiplier in (12) that holds with high-probability. As a consequence, we can
restrict the range of λ in (12) to obtain:

R̂ε
ρ2(f) = inf

λ≥λ

{
λρ2 + Eξ∼Pn [φ(f, ξ, λ, ε, σ)]

}

= inf
λ≥λ

{
λρ2 + Eξ∼P [φ(f, ξ, λ, ε, σ)]− λEξ∼P[φ(f, ξ, λ, ε, σ)] − Eξ∼Pn [φ(f, ξ, λ, ε, σ)]

λ

}

≥ inf
λ≥λ

{
λρ2 + Eξ∼P [φ(f, ξ, λ, ε, σ)] − λ sup

λ′≥λ

Eξ∼P[φ(f, ξ, λ
′, ε, σ)]− Eξ∼Pn [φ(f, ξ, λ

′, ε, σ)]

λ′

}

≥ inf
λ≥λ

{
λρ2 + Eξ∼P [φ(f, ξ, λ, ε, σ)] − λρ2n

}

≥ Rε
ρ2−ρ2

n
(f) . (14)

In the above, we used that the inner supremum, which is random, can be bounded by a deterministic
and explicit quantity that we call ρ2n, i.e.,

ρ2n ≥ sup
λ′≥λ

Eξ∼P[φ(f, ξ, λ
′, ε, σ)]− Eξ∼Pn [φ(f, ξ, λ

′, ε, σ)]

λ′
with high probability.

Hence, we obtain an upper-bound on the robust risk w.r.t. the true distribution with radius ρ2 − ρ2n.
Moreover, we show that ρ2n = O(1/(λ√n)) which highlights the need for a precise lower bound λ
to control the decrease in radius.

The second part of the proof thus consists in showing that the dual variable is indeed bounded away
from 0, which means that the Wasserstein constraint is sufficiently active. We have to handle two
cases differently:

• when ρ is small, i.e., close to ρn (Section C),

• when ρ is large, i.e., close to the critical radius ρc (Section D). Note that the additional
Assumption 5 is required here: where we need to control the behaviors of f ∈ F close to
their maxima (see (11) for ε = 0 and small λ).

7



In both cases we obtain that λ scales as 1/ρ for the respective ranges of admissible radiuses. As a
consequence ρ2n is bounded by ρρn with ρn = O(1/√n) and (14) becomes

R̂ε
ρ2 (f) ≥ Rε

ρ(ρ−ρn)(f) , (15)

which leads to our main results.

Extension: upper and lower bounds on the empirical robust risk. The proof that we sketched

above actually shows thatRε
ρ(ρ−ρn)(f) is a lower bound of R̂ε

ρ2(f). This proof technique also yields

an upper bound by exchanging the roles of P and Pn.

Theorem 3.5. In the setting of either Theorem 3.1, Theorem 3.3 or Theorem 3.4 (with ε = 0 or
ε > 0), with probability at least 1− δ, it holds that

∀f ∈ F , Rε
ρ(ρ−ρn)(f) ≤ R̂ε

ρ2(f) ≤ Rε
ρ(ρ+ρn)(f) ,

with ρn = O
(√

1+log 1/δ
n

)
.

This result shows how two robust objectives w.r.t. P provide upper and lower bounds on the em-
pirical robust risk, with only slight variations in the radius. Furthermore, when the number of data
points n grows, both extremes of the bound converge to the same quantity Rε

ρ2(f). Hence our

generalization bounds of the form (15) are asymptotically tight.

3.4 Parametric models

Our main theorems Theorems 3.1, 3.3 and 3.4 involve a general class F of loss functions. We
explain in this section how to instantiate our results in the important class of parametric models. We
then illustrate this setting with logistic regression and linear regression in Examples 3.6 and 3.7.

Let us consider the class of functions of the form

F = {ξ 7→ f(θ, ξ) : θ ∈ Θ} with f : Θ× Ξ −→ R (16)

where Θ, the parameter space, is a subset of Rp and Ξ, the sample space, is a subset of Rd.

For instance, this covers the case of linear models of the form f(θ, ξ) = ℓ(〈ξ, θ〉) with ℓ a convex
loss. This class of models is studied by Shafieezadeh-Abadeh et al. (2019); Chen and Paschalidis
(2018) in a slightly different setting, where they obtain a closed form for the robust objective and
then establish a generalization bound similar to (9).

Let us show how to instantiate our theorems in the case of (16).

• If f is twice continuously differentiable on a neighborhood of Θ × Ξ with Θ and Ξ both
compact, then Assumption 2 is immediately satisfied. Therefore, Theorem 3.4 can be read-
ily applied and its generalization guarantee hold.

• As for Assumption 4, it is equivalent to: for all θ ∈ Θ, P(∇ξ f(θ, ξ) 6= 0) > 0. This avoids
the degenerate case when ∇ξ f(θ, ξ) is null for P-almost every ξ (in particular, when the
loss does not depend on ξ). With this assumption, we are in the setting of Theorem 3.3.

• Satisfying Assumption 5, needed for Theorem 3.1, requires some problem-dependent de-
velopments. In the next two examples, we detail how to instantiate it for logistic and linear
regressions. Note though that the second item of Assumption 5 is directly implied by the
parametric Morse-Bott property (Arbel and Mairal, 2022); see Section A.5 for details.

Example 3.6 (Logistic Regression). For a training sample (x, y) ∈ R
p × {−1,+1}, the logistic

loss for a parameter θ ∈ R
p is given by log

(
1 + e−y〈x,θ〉). It fits into our framework by defining

f(θ, ξ) = log
(
1 + e〈ξ,θ〉

)
with ξ playing the role of−y×x. We assume that Θ is a compact set that

does not include the origin, and, for the sake of simplicity, we take Ξ as a closed Euclidean ball,
i.e., Ξ = B(0, r). We are going to show that Assumption 5 is satisfied, and, for this, we need the

following elements. For any θ, the maximizer of f(θ, ·) over Ξ = B(0, r) is reached at ξ∗ := rθ
‖θ‖ .

Besides, for any ξ ∈ Ξ, it holds that

r2 ≥ ‖ξ‖2 = ‖ξ∗‖2 + 2〈ξ∗, ξ − ξ∗〉+ ‖ξ − ξ∗‖2 ,
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so that, since ‖ξ∗‖ = r, we have

〈ξ∗, ξ∗ − ξ〉 ≥ 1

2
‖ξ − ξ∗‖2 . (17)

We can now turn to the verification of Assumption 5.

1. Take some R > 0 and some ξ ∈ Ξ such that ‖ξ − ξ∗‖ ≥ R. Then, (17) yields

〈θ, ξ〉 − 〈θ, ξ∗〉 = ‖θ‖
r
〈ξ∗, ξ − ξ∗〉 ≤ −‖θ‖

2r
‖ξ − ξ∗‖2 ≤ −d(0,Θ)R2

2r
. (18)

Since u 7→ log(1 + eu) is increasing, this yields that f(θ, ξ) − f(θ, ξ∗) is bounded away
from 0 by a negative constant uniformly in θ . The first item of Assumption 5 is thus satisfied.

2. Fix θ ∈ Θ; by Taylor expanding u 7→ log(1 + eu) around 〈θ, ξ∗〉 we get

f(θ, ξ) = f(θ, ξ∗) +
1

1 + e−〈θ,ξ∗〉 〈θ, ξ − ξ
∗〉+O(〈θ, ξ − ξ∗〉)2

where the big-O remainder is uniform over θ ∈ Θ. Using the first inequality in (18), we get
for ξ close enough to ξ∗

f(θ, ξ) ≤ f(θ, ξ∗)− 1

2(1 + e−〈θ,ξ∗〉)
〈θ, ξ − ξ∗〉 ≤ f(θ, ξ∗)− ‖θ‖

4r
‖ξ − ξ∗‖2 .

This shows that the second item of Assumption 5 is satisfied locally around ξ∗. It can be
made global by using the uniform Lipschitz-continuity of f , which introduces a term of the
form L

6 ‖ξ − ξ∗‖3.

Example 3.7 (Linear Regression). With samples of the form ξ = (x, y) ∈ R
p × R and parameters

θ ∈ R
p, the loss is given by f(θ, ξ) = 1

2 (〈θ, x〉 − y)2. Similarly to the previous example, we take Θ

as a compact set of Rd that does not include the origin and Ξ of the form B(0, r) × [−r′, r′]. The
maximizers of f(θ, ·) on Ξ are ξ∗1 = (rθ/‖θ‖,−r′) and ξ∗2 = (−rθ/‖θ‖, r′). By symmetry, one can
restrict to the case of ξ∗1 and 〈θ, x〉 − y ≥ 0; the same rationale as above can then be applied.

4 Conclusion and perspectives

In this work, we provide generalization guarantees for WDRO models that improve over existing
literature in the following aspects: our results avoid the curse of dimensionality, provide exact upper
bounds without spurious error terms, and allow for distribution shifts during testing. We obtained
these bounds through the development of an original concentration result on the dual of WDRO.

Our work could be naturally extended in several ways. For instance, it might be possible to relax any
of the assumptions (on the sample space, on the sampling process, on the Wasserstein metric, and
on the class of functions) at the expense of additional technical work. Another interesting direction
would be to refine and complement our results. For instance, Theorem 3.5 gives a first result on the
tightness of our generalization guarantees.
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Appendices

We provide here the proofs of our main results Theorems 3.1, 3.3 and 3.4, along with detailed
versions that include explicit bounds. We start, in Section A, by referencing preliminary results,
reformulate some of our assumptions, and introduce quantities that appear in the final bounds.

As sketched in Section 3.3, our proof is built on two main parts. The first part is to obtain a con-
centration bound on the dual problems (12) and (13) by leveraging on a lower bound on the dual
multiplier. This concentration result is presented in Section B where we assume that such a lower-
bound is given. The second part of the proof then consists in establishing the lower-bound. We
have to distinguish two cases: when ρ is small (Section C) and when ρ is close to the critical radius
ρc (Section D). For the latter, we also need to treat separately the cases where the WDRO problem
is regularized or not (respectively Section D.2 and Section D.1): this is where the Assumptions 4
and 5, that are not required in the regularized case, come into play. Putting together these two parts,
we obtain our precise theorems in Section E and show how they imply our main results. Section F
then complements our theorems to obtain Theorem 3.5. Finally, some variations of known results
and technical computations are compiled in Section G as standalone lemmas.
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A Preliminaries

This section presents preliminary results before we start the proofs in Section B. In the first part of
this section Section A.1, we present a weaker and more detailed version of Assumption 2, namely
Assumption 6, that will suffice for all the proofs in the appendix. We also introduce several quantities
that will appear in the final bounds. Then, in Section A.1 we recall the dual problems introduced in
Section 3.3 and justify that strong duality holds. Preliminary approximation results on the dual are
then given in Section A.3. We then proceed to show the relative compactness of the class F w.r.t.
several metrics in Section A.4. These properties provide a convenient way of ensuring that quantities
involving F are finite, e.g., complexity measures or supremums over F . Finally, we introduce the
so-called parametric Morse-Bott condition of Arbel and Mairal (2022) and show how it implies the
second item of Assumption 2 in a Riemannian setting.

A.1 Detailed assumption on the function class and important quantities

Here we present the precise assumptions that we will refer to in the proofs. While Assumptions 1
and 3 are used as presented in the main text, we slightly weaken Assumption 2 to Assumption 6. We
also introduce some quantities that we will be of interest for the proofs and the final results.

Assumption 6 (On the function class). Consider F a set of real-valued non-negative continuous
functions on Ξ. We assume that:

• the functions f ∈ F are uniformly L2-smooth;

• the gradients are uniformly bounded, i.e.,

G := sup
f∈F

sup
ξ∈suppP

‖∇f(ξ)‖2 < +∞

• when ε = 0, the supremum in (11) is finite, i.e.,

F̃ (λ) := sup
f∈F

sup
ξ∈suppP

sup
arg max{f−λ

2 ‖ξ−·‖2}
f < +∞ .

Note that the non-negativity assumption is without loss of generality since otherwise, it suffices to

consider F̃ := {f −min f : f ∈ F} and our results are invariant by addition of a constant.

The blanket assumptions for the remaining of the appendix will be Assumptions 1, 3 and 6.

The following finite quantities are relevant for the proofs and appear in the quantitative versions of
Theorems 3.1, 3.3 and 3.4.

C⋆ := sup

{
1

2
‖ξ − ξ⋆‖2 : ξ ∈ suppP, f ∈ F , ξ⋆ ∈ argmax f

}
,

C(σ) := sup
ξ∈suppP

Eζ∼πσ(·|ξ)

[
1

2
‖ξ − ζ‖2

]
,

CF (ε, σ) := sup
f∈conv(F)

sup
ξ∈suppP

E
ζ∼π

f/ε
σ (·|ξ)

1

2
‖ξ − ζ‖2 ,

and Var(ε, σ) := sup
f∈conv(F)

sup
ξ∈suppP

sup
λ≥0

Var
ζ∼π

f−λ‖ξ−·‖2/2
ε

σ (·|ξ)

1

2
‖ξ − ζ‖2 ,

where ε > 0, σ > 0, and πσ is given by (4).

A.2 Strong duality

As mentioned in Section 3.3, duality plays a central role in our proofs. Let us recall the central
notion of dual generator functions, introduced in (11): for any f ∈ F , ξ ∈ Ξ, λ, ε ≥ 0 and σ > 0,
the dual generator φ is given as

φ(f, ξ, λ, ε, σ) :=

{
supζ∈Ξ

{
f(ζ) − λ

2 ‖ξ − ζ‖2
}

if ε = 0

ε log
(
Eζ∼πσ(·|ξ) exp

(
f(ζ)−λ‖ξ−ζ‖2/2

ε

))
if ε > 0 .
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Our proofs are based on the (strong) dual formulations of WDRO, as given by the following lemma
that summarizes results of the literature for the regularized and unregularized cases.

Lemma A.1. Under the blanket assumptions, for f ∈ F , ρ > 0, ε ≥ 0 and σ > 0,

R̂ε
ρ2(f) = inf

λ≥0
λρ2 + Eξ∼Pn [φ(f, ξ, λ, ε, σ)]

and Rε
ρ2(f) = inf

λ≥0
λρ2 + Eξ∼P [φ(f, ξ, λ, ε, σ)] .

Proof. See Blanchet and Murthy (2019); Gao and Kleywegt (2016) for the unregularized case and
Azizian et al. (2023) for the regularized case.

A.3 Approximation of the dual generator φ

Important preliminary results for our upcoming concentration bounds (in Section B) are quantitative
approximations of the dual generator φ, namely Proposition A.2 and Lemma A.3. In particular,
these results also imply bounds on φ in Corollary A.5.

Proposition A.2 (Bounding the distance between φ and f ). There are positive constants λ1, ε1, σ1,

c1, c2 which depend on G, R and d such that taking some λ ≥ λ ≥ λ1 + L2, we have for any

f ∈ F , ξ ∈ suppP, λ ∈ [λ, λ], ε ∈ [0, ε1] and σ ∈ (0, σ1]

|φ(f, ξ, λ, ε, σ) − f(ξ)| ≤M(λ, λ, ε, σ)

where

M(λ, λ, ε, σ) :=
1

2λ
G2 +

εd

2
log

(
λ

ε
+

1

σ2

)
+ ε log 2 + εd|log σ|+ εc1e

−c2(
λ−L2

ε )
1
3

.

The proof of this result is based on the following second approximation result which gives a precise
approximation of φ that will be used several times in the upcoming proof.

More precisely, we want to approximate φ by a Taylor development φ defined for any f ∈ F ,
ξ ∈ suppP, λ ≥ 0, ε ≥ 0 and σ > 0 as

φ(f, ξ, λ, ε, σ) := f(ξ) +
1

2
(
λ+ ε

σ2

)‖∇ f(ξ)‖22 −
εd

2
log

(
λ

ε
+

1

σ2

)
+ ε log

(2π)
d
2

Z(ξ, σ)
(19)

where Z(ξ, σ) :=
∫
Ξ
e−

‖ξ−ζ‖22
2σ2 dζ. The distance between φ and φ is then controlled by the following

Laplace approximation lemma.

Lemma A.3 (Approximation of φ). There are positive constants λ1, ε1, σ1, c1, c2 which depend
on G, R and d such that ε1 ≤ λ1 and, when ε ∈ [0, ε1], σ ∈ (0, σ1] and λ ≥ λ1 + L2, we have for
any f ∈ F , ξ ∈ suppP

φ(f, ξ, λ + L2, ε, σ)− εc1e
−c2(

λ+L2
ε )

1
3 ≤ φ(f, ξ, λ, ε, σ) ≤ φ(f, ξ, λ− L2, ε, σ) + εc1e

−c2(
λ−L2

ε )
1
3

.

Proof. Fix f ∈ F , ξ ∈ suppP, λ ≥ 0, ε ≥ 0 and σ > 0. To bound the error between φ and its

approximation φ, we introduce an intermediate approximation φ̃ defined as

φ̃(f, ξ, λ, ε, σ) :=

{
ε log

(
Eζ∼πσ(·|ξ) exp

(
f(ξ)+〈∇ f(ξ),ζ−ξ〉−λ‖ξ−ζ‖2/2

ε

))
if ε > 0

supζ∈Ξ[f(ξ) + 〈∇ f(ξ), ζ − ξ〉 − λ
2 ‖ξ − ζ‖2] if ε = 0 ,

which corresponds to φ applied to the Taylor approximation of f at ξ (instead of f itself). By
smoothness of the functions in F (Assumption 6), we readily have that,

φ̃(f, ξ, λ+ L2, ε, σ) ≤ φ(f, ξ, λ, ε, σ) ≤ φ̃(f, ξ, λ− L2, ε, σ) .

Now, all that is left to bound, is the error between φ̃ and φ. Consider first the case where ε > 0 and

let us rewrite φ̃ by using the definition of πσ:

φ̃(f, ξ, λ, ε, σ) = ε log

(
Eζ∼πσ(·|ξ) exp

(
f(ξ) + 〈∇ f(ξ), ζ − ξ〉 − λ‖ξ − ζ‖2/2

ε

))

= ε log

(∫

Ξ

exp

(
1

ε

(
f(ξ) + 〈∇ f(ξ), ζ − ξ〉 −

(
λ+

ε

σ2

) 1

2
‖ξ − ζ‖2

))
dζ

)
− ε logZ(ξ, σ) .
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But, looking at the inner expression, we have that

f(ξ) + 〈∇ f(ξ), ζ − ξ〉 −
(
λ+

σ2

ε

)
1

2
‖ξ − ζ‖2 = f(ξ) +

1

2(λ+ σ2

ε )
‖∇ f(ξ)‖22 −

1

2τ
‖ζ − ζ⋆(τ)‖22 ,

(20)

where we defined 1
τ
:= λ+ ε

σ2 and ζ⋆(τ) = ξ + τ ∇ f(ξ). Hence,

φ̃(f, ξ, λ, ε, σ) = φ(f, ξ, λ, ε, σ) + ε log

(∫

Ξ

exp

(
− 1

2ετ
‖ζ − ζ⋆(τ)‖22

)
dζ

)
− εd

2
log(2πετ) .

Define λ′1 :=
√
6G
R and τ1 := 1

λ′
1
= R

2G so that λ ≥ λ′1 implies that τ ≤ 1
λ′
1
= τ1. Let us now check

that the conditions of Lemma G.1 are satisfied.

1. Since ζ⋆(0) = ξ, by Assumption 3, B(ζ⋆(0), R) is contained in Ξ.

2. For τ ≤ τ1, we have that τ2‖∇ f(ξ)‖22 ≤ G2

(λ′
1)

2 = R2

6 by definition.

Hence, we can apply Lemma G.1 to get that, for any λ ≥ λ′1

ε log
(
1− 6d/2e−

R2

12ετ

)
≤ φ̃(f, ξ, λ, ε, σ)− φ(f, ξ, λ, ε, σ) ≤ ε log

(
1 + 6d/2e−

R2

12ετ

)
.

Now, using Lemma G.5, we get that there are positive constants ε1, λ1, c1,c2 depending on R, G
and d such that, if ε ≤ ε1 and λ ≥ λ1, then

|φ̃(f, ξ, λ, ε, σ)− φ(f, ξ, λ, ε, σ)| ≤ εc1e
−c2(

λ
ε )

1
3

.

Moreover, ε1 can be reduced so that it is less than λ1 if it is not the case originally.

To finish the proof, let us now come back to the case ε = 0. First, note that (20) is still valid even
with ε = 0 so that we have

φ̃(f, ξ, λ, 0) = φ(f, ξ, λ, 0)− 1

2τ
inf
ζ∈Ξ
‖ζ − ζ⋆(τ)‖22 .

But as seen above, for τ = λ−1 ≤ τ1, ζ⋆(τ) is inside B(ζ⋆(0), R) so that φ̃(f, ξ, λ, 0) =

φ(f, ξ, λ, 0).

We conclude the proof by noticing that the obtained bounds are valid for any 0 < ε ≤ ε1, λ ≥
λ1 + L2, f ∈ F and ξ ∈ suppP.

The following lemma is needed for the proof of Proposition A.2.

Lemma A.4. There is a positive constant σ1 > 0 which depends on R and d such that, for σ ∈
(0, σ1] and ξ ∈ suppP, ∣∣∣∣log

Z(ξ, σ)

(2π)d/2

∣∣∣∣ ≤ d|log σ|+ log 2 .

Proof. It suffices to show that

(2πσ2)d/2

2
≤ Z(ξ, σ) ≤ (2πσ2)d/2 , (21)

for any σ ∈ (0, σ1] with some σ1 > 0 suitably defined. We prove the right-hand side (RHS) by
removing the constraint Ξ in the integral defining Z(ξ, σ):

Z(ξ, σ) =

∫

Ξ

e−
‖ξ−ζ‖2

2σ2 dζ ≤
∫

Rd

e−
‖ξ−ζ‖2

2σ2 dζ = (2πσ2)d/2 .

For the left-hand side (LHS), we invoke Lemma G.1 using Assumption 3 to get that Z(ξ, σ) ≥ σd

when σ ≤ σ1 with σ1 > 0 satisfying

1− 6d/2e
− R2

12σ2
1 ≥ 1

2
.
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We are now in a position to prove the main result of the section.

Proof of Proposition A.2. Applying Lemmas A.3 and A.4 and using the definition ofG readily gives
us that

|φ(f, ξ, λ, ε, σ) − f(ξ)| ≤ 1

2λ
G2 +

εd

2
|log
(
λ

ε
+

1

σ2

)
|+ ε(d|log σ|+ log 2) + εZ(σ) + εc1e

−c2(
λ−L2

ε )
1
3

.

Since λ is always greater or equal than ε, log
(
λ
ε + 1

σ2

)
is always non-negative and, with λ belonging

to [λ, λ], we get that

|φ(f, ξ, λ, ε, σ) − f(ξ)| ≤ 1

2λ
G2 +

εd

2
log

(
λ

ε
+

1

σ2

)
+ ε(d|log σ|+ log 2) + εc1e

−c2(
λ−L2

ε )
1
3

,

which is the desired result.

As a consequence of this result, we have the following bound on the dual generator.

Corollary A.5. For any f ∈ F , ξ ∈ suppP, λ ∈ [λ, λ], ε ≥ 0 and σ > 0, the bound

−a(λ, λ, ε, σ) ≤ φ(f, ξ, λ, ε, σ) ≤ F̃ (λ) ,
holds where

a(λ, λ, ε, σ) :=





0 when ε = 0

M(λ, λ, ε, σ) when 0 < ε ≤ ε1, 0 < σ ≤ σ1, λ ≥ λ1 + L2

G
√
2C(σ) +

(
L2 + λ

)
C(σ) otherwise.

with M(λ, λ, ε, σ) the bounding term appearing in Proposition A.2, as well as ε1, σ1, λ1.

Proof. For the upper-bound, it suffices to note that

φ(f, ξ, λ, ε, σ) ≤ φ(f, ξ, λ, 0) ≤ φ(f, ξ, λ, 0) ≤ F̃ (λ)

by definition of F̃ (λ). Let us now turn to the lower bound.

When ε = 0, we have that φ(f, ξ, λ, ε, σ) ≥ f(ξ) ≥ 0.

When 0 < ε ≤ ε1 and λ ≥ λ1 + L2, we have from Proposition A.2

φ(f, ξ, λ, ε, σ) ≥ f(ξ)−M(λ, λ, ε, σ) ≥ −M(λ, λ, ε, σ) .

Otherwise, the bound comes from the smoothness of f and Jensen’s inequality as

φ(f, ξ, λ, ε, σ) ≥ ε log
(
Eζ∼πσ(·|ξ) exp

(
f(ξ) + 〈∇ f(ξ), ζ − ξ〉 − (L2 + λ)‖ξ − ζ‖2/2

ε

))

≥ Eζ∼πσ(·|ξ)

[
f(ξ) + 〈∇ f(ξ), ζ − ξ〉 − (L2 + λ)

1

2
‖ξ − ζ‖2

]

≥ −
(
G
√

2C(σ) + (L2 + λ)C(σ)
)
≥ −

(
G
√
2C(σ) +

(
L2 + λ

)
C(σ)

)
.

A.4 Relative compactness of the class F of loss functions

In this section we prove the relative compactness of the class F w.r.t. several metrics. First, we
show in Lemma A.6 that, under our blanket assumptions, F is relatively compact for for the infinity
norm over Ξ, defined by i.e., ‖f‖∞ := supξ∈Ξ|f(ξ)|. Then, in Lemma A.7, we establish the
equivalence between the first item of Assumption 5 and the relative compactness of F w.r.t. another
distance that we introduce, as mentioned below Assumption 5 in Section 3.1. Finally, we leverage
these compactness properties to ensure that the Dudley integral of F w.r.t. those metrics, a standard
complexity measure in concentration theory, is finite in Lemma A.10.
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Lemma A.6. F and conv(F) are relatively compact for the topology of the uniform convergence.

Proof. First, the functions of F are uniformly Lipschitz-continuous: fix ξ ∈ suppP, then, for any
ζ ∈ Ξ ‖∇ f(ζ)‖ ≤ L2‖ξ−ζ‖+G ≤ L2 sup(ξ,ζ)∈Ξ‖ξ−ζ‖+Gwhich is finite by compactness. Using

the compactness of Ξ again, the functions in F are also uniformly bounded. As a consequence,
the functions in conv(F) are also uniformly Lipschitz-continuous and uniformly bounded. By the
Arzelà-Ascoli theorem, see e.g., (Rudin, 1987, Thm. 11.28), F and conv(F) are then relatively
compact for the topology of uniform convergence.

Recall that, for a set A ⊂ Ξ and a point ξ ∈ Ξ, we denote by d(ξ, A) the distance between ξ and A,
i.e., d(ξ, A) = infζ∈A‖ξ − ζ‖.
Lemma A.7. Consider the distance, defined on continuous functions on Ξ by

D(f, g) := ‖f − g‖∞ +DH(argmax f, argmax g)

where DH denotes the Hausdorff distance between sets associated to d, i.e., for A,B ⊂ Ξ,

DH(A,B) := max

(
sup
ξ∈A

d(ξ, A), sup
ξ∈B

d(ξ, B)

)
.

Under the blanket assumptions, we have that Item 1 of Assumption 5, i.e., that for any R > 0, there
exists ∆ > 0 such that,

∀f ∈ F , ∀ζ ∈ Ξ, d(ζ, argmax f) ≥ R =⇒ f(ζ)−max f ≤ −∆ , (22)

is equivalent to F being relatively compact for D.

Proof. ( =⇒ ) Let us begin by showing that (22) implies the relative compactness of F for D, i.e.,
that the adherence of F is compact for D.

Take (ft)t=1,2,... a sequence of functions from F , and we will show that there is a subse-
quence which converges to some function in F forD. By compactness ofF for the infinity
norm, Lemma A.6, there readily is a subsequence of (ft)t=1,2,... that converges uniformly
to some continuous function f : Ξ → R. Without loss of generality, let us assume that
the whole sequence (ft)t=1,2,... converges uniformly to f , i.e., that ‖f − ft‖∞ → 0 as
t→ +∞. As a consequence, it holds also holds that maxΞ ft converges to maxΞ f .

We now show that DH(argmax ft, argmax f) converges to 0. F satisfy (22) by as-
sumption. Hence, for any fixed η > 0, we can invoke (22) with R ← η and it gives
us some ∆ > 0. Now, since f is continuous, {ζ ∈ Ξ : d(ζ, argmax f) ≥ η} is a
closed set inside a compact and therefore is compact as well. Hence, f reaches its maxi-
mum over this set and it is strictly less than maxΞ f by construction. Substituting ∆ with
min(∆,maxΞ f −max{f(ζ) : ζ ∈ Ξ, d(ζ, argmax f) ≥ η}) which is still positive, we
get that, for any ζ ∈ Ξ, both,

d(ζ, argmax f) ≥ η =⇒ f(ζ)−max f ≤ −∆ ,

and, for any t = 1, 2, . . .,

d(ζ, argmax ft) ≥ η =⇒ ft(ζ)−max ft ≤ −∆ .

By convergence of the sequence, as mentioned above, there is some T ≥ 1 such that, for
any t ≥ T , ‖f − ft‖∞ ≤ ∆/3 and |maxΞ ft −maxΞ f | ≤ ∆/3. These two inequalities
imply that, for any ξ ∈ argmax f ,

max
Ξ

ft − ft(ξ) ≤ max
Ξ

f +
∆

3
− f(ξ) + ∆

3
=

2∆

3
.

Therefore, by definition of ∆, it holds that d(ξ, argmax ft) < η. Similarly, when ξ ∈
argmax ft, one shows that maxΞ f − f(ξ) ≤ 2∆/3 so that we have d(ξ, argmax f) < η
as well. Hence, for any t ≥ T , DH(argmax ft, argmax f) is at most η.

Therefore, we have shown thatDH(argmax ft, argmax f) goes to zero. Since ‖f−ft‖∞
converges to zero as well by construction, this means thatD(ft, f) converges to zero, which
concludes the proof.
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(⇐= ) Let us proceed by contradiction, i.e., assume that there is some R > 0, some sequence
(ft)t=1,2,... of functions from F and some sequence (ξt)t=1,2,... of points from Ξ such
that,

∀t = 1, 2, . . ., d(argmax ft, ξt) ≥ R yet ft(ξt)−max
Ξ

ft → 0 as t→ +∞ .

Since Ξ is compact and since we assume F to be relatively compact for D, without loss
of generality, we can assume that (ξt)t=1,2,... converges to some ξ ∈ Ξ while (ft)t=1,2,...

converges to some continuous function f for D. On the one hand, by definition of the
Hausdorff distance, we have that, for any t = 1, 2, . . .,

d(argmax f, ξ) ≥ d(argmax ft, ξ)−DH(argmax ft, argmax f)

≥ d(argmax ft, ξt)− (d(ξ, ξt) +DH(argmax ft, argmax f)) ,

so that, by taking t → +∞, we get that d(argmax f, ξ) ≥ R. On the other hand, by
uniform convergence, one has that

f(ξ)−max f = lim
t→+∞

ft(ξt)−max ft = 0 ,

which yields the contradiction since ξ cannot belong to argmax f .

Note that, for parametric models (Section 3.4), this lemma gives a computation-free approach to
verifying the second item of Assumption 5.

Corollary A.8. Consider Θ a compact subset of Rp and f : Θ × Ξ → R a continuous function. If
the map θ ∈ Θ 7→ f(θ, ·) is continuous from Θ to the space of continuous functions on Ξ equipped
with the distance D defined in Lemma A.7, then F := {f(θ, ·) : θ ∈ Θ} is compact for D.

In particular, this corollary allows one to easily check that Examples 3.6 and 3.7 satisfy the second
item of Assumption 5.

We finally introduce Dudley’s integral, which is a standard complexity measure in concentration
theory.

Definition A.9. Dudley’s entropy integral I(X , dist) is defined for a metric space (X , dist) as

I(X , dist) :=
∫ +∞

0

√
logN(t,X , dist)dt

where N(t,X , dist) denotes the t-packing number of X , which is the maximal number of points in
X which are at least at a distance t from each other.

Lemma A.10. The Dudley integral of F w.r.t. ‖·‖∞, that we denote by I(F , ‖·‖∞), is finite. Under
Assumption 5, the Dudley integral of F w.r.t. D, denoted by I(F , D) is finite as well.

Proof. Lemma A.6 shows that F is relatively compact for the norm ‖·‖∞ and in particular bounded.
Since Dudley’s entropy integral is finite for balls (Wainwright, 2019, Ex. 5.18) and F is now in-
cluded in some ball for ‖·‖∞, the integral I(F , ‖·‖∞) is indeed finite. The second assertion is
proven using the same reasoning and Lemma A.7.

A.5 Parametric Morse-Bott objectives

In this section, we discuss the quadratic growth condition of the second item of Assumption 5
and its relation to the parametric Morse-Bott assumption of Arbel and Mairal (2022). Indeed, in
the context of smooth manifolds and parametric models, we prove that the parametric Morse-Bott
assumption implies the quadratic growth condition of Assumption 5. In Assumption 7, we introduce
the Riemannian and parametric settings that are necessary to formulate the parametric Morse-Bott
condition and we then present a version of this condition adapted to our context. We refer to Lee
(2018) for definitions relevant to Riemannian geometry. The main result of this section is then
Proposition A.11, which relies on Lemma A.12 for its proof.

Assumption 7 (Parametric Morse-Bott). Let F = {ξ 7→ f(θ, ξ) : θ ∈ Θ} where :
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• Ξ, Θ are smooth compact (connected embedded) submanifolds of Rd and R
p respectively,

endowed with the induced Euclidean metric.

• f : Θ× Ξ→ R is thrice continuously differentiable on the product manifold.

• f is a parametric Morse-Bott function (Arbel and Mairal, 2022, Def. 2): the set of aug-
mented critical points of F , defined as

M := {(θ, ξ) ∈ Θ× Ξ : gradξ f(θ, ξ) = 0} .

is a C2-(embedded) submanifold of Θ× Ξ whose dimension at (θ, ξ) ∈M is dimθ(Θ) +
dim(kerHessξ f(θ, ξ)) .

Under this assumption Assumption 7, the following result thus guarantees that the quadratic growth
condition of Assumption 5 holds.

Proposition A.11. Under Assumption 7 and the first item of Assumption 5, the second item of
Assumption 5 holds, i.e., there exists µ, L3 > 0 such that, for all θ ∈ Θ, ξ ∈ Ξ and ξ∗ ∈ argmax f
a projection of ξ on argmax f , i.e., ξ∗ ∈ argminargmax f‖ξ − ·‖, it holds that

f(θ, ξ∗) ≥ f(θ, ξ) + µ

2
‖ξ − ξ∗‖2 − L3

6
‖ξ − ξ∗‖3 .

To show this result, we rely on the following lemma that relates Assumption 7 to a local quadratic
growth condition.

Lemma A.12. Under Assumption 7, for any (θ0, ξ0) ∈ M such that ξ0 is a local maximum of
f(θ0, ·) and any neighborhoodW of (θ0, ξ0) in M , there exists a neighborhood U of (θ0, ξ0) in
Θ× ξ and µ > 0 such that, for any (θ, ξ) ∈ U , there exists ξ∗ ∈ Ξ such that (θ, ξ∗) ∈ W and

f(θ, ξ∗) ≥ f(θ, ξ) + µ

2
‖ξ − ξ∗‖2 .

Proof. By assumption, the tangent space of M at (θ, ξ) is given by

T(θ,ξ)M = Tθ Θ× kerHessξ f(θ, ξ) ,

and so its normal space (in Θ × Ξ) is equal to

N(θ,ξ)M = {0} × (kerHessξ f(θ, ξ))
⊥ ⊂ Tθ Θ× Tξ Ξ .

Since M is a closed subset of the compact set Θ × Ξ, it is compact. By the tubular neighborhood
theorem for compact submanifolds, there exists η > 0 and a neighborhood Uη of M in Θ × ξ such
that, with

Vη :=
{
(θ, ξ, z) : (θ, ξ) ∈M, z ∈ (kerHessξ f(θ, ξ))

⊥
, ‖z‖ < η

}
,

the normal exponential map E : (θ, ξ, z) ∈ Vη 7→ (θ, expξ(z)) is a diffeomorphism from Vη to

Uη. Note that Vη is relatively compact and, as a consequence, the third derivative of t ∈ [0, 1] 7→
f(θ, expξ(tz)) is a continuous function of t ∈ [0, 1] and (θ, ξ, z) ∈ Vη and as a consequence is

bounded uniformly by some constant L3 > 0. Fix (θ0, ξ0) ∈M such that ξ0 is a local maximum of
f(θ, ·). Consider the map

ν : (θ, ξ) 7→ inf
{
〈z,−Hessξ f(θ, ξ)z〉 : z ∈ (kerHess f(θ, ξ))

⊥
, ‖z‖ = 1

}
.

If ν(θ0, ξ0) is +∞, i.e., if kerHess f(θ0, ξ0) is equal to the whole Tξ0 Ξ, then, since the dimension
of a manifold is locally constant, there is a neighborhood of (θ0, ξ0) in Θ × Ξ on which ν is iden-
tically equal to +∞. Otherwise, if ν(θ0, ξ0) is finite, then it is positive by construction. Hence, the
continuity of ν implies there is a positive constant µ > 0 and a neighborhood of (θ0, ξ0) in Θ × Ξ
on which ν is lower-bounded by µ.

Hence, in both cases, there is µ > 0 and V ′ a neighborhood of (θ0, ξ0) in Θ × Ξ such that ν is at
least greater or equal to µ on V ′. Finally, take

U := Uη ∩E
({

(θ, ξ, z) ∈ Vη : (θ, ξ) ∈ V ′ ∩W , ‖z‖ < 3µ

4L3

})
.
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We are now in a position to prove the result. Take (θ, ξ) ∈ U . Since U is included in Uη , there

is some ξ∗ ∈ Ξ and z ∈ (kerHess f(θ, ξ))
⊥

such that (θ, ξ∗) ∈ M ∩ V ′ ∩ W , ‖z‖ < 3µ
4L3

and

expξ∗(z) = ξ. Let γ(t) := expξ∗(tz) for t ∈ [0, 1] denotes the geodesic curve going from ξ∗ to

ξ. Then, by the Taylor inequality applied to t 7→ f(ξ, γ(t)) (see Boumal (2020, § 5.9)) and by
definition of L3,

f(θ, ξ) ≤f(θ, ξ∗) + 〈gradξ f(θ, ξ∗), z〉+
1

2
〈Hessξ f(θ, ξ∗)z, z〉

+
1

2
〈gradξ f(θ, ξ∗), γ′′(0)〉+

L3

6
‖z‖3 .

But γ′′(t) is null since γ is a geodesic and gradξ f(θ, ξ
∗) too by definition. Moreover, since (θ, ξ∗) ∈

V ′ and z ∈ (kerHessξ f(θ, ξ
∗))⊥, the term 〈Hessξ f(θ, ξ∗)z, z〉 is bounded by −µ‖z‖2. But ‖z‖ is

also equal to ‖ξ − ξ∗‖ by definition of z so we get,

f(θ, ξ) ≤f(θ, ξ∗)− µ

2
‖ξ − ξ∗‖2 + L3

6
‖ξ − ξ∗‖3

≤f(θ, ξ∗)− µ

4
‖ξ − ξ∗‖2 ,

since ‖z‖ = ‖ξ − ξ∗‖ ≤ 3µ
4L3

, which gives the result.

We are now ready to prove Proposition A.11.

Proof of Proposition A.11. We build upon the result of Lemma A.12. Fix (θ0, ξ0) ∈ M such that

ξ0 is a maximum of f(θ0, ·) and let r > 0 such that B((θ0, ξ0), r) ∩ M is diffeomorphic to an
Euclidean ball. Invoke the first item of Assumption 5, with R ← r/2 and let ∆ > 0 be the

given positive quantity. Let U , µ be given by Lemma A.12 invoked with W := B
(
(θ0, ξ0),

r
2

)
∩

{(θ, ξ) ∈M : f(θ, ξ) > maxΞ f(θ, ·)−∆}.
Hence, for any (θ, ξ) ∈ U , there is ξ∗ ∈ Ξ such that (θ, ξ∗) ∈M ∩W and

f(θ, ξ∗) ≥ f(θ, ξ) + µ

2
‖ξ − ξ∗‖2 . (23)

But (θ, ξ∗) also satisfies f(θ, ξ∗) > maxΞ f(θ, ·)−∆ so that d(ξ∗, argmaxΞ f(θ, ·)) < r
2 by def-

inition of ∆, i.e., there exists ξ∗∗ that is a maximizer of f(θ, ·) and that is at distance at most < r
2

from ξ∗. But then both ξ∗ and ξ∗∗ belong to B((θ0, ξ0), r) that is diffeomorphic to an Euclidean
ball. Hence, since the derivative of f(θ, ·) is null on M , f(θ, ξ∗) = f(θ, ξ∗∗) = maxΞ f(θ, ·) so
that ξ∗ is a maximizer of f(θ, ·) too. Therefore, (23) becomes

max
Ξ

f(θ, ·) = f(θ, ξ∗) ≥ f(θ, ξ) + µ

2
‖ξ − ξ∗‖2 ≥ f(θ, ξ) + µ

2
d2
(
ξ, argmax

Ξ
f(θ, ·)

)
.

The final statement of the proposition follows by compactness and uniform Lipschitz-continuity of
F (see the proof of Lemma A.6).

B From empirical to true risk via duality

In this part of the proof, our objective is to show that: if the dual variable λ in (12) can be bounded

uniformly in [λ, λ] with probability 1− δ, then we can concentrate the empirical expectation in (12)
towards the one in (13). The concentration error induces a loss in the radius, fortunately, captured

by the variable ρ2n(δ, λ, λ, ε, σ) that we take as

ρ2n(δ, λ, λ, ε, σ) :=
117√
nλ

(
I(F , ‖·‖∞) + max

(
F̃ (λ), a(λ, λ, ε, σ)

)(
1 +

√
log

1

δ

))
, (24)

where I(F , ‖·‖∞) is the Dudley integral of F w.r.t. the infinity norm (Definition A.9), F̃ is defined

in Assumption 6, and a(λ, λ, ε, σ) is the bounding term appearing in Corollary A.5.

The main result of this part is Proposition B.1, stated below, and the remainder of the section will
consist in proving it.
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Proposition B.1. for ρ > 0, ε ≥ 0, σ > 0 and δ ∈ (0, 1), assume that there is some 0 < λ ≤ λ <
+∞ such that, with probability at least 1− δ

2 ,

∀f ∈ F , R̂ε
ρ2 (f) = inf

λ≤λ≤λ
λρ2 + Eξ∼Pn [φ(f, ξ, λ, ε, σ)] . (25)

then, when ρ2 ≥ ρ2n(δ, λ, λ, ε, σ), with probability 1− δ,

∀f ∈ F , R̂ε
ρ2(f) ≥ Rε

ρ2−ρ2
n(δ,λ,λ,ε,σ)

(f) .

The proof of this result mainly consists in verifying that under our standing assumptions, we can

apply the concentration result presented in Lemma G.2 in order to concentrate R̂ε
ρ2 (f) towards

Rε
ρ2(f) through their dual formulations.

We begin by showing that the dual generator divided by λ is Lipchitz continuous in f and in λ−1

(for convenience, we use the notation µ = λ−1).

Lemma B.2. Fix some λ ≥ λ > 0. For any ξ ∈ Ξ, ε ≥ 0 and σ > 0 we have that

(a) for any λ ∈ [λ, λ], f 7→ λ−1φ(f, ξ, λ, ε, σ) is λ−1-Lipschitz continuous w.r.t. the norm
‖·‖∞;

(b) for any f ∈ F , µ 7→ µφ(f, ξ, µ−1, ε, σ) is max
(
F̃ (λ), a(λ, λ, ε, σ)

)
-Lipschitz continuous

on
[
λ
−1
, λ−1

]
.

Proof. Item (a). When ε = 0, f 7→ φ(f, ξ, λ, ε, σ) is a supremum of 1-Lipschitz functions and

is thus 1-Lipschitz. For ε > 0, take f, g ∈ F and, for t ∈ [0, 1], define ft = f + t(g − f).
Differentiating t 7→ φ(ft, ξ, λ, ε, σ) yields

∣∣∣∣
d

dt
φ(ft, ξ, λ, ε, σ)

∣∣∣∣ =

∣∣∣∣∣∣∣

Eζ∼πσ(·|ξ)
[
(g(ζ) − f(ζ))e ft(ζ)−λ‖ξ−ζ‖2/2

ε

]

Eζ′∼πσ(·|ξ)
[
e

ft(ζ)−λ‖ξ−ζ′‖2/2
ε

]

∣∣∣∣∣∣∣
≤ ‖g − f‖∞ ,

which gives that f 7→ φ(f, ξ, λ, ε, σ) is 1-Lipschitz continuous w.r.t. the norm ‖·‖∞.

Since this bound is uniform in λ, we immediately get that f 7→ λ−1φ(f, ξ, λ, ε, σ) is λ−1-Lipschitz
continuous for all λ ≥ λ.

Item (b). Fix f ∈ F , ξ ∈ Ξ, ε ≥ 0, σ > 0 and define g(λ) := λ 7→ λ−1φ(f, ξ, λ, ε, σ).

Let us first begin with the case ε = 0. Take λ, λ′ ∈ [λ, λ]. Without loss of generality,
we can suppose that g(λ) ≥ g(λ′). Since f is continuous and Ξ is a compact set, choose

ζ ∈ argmaxζ∈Ξ

{
f(ζ)− λ

2 ‖ξ − ζ‖2
}

. Then, the claim comes from the fact that

0 ≤ g(λ)− g(λ′) ≤ λ−1f(ζ)− 1

2
‖ξ − ζ‖2 −

(
λ′−1f(ζ)− 1

2
‖ξ − ζ‖2

)
≤ |λ−1 − λ′−1| F̃ (λ) ,

where we use that since f is non-negative by assumption,

∣∣∣F̃ (λ)
∣∣∣ = F̃ (λ) ≤ F̃ (λ).

Let us now turn to the case where ε > 0, for which g is differentiable on [λ, λ] with derivative

g′(λ) = − 1

λ2
φ(f, ξ, λ, ε, σ) − 1

λ

Eζ∼πσ(·|ξ)
[
1
2‖ξ − ζ′‖2e

f(ζ)−λ‖ξ−ζ‖2/2
ε

]

Eζ′∼πσ(·|ξ)
[
e

f(ζ′)−λ‖ξ−ζ′‖2/2
ε

] .

Since the claimed result is the Lipchitz continuity of h : µ 7→ g(µ−1), it suffices to bound its

derivative, i.e., to bound −λ−2g′(λ) for all λ ≥ λ ≥ λ. On the one hand, thanks to Lemma G.7, it
is bounded above as

− 1

λ2
g′(λ) ≤

Eζ∼πσ(·|ξ)
[
(f(ζ) − λ

2 ‖ξ − ζ‖2)e
f(ζ)−λ‖ξ−ζ‖2/2

ε

]

Eζ′∼πσ(·|ξ)
[
e

f(ζ′)−λ‖ξ−ζ′‖2/2
ε

] + λ
Eζ∼πσ(·|ξ)

[
1
2‖ξ − ζ‖2e

f(ζ)−λ‖ξ−ζ‖2/2
ε

]

Eζ′∼πσ(·|ξ)
[
e

f(ζ′)−λ‖ξ−ζ′‖2/2
ε

]

≤ φ(f, ξ, λ, 0) ≤ F̃ (λ) ≤ F̃ (λ) .
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On the other hand, invoking Corollary A.5 also yields that

− 1

λ2
g′(λ) ≥ ε log

(
Eζ∼πσ(·|ξ)e

f(ζ)−λ‖ξ−ζ‖2/2
ε

)
≥ −a(λ, λ, ε, σ) ,

which concludes the proof.

We can now apply standard concentration for bounded Lipschitz quantities to bound the difference
between the expectation of the dual generator over the empirical distribution Pn and true one P.

Lemma B.3. For ρ > 0, ε ≥ 0, σ > 0, δ ∈ (0, 1) and some 0 < λ ≤ λ < +∞, we have with

probability at least 1− δ
2 that

sup
(f,λ)∈F×[λ,λ]

{
Eξ∼P[φ(f, ξ, λ, ε, σ)]− Eξ∼Pn [φ(f, ξ, λ, ε, σ)]

λ

}
≤ ρ2n(δ, λ, λ, ε, σ) .

Proof. Our objective is to bound the quantity

sup
(f,λ)∈F×[λ,λ]

{
Eξ∼P[φ(f, ξ, λ, ε, σ)] − Eξ∼Pn [φ(f,Pn, λ, ε, σ)]

λ

}

= sup
(f,µ)∈F×

[

λ
−1

,λ−1
]

{
Eξ∼P

[
µφ(f, ξ, µ−1, ε, σ)

]
− Eξ∼Pn

[
µφ(f, ξ, µ−1, ε, σ)

]}

= sup
(f,µ)∈X

{Eξ∼P[X((f, µ), ξ)]− Eξ∼Pn [X((f, µ), ξ)]} ,

where we used again the notation µ = λ−1 and defined

X := F ×
[
λ
−1
, λ−1

]
and X((f, µ), ξ) := µφ(f, ξ, µ−1, ε, σ) .

Let us endow X with the distance,

dist((f, µ), (f ′, µ′)) := λ−1‖f − f ′‖∞ +max
(
F̃ (λ), a(λ, λ, ε, σ)

)
|µ− µ′| .

We now wish to apply Lemma G.2 and check its three requirements:

1. For any (f, µ) ∈ F ×
[
λ
−1
, λ−1

]
, X((f, µ), ·) is measurable since the functions of F are

continuous and thus a fortiori measurable;

2. By Lemma B.2, for any ε ≥ 0 and any ξ ∈ suppP, X(·, ξ) is 1-Lipschitz w.r.t. dist;

3. Thanks to Corollary A.5, for any (f, µ) ∈ X , ξ ∈ suppP, ε ≥ 0 and σ > 0, we have

−a(λ, λ, ε, σ)
λ

≤ X((f, µ), ξ) ≤ F̃ (λ)

λ
.

As a consequence, applying statement (b) of Lemma G.2 yields that, with probability at least 1− δ
2 ,

sup
(f,λ)∈F×[λ,λ]

{
Eξ∼P[φ(f, ξ, λ, ε, σ)] − Eξ∼Pn [φ(f,Pn, λ, ε, σ)]

λ

}

≤ 48I(X , dist)√
n

+
2

λ

(
F̃ (λ) + a(λ, λ, ε, σ)

)
√

log 2
δ

2n
.

We now proceed to bound I(X , dist). Exploiting the product space structure of X and dist with
Lemma G.3, one has that,

I(X , dist) ≤ λ−1I(F , ‖·‖∞) + max
(
F̃ (λ), a(λ, λ, ε, σ)

)
I([0, λ−1], |·|)

≤ λ−1

(
I(F , ‖·‖∞) + max

(
F̃ (λ), a(λ, λ, ε, σ)

)1 + 2 log 2

2

)
,
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where we used Lemma G.4. Hence, we have shown that with probability at least 1− δ
2 ,

sup
(f,λ)∈F×[λ,λ]

{
Eξ∼P[φ(f, ξ, λ, ε, σ)] − Eξ∼Pn [φ(f, ξ, λ, ε, σ)]

λ

}
≤ ρ2n(δ, λ, λ, ε, σ)

where some numerical constants have been simplified.

Proof of Proposition B.1. Building on Lemma B.3, we can now conclude the main result of this
section. Using our boundedness assumption on λ, we have that, with probability 1 − δ, the two
following statements hold simultaneously

• ∀f ∈ F , R̂ε
ρ2(f) = inf

λ≤λ≤λ
λρ2 + Eξ∼Pn [φ(f, ξ, λ, ε, σ)] ;

• sup
(f,λ)∈F×[λ,λ]

{
Eξ∼P[φ(f, ξ, λ, ε, σ)]− Eξ∼Pn [φ(f, ξ, λ, ε, σ)]

λ

}
≤ ρ2n(δ, λ, λ, ε, σ) .

As a consequence, on this event, for any f ∈ F ,

R̂ε
ρ2(f) = inf

λ≤λ≤λ

{
λρ2 + Eξ∼Pn [φ(f, ξ, λ, ε, σ)]

}

= inf
λ≤λ≤λ

{
λρ2 + Eξ∼P [φ(f, ξ, λ, ε, σ)] − λEξ∼P[φ(f, ξ, λ, ε, σ)] − Eξ∼Pn [φ(f, ξ, λ, ε, σ)]

λ

}

≥ inf
λ≤λ≤λ

{
λρ2 + Eξ∼P [φ(f, ξ, λ, ε, σ)] − λ sup

λ≤λ′≤λ

Eξ∼P[φ(f, ξ, λ
′, ε, σ)]− Eξ∼Pn [φ(f, ξ, λ

′, ε, σ)]

λ′

}

≥ inf
λ≤λ≤λ

{
λρ2 + Eξ∼P [φ(f, ξ, λ, ε, σ)]− λρ2n(δ, λ, λ, ε, σ)

}

≥ Rε
ρ2−ρ2

n(δ,λ,λ,ε,σ)
(f)

where ρ2 − ρ2n(δ, λ, λ, ε, σ) ≥ 0 by assumption.

Remark B.4. Note that the proof of Proposition B.1 actually gives us the slightly stronger result at
the penultimate equation: with probability at least 1− δ, for any f ∈ F ,

R̂ε
ρ2(f) ≥ inf

λ≤λ≤λ

{
λ(ρ2 − ρ2n(δ, λ, λ, ε, σ)) + Eξ∼P [φ(f, ξ, λ, ε, σ)]

}
,

that we will require later.

C Dual bound when ρ is small

In this section, we show how the condition (25) of Proposition B.1 can be obtained when the robust-
ness radius ρ is small enough. The results of this section cover both the standard WDRO setting of
Theorems 3.1 and 3.3 and the regularized case of Theorem 3.4.

In the following Assumption 8, we precise how small ρ has to be; we also take ε and σ proportional
to ρ in order to get close to the true risk with ρ, ε and σ “small” at the same time. The main result
of this section is Proposition C.1, whose proof relies on Lemma C.2.

Assumption 8 (ρ is small). Take ε = ε0ρ, σ = σ0ρ with ε0 ≥ 0, σ0 > 0 and define

λ∗0 := ε0d+
√
(ε0d)2 + 8 inf

f∈F
EP‖∇ f‖22 µ∗ :=

8 inff∈F EP‖∇ f‖22
(λ∗0)

3
+

2ε0d

(λ∗0
2)
.

Moreover, assume that ε0 and σ0 satisfy

ε0
σ02
≤ λ∗0

8
.

Assume that ρ > 0 is small enough so that,

ρ ≤ min


ε1
ε0
,

λ∗0
32(λ1 + L2)

,
µ∗(λ∗0)

2

4096L2
,

√
c32λ

∗
0

8ε0

(
log

(
4096ε0c1
µ∗(λ∗0)

2

))− 3
2

+




where λ1, ε1, c1, c2 are positive constant given by Lemma A.3 and σ comes from (4).
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Note that λ∗0 and µ∗ are both always positive, be it thanks to Assumption 5 or the regularization with
ε0 > 0. For such values of ρ, the main result of this section Proposition C.1 shows that the dual
variable of (12) can be bounded with high probability.

Proposition C.1. Let Assumption 8 hold and fix a threshold δ ∈ (0, 1). Assume in addition that

ρ ≥ 8192√
nµ∗(λ∗0)

2

(
12I(F , ‖·‖∞) + (F̃ (0) +M(ρ))

√
1 + log

1

δ

)

where I(F , ‖·‖∞), F̃ are defined in Section A.1 and M(λ, λ, ε, σ), the bounding term appearing in
Proposition A.2, is used to define

M(ρ) := sup
ρ′∈(0,ρ]

M

(
max

(
λ∗0
32ρ′

, λ1 + L2

)
,
λ∗0
2ρ′

, ε0ρ
′, σ0ρ

′
)
.

Then, with probability at least 1− δ, we have

∀f ∈ F , R̂ε
ρ2(f) = inf

λ∗
0

32ρ
≤λ≤λ∗

0
2ρ

λρ2 + Eξ∼Pn [φ(f, ξ, λ, ε, σ)] .

To show Proposition C.1, we need the following helper lemma.

Lemma C.2. Let Assumption 8 hold. Then,(
λ∗0
4ρ
− ε0ρ

σ2
+ L2

)
ρ2 + Eξ∼P

[
φ

(
f, ξ,

λ∗0
4ρ
− ε0ρ

σ2
+ L2, ε

)]
+

ρµ∗

1024
(λ∗0)

2

≤ min

((
λ∗0
8ρ
− ε0ρ

2σ2
− L2

)
ρ2 + Eξ∼P

[
φ

(
f, ξ,

λ∗0
8ρ
− ε0ρ

2σ2
− L2, ε

)]
,

(
λ∗0
2ρ
− 2ε0ρ

σ2
+ L2

)
ρ2 + Eξ∼P

[
φ

(
f, ξ,

λ∗0
2ρ
− 2ε0ρ

σ2
+ L2, ε

)])

and max

(
λ∗0
32ρ

, λ1 + L2

)
≤ λ∗0

8ρ
− ε0ρ

2σ2
− L2 ≤

λ∗0
4ρ
− ε0ρ

σ2
+ L2 ≤

λ∗0
2ρ

Proof. Fix f ∈ F . Consider the function ψρ : λ 7→ λρ2+Eξ∼P

[
φ(f, ξ, λ, ε, σ)

]
where φ is defined

in (19). By Lemma G.8 invoked with a← ρ2, b← 1
2EP

[
‖∇ f‖22

]
, c ← εd

2 and r ← ε
σ2 , its unique

minimizer is

λ⋆ :=

[
ε0d+

√
(ε0d)2 + 8EP‖∇ f‖22

4ρ
− ε0ρ

σ2

]

+

=

[
λ∗0
4ρ
− ε0ρ

σ2

]

+

.

where we used that ε = ε0ρ. And, since ε0ρ
2

σ2 = ε0
σ0

2 ≤ λ∗
0

8 by Assumption 8, λ⋆ actually satisfies

λ∗0
8ρ
≤ λ⋆ ≤ λ∗0

4ρ
. (26)

Moreover, Lemma G.8 also shows that, on [0, 2λ⋆], ψρ is strongly convex with modulus

EP

[
‖∇ f‖22

]

(2λ⋆ + ε0ρ
σ2 )3

+
ε0dρ

2(2λ⋆ + ε0ρ
σ2 )2

=
EP

[
‖∇ f‖22

]

(
λ∗
0

2ρ −
ε0ρ
σ2 )3

+
ε0dρ

2(
λ∗
0

2ρ −
ε0ρ
σ2 )2

≥ ρ3µ∗ .

Now, we notice that ε = ε0ρ ≤ ε1 by Assumption 8. Then, if λ ∈ [λ1 + L2, 2λ
⋆ − L2], then

Lemma A.3 (applied twice) and the strong convexity of ψρ yield

λρ2 + Eξ∼P[φ(f, ξ, λ, ε, σ)]

≥ λρ2 + Eξ∼P

[
φ(f, ξ, λ+ L2, ε, σ)

]
− εc1e

−c2(
λ+L2

ε )
1
3

≥ λ⋆ρ2 + Eξ∼P

[
φ(f, ξ, λ⋆, ε, σ)

]
− ρ2L2 +

ρ3µ∗

2
(λ⋆ − (λ+ L2))

2 − εc1e
−c2(

λ+L2
ε )

1
3

≥ λ⋆ρ2 + Eξ∼P[φ(f, ξ, λ
⋆ + L2, ε, σ)]− ρ2L2 +

ρ3µ∗

2
(λ⋆ − (λ + L2))

2 − εc1e
−c2(

λ+L2
ε )

1
3 − εc1e

−c2(
λ⋆

ε )
1
3

.

(27)
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We first wish to choose λ = λ⋆

2 − L2. By (26), since ρ ≤ λ∗
0

32(λ1+L2)
by Assumption 8, this choice

of λ is indeed greater than or equal to λ1 + L2 and (27) leads to
(
λ⋆

2
− L2

)
ρ2 + Eξ∼P

[
φ(f, ξ,

λ⋆

2
− L2, ε, σ)

]

≥ λ⋆ρ2 + Eξ∼P[φ(f, ξ, λ
⋆ + L2, ε, σ)]− ρ2L2 +

ρ3µ∗

8
(λ⋆)

2 − εc1e
−c2(

λ⋆

2ε )
1
3 − εc1e

−c2(
λ⋆

ε )
1
3

≥ (λ⋆ + L2)ρ
2 + Eξ∼P[φ(f, ξ, λ

⋆ + L2, ε, σ)]− 2ρ2L2 +
ρµ∗

512
(λ∗0)

2 − 2εc1e
−c2

(

λ∗
0

8ερ

) 1
3

. (28)

where we used (26) again for the last inequality.

To obtain the other inequality we pick λ = 2λ⋆ − L2, which is greater or equal to λ1 + L2 by
Assumption 8 and (26) as above. Then, (27) yields

(2λ⋆ − L2) ρ
2 + Eξ∼P[φ(f, ξ, 2λ

⋆ − L2, ε, σ)]

≥ λ⋆ρ2 + Eξ∼P[φ(f, ξ, λ
⋆ + L2, ε, σ)]− ρ2L2 +

ρ3µ∗

2
(λ⋆)

2 − εc1e
−c2(

2λ⋆

ε )
1
3 − εc1e

−c2(
λ⋆

ε )
1
3

≥ (λ⋆ + L2)ρ
2 + Eξ∼P[φ(f, ξ, λ

⋆ + L2, ε, σ)]− 2ρ2L2 +
ρµ∗

512
(λ∗0)

2 − 2εc1e
−c2

(

λ∗
0

8ερ

) 1
3

where we used (26) again, and degraded the constants to match those of (28).

Thus, we have that λ⋆ =
λ∗
0

4ρ −
ε0ρ
σ2 and

(λ⋆ + L2)ρ
2 + Eξ∼P[φ(f, ξ, λ

⋆ + L2, ε, σ)]− 2ρ2L2 +
ρµ∗

512
(λ∗0)

2 − 2εc1e
−c2

(

λ∗
0

8ερ

) 1
3

≤ min

((
λ⋆

2
− L2

)
ρ2 + Eξ∼P

[
φ(f, ξ,

λ⋆

2
− L2, ε, σ)

]
, (2λ⋆ − L2) ρ

2 + Eξ∼P[φ(f, ξ, 2λ
⋆ − L2, ε, σ)]

)

All that is left to show for the main result of the lemma is that

− 2ρ2L2 +
ρµ∗

512
(λ∗0)

2 − 2εc1e
−c2

(

λ∗
0

8ερ

) 1
3

≥ ρµ∗

1024
(λ∗0)

2

⇔ 2ρL2 + 2ε0c1e
−c2

(

λ∗
0

8ε0ρ2

) 1
3

≤ µ∗

1024
(λ∗0)

2
. (29)

This is a consequence of Assumption 8 which states that

ρ ≤ µ∗

4096L2
(λ∗0)

2 and ρ ≤

√
c32λ

∗
0

8ε0

(
log

(
4096ε0c1
µ∗(λ∗0)

2

))− 3
2

+

,

which imply that 2ρL2 ≤
µ∗

2048
(λ∗0)

2
, and 2ε0c1e

−c2

(

λ∗
0

8ε0ρ2

) 1
3

≤ µ∗

2048
(λ∗0)

2
,

so that (29) indeed holds, concluding the proof of the first part of the result.

The supplementary bounds follow directly from (26) and our assumptions on ρ.

We are now in a position to show our main result when ρ is small, namely Proposition C.1.

Proof of Proposition C.1. Let us first take any λ ∈ [max
(

λ∗
0

32ρ , λ1 + L2

)
,
λ∗
0

2ρ ]. We want to instante

Lemma G.2 with X(f, ξ) ← φ(f, ξ, λ, ε, σ), (X , dist) ← (F , ‖·‖∞), whose requirements are
checked since:

1. For any f ∈ F , φ(f, ξ, λ, ε, σ) is measurable since the functions of F are continuous and
thus a fortiori measurable;
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2. By the proof of Lemma B.2(a), we have that for any ε ≥ 0, σ > 0 and any ξ ∈ suppP,
f 7→ φ(f, ξ, λ, ε, σ) is 1-Lipschitz continuous w.r.t. the norm ‖·‖∞;

3. With Proposition A.2 with λ← max
(

λ∗
0

32ρ , λ1 + L2

)
, λ← λ∗

0

2ρ , for any f ∈ F , ξ ∈ suppP

and ε ∈ [0, ε1] (by Assumption 8), we have

−M(ρ) ≤ f(ξ)−M(λ, λ, ε, σ) ≤ φ(f, ξ, λ, ε, σ) ≤ f(ξ) +M(λ, λ, ε, σ) ≤ F̃ (0) +M(ρ)

where M(ρ) is defined in Proposition C.1.

Since
λ∗
0

8ρ −
ε0ρ
2σ2 − L2 ≥ λ1 + L2 by Lemma C.2, we can apply statement (b) of Lemma G.2 with

λ← λ∗
0

8ρ −
ε0ρ
2σ2 − L2 and δ ← δ

4 to have that, with probability at least 1− δ
4 , for all f ∈ F

Eξ∼P

[
φ

(
f, ξ,

λ∗0
8ρ
− ε0ρ

2σ2
− L2, ε

)]
− Eξ∼Pn

[
φ

(
f, ξ,

λ∗0
8ρ
− ε0ρ

2σ2
− L2, ε

)]

≤ 48I(F , ‖·‖∞)√
n

+ 4(F̃ (0) +M(ρ))

√
log 4

δ

2n
.

Similarly, we can apply statement (a) of Lemma G.2 with λ ← λ∗
0

4ρ −
ε0ρ
σ2 + L2 and δ ← δ

4 to get

that, with probability at least 1− δ
4 , for all f ∈ F ,

Eξ∼Pn

[
φ

(
f, ξ,

λ∗0
4ρ
− ε0ρ

σ2
+ L2, ε

)]
− Eξ∼P

[
φ

(
f, ξ,

λ∗0
4ρ
− ε0ρ

2σ2
+ L2, ε

)]

≤ 48I(F , ‖·‖∞)√
n

+ 4(F̃ (0) +M(ρ))

√
log 4

δ

2n
.

Combining the two statements above and using Lemma C.2, we get that, with probability at least

1− δ
2 , for any f ∈ F ,

(
λ∗0
8ρ
− ε0ρ

2σ2
− L2

)
ρ2 + Eξ∼Pn

[
φ

(
f, ξ,

λ∗0
8ρ
− ε0ρ

2σ2
− L2, ε

)]

≥
(
λ∗0
8ρ
− ε0ρ

2σ2
− L2

)
ρ2 + Eξ∼P

[
φ

(
f, ξ,

λ∗0
8ρ
− ε0ρ

2σ2
− L2, ε

)]

− 48I(F , ‖·‖∞)√
n

− 4(F̃ (0) +M(ρ))

√
log 4

δ

2n

≥
(
λ∗0
4ρ
− ε0ρ

σ2
+ L2

)
ρ2 + Eξ∼P

[
φ

(
f, ξ,

λ∗0
4ρ
− ε0ρ

σ2
+ L2, ε

)]

+
ρµ∗

1024
(λ∗0)

2 − 48I(F , ‖·‖∞)√
n

− 4(F̃ (0) +M(ρ))

√
log 4

δ

2n

≥
(
λ∗0
4ρ
− ε0ρ

σ2
+ L2

)
ρ2 + Eξ∼Pn

[
φ

(
f, ξ,

λ∗0
4ρ
− ε0ρ

σ2
+ L2, ε

)]

+
ρµ∗

1024
(λ∗0)

2 − 96I(F , ‖·‖∞)√
n

− 8(F̃ (0) +M(ρ))

√
log 4

δ

2n
.

Noting that the assumption on ρ in Proposition C.1 implies that

ρµ∗

1024
(λ∗0)

2 ≥96I(F , ‖·‖∞)√
n

+ 8
(
F̃ (0) +M(ρ)

)
√

log 4
δ

2n
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we have proven that, with probability at least 1− δ
2 , for any f ∈ F ,

ψρ

(
λ∗0
8ρ
− ε0ρ

2σ2
− L2

)
≥ ψρ

(
λ∗0
4ρ
− ε0ρ

σ2
+ L2

)

where ψρ : λ 7→ λρ2 + Eξ∼Pn [φ(f, ξ, λ, ε, σ)]. Now, since ψρ is convex, this means that its
minimizers on R+ are greater than

λ∗0
8ρ
− ε0ρ

2σ2
− L2 ≥

λ∗0
32ρ

where the inequality comes from Lemma C.2.

Using the same reasoning, one can get that with probability at least 1 − δ
2 the minimizers are no

greater than

λ∗0
4ρ
− ε0ρ

σ2
+ L2 ≤

λ∗0
2ρ
.

Thus, we have shown that with probability at least 1− δ
2 , for any f ∈ F ,

R̂ε
ρ2(f) = inf

λ≥0
λρ2 + Eξ∼Pn [φ(f, ξ, λ, ε, σ)]

= inf
λ∗
0

32ρ≤λ≤λ∗
0

2ρ

λρ2 + Eξ∼Pn [φ(f, ξ, λ, ε, σ)] .

D Dual bound when ρ is close to this maximal radius

Complementary to the previous section Section C, we consider the case where ρ is close than the
critical radius. Though the bounds of this section are much worse that the one of Section C when ρ
goes to zero, they hold for the whole ranges of ρ considered in the theorems.

As mentioned in Remark 3.2, as ρ grows, the Wasserstein ball constraint can stop being active,
leading to a null dual variable. Thus, it is essential that ρ be lower then the critical radius to stay in
the distributionally robust regime and to avoid the worst-case regime. In that case, we are able to
lower-bound the dual multiplier λ.

We defined the critical radius in standard WDRO case in Remark 3.2 and we extend it here to cover
the regularized case:

ρ2c(ε, σ) :=

{
inff∈F Eξ∼P

[
E
ζ∼π

f/ε
σ (·|ξ)

[
1
2‖ξ − ζ‖2

]]
if ε > 0

inff∈F Eξ∼P

[
min{ 12‖ξ − ζ‖2 : ζ ∈ argmax f}

]
otherwise

(30)

where πg
σ(dζ|ξ) ∝ eg(ζ) πσ(dζ|ξ) is a conditional probability distribution parametrized by an Ξ→

R function g, i.e.,

Eζ∼πg
σ(·|ξ) [h(ξ, ζ)] =

Eζ∼πσ(·|ξ)
[
eg(ζ)h(ξ, ζ)

]

Eζ′∼πσ(·|ξ)
[
eg(ζ′)

] .

For this part of the proof, the case when ε = 0 differs from the regularized one ε > 0. We thus
present them in separate sections Sections D.1 and D.2.

D.1 Standard WDRO case

The main result of this section in the standard WDRO case is Proposition D.1 below.

Proposition D.1. Let Assumption 5 hold and fix a threshold δ ∈ (0, 1). Assume that

ρ2 ≤ ρ2c(0, 0)−
2B(δ)√

n
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with L :=
16 supf∈F Eξ∼P

[
1
2d

2(ξ, argmax f)
]

µ

and B(δ) := 48I(F , D) + 2
√
C⋆log 1/δ .

where I(F , D) and D are defined in Section A.4, and λ2 > 0 is a constant depending on Ξ, F , L3,
µ and C⋆.

Then, with probability at least 1− δ, we have

∀f ∈ F , R̂ε
ρ2(f) = inf

λ≤λ
λρ2 + Eξ∼Pn [φ(f, ξ, λ, 0)]

where the dual bound λ is defined as

λ := min

(
λ2,

ρ2c(0, 0)− ρ2
2L

)
.

Before proceeding with the proof, we need to prove the following lemma which leverages Assump-
tion 5.

Lemma D.2. Fix f ∈ F and ξ ∈ suppP. There exists a constant λ2 > 0 depending on Ξ, F , L3,
µ and C⋆ such that, for λ ∈ [0, λ2],

min

{
1

2
‖ξ − ζ‖2 : ζ ∈ argmax

Ξ
f − λ

2
‖ξ − ·‖2

}
≥
(
1− 16λ

µ

)
min

{
1

2
‖ξ − ζ‖2 : ζ ∈ argmax

Ξ
f

}
.

Proof. Fix f ∈ F and ξ ∈ suppP. Define, for convenience, Ξ⋆ := argmax f and

Y (λ) := min

{
1

2
‖ξ − ζ‖2 : ζ ∈ argmax

Ξ
f − λ

2
‖ξ − ·‖2

}
.

Step 1: Localization in a O(1)-neighborhood of Ξ⋆. For a fixedR∗ > 0 that will be chosen later, we

show that, for λ small enough, Y (λ) is equal to

min

{
1

2
‖ξ − ζ‖2 : ζ ∈ argmax

(Ξ⋆)R
∗
f − λ

2
‖ξ − ·‖2

}
where (Ξ⋆)

R∗

:= {ξ ∈ Ξ : d(ξ,Ξ⋆) ≤ R∗} .

Indeed, by Assumption 5, there is some ∆(R∗) > 0 such that for all f ∈ F and ζ ∈ Ξ \ (Ξ⋆)
R∗

,

f(ζ)−max f − λ

2
‖ξ − ζ‖2 ≤ f(ζ)−max f ≤ −∆(R∗) ,

while, for any ξ⋆ ∈ Ξ⋆,

f(ξ⋆)−max f − λ

2
‖ξ − ξ⋆‖2 = −λ

2
‖ξ − ξ⋆‖2 ≥ −λC⋆ .

Hence, for λ ≤ ∆(R∗)
C⋆ , f(ζ) − λ

2 ‖ξ − ζ‖2 ≤ −∆(R∗) + max f ≤ −λC⋆ + max f ≤ f(ξ⋆) −
λ
2 ‖ξ− ξ⋆‖2. This means that points in Ξ \ (Ξ⋆)

R∗

cannot maximize f − λ
2 ‖ξ− ·‖2 and so it suffices

to consider the argmax over (Ξ⋆)
R∗

in the definition of Y (λ).

Step 2: Localization in a O(λ)-neighborhood of Ξ⋆. Take ζ⋆ ∈ argmax(Ξ⋆)R
∗ f− λ

2 ‖ξ−·‖2. Since

d(ζ⋆,Ξ⋆) ≤ R∗, the Euclidean projection of ζ⋆ on Ξ⋆, that we denote by ξ⋆, is at most at distance

R∗ of ζ⋆ and ζ⋆−ξ⋆ ∈ N̂Cξ⋆(Ξ
⋆), see e.g., Rockafellar and Wets (1998, Thm. 6.12). By the growth

condition of Assumption 5, we get that

f(ξ⋆) ≥ f(ζ⋆) + µ

2
‖ζ⋆ − ξ⋆‖2 − L3

6
‖ζ⋆ − ξ⋆‖3 . (31)

But, by definition of ζ⋆, we also have that

f(ζ⋆)− λ

2
‖ξ − ζ⋆‖2 ≥ f(ξ⋆)− λ

2
‖ξ − ξ⋆‖2 .
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Plugging (31) we get that

− λ

2
‖ξ − ζ⋆‖2 ≥ −λ

2
‖ξ − ξ⋆‖2 + µ

2
‖ζ⋆ − ξ⋆‖2 − L3

6
‖ζ⋆ − ξ⋆‖3 .

Rearranging and developing 1
2‖ξ − ξ⋆‖2 yields

L3

6
‖ζ⋆ − ξ⋆‖3 + λ〈ξ − ζ⋆, ζ⋆ − ξ⋆〉 ≥ λ+ µ

2
‖ξ⋆ − ζ⋆‖2 ,

which gives, by Cauchy-Schwarz inequality,

L3

6
‖ζ⋆ − ξ⋆‖3 + λ‖ξ − ζ⋆‖‖ζ⋆ − ξ⋆‖ ≥ λ+ µ

2
‖ξ⋆ − ζ⋆‖2 , (32)

We now wish to obtain a bound on u⋆ := ‖ζ⋆ − ξ⋆‖. If it is zero, there is nothing to do. Otherwise,
assuming that it is positive, (32) gives the inequation

µ+ λ

2
u⋆ ≤ L3

6
(u⋆)

2
+ λ‖ξ − ξ⋆‖ .

When
(µ+λ)2

4 − 2L3λ
3 ‖ξ − ξ⋆‖ is non-negative, this inequation is satisfied for

u⋆ /∈
[
(µ+ λ)±

√
(µ+ λ)2 − 8L3λ‖ξ − ξ⋆‖/3

L3/3

]
.

Hence, in particular, if u⋆ ≤ 3µ
L3

, then u⋆ must be less or equal than

(µ+ λ)−
√
(µ+ λ)2 − 8L3λ‖ξ − ξ⋆‖/3

L3/3
=

3(µ+ λ)

L3

(
1−

√
1− 8L3λ‖ξ − ξ⋆‖

3(µ+ λ)2

)
≤ 8λ‖ξ − ξ⋆‖

µ+ λ

when
8L3λ‖ξ−ξ⋆‖

3(µ+λ)2 ≤ 1, using that 1−
√
1− x ≤ x for x ∈ [0, 1].

Thus, assuming that λ is small enough so that 8L3λC
⋆ ≤ 3(µ)2 and choosing R∗ := 3µ

L3
so that

u⋆ ≤ 3µ
L3

by construction, we have that for any ζ⋆ ∈ argmax(Ξ⋆)R
∗ f − λ

2 ‖ξ − ·‖2, there is a point

ξ⋆ ∈ Ξ⋆ such that

‖ζ⋆ − ξ⋆‖ ≤ 8λ‖ξ − ξ⋆‖
µ

.

Step 3: Conclusion. Defining the constant

λ2 := min

(
∆(R∗)

C⋆
,

3µ2

8L3C⋆
,
µ

16

)
,

and using the previous steps, we have for any λ ∈ [0, λ2] and any ζ⋆ ∈ argmaxΞ f − λ
2 ‖ξ − ·‖2

1

2
‖ξ − ζ⋆‖2 =

1

2
‖ξ − ζ⋆‖2 =

1

2
‖ξ − ξ⋆‖2 + 1

2
‖ξ⋆ − ζ⋆‖2 − 〈ξ − ξ⋆, ξ⋆ − ζ⋆〉

≥ 1

2
‖ξ − ξ⋆‖2 − ‖ξ − ξ⋆‖‖ξ⋆ − ζ⋆‖

≥
(
1− 16λ

µ

)
1

2
‖ξ − ξ⋆‖2

which concludes the proof.

We can now turn to the proof of our proposition.

Proof of Proposition D.1. Let 0 ≤ λ ≤ λ. For f ∈ F and λ ≥ 0, we define ψ̂ρ : λ 7→ λρ2 +

Eξ∼Pn [φ(f, ξ, λ, 0)] and its (right-sided) derivative ∂λψ̂ρ. This derivative is given by,

∂λψ̂ρ(λ) = ρ2 − Eξ∼Pn

[
min

{
1

2
‖ξ − ζ‖2 : ζ ∈ argmax

Ξ
f − λ

2
‖ξ − ·‖2

}]

≤ ρ2 −
(
1− 16λ

µ

)
Eξ∼Pn

[
min

{
1

2
‖ξ − ζ‖2 : ζ ∈ argmax

Ξ
f

}]
(33)
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where we used Lemma D.2 with λ ≤ λ ≤ λ2.

We then instantiate Lemma G.2 with X(f, ξ) ← 1
2d

2(ξ, argmax f), (X , dist) ← (F , D), whose
requirements are checked since:

1. For any f ∈ F , X(f, ·) is measurable since the functions of F are continuous and thus
argmax f is a fortiori measurable;

2. By definition of D, for any ξ ∈ suppP, f 7→ d(ξ, argmax f) is 1-Lipschitz w.r.t. this

distance so that X(ξ, ·) is
√
2C⋆-Lipschitz.

3. By construction, the range of values X is included in [0, C⋆].

We can thus apply statement (b) of Lemma G.2 to have that, with probability at least 1 − δ, for all
f ∈ F ,

Eξ∼Pn

[
1

2
d2(ξ, argmax f)

]
≥ Eξ∼P

[
1

2
d2(ξ, argmax f)

]
− B(δ)√

n

Hence, putting this bound together with (33) yields

∂λψ̂ρ(λ) ≤ ρ2 −
(
1− 16λ

µ

)
Eξ∼P

[
1

2
d2(ξ, argmax f)

]
+
B(δ)√
n

≤ ρ2 − ρ2c + Lλ+
B(δ)√
n
,

which is non-negative for λ ≤ λ.

D.2 Regularized case

The main bound on λ of this section are given by Proposition D.3.

Proposition D.3. Fix a threshold δ ∈ (0, 1). Assume that ε0 > 0 and that

ρ2 ≤ ρ2c(ε, σ)−


48

√
Var(ε, σ)I(F , ‖·‖∞)

ε
√
n

+ 2CF(ε, σ)

√
log 1

δ

2n




where I(F , ‖·‖∞) is defined in Section A.1.

Then, with probability at least 1− δ, we have

∀f ∈ F , R̂ε
ρ2 (f) = inf

λn≤λ≤λ
λρ2 + Eξ∼Pn [φ(f, ξ, λ, ε, σ)]

where the dual bounds are defined by

λn :=
ε

Var(ε, σ)


ρ2c(ε, σ)− ρ2 −


48

√
Var(ε, σ)I(F , ‖·‖∞)

ε
√
n

+ 2CF (ε, σ)

√
log 1

δ

2n






and λ := max

(
12ε

R2
log(2× 6d/2), e

supf∈F‖f‖∞

ε
ε0
ρ

)
.

Proof. Lower-bound: By Assumption 6, for any f ∈ F , ξ ∈ suppP, λ 7→ φ(f, ξ, λ, ε, σ) is twice
differentiable and its derivatives are for any λ ≥ 0

∂λφ(f, ξ, λ, ε, σ) = −E
ζ∼π

f−λ‖ξ−·‖2/2
ε

σ (·|ξ)

[
1

2
‖ξ − ζ‖2

]

∂2λφ(f, ξ, λ, ε, σ) =
1

ε
Var

ζ∼π
f−λ‖ξ−·‖2/2

ε
σ (·|ξ)

[
1

2
‖ξ − ζ‖2] ,
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and using Var(ε, σ) which is defined in Section A.1, we get that, for any λ ≥ 0,

0 ≤ ∂2λφ(f, ξ, λ, ε, σ) ≤
1

ε
Var(ε, σ) .

As a consequence,

∂λ
{
λρ2 + Eξ∼Pn [φ(f, ξ, λ, ε, σ)]

}
= ρ2 + Eξ∼Pn [∂λφ(f, ξ, λ, ε, σ)]

≤ ρ2 + Eξ∼Pn [∂λφ(f, ξ, 0, ε, σ)] +
λ

ε
Var(ε, σ)

= ρ2 − Eξ∼Pn

[
E
ζ∼π

f/ε
σ (·|ξ)

[
1

2
‖ξ − ζ‖2

]]
+
λ

ε
Var(ε, σ) .

(34)

Now, we want to instante Lemma G.2 with X(f, ξ) := E
ζ∼π

f/ε
σ (·|ξ)

1
2‖ξ − ζ‖2, (X , dist) ←

(F , ‖·‖∞), whose requirements are checked since:

1. For any f ∈ F , E
ζ∼π

f/ε
σ (·|ξ)

1
2‖ξ − ζ‖2 is measurable since the functions of F are continu-

ous and thus a fortiori measurable;

2. To show that f 7→ X(f, ξ) is 1
ε

√
Var(ε, σ)-Lipschitz, we take f, g ∈ F and define, for

t ∈ [0, 1], ft = f + t(g− f). Since, ‖f − g‖∞ < +∞ and supξ∈suppP E
ζ∼π

ft/ε
σ (·|ξ)

1
2‖ξ−

ζ‖2 < +∞ by compactness of Ξ, Assumption 1, t 7→ X(ft, ξ) is differentiable with
derivative,

d

dt
X(ft, ξ) =

1

ε
E
ζ∼π

ft/ε
σ (·|ξ)

[
1

2
‖ξ − ζ‖2(g(ζ) − f(ζ))

]

− 1

ε
E
ζ∼π

ft/ε
σ (·|ξ)

[
1

2
‖ξ − ζ‖2

]
E
ζ∼π

ft/ε
σ (·|ξ)[g(ζ)− f(ζ)]

=
1

ε
E
ζ∼π

ft/ε
σ (·|ξ)

[(
1

2
‖ξ − ζ‖2 − E

ζ′∼π
ft/ε
σ (·|ξ)

[
1

2
‖ξ − ζ′‖2

])

×
(
(g(ζ) − f(ζ))− E

ζ′∼π
ft/ε
σ (·|ξ)[g(ζ

′)− f(ζ′)]
)]

.

By using Cauchy-Schwarz inequality, we get that,

d

dt
X(ft, ξ) ≤

1

ε

√
Var

ζ∼π
ft/ε
σ (·|ξ)[

1

2
‖ξ − ζ‖2]

√
Var

ζ∼π
ft/ε
σ (·|ξ)[g(ζ) − f(ζ)]

≤ 1

ε

√
Var

ζ∼π
ft/ε
σ (·|ξ)[

1

2
‖ξ − ζ‖2]

√
E
ζ∼π

ft/ε
σ (·|ξ)

[
(g(ζ)− f(ζ))2

]

≤ 1

ε

√
Var

ζ∼π
ft/ε
σ (·|ξ)[

1

2
‖ξ − ζ‖2]‖g − f‖∞ ,

which gives the desired Lipschitz condition;

3. The random variablesX(f, ξ) lie between 0 andCF (ε, σ), which is defined in Section A.1.

We can thus apply statement (b) of Lemma G.2 to have that, with probability at least 1 − δ, for all
f ∈ F

Eξ∼P

[
E
ζ∼π

f/ε
σ (·|ξ)

1

2
‖ξ − ζ‖2

]
− Eξ∼Pn

[
E
ζ∼π

f/ε
σ (·|ξ)

1

2
‖ξ − ζ‖2

]

≤ 48
√
Var(ε, σ)I(F , ‖·‖∞)

ε
√
n

+ 2CF(ε, σ)

√
log 1

δ

2n
. (35)
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Combining (34) and (35), we obtain that with probability at least 1− δ
∂λ
{
λρ2 + Eξ∼Pn [φ(f, ξ, λ, ε, σ)]

}

≤ ρ2 − Eξ∼P

[
E
ζ∼π

f/ε
σ (·|ξ)

[
1

2
‖ξ − ζ‖2

]]
+
λ

ε
Var(ε, σ) +

48
√
Var(ε, σ)I(F , ‖·‖∞)

ε
√
n

+ 2CF(ε, σ)

√
log 1

δ

2n

≤ ρ2 − ρ2c(ε, σ) +
λ

ε
Var(ε, σ) +

48
√
Var(ε, σ)I(F , ‖·‖∞)

ε
√
n

+ 2CF(ε, σ)

√
log 1

δ

2n

=
1

ε
Var(ε, σ) (λ− λn)

where λn ≥ 0 is as defined in the statement of the result.

Hence, for all 0 ≤ λ ≤ λn, the derivative of λ 7→ λρ2 + Eξ∼Pn [φ(f, ξ, λ, ε, σ)] is negative; and
since this function is convex, this means that its minimizers are greater than λn with probability at
least 1− δ which is our result.

Upper-bound: Almost surely, for any f ∈ F , let us begin by bounding the ∂λφ(f, ξ, λ, ε, σ) for

λ ≥ 0, f ∈ F and ξ ∈ suppP. Its expression is given by

−∂λφ(f, ξ, λ, ε, σ) = E

ζ∼π
f−λ‖ξ−·‖2/2

ε
σ (·|ξ)

[
1

2
‖ξ − ζ‖2

]
≤ e

‖f‖∞
ε

∫
Ξ

1
2‖ξ − ζ‖2e

−(λ
ε + 1

σ2 ) 1
2‖ξ−ζ‖2

dζ
∫
Ξ
e−(

λ
ε
+ 1

σ2 ) 1
2
‖ξ−ζ‖2

dζ
.

On the one hand, we lower-bound the denominator using Lemma G.1 and Assumption 3 as

1

(2π)d/2

(
λ

ε
+

1

σ2

)d/2 ∫

Ξ

e−(
λ
ε +

1
σ2 ) 1

2‖ξ−ζ‖2

dζ ≥ 1− 6d/2e−
R2

12 (
λ
ε + 1

σ2 ) ≥ 1

2
,

where we used that λ ≥ 12ε
R2 log(2× 6d/2).

On the other hand, the denominator is upper-bounded as

1

(2π)d/2

(
λ

ε
+

1

σ2

)d/2 ∫

Ξ

1

2
‖ξ − ζ‖2e−(λ

ε + 1
σ2 ) 1

2‖ξ−ζ‖2

dζ ≤ 1

2

(
λ

ε
+

1

σ2

)−1

≤ ε

2λ
.

Hence, we have shown that −∂λφ(f, ξ, λ, ε, σ) ≤ e
‖f‖∞

ε
ε
λ and, as a consequence,

ρ2 + Eξ∼Pn [∂λφ(f, ξ, λ, ε, σ)] ≥ ρ2 − e
‖f‖∞

ε
ε

λ
,

which is non-negative for λ ≥ e ‖f‖∞
ε

ε0
ρ .

Hence, for

λ ≥ λ := max

(
12ε

R2
log(2× 6d/2), e

supf∈F‖f‖∞

ε
ε0
ρ

)
,

the derivative of λ 7→ λρ2+Eξ∼Pn [φ(f, ξ, λ, ε, σ)] is non-negative, which means that its minimizers

are smaller than λ.

E Proof of the main results

In this section, we present our main results with explicit constants. In Section E.1 we treat the case
of standard WDRO, i.e., the setting of Theorems 3.1 and 3.3, while in Section E.2 we handle the
regularized setting of Theorem 3.4.

E.1 Standard WDRO case

The main results of this section are Theorems E.1 and E.3 which are more precise versions of
Theorems 3.1 and 3.3 respectively.
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Theorem E.1 (Extended version of Theorem 3.1). Under Assumptions 1, 3 and 6 and the additional
Assumptions 4 and 5, with ρc = ρc(0, 0) defined in (30) for any δ ∈ (0, 1) and n ≥ 1, if

max

(
ρn,

8192√
nµ∗(λ∗0)

2

(
12I(F , ‖·‖∞) +

(
F̃ (0) +M(ρc)

)√
1 + log

4

δ

))
≤ ρ

and ρ ≤ ρc
2
− 96I(F , D) + 4

√
C⋆log 1/δ√

n
.

where

ρthres :=min

(
λ∗0

8(λ1 + L2)
,
µ∗(λ∗0)

2

4096L2

)

a := sup
0<ρ′≤ρthres

a

(
1

ρ′
min

(
λ∗0
32
, ρthresλ2,

3ρ2cρthres
8L

)
,
λ∗0
2ρ′

, 0, 0

)

ρn :=
117
(
I(F , ‖·‖∞) + max

(
F̃
(

λ∗
0

32ρc

)
, a
)(

1 +
√
log 1

δ

))

√
nmin

(
λ∗
0

32 , ρthresλ2,
3ρ2

cρthres

8L

) ,

then, with probability 1− δ,

∀f ∈ F , R̂ρ2 (f) ≥ Eξ∼Q [f(ξ)] for all Q such that W 2
2 (P,Q) ≤ ρ(ρ− ρn) .

In particular, with probability 1− δ, we have

∀f ∈ F , R̂ρ2(f) ≥ Eξ∼P [f(ξ)] .

The proof of Theorem E.1 relies on Lemma E.2 that combines the results of the previous sections,
namely propositions B.1,C.1 and, D.1.

Lemma E.2. Under the blanket assumptions Assumptions 1, 3 and 6 and with the additional As-
sumption 5, for any threshold δ ∈ (0, 1), define

λ(ρ) =





λ∗
0

32ρ if ρ ≤ ρthres = min
(

λ∗
0

32(λ1+L2)
,
µ∗(λ∗

0)
2

4096L2

)

min
(
λ2,

ρ2
c(0,0)−ρ2

2L

)
otherwise

(36)

λ(ρ) =
λ∗0
2ρ

.

Assume that

ρ ≥ 8192√
nµ∗(λ∗0)

2

(
12I(F , ‖·‖∞) +

(
F̃ (0) +M(ρ)

)√
1 + log

4

δ

)
, (37)

and that

ρ2 ≤ ρ2c(0, 0)−
2B(δ)√

n
.

Then, with probability at least 1− δ
2 ,

∀f ∈ F , R̂ρ2(f) = inf
λ(ρ)≤λ≤λ(ρ)

λρ2 + Eξ∼Pn [φ(f, ξ, λ, 0)]

and when ρ2 ≥ ρ2n(δ, λ(ρ), λ(ρ), 0), with probability 1− δ, it holds,

R̂ρ2 (f) ≥ Rρ2−ρ2
n(δ,λ(ρ),λ(ρ),0)

(f), .

Furthermore, with probability 1− δ,

∀f ∈ F , R̂ρ2(f) ≥ sup
{
EQ[f ] : Q ∈ P(Ξ) ,W 2

2 (P,Q) ≤ ρ2 − ρ2n(δ, λ(ρ), λ(ρ), 0)
}
.
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Proof. This result is a consequence of Propositions C.1 and D.1 both applied with δ ← δ/4 and of
Proposition B.1. Note that the upper-bound on the dual variable given by Proposition C.1 holds for
any ρ since the optimal dual variable is non-increasing as a function of ρ.

Proof of Theorem E.1. The proof consists in simplifying both the assumptions and the result of
Lemma E.2.

We begin by showing that λ(ρ) can always be lower-bounded by a quantity proportional to 1/ρ.
Indeed, by definition of λ(ρ), (36) in Lemma E.2, and using that ρ is in particular less than ρc

2 , it
holds that,

λ(ρ) ≥ 1

ρ
min

(
λ∗0
32
, ρthresλ2,

3ρ2cρthres
8L

)
(38)

Let us now turn our attention to the condition ρ2 ≥ ρ2n(δ, λ(ρ), λ(ρ), 0, 0), whose RHS was de-

fined by (24) in Section B. We have that, by definition (Assumption 6), sup0<ρ≤ρc
F̃ (λ∗0/(32ρ)) =

F̃ (λ∗0/(32ρc)) < +∞ and,

sup
0<ρ≤ρc

a
(
λn(ρ), λ(ρ), 0, 0

)
≤ sup

0<ρ′≤ρthres

a

(
1

ρ
min

(
λ∗0
32
, ρthresλ2,

3ρ2cρthres
8L

)
,
λ∗0
2ρ′

, 0, 0

)

= a < +∞ ,

by definition and non-decreasingness of a in its first argument (see Corollary A.5) and (38). Hence,
the following bound holds

ρ2n(δ, λ(ρ), λ(ρ), ε, σ)

≤ 117√
nλ(ρ)

(
I(F , ‖·‖∞) + max

(
F̃

(
λ∗0
32ρc

)
, a

)(
1 +

√
log

1

δ

))

≤ ρnρ ,
where we plugged (38).

Finally, since ρ is in particular bounded by ρc, the condition (37) is implied by

ρ ≥ 8192√
nµ∗(λ∗0)

2

(
12I(F , ‖·‖∞) +

(
F̃ (0) +M(ρc)

)√
1 + log

4

δ

)
,

with M(ρc) < +∞ by definition (Proposition C.1).

Theorem E.3 (Extended version of Theorem 3.3). Under Assumptions 1, 3 and 6, for any δ ∈ (0, 1)
and n ≥ 1, if

max

(
ρn,

8192√
nµ∗(λ∗0)

2

(
12I(F , ‖·‖∞) +

(
F̃ (0) +M(ρc)

)√
1 + log

2

δ

))
≤ ρ

and ρ ≤ min

(
ρthres,

ρc
2
− 96I(F , D) + 4

√
C⋆log 1/δ√

n

)
.

where

ρthres :=min

(
λ∗0

8(λ1 + L2)
,
µ∗(λ∗0)

2

4096L2

)

a := sup
0<ρ′≤ρthres

a

(
λ∗0
32ρ′

,
λ∗0
2ρ′

, 0, 0

)

ρn :=
3744

(
I(F , ‖·‖∞) + max

(
F̃
(

λ∗
0

32ρthres

)
, a
)(

1 +
√
log 1

δ

))

√
nλ∗0,

,

then, with probability 1− δ,

∀f ∈ F , R̂ρ2 (f) ≥ Eξ∼Q [f(ξ)] for all Q such that W 2
2 (P,Q) ≤ ρ(ρ− ρn) .

In particular, with probability 1− δ, we have

∀f ∈ F , R̂ρ2(f) ≥ Eξ∼P [f(ξ)] .
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The proof of Theorem E.3 leverages results from the previous sections, combined in Lemma E.4.

Lemma E.4. Under the blanket assumptions Assumptions 1, 3 and 6, for any threshold δ ∈ (0, 1),
define

λ(ρ) =
λ∗0
32ρ

, λ(ρ) =
λ∗0
2ρ

.

Assume that

ρ ≥ 8192√
nµ∗(λ∗0)

2

(
12I(F , ‖·‖∞) +

(
F̃ (0) +M(ρ)

)√
1 + log

2

δ

)
, (39)

and that

ρ2 ≤ min

(
ρ2c(0, 0)−

2B(δ)√
n
,min

(
λ∗0

32(λ1 + L2)
,
µ∗(λ∗0)

2

4096L2

)2
)
.

Then, with probability at least 1− δ
2 ,

∀f ∈ F , R̂ρ2(f) = inf
λ(ρ)≤λ≤λ(ρ)

λρ2 + Eξ∼Pn [φ(f, ξ, λ, 0)]

and when ρ2 ≥ ρ2n(δ, λ(ρ), λ(ρ), 0), with probability 1− δ, it holds,

R̂ρ2 (f) ≥ Rρ2−ρ2
n(δ,λ(ρ),λ(ρ),0)

(f), .

Furthermore, with probability 1− δ,

∀f ∈ F , R̂ρ2(f) ≥ sup
{
EQ[f ] : Q ∈ P(Ξ) ,W 2

2 (P,Q) ≤ ρ2 − ρ2n(δ, λ(ρ), λ(ρ), 0)
}
.

Proof. This result follows directly from Proposition C.1 that we invoke with δ ← δ/2 and of Propo-
sition B.1.

Proof of Theorem E.3. The proof consists in simplifying both the assumptions and the result of
Lemma E.4 and follows the same structure as the proof of Theorem E.1.

We begin by examining the condition ρ2 ≥ ρ2n(δ, λ(ρ), λ(ρ), 0, 0), whose RHS was defined

by (24) in Section B. We have that, by definition (Assumption 6), sup0<ρ≤ρc
F̃ (λ∗0/(32ρ)) =

F̃ (λ∗0/(32ρc)) < +∞ and,

sup
0<ρ≤ρthres

a
(
λn(ρ), λ(ρ), 0, 0

)
= sup

0<ρ′≤ρthres

a

(
λ∗0
32ρ′

,
λ∗0
2ρ′

, 0, 0

)
= a < +∞

by definition (see Corollary A.5). Hence, we have that

ρ2n(δ, λ(ρ), λ(ρ), 0, 0)

≤ 117√
nλ(ρ)

(
I(F , ‖·‖∞) + max

(
F̃

(
λ∗0
32ρc

)
, a

)(
1 +

√
log

1

δ

))

≤ ρnρ ,

by definition of ρn and with 117× 32 = 3744.

Finally, m (39) is implied by

ρ ≥ 8192√
nµ∗(λ∗0)

2

(
12I(F , ‖·‖∞) +

(
F̃ (0) +M(ρthres)

)√
1 + log

2

δ

)
,

since ρ ≤ ρthres and M(ρthres) < +∞ by definition (Proposition C.1).
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E.2 Regularized WDRO case

Theorem E.5 (Extended version of Theorem 3.4). For σ = σ0ρ with σ0 > 0, ε = ε0ρ with ε0 > 0
such that ε0/σ

2
0 ≤ λ∗0/8, and for any δ ∈ (0, 1) and n ≥ 1, define,

ρc := inf{ρc (ε0ρ′, σ0ρ′) : ρthres ≤ ρ′ ≤ ρc (ε0ρthres, σ0ρthres)}
and

ρthres := min


ε1
ε0
,

λ∗0
32(λ1 + L2)

,
µ∗(λ∗0)

2

4096L2
,

√
c32λ

∗
0

8ε0

(
log

(
4096ε0c1
µ∗(λ∗0)

2

))− 3
2

+




Var := sup
ρthres≤ρ′≤ρc

Var(ε0ρ
′, σ0ρ

′)

CF := sup
ρthres≤ρ′≤ρc

CF(ε0ρ
′, σ0ρ

′)

a := sup
0<ρ′≤ρc

a


 1

ρ′
min

(
λ∗0
32
,
ε0ρthres

2ρ2c
4Var

)
,max


 λ∗0
2ρ′

,
12ε0ρc log(2 × 6d/2)

R2
,
e

supf∈F‖f‖∞

ε0ρthres ε0
ρthres


, ε0ρ′, σ0ρ′




ρn :=
117
(
I(F , ‖·‖∞) + max

(
F̃
(

λ∗
0

32ρc

)
, a
)(

1 +
√
log 1

δ

))

√
nmin

(
λ∗
0

32 ,
ε0ρthres

2ρ2
c

4Var

) ;

when

max

(
ρn,

8192

µ∗(λ∗0)
2
√
n

(
12I(F , ‖·‖∞) +

(
F̃ (0) +M(ρc)

)√
log

4

δ

)
,
384
√
VarI(F , ‖·‖∞)

ε0ρ2c
√
n

)
≤ ρ

ρ ≤ ρc
2
− 384

√
VarI(F , ‖·‖∞)

ε0ρ2c
√
n

and ρc ≥ max



(
192
√
VarI(F , ‖·‖∞)

ε0
√
n

)1/3

, 2

√
CF

(
log 4

δ

2n

)1/4

 ,

then, with probability at least 1− δ,

∀f ∈ F , R̂ε
ρ2(f) ≥ Eξ∼Q [f(ξ)] for all Q such that W 2

2,τ(ρ)(P,Q) ≤ ρ(ρ− ρn) ,
where τ(ρ) ≤ ερ

min

(

λ∗
0

32 ,
ε0ρthres

2ρ2c
4Var

) . Furthermore, when σ0 ≤ 1 and σ ≤ σ1 (defined in Proposi-

tion A.2), with probability 1− δ,

∀f ∈ F , R̂ε
ρ2(f) ≥ Eξ∼PEζ∼πσ(·|ξ) [f(ζ)] .

The proof of Theorem E.5 relies on Lemma E.6 that makes the regularized Wasserstein distance
appear. It also uses Lemma E.7, to guarantee that a smoothed version of the true distribution is
inside the right neighborhood.

Lemma E.6. Fix a confidence threshold δ ∈ (0, 1), take ε = ε0ρ, σ = σ0ρ with ε0 and σ0 positive

constants satisfying ε0/σ0
2 ≤ λ∗0/8 and, define λn(ρ) and λ(ρ) as functions of ρ by

• If

ρ ≤ min


ε1
ε0
,

λ∗0
32(λ1 + L2)

,
µ∗(λ∗0)

2

4096L2
,

√
c32λ

∗
0

8ε0

(
log

(
4096ε0c1
µ∗(λ∗0)

2

))− 3
2

+


 ,

then λn(ρ) =
λ∗
0

32ρ and λ(ρ) =
λ∗
0

2ρ ,

• Otherwise,

λn(ρ) =
ε0ρ

Var(ε0ρ, σ0ρ)


ρc(ε0ρ, σ0ρ)2 − ρ2 −


48

√
Var(ε0ρ, σ0ρ)I(F , ‖·‖∞)

ε0ρ
√
n

+ 2CF (ε0ρ, σ0ρ)

√
log 4

δ

2n






λ(ρ) = max

(
12ε0ρ

R2
log(2× 6d/2), e

supf∈F‖f‖∞

ε0ρ
ε0
ρ

)
.
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Assume that

ρ ≥ 8192√
nµ∗(λ∗0)

2

(
12I(F , ‖·‖∞) +

(
F̃ (0) +M(ρ)

)√
1 + log

4

δ

)
, (40)

Then, with probability at least 1− δ
2 ,

∀f ∈ F , R̂ε
ρ2(f) = inf

λn(ρ)≤λ≤λ(ρ)
λρ2 + Eξ∼Pn [φ(f, ξ, λ, ε, σ)]

and when ρ2 ≥ ρ2n(δ, λn(ρ), λ(ρ), ε, σ), with probability 1− δ, it holds,

R̂ε
ρ2(f) ≥ Rε

ρ2−ρ2
n(δ,λn(ρ),λ(ρ),ε,σ)

(f), .

Furthermore, with probability 1− δ,

∀f ∈ F , R̂ε
ρ2(f) ≥ sup

{
EQ[f ] : Q ∈ P(Ξ) ,W 2

2,τ(ρ) (P,Q) ≤ ρ2 − ρ2n(δ, λn(ρ), λ(ρ), ε, σ)
}
,

with τ(ρ) := ε0ρ
λn(ρ)

.

Proof. The first part of this result is a consequence of the combination of Propositions C.1 and D.3,
both applied with δ ← δ/4, and of Proposition B.1. For the second part, note that Remark B.4
implies that the above argument actually gives the slightly stronger result: with probability 1 − δ,
for any f ∈ F ,

R̂ε
ρ2(f) ≥ inf

λn(ρ)≤λ≤λ(ρ)
λ(ρ2 − ρ2n(δ, λn(ρ), λ(ρ), ε, σ)) + Eξ∼P[φ(f, ξ, λ, ε, σ)]

Next, take Q ∈ P(Ξ) such that W 2
2,τ(ρ)(P,Q) ≤ ρ2 − ρ2n(δ, λn(ρ), ε, σ). With a similar argument

as in the proof of Proposition B.1, we get that

R̂ε
ρ2(f) ≥ inf

λn(ρ)≤λ≤λ(ρ)
λ(ρ2 − ρ2n(δ, λn(ρ), λ(ρ), ε, σ) + Eξ∼P[φ(f, ξ, λ, ε, σ)]

= EQ[f ] + inf
λn(ρ)≤λ≤λ(ρ)

λ(ρ2 − ρ2n(δ, λn(ρ), λ(ρ), ε, σ)− {EQ[f ]− Eξ∼P[φ(f, ξ, λ, ε, σ)]}

= EQ[f ] + inf
λn(ρ)≤λ≤λ(ρ)

λ(ρ2 − ρ2n(δ, λn(ρ), λ(ρ), ε, σ))− sup
f ′∈F

{EQ[f
′]− Eξ∼P[φ(f

′, ξ, λ, ε, σ)]} .

We now proceed to show, and this will conclude the proof, that

sup
f∈F
{EQ[f ]− Eξ∼P[φ(f, ξ, λ, ε, σ)]} ≤ λW 2

2,τ(ρ)(P,Q) ,

for λ ≥ λn(ρ).
Indeed,

sup
f∈F
{EQ[f ]− Eξ∼P[φ(f, ξ, λ, ε, σ)]} ≤ sup

f∈C(Ξ)

{EQ[f ]− Eξ∼P[φ(f, ξ, λ, ε, σ)]}

= sup
f∈C(Ξ)

{
EQ[f ]− Eξ∼P

[
log

(
Eζ∼πσ(·|ξ)

[
e

f(ζ)−λ‖ξ−ζ‖2/2
ε

])]}

= λ sup
f∈C(Ξ)

{
EQ[f ]− Eξ∼P

[
log

(
Eζ∼πσ(·|ξ)

[
e

f(ζ)−‖ξ−ζ‖2/2
ε/λ

])]}
.

(41)

where we performed the change of variable f ← f/λ. We now show the following equality that
will allow us to rewrite the RHS of (41).

−Eξ∼P

[
log

(
Eζ∼πσ(·|ξ)

[
e

f(ζ)− 1
2
‖ξ−ζ‖2

ε/λ

])]
= sup

g∈C(Ξ)

EP[g]−
ε

λ

(
E(ξ,ζ)∼πσ

[
e

g(ξ)+f(ζ)− 1
2
‖ξ−ζ‖2

ε/λ

]
− 1

)
.

(42)
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Solving the optimality condition of the concave problem of the RHS of (42) gives that its maximum
is reached for

g(ξ) = − log

(
Eζ∼πσ(·|ξ)

[
e

f(ζ)− 1
2
‖ξ−ζ‖2

ε/λ

])

so that (42) holds. Hence, we get that

sup
f∈C(Ξ)

{
EQ[f ]− Eξ∼P

[
log

(
Eζ∼πσ(·|ξ)

[
e

f(ζ)− 1
2
‖ξ−ζ‖2

ε/λ

])]}

= sup
f,g∈C(Ξ)

{
EQ[f ] + EP[g]−

ε

λ

(
E(ξ,ζ)∼πσ

[
e

g(ξ)+f(ζ)− 1
2
‖ξ−ζ‖2

ε/λ

]
− 1

)}

=W 2
2,ε/λ (P,Q) ,

by the duality formula for regularized OT (Peyré and Cuturi, 2019)2.

Combining this equality with the bound of (41) gives

sup
f∈F
{EQ[f ]− Eξ∼P[φ(f, ξ, λ, ε, σ)]} ≤ λW 2

2,ε/λ (P,Q) ,

which yields the result since W 2
2,τ (P,Q) is non-decreasing in τ .

Lemma E.7. In the setting of Theorem E.5, when Qσ denotes the second marginal of

P(dξ)πσ(dζ|ξ) ,
and when σ ≤ σ1, it holds

W 2
2,τ(ρ) (P,Qσ) ≤ σ2 .

Proof. Consider the transport plan π = P(dξ)πσ(dζ|ξ). To show this lemma, it suffices to prove
that

Eπ

[
d2
]
+ τ(ρ)KL(π |π) = O

(
σ2
)
,

i.e., that Eπ

[
d2
]
= O

(
σ2
)
. Let us first fix ξ ∈ suppP and consider Eζ∼πσ(·|ξ)

[
1
2‖ξ − ζ‖2

]
, which

is equal to

Eζ∼πσ(·|ξ)

[
1

2
‖ξ − ζ‖2

]
=

∫
Ξ

1
2‖ξ − ζ‖2e

− ‖ξ−ζ‖2

2σ2 dζ
∫
Ξ
e−

‖ξ−ζ‖2

2σ2 dζ
.

The numerator can be upper-bounded as follows:
∫

Ξ

1

2
‖ξ − ζ‖2e−

‖ξ−ζ‖2

2σ2 dζ ≤
∫

Rd

1

2
‖ξ − ζ‖2e−

‖ξ−ζ‖2

2σ2 dζ = (2πσ2)d/2
σ2

2
.

For the denominator, we have seen in the proof of Lemma A.4, and more precisely (21), that
(∫

Ξ

e−
‖ξ−ζ‖2

2σ2 dζ

)−1

≤ 2

(2πσ2)d/2
,

when σ ≤ σ1. Hence, we have the bound

Eζ∼πσ(·|ξ)

[
1

2
‖ξ − ζ‖2

]
≤ σ2 ,

and integrating w.r.t. ξ ∼ P yields the result.

Proof of Theorem E.5. Since we will only consider radii in particular bounded by ρc, the condition
(40) is implied by

ρ ≥ 8192

µ∗(λ∗0)
2
√
n

(
12I(F , ‖·‖∞) +

(
F̃ (0) +M(ρc)

)√
log

4

δ

)
,

2To get this exact result for a regularization w.r.t. an arbitrary measure, one can readily combine Paty and
Cuturi (2020, Cor. 1) and Feydy et al. (2019, Prop. 7). Also, note that we essentially reproved the semi-duality
formula of Genevay et al. (2016, Prop. 2.1) except that the regularization is taken w.r.t. a general measure.
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with M(ρc) < +∞.

We now show that λn(ρ) can always be lower-bounded by a quantity proportional to 1/ρ, i.e., that

λn(ρ) ≥
1

ρ
min

(
λ∗0
32
,
ε0ρthres

2ρ2c
4Var

)
. (43)

Let us discuss separately the cases where ρ ≤ ρthres holds or not.

• When ρ ≤ ρthres, (43) holds by definition of λn(ρ).

• When ρ > ρthres, by definition, λn(ρ) is lower bounded as

λn(ρ) ≥
ε0ρ

Var


ρ2c − ρ2 −


48
√
VarI(F , ‖·‖∞)

ε0ρ
√
n

+ 2CF

√
log 4

δ

2n




 .

Applying Lemma G.9 with ρ← ρc

2 and c← 48
√

VarI(F ,‖·‖∞)
ε0

√
n

, we obtain that, when

ρc ≥
(
192
√
VarI(F , ‖·‖∞)

ε0
√
n

)1/3

and

384
√
VarI(F , ‖·‖∞)

ε0ρ2c
√
n

≤ ρ ≤ ρc
2
− 384

√
VarI(F , ‖·‖∞)

ε0ρ2c
√
n

,

the following lower-bound holds,

λn(ρ) ≥
ε0ρ

Var


3ρ2c

4
− 2CF

√
log 4

δ

2n


 ≥ ε0ρρ

2
c

4Var
≥ ε0ρthres

2ρ2c
4Varρ

,

where we used successively that
ρ2
c

2 ≥ 2CF

√
log 4

δ

2n and ρ ≥ ρthres. This concludes the

proof of (43). Note that it implies the bound on τ(ρ) in the statement.

Let us finally turn our attention to the condition ρ2 ≥ ρ2n(δ, λn(ρ), λ(ρ), ε, σ). Since

sup0<ρ≤ρc
F̃ (λ∗0/(32ρ)) = F̃ (λ∗0/(32ρc)) < +∞ by definition (Assumption 6) and

sup
0<ρ′≤ρc

a
(
λn(ρ

′), λ(ρ′), ε0ρ
′, ε0σ

)

≤ sup
0<ρ′≤ρc

a


 1

ρ′
min

(
λ∗0
32
,
ε0ρthres

2ρ2c
4Var

)
,max


 λ∗0
2ρ′

,
12ε0ρc log(2× 6d/2)

R2
,
e

supf∈F‖f‖∞

ε0ρthres ε0
ρthres


, ε0ρ′, σ0ρ′




= a < +∞

where we used the monotonicity properties of a (Corollary A.5) and (43).

In conclusion, along with (43), we obtain that

ρ2n(δ, λ(ρ), λ(ρ), ε, σ)

≤ 117√
nλ(ρ)

(
I(F , ‖·‖∞) + max

(
F̃

(
λ∗0
32ρc

)
, a

)(
1 +

√
log

1

δ

))

≤ ρnρ ,

by definition of ρn. The last part of the statement then follows from Lemma E.7.
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F Upper-bound on the empirical robust risk

In this section we prove Theorem 3.5 that complements the main results by providing both a lwoer
and an upper bound on the empirical robus risk. In view of the previous section, the missing part is
ther upper-bound, that we establish in this section.

The proof of the upper-bound is similar to the proof of our main results, yet simpler. Indeed, the
bounds on the dual variable are required for the true distribution P, which is fixed, instead of the
empirical distribution Pn. We slightly modify our main concentration result (Proposition B.1) in
Proposition F.1. We simplify our bounds on the dual multiplier when the radius is close to the
critical radius (Propositions D.1 and D.3) in Propositions F.2 and F.5.

F.1 From empirical to true risk

Proposition F.1. For ρ > 0, ε ≥ 0, σ > 0 and δ ∈ (0, 1), assume that there is some 0 < λ ≤ λ <
+∞ such that,

∀f ∈ F , Rε
ρ2(f) = inf

λ≤λ≤λ
λρ2 + Eξ∼P [φ(f, ξ, λ, ε, σ)] .

Then, when ρ2 ≥ ρ2n(δ, λ, λ, ε, σ), with probability 1− δ,

∀f ∈ F , R̂ε
ρ2−ρ2

n(δ,λ,λ,ε,σ)
(f) ≤ Rε

ρ2(f) .

Proof. This proof closely mimics the one of Proposition B.1 but switches the roles of P and Pn.
First, note that by following the proof of Lemma B.3 with and replacing P by Pn and vice versa
(and using statement (a) of Lemma G.2 instead of (b)) yields the following

sup
(f,λ)∈F×[λ,λ]

{
Eξ∼Pn [φ(f, ξ, λ, ε, σ)] − Eξ∼P[φ(f, ξ, λ, ε, σ)]

λ

}
≤ ρ2n(δ, λ, λ, ε, σ) .

We can now follow the last part of the proof of Proposition B.1. On the event above, for any f ∈ F ,

Rε
ρ2(f) = inf

λ≤λ≤λ

{
λρ2 + Eξ∼P [φ(f, ξ, λ, ε, σ)]

}

= inf
λ≤λ≤λ

{
λρ2 + Eξ∼Pn [φ(f, ξ, λ, ε, σ)] − λ

Eξ∼Pn [φ(f, ξ, λ, ε, σ)] − Eξ∼P[φ(f, ξ, λ, ε, σ)]

λ

}

≥ inf
λ≤λ≤λ

{
λρ2 + Eξ∼Pn [φ(f, ξ, λ, ε, σ)] − λ sup

λ≤λ′≤λ

Eξ∼Pn [φ(f, ξ, λ
′, ε, σ)]− Eξ∼P[φ(f, ξ, λ

′, ε, σ)]

λ′

}

≥ inf
λ≤λ≤λ

{
λρ2 + Eξ∼Pn [φ(f, ξ, λ, ε, σ)] − λρ2n(δ, λ, λ, ε, σ)

}

≥ R̂ε
ρ2−ρ2

n(δ,λ,λ,ε,σ)
(f) .

F.2 Standard WDRO case

Proposition F.2. Let Assumption 5 hold and fix a threshold δ ∈ (0, 1). Assume that ρ2 ≤ ρ2c(0, 0).
Then, we have,

∀f ∈ F , Rρ2 (f) = inf
λ≤λ

λρ2 + Eξ∼P [φ(f, ξ, λ, 0)]

where the dual bound λ is defined as

λ := min

(
λ2,

ρ2c(0, 0)− ρ2
L

)
,

and L is defined in Proposition D.1.
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Proof. Let 0 ≤ λ ≤ λ. By Lemma D.2 and the dominated convergence theorem, one has that,

∂λψρ(λ) = ρ2 − Eξ∼P

[
min

{
1

2
‖ξ − ζ‖2 : ζ ∈ argmax

Ξ
f − λ

2
‖ξ − ·‖2

}]

≤ ρ2 −
(
1− 16λ

µ

)
Eξ∼P

[
min

{
1

2
‖ξ − ζ‖2 : ζ ∈ argmax

Ξ
f

}]

≤ ρ2 − ρ2c(0, 0) + Lλ ,

which is non-negative by definition of λ and thus concludes the proof.

We can now state analogues of Theorems E.1 and E.3. Note that the bounds λ(ρ) that we obtained
in this section are better than the ones we got in the main proof. For the sake of simplicity, we give
up this additional precision and use the same bounds as in Theorems E.1 and E.3.

Corollary F.3. In the same setting as Theorem E.1, with probability 1− δ, it holds,

∀f ∈ F , Rρ2(f) ≥ R̂ρ(ρ−ρn)(f) .

Proof. This result is obtained as a combination of Propositions F.1–F.2, which gives the desired

result with probability at least 1− δ
2 and a fortiori 1− δ.

Corollary F.4. In the same setting as Theorem E.3, with probability 1− δ, it holds,

∀f ∈ F , Rρ2(f) ≥ R̂ρ(ρ−ρn)(f) .

Proof. This result follows by combining Propositions F.1 and C.1, which gives the desired result

with probability at least 1− δ
2 and a fortiori 1− δ.

To conclude, in the context of Theorem E.1 (resp. Theorem E.3), Corollary F.3 (resp. Corollary F.4)
with ρ← ρ+ ρn yields, with probability at least 1− δ,

∀f ∈ F , R̂ρ(ρ+ρn)(f) ≤ R(ρ+ρn)2(f) ,

so that, since ρ ≥ ρn,

∀f ∈ F , R̂ρ2(f) ≤ Rρ(ρ+3ρn)(f) ,

Combining this bound with Theorem E.1 (resp. Theorem E.3) completes the bound of Theorem 3.5.

F.3 Regularized case

In the regularized case, the bound simplifies as well compared to Proposition D.3.

Proposition F.5. Fix a threshold δ ∈ (0, 1). When ρ2 ≤ ρ2c(ε, σ), we have,

∀f ∈ F , Rε
ρ2(f) = inf

λn≤λ≤λ
λρ2 + Eξ∼P [φ(f, ξ, λ, ε, σ)]

where the dual bounds are defined by

λ :=
ε

Var(ε, σ)

(
ρ2c(ε, σ)− ρ2

)

and λ := max

(
12ε

R2
log(2× 6d/2), e

supf∈F‖f‖∞

ε
ε0
ρ

)
,

and λ∗0, µ∗ were defined in Assumption 8.

Proof. The proof of the upper-bound is exactly the same as in Proposition D.3 so we focus on the
lower-bound. Following the same reasoning as the one to get (34) in Proposition D.3 but with P
instead of Pn we get that

∂λ
{
λρ2 + Eξ∼P [φ(f, ξ, λ, ε, σ)]

}
≤ ρ2 − Eξ∼P

[
E
ζ∼π

f/ε
σ (·|ξ)

[
1

2
‖ξ − ζ‖2

]]
+
λ

ε
Var(ε, σ)

= ρ2 − ρ2c(ε, σ) +
λ

ε
Var(ε, σ) ,

which is non-positive when λ ≤ λ.
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Corollary F.6. In the same setting as Theorem E.5, with probability 1− δ, it holds,

∀f ∈ F , Rε
ρ2(f) ≥ R̂ε

ρ(ρ−ρn)(f) .

Proof. This result follows by combining Propositions F.1 and C.1 and Proposition F.5, which gives

the desired result with probability at least 1− δ
2 and a fortiori 1− δ.

To conclude, in the context of Theorem E.5, Corollary F.6 with ρ ← ρ + ρn and ε0 ← ε0ρ
ρ+ρn

, i.e.,

ε← ε0ρ
ρ+ρn

× (ρ+ ρn), yields,3 with probability at least 1− δ,

∀f ∈ F , R̂ε0ρ
ρ(ρ+ρn)(f) ≤ R

ε0ρ
(ρ+ρn)2(f) , and, in particular, R̂ε0ρ

ρ2 (f) ≤ Rε0ρ
ρ(ρ+3ρn)(f) .

Combining this bound with Theorem E.5 completes the bound of Theorem 3.5.

G Technical lemmas

In this section, we recall and adapt known results, as well as establish technical facts, all useful in
our developments. They are presented in self-contained lemmas and are arranged in four thematic
subsections.

G.1 Laplace approximation

Lemma G.1 (Restriction to Ξ). Consider Ξ ⊂ R
d, ε1, τ1 > 0 and a map ζ⋆ : [0, τ1] → Ξ defined

by ζ⋆(τ) = ξ + τg with ξ ∈ Ξ, g ∈ R
d and assume that there is a positive radius R such that,

1. The closed ball B(ζ⋆(0), R) is included in Ξ.

2. R, τ1 and ‖g‖ satisfy R2

6 ≥ τ21 ‖g‖2.

Then, for (ε, τ) ∈ [0, ε1]× [0, τ1],
∣∣∣∣(2πετ)−

d
2

∫

Ξ

exp

(
−‖ζ − ζ

⋆(τ)‖22
2ετ

)
dζ − 1

∣∣∣∣ ≤ 6d/2e−
R2

12ετ ,

Proof. The quantity to bound rewrites
∣∣∣∣(2πετ)−

d
2

∫

Ξ

exp

(
−‖ζ − ζ

⋆(τ)‖22
2ετ

)
dζ − 1

∣∣∣∣ = (2πετ)−
d
2

∫

Rd\Ξ
exp

(
−‖ζ − ζ

⋆(τ)‖22
2ετ

)
dζ ,

so let us bound this integral. Since B(ζ⋆(0), R) is inside Ξ, this means that, for any ζ /∈ Ξ, ‖ζ − ξ‖
is at least equal to R. Hence, for any ζ /∈ Ξ, one has that

‖ζ − ζ⋆(τ)‖2 ≥ 1

2
‖ζ − ξ‖2 − τ2‖g‖2

≥ 1

6
‖ζ − ξ‖2 + 1

6
R2 +

1

6
R2 − τ2‖g‖2

≥ 1

6
‖ζ − ξ‖2 + 1

6
R2 ,

so that we get the bound

(2πετ)−
d
2

∫

Rd\Ξ
exp

(
−‖ζ − ζ

⋆(τ)‖22
2ετ

)
dζ ≤ e− R2

12ετ × (2πετ)−
d
2

∫

Rd\Ξ
exp

(
−‖ζ − ζ‖

2
2

12ετ

)
dζ

= 6d/2e−
R2

12ετ .

3Though ε0 now formally depends on ρ′, the same bounds still hold and do not become degenerate since ε0
lies [ε0/2, ε0] that avoids zero.
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G.2 Concentration

We rely on standard concentration tools that we encapsulate in the following lemma for convenience.

Lemma G.2. Let (X , dist) be a (totally bounded) separable metric space, P a probability distribu-
tion on a probability space Ξ and Pn = 1

n

∑n
i=1δξi with ξ1, . . . , ξn ∼ P i.i.d.. Consider a mapping

X : X × Ξ→ R and assume that,

1. For each x ∈ X , ξ 7→ X(x, ξ) is measurable;

2. There is a constant L > 0 such that, for each ξ ∈ Ξ, x 7→ X(x, ξ) is L-Lipschitz;

3. X almost surely belongs to [a, b].

Then, for any δ ∈ (0, 1),

(a) With probability at least 1− δ,

∀x ∈ X , Eξ∼Pn [X(x, ξ)]− Eξ∼P[X(x, ξ)] ≤ 48LI(X , dist)√
n

+ 2(b− a)

√
log 1

δ

2n
.

(b) With probability at least 1− δ,

∀x ∈ X , Eξ∼P[X(x, ξ)]− Eξ∼Pn [X(x, ξ)] ≤ 48LI(X , dist)√
n

+ 2(b− a)

√
log 1

δ

2n
.

Proof. First, let us note that we can assume that Eξ∼P[X(x, ξ)] = 0 provided that we prove the
bound above with the left-hand side divided by a factor two. Indeed, considering the random vari-
ables Y (x, ξ) := X(x, ξ) − Eζ∼P[X(x, ζ)], we see that Y satisfy the assumptions of the lemma,
albeit with the constants L← 2L, a← a− b and b← b− a. Moreover, we only prove the assertion
(a) since the (b) follows from (a) with X ← −X .

Step 1: Bound on the expectation. First, we focus on bounding the expectation of the quantity

sup
x∈X
{Eξ∼PnX(x, ξ)} .

By the symmetrization principle (e.g., (Boucheron et al., 2013, Lem. 11.4)), with s1, . . . , sn
i.i.d. Rademacher random variables,

E

[
sup
x∈X
{Eξ∼PnX(x, ξ)}

]
≤ 2E

[
sup
x∈X

1

n

n∑

i=1

siX(x, ξi)

]
.

Take x, x′ ∈ X . By the Lipschitz property of X , with ξ ∼ P, for any i = 1, . . . , n, the random
variable

si(X(x, ξ)−X(x′, ξ))√
nL

(44)

is bounded, in absolute value, by
dist(x,x′)√

n
and as such it is sub-Gaussian with parameter

dist(x,x′)2

n

by Hoeffding’s lemma (e.g., (Boucheron et al., 2013, Lem. 2.2)). As a consequence, by indepen-
dence, the random variable

n∑

i=1

si(X(x, ξ)−X(x′, ξ))√
nL

is sub-Gaussian with parameter dist(x, x′)2. Since, in addition, it is zero-mean, we can invoke
Dudley’s bound (e.g., (Boucheron et al., 2013, Cor. 13.2)) to get that,

E

[
sup
x∈X

1√
nL

n∑

i=1

siX(x, ξi)

]
≤ 12I(X , dist) ,
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or, in other words, by (44), that

E

[
sup
x∈X
{Eξ∼PnX(x, ξ)}

]
≤ 24LI(X , dist)√

n
. (45)

Step 2: Concentration inequality. Since the functions X are uniformly bounded,

supx∈X {Eξ∼PnX(x, ξ)}, seen as a function of (ξ1, . . . , ξn), satisfies the bounded difference prop-
erty with constant b−a. Therefore, the bounded difference inequality (e.g., (Boucheron et al., 2013,
Thm. 6.2)) readily yields that, with probability at least 1− δ,

sup
x∈X
{Eξ∼PnX(x, ξ)} ≤ E sup

x∈X
{Eξ∼PnX(x, ξ)} + (b− a)

√
log 1

δ

2n

≤ 24LI(X , dist)√
n

+ (b− a)

√
log 1

δ

2n

where we plugged in (45), the bound on the expectation from the first step.

G.3 Dudley’s integral bounds

Lemma G.3. Let (X1, dist1) and (X2, dist2) be two metric spaces, and consider X := X1 × X2

equipped with the distance dist := c1 dist1 +c2 dist2 with c1, c2 > 0. Then

I(X , dist) ≤ c1I(X1, dist1) + c2I(X2, dist2) .

Proof. Note that, for any t > 0, the inequality N(t,X , dist) ≤ N(t,X1, c1 dist1) ×
N(t,X2, c2 dist2) holds, so that, by subdadditivity of the square root,

I(X , dist) =
∫ +∞

0

√
logN(t,X , dist)dt

≤
∫ +∞

0

√
logN(t,X1, c1 dist1)dt+

∫ +∞

0

√
logN(t,X2, c2 dist2)dt

=

∫ +∞

0

√
logN(t/c1,X1, dist1)dt+

∫ +∞

0

√
logN(t/c2,X2, dist2)dt

= c1I(X1, dist1) + c2I(X2, dist2) ,

where we performed changes of variable in to obtain the last equality.

Lemma G.4. For c > 0,

I([0, c], |·|) ≤ c

2
(1 + 2 log 2) .

Proof. Noticing that N(t, [0, c], |·|) = 1 whenever t ≥ c, we get that

I([0, c], |·|) =
∫ c

0

√
logN(t, [0, c], |·|)dt

≤
∫ c

0

(1 + logN(t, [0, c], |·|))dt .

Now, a rough bound on N(t, [0, c], |·|) is 1 + c
t which fits our purpose and yields

I([0, c], |·|) ≤ c+
∫ c

0

log
(
1 +

c

t

)
dt = c(1 + 2 log 2) .
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G.4 Auxiliary results

We conclude these sections with auxiliary technical results.

The following lemma recalls basic inequalities with the logarithm function.

Lemma G.5. For 0 ≤ x ≤ 1
2 , the following inequalities hold,

log(1− x) ≥ −2x and log(1 + x) ≤ x .
Lemma G.6. For α > 0, the function x 7→ log(α+x)

x is non-increasing on ([eW (1) − α]+,+∞).

Proof. Denote by f : x 7→ log(α+x)
x this function, defined on (0,+∞). Its derivative is f ′ : x 7→

1
x

(
1

x+α − log(x+ α)
)

. But the function x 7→ 1
x+α − log(x+ α) is non-increasing, goes to −∞ at

infinity and its only potential zero is eW (1) − α if it is positive,4 which yields the result.

Lemma G.7. For Ξ ⊂ R
d a compact set, g ∈ C(Ξ) and, Q ∈ P(Ξ),

logEξ∼Q

[
eg(ξ)

]
≤ Eξ∼Q

[
g(ξ)eg(ξ)

]

Eξ∼Q

[
eg(ξ)

] .

Proof. Define φ : t 7→ logEξ∼Q

[
etg(ξ)

]
which is convex and differentiable, since g is continuous

on the compact set Ξ. Hence,

0 = φ(0) ≥ φ(1) + φ′(1)(0− 1) ,

so that φ′(1) ≥ φ(1) which is the desired inequality.

Lemma G.8. For a, b, c, r > 0 fixed, consider the function defined on R+ by

φ(λ) = aλ+
b

λ+ r
− c log(λ+ r) .

Then, for any λ > 0, φ is strongly convex on
[
0, λ
]

with strong convexity constant

µ∗ :=
2b

(λ+ r)3
+

c

(λ + r)2
.

and the unique solution to the minimization problem

min
λ≥0

φ(λ)

is given by,

λ⋆ =

[
c+
√
c2 + 4ab

2a
− r
]

+

.

Proof. φ is twice differentiable and its derivatives are, for λ ≥ 0,

φ′(λ) = a− b

(λ+ r)2
− c

λ+ r

φ′′(λ) =
2b

(λ+ r)3
+

c

(λ+ r)2
,

which shows that φ is strictly convex on R+ and yields its strong convexity on compact intervals.
Then, the first order optimality condition φ′(λ) = 0 gives us that

a(λ+ r)2 − c(λ+ r) − b = 0 , (46)

which has an unique solution satisfying λ+ r ≥ 0 which is given by,

λ⋆ =
c+
√
c2 + 4ab

2a
− r .

If λ⋆ ≥ 0, then this is the solution we are looking for. If is not, this means that both roots of (46)
are non-positive and therefore φ′(0) ≥ 0 which means that 0 is the solution to the minimization
problem.

4W denotes the Lambert function, i.e., the inverse of the map x 7→ xex.
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Lemma G.9. For c > 0, ρ > 0 such that ρ ≥ (4c)1/3, the inequality

ρ2 − ρ2 − c

ρ
≥ 0

holds in particular when
2c

ρ2
≤ ρ ≤ ρ− 2c

ρ2

Proof. When 0 < ρ ≤ ρ, the inequation ρ2 − ρ2 − c
ρ ≥ 0 is implied by

ρ2ρ− ρρ2 − c ≥ 0 .

Solving the latter yields the interval



ρ2 −

√
ρ
(
ρ3 − 4c

)

2ρ
,
ρ2 +

√
ρ
(
ρ3 − 4c

)

2ρ




and the inequality 1− u ≤
√
1− u for u ∈ [0, 1] yields the result.
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