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Abstract

We study a multilayer SIR model with two levels of mixing, namely a global level which
is uniformly mixing, and a local level with two layers distinguishing household and workplace
contacts, respectively. We establish the large population convergence of the corresponding
stochastic process. For this purpose, we use an individual-based model whose state space
explicitly takes into account the duration of infectious periods. This allows to deal with
the natural correlation of the epidemic states of individuals whose household and workplace
share a common infected. In a general setting where a non-exponential distribution of in-
fectious periods may be considered, convergence to the unique deterministic solution of a
measure-valued equation is obtained. In the particular case of exponentially distributed in-
fectious periods, we show that it is possible to further reduce the obtained deterministic limit,
leading to a closed, finite dimensional dynamical system capturing the epidemic dynamics.
This model reduction subsequently is studied from a numerical point of view. We illustrate
that the dynamical system derived from the large population approximation is a pertinent
model reduction when compared to simulations of the stochastic process or to an alternative
edge-based compartmental model, both in terms of accuracy and computational cost.

Keywords. Epidemic process, household-workplace models, two layers of mixing, large
population limit, agent-based model, model reduction.

Code availability. https://github.com/m-kubasch/household-workplace-model

Introduction

Among the possibilities of non-pharmaceutical epidemic control measures, social distancing may
be used to slow down disease propagation. This has been emphasized by the recent COVID-19
epidemic, which lead to wide-spread implementation of non-pharmaceutical interventions. In
particular, both empirical evidence [28] and simulation studies [36] have pointed out that school
closure and teleworking are among the most effective of those measures. These results are not
only limited to COVID-19, as it is equivalently known that particularly school closure mitigates
influenza epidemics [25]. It thus seems relevant to take into account this kind of control measure
in epidemic models, in order to study their impact on epidemic spread. A difficulty then arises
from the fact that social distancing often disrupts particular contacts, such as workplace contacts
only in the case of teleworking, while leaving intact other types of contact, for instance within
households. Di Lauro et al. [I1] have shown through the example of lockdowns that in order to
model control measures impacting preferably specific types of contact, it is advantageous for the
model to explicitly distinguish these contact structures. In addition, even though it is well known
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that clustered contact patterns influence epidemic spread [13, 11], precisely understanding the
impact on disease propagation of the way individuals are organized in households and workplaces
is not straightforward [26, 5].

This motivates the study of models which explicitly distinguish different levels of contact,
which as we shall see lead to interesting mathematical issues due to their multiscale population
structure. A minimal model taking into account households and workplaces has been proposed
by Pellis et al. [32], referred to as the household-workplace model. This model consists in a
stochastic SIR model with two levels of mixing [3], a global and a local one, the latter being
characterized by the presence of small contact structures. More precisely, contacts may take place
within three different layers: households, workplaces and the general population. Households
and workplaces correspond to the local level of mixing, while the general population constitutes
the global one. In particular, it is possible to distinguish different rates at which acquaintances
encounter one another within each of these three layers. This model has already been studied to
some extent, establishing for instance different reproduction numbers, see e.g. Ball et al. [3] for
an extensive overview. In particular, the reproduction number R; proposed by Pellis et al. [32]
is interesting, as it is intimately connected to the proportion of infections taking place within
each layer of the contact network [5]. The Ry used throughout this paper will thus refer to this
particular reproduction number, and computations of Ry and proportions of infections per layer
will make use of the working package associated to [7].

One drawback of this model is its complexity, both mathematically and numerically. Indeed,
it is not simple to analyse due to correlations arising as soon as an individual may belong
to several small contact structures at once. Also, simulations require a significant amount of
computation time, especially when considering larger population sizes. As a consequence, it is
of interest to develop reduced models, which may be more prone to theoretical studies and/or
numerical exploration. In particular, large population approximations of stochastic models have
proven fruitful to achieve such model reductions in many contexts, among which epidemics on
random graphs.

Historically, the standard SIR model developed by Kermack and McKendrick itself corre-
sponds to the large population limit of the uniformly mixing stochastic SIR model. In the
Markovian setting, the convergence of the stochastic model to its deterministic limit can be
established using classical results on the convergence of finite type density-dependent Markov
jump processes, e.g. [2]. In a more general setting, where infectious periods are not restricted
to being exponentially distributed, the large population convergence of the stochastic model to
the unique deterministic solution of a system of integral equations can also be obtained (see for
instance [23] and references therein).

From the contact network point of view, uniform mixing is represented by complete graphs.
One may notice that in order to describe an epidemic spreading on a graph, it is key to get a
good understanding of the neighbourhoods of susceptible nodes, as they can only be infected
through one of their neighbours. The complete graph hence is a favourable setting, as the
neighbourhood of each node corresponds to the total population: the amount of information
necessary to describe the infectious pressure on each susceptible thus reduces to the proportion of
infected in the general population. For more general contact networks however, getting a picture
of the neighbourhood of susceptible nodes over time is often difficult. As a consequence, it can be
challenging to propose closed systems of equations correctly describing the epidemic dynamics.

Several families of reduced models thus have evolved, including pairwise models (see [21] for a
review), message passing [20], effective degree models [24] and edge-based compartmental models
(EBCM) [40].

The latter have originally been developed in the particular case of an SIR model on con-
figuration graphs, which have the property of being locally tree-like when the number of nodes
grows to infinity. In other words, in the large population limit, there are no finite loops, and thus
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the epidemic states of the neighbours of a susceptible node can be thought of as independent
from one another. This is the key ingredient to the original EBCM which was first proposed
by [10], and refined by [30]. Notice that this model reduction is especially parsimonious, as a
handful of equations are enough to entirely describe the epidemic dynamics. Also, this model
has been proven to be the large population limit of the underlying stochastic model [9, 17].
Since then, the equivalence with other reduced models has been established under appropriate
assumptions [15, 12, 16, 22], which are thus equally exact in the large population limit thanks to
the aforementioned convergence result. Note that the EBCM formalism has also been extended
to include pertinent variations of the original model, such as non-Markovian settings [35], or an
epidemic spreading on a dynamic multi-layer configuration model [16].

While the case of classical configuration models is thus well understood, taking into account
the presence of clusters within the contact network raises a new challenge. In particular, some
attention has been drawn to the case of small, highly connected groups referred to as cliques,
which are well suited to represent structures such as households or workplaces. Several models
have been proposed in the case where each individual belongs to a certain (random) number
of such cliques which can be of random size. Such a network can for instance be obtained by
extending the configuration model to include cliques, and an EBCM has been developed in this
setting [11]. Alternative models are presented in [37], where contact rates are allowed to differ
between cliques as random functions of their size, as well as [13], where cliques are not necessarily
fully connected. Let us emphasize that these models share three major common points: they
focus on the epidemic at the level of structures, as they keep track of the proportions of cliques
containing a certain number of susceptibles and infected; the proposed reduced systems are
high-dimensional for larger clique sizes; and for none of them, the convergence of the underlying
stochastic model to the proposed reduced model has been established.

As already motivated in the case of our model, it further is of interest to distinguish several
types of contacts, giving rise to multi-layer contact networks. Layers differ in terms of contact
rates, and potentially also in terms of contact networks. To our knowledge, when considering
small complete structures, this has first been achieved for household models. These models
consist in distinguishing household contacts from contacts within the general population, each
individual belonging to exactly one household. Such a model was proposed in [I1], with a
uniformly mixing general population, in which case the reduced model naturally appears to
be the large population limit of its stochastic counterpart, which can again be formalized as
a finite type density-dependent Markov jump process. Other possibilities include considering
that general contacts form a configuration network [11, 26], or allowing individuals to belong to
several cliques of the same type instead of only one household [6].

However, one may notice that the particular case of the household-workplace model is not
covered by the previously introduced models, as it is necessary here to consider two layers of
cliques. In this setting, the only reduced models proposed so far approach the epidemic dynamics
using well calibrated uniformly mixing models [5, 10]. While these are capable of capturing some
key characteristics of the epidemic, such as the epidemic peak size and final size, they do not
allow for an accurate prediction of the epidemic dynamic over time.

As a consequence, in this paper, we will study the large population limit of the model with
two levels of mixing which explicitly distinguishes households and workplaces. In order to do
so, we will formalize the model in a finite population as an individual-based stochastic process,
and establish that this sequence of processes converges in law when the size of the population
grows to infinity. This allows, on the one hand, to identify our model reduction, and on the
other hand establishes that this model reduction is legitimate since it is asymptotically exact.
Besides, it paves the way for more quantitative estimates on this approximation. Notice here
that each infected individual correlates the epidemic spread in his household and workplace,
being infectious for exactly the same period of time in both structures. In order to deal with
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this dependence, the duration of infectious periods will explicitly be taken into account in the
model structure. This difficulty actually arises as soon as one considers the possibility of an
individual belonging to several cliques at once, whether they are of different types or not, and
we refer to [1] where a similar approach has been developed for branching approximations. This
model formulation amounts to studying a measure-valued process mixing discrete and continuous
components. More precisely, we establish the convergence of the individual-based process to
the unique solution of an explicit measure-valued equation. In the particular case where this
distribution is exponential, it is possible to go one step further and reduce the epidemic dynamics
to a closed, finite dimensional dynamical system which is similar in spirit to reductions proposed
in related settings [14, 37].

The present paper is structured as follows. Section 1 introduces the individual-based model,
and Section 2.1 subsequently presents the convergence results in detail. Section 2.2 is devoted to
numerical aspects. We first illustrate that the obtained dynamical system is in good accordance
with stochastic simulations, discuss its implementation and examine its computational cost in
terms of computation time compared to stochastic simulations. Next, we confront our reduced
model to an alternative model reduction which we obtain using the EBCM formalism. Finally,
Section 3 contains the proofs of our results.

Before proceeding, let us introduce some notations that will be used throughout the paper.
For any integers n < m, we write [n,m] = {n,---,m}. For a measurable space (F,&), let
Mp(E) be the set of point measures, Mp(E) the set of finite measures and M;(E) the set
of probability measures on E. We define Mp;(E) = Mp(E) n Mi(E) the set of punctual
probability measures on E. For a measure x4 on E and a suitable function f (either non-negative
or belonging to L'(u)), let (i, f) = § fdu. Also, for z € E, 6, designates the Dirac measure
at point z. Further, for any metric space E and any integer m, let C(E,R"™) be the set of
continuous functions f : E — R™. Similarly, C;(E,R™) is defined as the subset of bounded
functions f € C(E,R™). Finally, the space C}(E,R™) designates the set of bounded functions
f: E — R™ such that f is differentiable and its differential is continuous and bounded.

1 Presentation of the model

Let us begin by introducing the epidemic model of interest, in two successive steps. At first,
a general model description is yielded, which corresponds to a more intuitive presentation of
the model, before stating the mathematical model in detail using a measure-valued stochastic
differential equation.

1.1 General presentation of the model

Let us start by describing the population structure of interest. Consider a population of K
individuals. Each individual is part of exactly one household and one workplace, which are
chosen independently from one another, and independently for each individual.

More precisely, such a population structure can be obtained as described in [5]. Suppose that
households and workplaces are of size at least one and at most nyax. Consider distributions (7TJH )
and (7TJW) on [1, nmax]]. These distributions correspond to the large population limit of household

and workplace size distributions, in the sense that in an infinite population, a proportion 7er of

households would be of size j, while 7 would play a similar role for workplaces. In such an
infinite population, the average household and workplace sizes, respectively my and myy, would



be given for X € {H,W} by

Mmax

D¢
=0

In order to assign each individual of the finite-size population a household, we proceed as
follows. Let k € [0, K] be the number of individuals who are not yet member of a household.
While k£ > 0, choose a size 71 according to 77, independently from the household sizes that were
chosen during previous steps. The newly uncovered household is then of size n = min(n, k), and
n individuals out of the k remaining ones are picked uniformly at random to assemble this new
household. Consequently, it remains to update k to k — n. The process stops as soon as k = 0,
as all individuals then belong to a household. Finally, this process is repeated independently
for workplaces, using 7" instead of 7. Throughout the paper, let us consider one particular
sequence (G®)g~; of realisations of this random population structure. The choice of this
sequence being arbitrary among all sequences of such population structures, this does not lessen
the generality of our results.

It remains to describe the way the disease spreads in the population. The epidemic model
considered here is an extension of the standard SIR model. At each time, each individual is
either susceptible if he has never encountered the disease and may be contaminated; infected
if the individual is currently infectious, in which case he may transmit the disease to other
susceptibles; or recovered, once the infectious period is over, in which case the individual has
become immune against the disease.

The disease is transmitted among individuals as follows. Any contact between a susceptible
and an infected individual within either level of mixing amounts in the contamination of the
susceptible individual. Such an event is called an infectious contact. Within each household,
each workplace and the general population, uniform mixing is assumed, but the parameterization
differs slightly between the layers. Indeed, for households, we consider a one-to-one contact rate
A, meaning that whenever there are s susceptibles and ¢ infected within a household, the
next infectious contact occurs at rate Agsi. Similarly, another one-to-one contact rate Ay, is
associated to workplace contacts. Within the general population, on the other hand, a one-
to-all contact rate Bg is considered: when there are s susceptibles and 7 infected within a
population of size K, infectious contacts occur at rate %"si. Here, contrary to the local level,
frequency-dependence is considered for the global contact rate, as each given encounter between
two individuals chosen at random within the general population becomes less likely when the
population size K grows large.

Finally, infected individuals remain infectious for a period of time distributed according to
a probability distribution v on R, which we assume to be absolutely continuous with regard
to the Lebesgue measure. Once they recover, they are supposed to be immune against the
disease from there on. In particular, if v is an exponential distribution, this corresponds to the
Markovian SIR model.

1.2 The epidemic model at the level of households and workplaces

As we aim at investigating the large population limit of this model, we choose to enrich the
population description as to obtain a closed Markov process. This corresponds to a favourable
mathematical setting, as it allows us to use the associated martingale problem. In order to do
so, we will represent the population in terms of particles which are described by a type. It
seems natural to consider particles which correspond to entire structures, i.e. households and
workplaces, which are characterized by their size and the number of susceptible and infected
individuals they contain. Indeed, this point of view has already proven useful for deriving



reproduction numbers for related models [3], as well as the epidemic growth rate of the household-
workplace model [33]. However, this is not enough to obtain a closed system of Markovian
dynamics. The problem is that each infected individual correlates the spread of the epidemic
within his household and his workplace, leading to an intricate correlation network. In order to
circumvent this difficulty, similarly to [1], we will thus further characterize each structure by the
infectious periods of its infected members.

More precisely, for a population of size K > 1, let Ky be the number of households and Ky
the number of workplaces in G*. Label the Ky households in an arbitrary fashion 1,..., Kp.
Consider the set

E = {(n,s,7) € [1,nmax] X [0, nmax] x R s <n; Vj >n—s,7 =0},
Then for k € [1, Ky, the k-th household is characterized at time ¢ > 0 by its type
af (1) = (ni, si (1), 7 (1)) € B

The first two components of mkH correspond respectively to the size of the household (which
is constant over time), and the number of susceptible members of the household at time ¢. The
third component T,f is a vector containing the remaining infectious periods of the members of
the household and keeps track of infected and removed individuals. Indeed, at time ¢, there are
nil — s (t) infected or removed individuals within the household. For j € [1,nf —sH (#)], T,gj (t)
corresponds to the remaining duration of the infectious period at time ¢ of the j-th member of

the household who has contracted the disease. If T,fj(t) > 0, the individual is still infectious and

will remain so for T,fj(t) units of time. Otherwise, if T,fj(t) < 0, the individual has recovered,

and the recovery has occurred at time ¢t — ’T,flj(tﬂ For j > nff — sf(¢), T,flj(t) is set to zero

and can be neglected for interpretation. Notice that, in principle, it would have been possible
to define T,fl (t) e R”kH*SkH(t), but letting T]fl € R™max ig convenient for computations.

Similarly, label the Ky workplaces in an arbitrary order 1, ..., Ky . For £ € [1, Ky, the ¢-th
workplace is characterized by its type z}V (t) = (n}", s}V (t), 7)Y (t)), which is defined analogously

to household types.

By definition, these types evolve over time. On the one hand, for any X € {H, W}, for any
ke [1,Kx] and j € [1, nmax], the j-th component of 77¥ decreases linearly at unitary rate if it
describes the remaining infectious period of an individual having contracted the disease at some
previous time, and stays constant otherwise:

. d x
Vj € [1, nmax], aﬁw‘(t) = —LicnX X))
Let (€5)1<j<nma. denote the canonical basis of R™»2x. Then for any 0 <t < T, and z = (n,s,7) €
E, we may define ¥ (z,T,t) as the type of a structure at time 7" given that it was in state x at
time t, supposing that no infections occurred in the meantime:

U(x, T,t) = (n, 8, T — HZT(T - t)ej> .

j=1

On the other hand, infections within each level of mixing also cause the modification of the
types of the household and the workplace of newly contaminated individuals. More precisely,
consider a contamination occurring at time ¢. Suppose that the newly infected belongs to the
k-th household and /-th workplace. Let o be the realisation of a random variable of distribution



v, which is drawn independently for each new infected. Then arkH and LL'XV jump from wkH (t—)
and xgv(t*) to j(l‘kH(t*),O') and j(xgv(tf),a) respectively, where for any x = (n,s,7) € E,

j(x,0) =(n,s — 1,7+ 0ep_sy1) -

It remains to describe how one identifies the household k and workplace ¢ the newly infected
belongs to. Let S(t—) be the number of susceptibles in the population previously to the infection
event. If it takes place within the general population, any susceptible individual is chosen with
uniform probability to be contaminated. The newly infected thus belongs to the k-th house-
hold with probability s (t—)/S(t—), and independently to the ¢-th workplace with probability
sy (t—)/S(t—). Similarly, if the infection occurs within a household, only the workplace of the
newly infected needs to be uncovered, and corresponds to the ¢-th workplace with the same
probability as previously. Within-workplace infections are treated analogously.

We are now ready to properly introduce the stochastic process which represents the previ-
ously described dynamics. We are interested in the stochastic process (¢X = ( f[ |K, ZV ‘K))tzo

taking values in Mp; = Mp1(E) x Mp1(E), whose definition will be detailed hereafter. Here,
tH K and CZV K correspond respectively to the normalized counting measures associated to the

distributions of household and workplace types at time ¢, i.e. for any time ¢t > 0 and X € {H, W},

X|K 1
M= N6 -

Start by noticing that, as both household and workplace sizes are bounded, for X € {H, W},

the following inequality holds:
K

nmax

< Ky <K.

Thus, studying the asymptotic K — 00 amounts to (Kg, Ky) — (00, 0).

Recall that in the case of infections occurring within the general population, the rate of infec-
tions depends on the number of susceptibles S(¢) and infected I(¢) within the whole population
at time ¢t > 0. It is easy to compute these quantities using (X as follows. For any 7 € R™max_ ]et
i(7) = 2029 1r,>0p- Then for any ¢ > 0,

- L S
Ku =

corresponds to the average number of infected individuals per household at time ¢. Similarly,
one may define S¥ (t) as the average number of susceptibles per household at time ¢. Then

VX e {H, W}, S(t) = KxS¥(t) and I(t) = KxIX(t). (1)

Further, let N¥ be the average household size, which is constant over time and always equal to
K/Ky. This leads to I(t)/K = IX(t)/N*X, which will be of use in computations. Notice that we
will need to check that Equation (1) is well posed, as equalities of the type KgS™ (t) = KW SW (¢)
technically need to be proven for the stochastic process formalizing the model.

Finally, let us briefly emphasize that the partition of the population in households and
workplaces is entirely conveyed by Cg{ € Mp1, as it does not vary over time. In particular,
the proportions of households and workplaces of each size are supposed to correspond to those
observed in GX. Similarly, there are some natural constraints on (é( ,as CHIK and ¢WIK describe
the same population, once dispatched into households, and once dispatched into workplaces.
As these assumptions are intuitive, they will not all be detailed here, and they will only be
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emphasized when necessary. For instance, the total number of members in some epidemic state
(susceptible, infected or recovered) within all households is equal to the total number of members
in this state within all workplaces. Hence Ky S (0) = Ky S" (0) and KyI*(0) = Ky IV (0)
almost surely. Further, at time 0, each infected needs to have the same remaining infectious
period in both his household and workplace. In other words, almost surely,

(i (0) 1<k <Kg,1<j<nf —sf(0)} ={7(0): 1<t<Kw,1<j<n) —s(0)}. (2)

Forthcoming Lemma 1.2 shows that these conditions are enough to ensure that the previous
characterization of S(t) and I(t) in terms of SX(t) and IX(t) is legitimate.

Before giving the proper definition of (¥, let us introduce some necessary notations. Let
US = (Ry)? x [1, Kg] x [1, Kw] x Ry, and consider the following measure on Ug:

1% (du) = p%(d6, dk,dl,do) = dO @ iy (dk) ® py(dl) @ v(do),

where d@ and py denote the Lebesgue measure on R3 and the standard counting measure,
respectively. For ¢t > 0 and u = (0, k,¢,0) € U{ where 8 = (61,02,03), let us define

Za(t,u) =

M0) sV ()
{91<57G5() (t), 2<% 50 05 <57y 5@ }

The idea is that Zg will yield the correct rate for infection events in the general population.
More precisely, the constraint on 6 corresponds to the rate of infectious contacts at that level of
mixing, while the constraints on 05 and 03 are related to the probability that the newly infected
belongs to the k-th household and /-th workplace.

Similarly, let Ux = (R4)? x [1, K] x [1, K] x Ry, endowed with the measure

Kk (du) = pug (B, dk, de, do) = dO @ piu (dk) ® ps(dl) @ v(do),

where with slight abuse of notation, d@ designates the Lebesgue measure on R?. Then for t > 0
and u = (0,k,{,0) € Ugx where 8 = (61,63), we further introduce

Ty (t,u) = 1{

s )i(rE (b)), 62< S(t()t)}

This time, the constraints on 67 and 6y correspond respectively to the rate of infection within
the k-th household and the probability of the newly infected belonging to the ¢-th workplace.
Also, for any T >t > 0 and u = (0,k,¢,0) € Ug v Uk, consider the following quantity, which
will allow to keep track of the change in the household population due to an infection within
the k-th household:

A, Tot) = 0wl (1-),0),1)) ~ (Wl (t-),T))-

Finally, define Zyy (¢t,u) and Aw (u,T,t) analogously, by interchanging H and W as well as k
and £:

Tw(t =1 d A T t) =0d/q, —0 .
W =t e e ) AT = Sl 00.00) 0wt ) 20)

In order to simplify notations in the following, for Y € {H, W}, we let U}(/ = Uk and
u}/( = ur. We are now ready to yield the main characterization of (5, as inspired by [35].



Proposition 1.1. Define on the same probability space as Cg(, and independently from C§,
three independent Poisson point measures QYK on Ry x U}(/ with intensity dt,u%(du), forY e
{H,W,G}.

Then (K = (¢CHIK (WIK)Y is defined as the unique strong solution taking values in D(R.., Mp1)
of the following equation. For X € {H, W},

pid 25 orot D J f Ty (t—,u)Ax (u, T,)QV 1 (dt, du) | (3)

Ye{H,W,G}

The idea behind Equation (3) goes as follows. Let us focus for example on the distribution

C;I % of household types at time T'. Each individual household’s type contributes to the distribu-
tion at uniform weight 1/Kx. If no infection event occurs between times 0 and 7', then the state
of the k-th household at time T is given by \11(ka (0),T,0). However, suppose now that before
time T, at least one initially susceptible member of the k-th household is infected, and let ¢ be
the first time at which such an event occurs. Then x#(t) = j(x (t—), o) where o is distributed
according to v. If no other infections affect this household up to time 7T, it will be in state
U(j(z (t—),0),T,t) instead of ¥(z(0),T,0) = U(2H (¢t—), T,t). This reasoning is reflected in
Ap, and can be iterated over the whole of [0, T']. Finally, the terms Zy for Y € {G, H, W} assure
that all infection events occur at the corresponding rates.

Proof. The proof uses classical arguments, which will only be outlined here. Start by establishing
existence of (X. Consider the sequence (T},),0 of successive jump times of (¥, where we define
To = 0. Then using a method similar to rejection sampling , (7,),>0 can be obtained as a
subsequence of the jump times of a Poisson process with intensity nmax(AgMmax + AW Pmax +
Ba)K, whose only limiting value is +0o0. Thus lim,,_, 4« T), = +o0 almost surely, ensuring that
¢K takes values in D(R;, 9Mp;(E)).

Finally, uniqueness is obtained by an induction argument which proves that for any n > 0,
(Th, C:,I{L) is uniquely determined by (¢{f, (QY¥)yes) where S = {G, H,W}. This obviously is
true for n = 0. The induction step relies on the observation that T,,1 is uniquely determined by
(Th, C:,I{L, (QY ) yes) and C{{LH by (Th+1, Tn, C{i, (QY)yes). The induction hypothesis allows
to conclude. O

Let us briefly show here that it follows directly from Proposition 1.1 that Equation (1) is
well posed.

Lemma 1.2. Suppose that almost surely, Ky S™(0) = KywSW(0) and Equation (2) holds. Then
for any t >0, KySH(t) = KwSW(t) and KyI"(t) = KwIW (t), almost surely.

Proof. Let T = 0, and for any = = (n,s,7) € E, let n(z) = n, s(z) = s and i(z) = i(7). Start

by focusing on SX(T) = ({7 XK ,s) for X € {H,W}. It follows from Equation (3) that

Kx
KxSX(T) = Z 2 (0),T,0)) + f f Ty (t—, u){Ax (u, T, 1), sYQY K (dt, du).
j=1 Ye{H W,G}

t)) = s(x). Hence the first

Notice that on the one hand, for any x € F and 0 < ¢t < T, s(V(z, T,
k.t o),

term of the right-hand side equals K xS (0), and for any u = (0, k,
Ap(u,T,t),8) = s(¥(i(z) (=), 0), T, 1)) = (¥ (] (=), T, 1)) = —1.

The analogous computation yields (Ay (u, T, t),s) = —1. Thus Kz S (T) = KwS" (T) almost
surely.



Let us now turn to I*X(T) = (5 X|K ,i). This time, for any v = (0,k,¢,0) and 0 <t < T, it

holds that (Ax(u,T,t),iy = 1{U>(T_t)}. Finally, Equation (2) ensures that

Ky Ky nkaskK(O) Ky
DA@EEO).T0) =Y D) Ln gegy = 2, (¥ (0),7,0)).
k=1 k=1 j=1 N =1
The conclusion follows as previously from Equation (3). O

2 Main results

In this section, we are going to present our main results on the convergence of ((¥)g=1 in the
Skorokhod space D (Ry, M (E))?. For X € {H,W?}, let X be the complementary structure
type, i.e. X = W if X = H and vice-versa.

The following assumption on the sequence of initial conditions (Cg )k =1 will be required from
now on.

Assumption 2.1. For any X € {H,W} and T > 0, suppose that:
(1)
Kx nmax
lim supE[ sup Z Z l{nk s ()24, 75, (0)—t|=N }] = 0.

N-wg>1 |o<t<T KXk * =

(ii) For any c € R, for any i € [1, nmax],

1Y
ll_l}}, [S(ujiE [KX ]; Linx—sx )=, (T,jfi(o):r)cse}] = 0.

Briefly, the first assumption allows to control the impact of the initial condition on the queues
of the distribution of remaining infectious periods at each time, while the second condition is
related to aspects of absolute continuity. These conditions are for instance satisfied if for any
K > 1, at time 0, the remaining infectious periods of infected individuals are i.i.d. of law v,
while those of recovered individuals are set to be equal to zero. Notice that this choice for
recovered individuals does not represent a loss of generality, as it does not affect the epidemic
spread and initially recovered individuals will remain recognizable at any time T as the only
ones whose remaining infectious periods equal —7'.

2.1 Large population approximation of ({¥)x-,

For any f € C} (R x E,R), let fi(z) = f(t,z) and ff(z) = (v, fi(i(z,))) for every (t,z) € Ry x E.
Consider the differential operator A defined as follows. For any x = (n,s,7) € E,

Afi(x) = 0 f(t,x) - Eamfta:

Also, for any © = (n,s,7) € E, let n(z) = n, s(z) = s and i(z) = i(7) be the functions which
to a structure in state x associate the corresponding structure size, number of susceptible and
number of infected members, respectively. For instance, for any X € {H, W} the average rage
of within-structure infections at time t is given by

Kx

Mc( X iy = jg; s(@X ()i (1)),
k=1
10



Notice also that as mentioned previously, the average size of structures is constant over time,
hence <(tX |K,n> = <Cg( |K,n> for all t > 0. Finally, let 9; = M;(E)%. We are now ready to
state our first result, whose proof is postponed to Section 3.1.

Theorem 2.2. Suppose that (§§)K>1 satisfies Assumption 2.1 and converges in law to ng € My .

Then (CK)g=1 converges in D (Ry, My (E))? to n = (n'1,n") defined as the unique solution of
the following system of Equations (4). For any f € C{(R4 x E,R), for any T >0,

T T
s fry =g, fo) + L (i, Afpdt + Ax fo (S si(fF = fo)ydt

VALY ALY
o {ni'.s) gy

(4)

+Ax ST — fi)ydt.

T
G s(fF — fu)dt + ﬁafo

From now on, let us assume that v is the exponential distribution of parameter v. As we
shall see, it then is possible to deduce from Theorem 2.2 that the proportion of susceptible and
infected individuals in the population converges to the solution of a dynamical system, when
the size of the population grows large.

Let s(t) and i(t) be the proportions of susceptible and infectious individuals, respectively, in
the population at time ¢ according to distribution 7;. Further introduce the set

S={(n—14,1):2<n < Npax,0 <i <n—1}.

For (S,I) € S, let nffg 1 (t) be the proportion of households containing S susceptible and I

infected individuals at time ¢, according to distribution n/’. Define ng D (t) analogously for

workplaces. Finally, consider

Ax

76 (t) = oilt), and x(t) = 7>

>, SInlp(t) for X e {H,W}.
(S,1)es

We assume that at time 0, a fraction € of uniformly chosen individuals are infected amidst
an otherwise susceptible population. Furthermore, at time 0, the remaining infectious period
of each infected individual is supposed to be distributed according to v, independently from
one another. Let us emphasize here that actually, only this second assumption is crucial for
the results to hold, while the original distribution of infected individuals does not need to be
uniform (in which case forthcoming Equations (5) and (7) need to be adapted). We have chosen
this particular initial condition as it has been previously considered in the literature, and refer
to the Discussion for further comments.
In practice, this setting corresponds to the following probability distribution ng . = (775,[57 ngflg) €

M, characterized for X € {H, W} as follows. For any n € [1, npax] and s € [0, n]:

773(5(”7 S,dT) _ 7_[_7)L( <n> (1 _ €)S€n_s (V®(n—s) ® 589(nmax*n+s))> (dT). (5)
’ S

It then is possible to describe the epidemic dynamics by a finite, closed set of ordinary differential
equations, as shown in the following result whose proof is postponed to Section 3.2.

Theorem 2.3. Let ¢ > 0. Suppose that v is the exponential distribution of parameter -,

and that (Cg)K>1 satisfies Assumption 2.1 and converges in law to no.. Then the functions

11



(s, 1, nfgl) : X e {H,W},(S,I) € S) are characterized as being the unique solution of the
following dynamical system: for any t =0, for any X € {H,W}, (S,I) €S,

S
dtn(s,j)(t) = - ()\XSI + TY@)% + 1¢(t)S + ’yI) nfgyl)(t)

—+ ’}/(I -+ 1)7’152’1_’_1) (t)l{s+l<nmax} (GC)

+ (AX(S +1)(I—-1)+ TX(t)i(J;)l +7¢(t)(S + 1)) ngg+171_1)<t)1{121},

with initial conditions given by

0) =15 i0) =& w5y = (77 )0 @

This dynamical system may be understood as follows. Equation (6a) corresponds to the fact
that the proportion of susceptibles decreases whenever a new infection occurs within the general
population, or within a household or workplace. Similarly, Equation (6b) stems from the fact
that newly contaminated individuals move from the susceptible to the infected state, which they
in turn leave at rate -y since the infectious period is exponentially distributed. It remains to
take an interest in Equation (6¢). The first line indicates that a structure of type (S,I) € S
changes its composition upon either the infection of one of its susceptible members, be it an
infection within the structure itself or outside of it (within a structure of the opposite type or in
the general population), or upon the removal of one of its infected members. Simultaneously, a
structure of type (S, I+ 1) transforms into a structure of type (S, I) whenever one of its infected
members recovers, while a structure of type (S+1, I —1) becomes of type (S, I) upon infection of
a susceptible member. In particular, this result shows that under the assumptions of Theorem
2.3, in the large population limit, we may neglect the natural correlation between structures
caused by the fact that infected individuals belong to two structures at once. This allows to
obtain a stronger model reduction than in Theorem 2.2, in the sense that the model reduces to
a finite-dimensional ODE-system instead of a measure-valued equation.

Before detailing the proofs of Theorems 2.2 and 2.3, let us examine the latter from a numerical
point of view.

2.2 Numerical assessment of the limiting dynamical system

The aim of this section is first to portray that the proposed large population limit, under the
form of dynamical system (6a—c), is in good accordance with the original stochastic model for
large population sizes. This secondarily leads to some practical comments on the implementation
of the dynamical system. Finally, a comparison with another reduced model for epidemics with
two layers of mixing will be established, namely with an Edge-Based Compartmental Model
(EBCM) in the line of work of Volz et al. [11].

2.2.1 Implementation of the dynamical system and illustration of Theorem 2.3

Let us start by illustrating the result of Theorem 2.3 through numerical simulations. Using
Gillespie’s algorithm, we have performed fifty simulations of the epidemic within a population
of K = 10000 individuals, where 77 and 7" are roughly inspired by the French household and
workplace distributions as observed in 2018 by Insee [5]. These distributions are represented in
Figure 1. Two sets of epidemic parameters have been considered, leading to either Ry = 2.5 or

12



0.5

0.25

0.2192

0.4

Proportion
o o
N w
0.37
0.32
0.175

0.13
0.12

0.1

0.04

0.001
0.0001

4 0.02

0.0 T T T T T
2 4 6 20 30 40 50
Household sizes Workplace sizes

Figure 1: Household and workplace size distributions 7 (left) and 7" (right) used in simulations.

Ry = 1.2. In both cases, the majority of contaminations take place at the local level. Indeed,
for the first scenario with Ry = 2.5, 42% and 18% of infections occur within households and
workplaces, respectively. For the second scenario, mean-field infections are even less common,
with 40% of within-household and 40% of within-workplace infections. Further, the epidemic is
started by infecting either 10 or 100 individuals chosen uniformly at random at time 0 (¢ = 0.001
or € = 0.01, respectively). For each simulation, we have followed the evolution of the proportion
of susceptible and infected individuals within the population over time. When ¢ = 0.001, time
subsequently is shifted so that time 0 corresponds to the first moment when at least 5%o of the
population are infectious.

The simulation outcomes are presented in Figure 2. For each choice of parameters, the
solutions s and 7 of dynamical system (6a—c) with initial condition given by (7) are plotted on the
same graph. As previously for ¢ = 0.001, time is subsequently shifted to ensure that i(0) = 0.005,
in order to synchronize the simulations among themselves and with their deterministic limit.
As expected, one observes good accordance of the stochastic simulations and the deterministic
functions (s, 1).

Before proceeding further, let us briefly emphasize a few aspects of the implementation of
the proposed deterministic model. A potential drawback of dynamical system (6a—c) consists in
its large dimension. Indeed, it holds that #S = nmax(Mmax +1)/2 — 1. The number of equations
of dynamical system (6a—c) is hence given by 2 + 2#8S, and of order O(n2,.). However, this
fast-growing number of equations actually is manageable, as it is possible to implement the
dynamical system in an automated way, in the sense that each equation does not need to be
written one-by-one by the programmer. We refer to Appendix A.1 for details.

Nevertheless, the large dimension of the dynamical system of interest raises the question
whether it is numerically speaking interesting to actually use it for numerical explorations when
compared to stochastic simulations using Gillespie’s algorithm. Indeed, if the computation
time needed to solve the dynamical system is not advantageous when compared to stochastic
simulations, one may prefer to use the latter as it contains more information, such as the
fluctuations around the large population limit. In order to address this question, we have
compared the average time needed to either solve once dynamical system (6a—c), or to simulate
one trajectory of the stochastic model using Gillespie’s algorithm, for different choices of epidemic
parameters. Notice here that in practice, for stochastic simulations, it is often necessary to
compute several individual trajectories in order to obtain the general behavior of the epidemic.
However, as it is possible to execute these simulations in parallel, comparison to one individual

13
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Figure 2: Comparison of the stochastic model with its large population approximation given by dynamical
system (6a—c). Household and workplace distributions are those of Figure 1. Two sets of epidemic
parameters were considered, namely (8q, Ag, Aw, ) = (0.125,1.5,0.00115,0.125) and (B, A, Aw, ) =
(0.03,0.05,0.0015,0.125) for the left and right column respectively (Rg = 2.5 and Ry = 1.2). The initial
conditions are either & = 0.001 in Panels (a) and (b), or £ = 0.01 in (¢) and (d). For each of these scenarios,
Gillespie’s algorithm was used to simulate 50 trajectories of the stochastic model defined in Proposition
1.1 in a population of K = 10000 individuals (faint lines). For Panels (a) and (b), only trajectories
reaching a threshold of 0.005 infected were kept, and time was shifted so that time 0 corresponds to the
moment when this threshold is reached. Finally, the deterministic solution (s,%) of (6a—c) is represented
for each scenario (thick lines). For Panels (a) and (b), the same time shifting procedure as for simulations
is applied.
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simulation seemed the most pertinent.

One hundred independent runs of each script were performed and their computation time as-
sessed. For each run, the runtime of a reference function was also measured, in order to take
into account fluctuations of computation time which occur among runs of the same script. The
procedure and results are detailed in Appendix A.2. In summary, solving the reduced model
is up to one order of magnitude faster than performing one stochastic simulation for values of
Ry > 1 that are not too close to the critical case Ry = 1. This shows that the reduced model is
pertinent for numerical exploration.

2.2.2 Comparison to Edge-Based Compartmental Models

One may notice that the population structure, as described in Section 1.1, can be regarded
as a modification of the well-studied configuration model. Indeed, our network of household-
and workplace-contacts may be seen as a two-layer graph, where each layer corresponds to a
random graph generated as described in [29, 31], that we shall call clique configuration model
(CCM) hereafter. This random graph model generalizes configuration models to include small,
totally connected sub-graphs referred to as cliques. It then is possible to derive an EBCM for
our household-workplace model by reasoning as in [11]. Details are provided in Appendix S1.1.

Edge-based compartmental models on CCM variants have been known to be in good accor-
dance with simulations of the corresponding stochastic epidemic models in terms of proportions
of susceptible and infected individuals within the population, under the assumption of a very
small initial proportion of infected. In our case, we have confronted the EBCM with dynamical
system (6a—c), as well as simulated trajectories of our stochastic model. Results are reported on
Figure S1. The parameters considered are the same as for Panel (a) of Figure 2, except that sev-
eral values of the initial proportion of infected € have been explored. As expected, for very small
values of ¢, the EBCM and dynamical system (6a—c) both yield the correct epidemic dynamics,
whereas for larger values of ¢, the EBCM does not fit the simulated epidemic trajectories. We
refer to Supplementary Material S1.1 for details.

Finally, one may notice that the EBCM is of higher dimension than dynamical system (6a—c).
Proceeding like before, we obtain that the number of equations of the EBCM is of order O(n3 ).
This has a strong negative impact on computation time, as briefly illustrated in Supplementary
Material S1.2, arguing against the applicability of this EBCM for numerical explorations.

To conclude, in the particular case of the household-workplace model studied in this article,
the EBCM seems to be equivalent to the large population approximation described by dynamical
system (6a—c), under the condition that the initial proportion of infected is very small. However,
considering both the computational cost of its higher dimension and the loss of accuracy for more
general initial conditions of the EBCM, the large population approximation given by dynamical
system (6a—c) seems more pertinent in the case of the epidemic model under consideration.

3 Proofs

This section is devoted to establishing Theorems 2.2 and 2.3. As we will see, the proof of
Theorem 2.2 naturally has the intrinsic difficulty of all convergence results for measure-valued
processes, but it allows us to obtain a deterministic prediction of the dynamics of the structure
type distributions during the course of an epidemic. At this level, the limiting object is rich,
allowing it to convey detailed information on the distribution of remaining infectious periods
within structures. This however comes at the cost of an infinite-dimensional limiting object,
which motivates the interest in trying to further reduce its dimension by adopting a coarser
population description. In the case where v is the exponential distribution, Theorem 2.3 shows
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that this actually is possible, the final reduced model taking the form of dynamical system (6a—
¢). As mentioned previously, the existence of an asymptotically exact, closed, finite-dimensional
ODE-system capturing the epidemic dynamics was not obvious from the beginning. Indeed,
in order to obtain this result, we need to eliminate from the state space E the continuous
component 7, which needs to be transformed back into the simpler distinction between infected
and removed states for each member of the structure. As we shall see in Subsection 3.2, this
will demand some effort as removal events are not explicit in the model formalism adopted in
Section 1.2. This difficulty will become apparent in the proof of forthcoming Proposition 3.15.

3.1 Proof of Theorem 2.2

Let us start with the proof of Theorem 2.2. It follows a classical scheme, establishing tightness of
(¢%) =1, whose limiting values are shown to satisfy Equation (4). Uniqueness of the solutions
of this equation given the initial condition then ensures the desired convergence result. In
particular, the proof is inspired by [12] and [35].

3.1.1 Uniqueness and continuity of the solution of Equation (4).

We are first going to establish a uniqueness result for the solutions of Equation (4). Notice that
we do not need to prove existence of solutions in this section, as forthcoming Proposition 3.8
constructs such solutions as limiting values of (¢%)x>1.

Let us start with a technical lemma, whose proof we present for sake of completeness.

Lemma 3.1. Let f € Cy(E,R). There exists a sequence (fi)r=1 taking values in C}(E,R) such
that fi, converges simply to f and supy=1 || filles < If-

Proof. Consider a mollifier ¢, i.e. 1) € C*(R™x) is compactly supported, its mass §p,.., ¥(z)dx
equals 1, and for k > 1, the function ¢y, : x — k"™ (kx) satisfies limg_,, 1 = o in the sense
of distributions.

Consider f € Cp(E,R). Define the sequence (fx)r>1 as follows:

fe:(n,s,7)e E— f(n,s, ) r(T).

Then, for any x € E, by definition of (¢;)r>1 it holds that limy_,4 fx(z) = f(x). Further,
as 1y is of integral 1 for any k, it is obvious that for any k, ||fxll, < ||fll,- Finally, it also
follows from the usual properties of convolution that for any k > 1, fi is smooth with respect

to its last variable and all the corresponding partial derivatives are compactly supported, hence
fr € CL(E,R) for any k > 1. O

We may now turn to the main result of this paragraph. With slight abuse of notation, for
an element n = (n1,72) € M1, we define its total variation norm by ||[n|rv = ||ni|rv Vv |n2]7v.

Proposition 3.2. Let n, € M. Then Equation (4) admits at most one measure-valued solution
1 which belongs to C(R4, (M, | - |7v)), such that ng = nx.

From now on, define nfl = (nlf n), s = (nH s), il = (nf)i), and s}V = (n/V,s). Let us
establish the proposition.

Proof. First, notice that it follows immediately from Equation (4) that {(p2¥,1) = (n¥,1) for
X € {H, W}, thus ny € 9 implies that for any T' = 0, nr € M.

Let us show that any solution n of Equation (4) belongs to C(Ry, (91, - |7v)). In order
to do so, it is enough to show that X € C(Ry, (M (E),| - |1v)) for any X € {H,W}. We are
going to detail the proof for ' only, as W' can be handled in the same way.
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Let T > 0 and g € C}(E,R) such that ||g||,, < 1. Consider the function defined by
V(t,z)eRx E, fi(x)=g(¥(z,T,t))

and recall that fZ(x) = (v, f;(j(x,-))). Then by definition, fr(z) = g(x). It follows from the
assumption g € C}(E,R) that f € C}(R+ x E,R). The advantage of this construction is that
t — U(x,T,t) corresponds to a reversal of time, which cancels out the deterministic dynamics
described by the differential operator A. Indeed, letting = (n, s, 7), a brief computation shows
that

0ufil@) = 3 8o g(W(a, T, ) and On fola) = 5, 9(W(a, T, 1)),
k=1

which yields that Afi(z) = 0 for all (t,z) € R x E. Using the fact that (nf, g) = (nH, fr), it
follows from Equation (4) that

T
it gy =fl, fo) + )\HL it st (fF = fi))dt
T ZH
) s (fF = fi) .

+ A\w fT L<77W si><77H s (fI— fﬂ}dt—i—ﬂgf
0 8?/ t t t

H
Recall that i/ < npax and “r < 1 since for any z € E, i(z) < n(z). We may notice that

the following inequalities hold, as for any ¢, || f¢|,, < 1:
<ng{75i (ftI - ft)> < Q(nmaX)Qa <77tH7S (ftI - ft)> < 2nmaX7
1 W . i (8)
y<7’]t 7Sl> < Nmax; ntiH<T]l{_I,S (fé[ — ft)> < Qnmax.

Let C' = 2nmax (AHMmax + Awnmax + Bc) and let € € R. It then follows from inequalities (8)
that
(17 =1 )l < CIT = (T + €)| = Clel. (9)
Consider now h € Cy(E, R) such that ||h||,, < 1. Lemma 3.1 ensures that there exists a sequence
(9k)k>1 taking values in C}(E,RR) which converges simply to h and such that [|gx||,, < 1. By
dominated convergence, this implies that

(07 = nfve | < CIT — (T + ¢)] = Cle|.

<
<

As F is a Polish space, it follows from Proposition A.6.1 of [38] that

lnf =nidlry = sup (g =g ) < Clel. (10)
heCy(E,R):[|h]|,, <1
As this holds for any € and any T > 0, the strong continuity of n* is established.
It remains to establish uniqueness of the solution 7 of Equation (4) with initial condition
No = Nx. We will once more establish uniqueness component-wise, and focus on n as n"V is
treated in a similar fashion.
Let 1,7 be two solutions of Equation (4) with initial condition 7,.. Let Zfl = (i) and
define 3;" in analogous manner. As before, let 7' > 0. Consider again g € C}(E,R) such that

lgll., <1, and define f; and f{ as previously. Then

T
(off =) < [ [alt =l s (T = ]

T
+Awf
0

T
* %G f il s = fy =il Gl sUF = S
o 17

¥ SOl (T — ) — ¥ sl s - )
t t



Proceeding similarly as in Inequalities (8), we obtain that
H _—H C (" _ —n 1 Cl( "y m_ —m Yoo
[ =izl < 5 | Aot = fE = Solde< g | ) C[nT = SOl | (Gt =i folde )

On the one hand, by definition, f; € Cy(E,R) and ||fi|,, < 1. Thus, it is obvious that
Knf =7, fol < |Inf' — 5 |lrv. On the other hand, it follows from the usual criterion of
continuity for parametric integrals that f7 is continuous on E and ||fZ| < ||fill, < 1. Asa
consequence, |[{nff —nft, fE] < |Inff = ||7v. Hence

T
il — i gl < C f [ — 7.

We then may follow the same steps that allowed to establish Equation (10) from Equation
(9), and obtain that

T
It — 77y < cjo i — 5|yt

Gronwall’s lemma then assures that
Vt e [OvT]> HU{{ _ﬁtHHTV = 0.

Obviously, one obtains the analogous result for n"V' in the same manner. As T > 0 is arbitrary,
this concludes the proof. O

3.1.2 Tightness of ((¥)g=1 in D(Ry, (Mp(E),w))?

Let us now turn to the tightness of ((¥)g=1 in D (R, (Mp(E), w))?, where w designates the
weak topology on Mp(FE). We start by establishing the following preliminary result, whose
proof simply relies on the chain rule.

Lemma 3.3. Let f € Cg(RJr x E,R). Then for any T =ty >0, for any x € E,

T
f(Ta\Il(x7T7t0)) = f(t(],.l') + 'Af (t,@(iﬁ,t,to)) dt.
to
Proof. For z € E and tg € Ry, define g, » : [to, +0) > R, T — f(T,¥(z,T,ty)). Let us start
by noticing that for any (tp,2z) € Ry X E, g4y» € CY(R,). Indeed, Gto,z = fn,s © higz, Where

fns Ry x RMmex - R (u,v) — f(u,(n,s,v))

n—s
and hy, .t Ry — RiFrmax ¢, (t,T - Z (t— to)ek> .
k=1

The chain rule and a quick computation of the differentiable of hy, . yields that for every
t = 1o,

Ghoo®) = 01fus(ig e () = 3 Bust fs (g (1)):

k=1

Notice that 01 fn s(u, v) = 0:f(u, (n,s,v)) and for k > 2, Ok fr s(u, v) = 0r,_, f(u,(n,s,v)). Asa
consequence, we have shown that for any (¢o,z) € Ry x E, for every t > tg, g4, is differentiable
at ¢t and satisfies

Ghoa(t) = ASf (8, ¥ (2,2, 10))
This concludes the proof. O
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Throughout the section, we use the notation § = {H, W, G}. Also, for any f € C}(R; x E,R),
let fi(z) = f(t,z) for any (¢t,z) € Ry x E. Finally, we define for any continuous bounded function
g: Ry xE—R forany t >0 and u = (6,k,(,0) € Uyes Uk

gt = 9tz (1),0)) — g(t, 2 (1)) and gl = g(t,i(2}" (), 0)) — g(t, 2" (1))
Proposition 3.4. Consider (¥ as introduced in Proposition 1.1. For any f € Cbl(R+ x E,R),
T>0and X € {H W},

G fry = <¢X'K,f0>+f GV Afdt + 51— Z f f Ty (t—,u) fX ,QV 1 (dt, du).

YeS

Proof. Let f € C}(Ry x E,R) and X € {H,W}. Recall that, by definition, for any bounded
function g : E - R, forany T >t >0 and u = (0, k,¢,0) € Uycs U%:

<AH(U7T7 t)7g> = g(\I/(j(ka(t—),O'),T, t)) - g(\I/(JIk ( ) T, t))

and (Aw (u,T,t),g) is defined analogously, by replacing H by W and k by /.
From Equation (3), it follows that

|
G fry = K Z fr (¥ (2(0),T,0))+ KX P f LY Ty (t—, ) Ax (u, T, 8), fr)Q ¥ (dt, du).

Using the result from Lemma 3.3, this becomes:

<CX|K7fT> = leli( <fo( J Afi (U (x5 (0), ¢, ))dt)

L f J Ty (t—,u (j (Ax(u, 2, 1), Afz>dz> QYK (dt, du)

KX YeS

t e 2 J Jy}g Ty (t—u) i, Q"™ (dt, du).

X YeS

It follows from the definition of C} (R4 x E,R) that both f and Af are bounded, hence we may
apply Fubini’s theorem to obtain that

@ gy LS X + j f Ty (t— ) QYK (dt, du)
yJT) = KX ~ 0\ Y t—u

KX YeS
T [(Kx
‘&, (Z AL 0200+ 3 ] Bt x4 dm) -

The first sum on the right-hand side equals <(g( |K, fo). From the second line, one recognizes in
the integrand the definition of <(X|K Af.) from Equation (3). This yields the desired result. [

ForY € S, let R
QY (dt, du) = Q¥ (dt, du) — dtpj (du)

be the compensated martingale-measure associated to QYIX,
It follows that, for f € C}(R} x E,R) and X € {H, W},

G pry = MRy v ),
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where we define

MY () = = ZJ J Ty (t—,u) f;X QY (dt, du)
X YeS
and

Vi () =1 foy + j GV Afdt + — Zf f Ty (1, u) f%, i (du)dt
YeS

Proposition 3.5. Let f € C{(Ry x E,R) and X € {H,W}. Then (Mr_,{(lK(f))Tgo is a square
integrable martingale. Using the same notations as in Theorem 2.2, its quadratic variation s
given by

Ay = o [ GO (G2~ 25750+ S0t
where for anyt >0 and x € E,

NG

s

H
HX (z) = GINg)S(Z‘) + Axs(z)i(z) +

s(x).

Proof. Let f € CH(E,R) and X € {H,W}. Consider M?'K(f), which can be written as
X|K X|K X|K X|K
M (f) = MR (F) + M (F) + ME 7 (f).

where, for Y e Sand T > 0

MY (f JJ K—Iy (t—,u) FX, QYK (dt, du).
UY X

Suppose that for any Y € S,

U JUY (IY (t “)fnﬁ)QM}/((dU)dt] <

then for all Y € S, (M?%K(f))T>0 is as square integrable martingale [27], implying that

(Mq)ﬂ(lK(f))T%) also is a square integrable martingale. As QP QWK and Q%K are inde-

pendent, it follows that
MXE (fyyp = S ()
YeS

It thus is enough to study (Mé(lTK(f))TZO for all Y € S. In the following, we will detail the

necessary computations in the case X = H, the case X = W belng similar.

Consider the case Y = H. Start by notlcmg that Ze VsV (t) = KwSY(t), and that for
any k € [1,Ky] and t € [0,T], si(t) and i (t) are less then nma.x. Hence, replacing S(t) by
KWSW(t) in Ty,

E [ (1] - [ [ Jos (2, 7t u>f£)2u§<du>dt]

T Kn
= E [ K% 2 /\HSkH( )i(T]f(t))<V7 (ft(](ka(t)v )) - ft(ka(t)))2>dt

1 2
< KiH)\H(nmax) 4 ||f||ooT
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Since further Ky = K /imax and || f||%, < o0, we obtain that
H|K
E[ME™ (F)yr] < hx(nma) IR T < 0. (1)

Thus (Mg‘tK( f))i=0 is a square integrable martingale whose quadratic variations is given by

<MH‘K J J;JH (IH (t u)ffi) uK (du)dt = J <CH|K7 ((f )I 2ftIft+ft )dt,

using the computations from Equation (3.1.2).
Similarly, (MVH[,'? (f))T=o0 is a square integrable martingale of quadratic variation

,si
T e R T )
Further, for the case Y = G, let us use the equalities S(t) = KySH(t) and I(t) = KT (t).
I(t)/K = I*(t)/N" <1 almost surely, we obtain that

T 2
H|K 1 4
E[ME" ()r| = E f f —Ta(t,u)fll, ) n(du)dt| < —Ba(nma)® If1% T.
o Jug \Kn K
K
As before, (Mg ‘7{( (f))r=0 thus is a square integrable martingale of quadratic variation given by

E (1)yr = - o j L0 (G ()" — 2o+ 2.

This yields the desired result for (Mr_,{{ |K( f))1=0, and proceeding similarly for (M;V |K( =0
concludes the proof. O

We are now ready to focus on the tightness of ((¥)g>1, endowing Mp(E) with the vague
topology v as a first step.

Proposition 3.6. Under the assumptions of Theorem 2.2, the sequence ((¥)g=1 is tight in
D (Ry, (Mp(E),v))*.

The proof relies on the fact that in order to establish tightness of ((¥)g=1, it is enough to
show that for any X € {H, W}, (<CX|K, f>) K> is tight for a large enough set of test functions f
[34]. This in turn is ensured using the Aldous [1] and Rebolledo [18] criteria, whose application
is straightforward thanks to the upper bounds established in the previous proof.

Proof. Once more, we will proceed component-wise and show that (C H|K ) K1 and (C WK )
are both tight in D (R, (Mp(E),v)).

Let us focus on ((H|K)K>1. According to Theorem 2.1 of [34], it is sufficient to show that
for any function f belonging/to a dense subset of

K>1

Co(E,R) = {f : E — R continuous s.t. | l}im |f(z)] = O} ,
the sequence (<CH K f>) Kk>1 s tight in D(R4+,R). Notice that by density of C'Z(R"x) in
Co(R™m=x) endowed with the uniform norm, it follows that Co(E,R) n C}(E,R) is also dense in
Co(E,R) endowed with the uniform norm. Thus, let us consider f € Co(E,R) n C}(E,R).
According to the Aldous [I] and Rebolledo [18] criteria, in order to prove the tightness of
((CHIE | £5) k=1, it is enough to show that:
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and (V;"" () k=0

(i) For any ¢ belonging to a dense subset 7 of R™, both (<MH‘K(f)>t)K>O >

are tight in R.

(ii) For any T' > 0, for any e, > 0, there exist § > 0 and Ky € N such that for any
two sequences of stopping times (Sk)x>1 and (Tx)x>1 satisfying Sx < Tk < T for all

integers K,
sup P (IOM7E (f))s,c = MTE(f)yp,e| = 0, Tic < Sk +8) < e
K=Ky
and sup <| H‘K( f) - Vj{i'K(fﬂ > a, Tk < Sk + 5) <e
K=Ky

Notice that, in order to establish (i), it is enough to show that for any ¢ > 0,

sup E []<MH‘K(f)>t|] < oo and sup E HV}HW(f)H < 0.
K>1 K>1

Recalling that C' = 2nmax (AgMmax + AW nmax + Ba), it follows from Equation (11) that

E[KM TR ()] < 2nmaxC IF15 ¢.

Similar computations yield that

ENV ™ ON <1/ le + IAf Il + C I Flls t.

As f € C}(E,R), this implies that (i) holds.

It remains to check (ii). Let €, > 0, and consider two sequences of stopping times (Sk)x
and (Tk)g=1 satisfying Sk < Tx < T for all integers K. As previously, using Equation (11),
we obtain the following upper bound:

B [KMPE(£))s,c = M (£, ||Tic < S + 8] <E U dt|Tic < Sic + 6] = 2maxC £,

< SO,
Hence, using conditional Markov’s inequality,
P (11 (s — ()| > 0. T < Sic +6) < —tmuaC I (12)
Proceeding similarly, we also obtain that
B (VIS (1)~ Vi (1) = . T < S +6) < (JASlL, + AL (13)

Equations (12) and (13) imply the existence of § and Ky such that (ii) is satisfied. Naturally,
¢WIK can be handled analogously. This concludes the proof. O

Finally, this result on the tightness of ((¥)g=1 in D(R,, (Mp(E),w))? lets us establish the
main result of this subsection.

Proposition 3.7. Under the assumptions of Theorem 2.2, the sequence ((¥)x=1 is tight in

DR+, (Mp(E),w))?.
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Proof. Let X € {H,W}. Tightness in D(R;, (Mp(E),w)) of ((X¥)xk>; will be shown using
Theorem 1.1.8 from [39], which we state in our setting for the sake of completeness. Let ® : z €
R — 622 — 152% + 1022 and for N > 1, define smooth approximations of z € F — 1{\\7(1)”@21\7}
by:

Ve e E,2VYN =2 1,on(x) =20 v (||7(2)||, — (N =1)) A 1).

Then in order to ensure the tightness of ((X1¥) g~ in DRy, (Mp(E),w)), it is sufficient to
show that for any T = 0, the following conditions hold:

loo

(i) There exists a family of functions F' which is dense in Co(E,R) and stable under addition,
such that for any f € F U {x € E — 1}, the sequence ((¢XI5, f)) k> is tight in D(R,,R).

(ii)
hm lim sup E[sup <Ct ,<;5N>] =0

N—ow K o0 t<T
(iii) Any limiting value of ((X15) k=, if it exists, belongs to C([0,T], (Mp(E),w)).

The proof hence consists in checking those assumptions. Let T' > 0, and consider X = H, as
the case X = W can be treated similarly. We may see that (i) is satisfied, as we have shown in
the proof of Proposition 3.6 that for any f € Co(E,R) n C}(E,R), ((CHIK | f3) k=1 is tight, and

further for any K > 1, for any T > 0, {(,, HIK , 1) =1 almost surely.
Let us now turn our attention to ( i). Start by noticing that for any N > 1 and z € E,

Mmax

ON (@) < Ly, on) < Fvaal@) = 3 fyi(@)
=1

where fn_1i(%) = Lin(z)—s(a)i, ()| =N-1}-
Let t € [0,T]. For any N > t, x € E, z € [0,t] and o > 0, it holds by definition that

SN (UGag (2=),0), 8 2) = v, (W (@ (2=), 6 2) = Linge)—s(@)mi-1, jo—(t—2)[>N—1} < L{g=N_1}-

Hence, using Proposition 1.1 and the above upper bounds, it follows that almost surely,

H YeS

Deﬁning as previously C = 2Nmax ()\Hnmax + )\anax + ,3(;), this leads to the fOHOWil’lg upper
bound:

Blsup(¢/ o)) < Elsup 12 ZfN (0).£.0)] + (N~ 1. 20)).

t<T KH

As a consequence, Assumption 2.1 (i) ensures that (ii) is satisfied. Notice that this assumption
could actually be a little bit relaxed here, as it would be enough if the supremum over K were
replaced by the limit superior over K — 0.

In order to check that condition (iii) holds, we will follow the arguments presented in [19].
Suppose that n* is a limiting value of (¢#1%)~,. By definition,

H|K H|K 1
sup sup [ =1 pl < —
te[0,T] feL™ || fll <1
As the application u — supyepo ry [{pit, f) — {pe—, f)] is continuous on D([0, T, (M p(E),v)) for
any f in a measure-determining countable set, it follows that 5 belongs to C([0, T], (M (E), v)).
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Let us now introduce ¢n v = ¢n(1 — ¢ar), which serves as a smooth and compactly sup-
ported approximation of x € E + 1{N<H7'(Jf)|| <M} for N < M. As, on the one hand,

= SuPsero, 7<He ON,M) 18 continuous on D([0, T, (Mp(E),v)), and on the other hand, for

any K > 1, supte[o,T]<CtX‘K, on M) < 1, it follows that:

E[ sup (nff,onad] = lim E[ sup (G5, énan)] < limsup E[ sup (G, o).
te[0,T7] K= “ef0,7] K—o  te[0,T]

Letting M go to infinity in the left hand side, dominated convergence ensures that

E[ sup <771{{,¢N>] < limsup E[ sup <CtX|K,¢N>] — 0,
te[0,1] K—w  t€[0,T] N—oo

where the convergence of the right hand side is achieved as in the proof of (ii). In particular,
it thus is possible to extract a subsequence from (supte[O’T]@{I , &N )N which converges almost
surely to zero. This implies that for any e, there exists N such that almost surely,

lloo

1- SUP]<"7§I> 1{“7(‘)

gN}> < sup <777{{7¢N> <€
te[0,T te[0,T

Thus (n/ )te[o,] is almost surely tight.
Let g € Cp(E), and let gy = g(1 — fn). It then holds that for h small so that ¢ + h € [0,T],

Knfin, 9y — 'l < Infhn, g — 9l + [Knfn, an) — il and L + [Knff g — g™

Let € > 0. As |g — gn| < ||gll,, fn, there exists Ny such that supte[O’T]@fI,g — gnyy < €/3.
Further, as n € C([0,T], (Mp(E),v)), for h small enough, [(nf, . gn,>—nft, gne)| < €/3. This
allows to conclude that nff € C([0,T], (M p(E),w)), establishing (iii) and finally tightness of n*
in D(Ry, ( Mp(E),w)). O

3.1.3 Identification of the limiting values of (¢¥)x>

The tightness of ((¥)x>1 in the space D(Ry, Mp(E),w))? ensures that from any subsequence
of (¢(®)g=1, one may extract a subsubsequence which converges in this space. The limits of
these subsubsequences may be characterized as follows.

Proposition 3.8. Under the assumptions of Theorem 2.2, all limiting values of ((¥)g=1 in
D (R, (Mp(E),w))?® are continuous with regard to the total variation norm, and solutions of
Equation (4).

Proof. Consider a subsequence (¢¥5)) k=1 of (¢5) g1 which converges in law in D (R, (Mp(E), w))?,
and let n be its limit.

Notice that it follows from the Proof of Proposition 3.7 that n € C(R, (Mg(E),w))? almost
surely. Hence, following Proposition A.6.1 of [38], for any X € {H, W},

Iz —mg—_llrv = sup [, f) = <m—, ) = 0 almost surely.
feCs(BR): o<1

It remains to show that n satisfies Equation (4). Let 7> 0 and f € C{(R; x E,R), and
consider the application 1/1? defined by
H H H T T T
ol o) = off = ol g = |l Afie = [ Gt AusiCAF — e

Tl i)
0 <77(1);Ian>

P (14)
f <172/V,S><UXV’AWSi><ng{’S(ftI2f;)>dt/80

<771{{,S(f1;2*ft)>dt-



Start by noticing that o4 (¢#(5)) = M?‘¢(K)(f), as KySH(t) = KywSW(t). Using Jensen’s
inequality, it follows from Equation (11) that

Eflf (¢PFN TP < Eflwf (¢FUO)PT = ELMITE(f))] < 72nmaxc 15T ——— 0.

Suppose that (P2 (¢PU5))) k=1 converges in law to 14 (¢). According to Theorem 3.5 of
[7], it then is enough to proof that (wr}{((‘p(K)))K}l is uniformly integrable to obtain that its
expectation converges to the expectation of 1/175 (¢). In our case, uniform integrability is easily
assured as the sequence (X (¢?F))) =1 is bounded. Indeed, using the fact that for all T > 0

C“TO(K) € My, we obtain from Equation (14) that

[ ()| < (@ +C) Il + 1AFIL) T
We may now conclude that
Eflof Q)] = lim E[lwf (5] = o,

which yields the desired result.

It thus suffices to show that (¢H (¢¥5))) ks converges in law to 4 (¢). According to
Skorokhod’s representation theorem, there exists a probability space €2 on which one may define
((X)k>1 and 7 equal in law to (C“’(K Yk>1 and 7, respectively, such that ((%)gs1 converges
almost surely in D(R,, (Mp(E),w)) to 7 on Q. In particular, it holds that

VT > 0,VX € {H,W},Vg e Cy(E), X|K,g> w2 (i, g) almost surely.
—00
It follows immediately that for any ¢ € [0,7] and X € {H, W}, almost surely,

(G I (G ATD) ——— (GRS 0, i AT (15)

Since |<C~tX K A ol < 2||Df|l,,, where Df designates the differential of f, dominated conver-
gence ensures that

T
J {(; X|K S AfoHdt }:;)fo <ﬁtX,Aft>dt almost surely. (16)

In order to establish the desired convergence of the last three terms of wjlf (5 ), we will make
use of the following proposition, whose proof is postponed. In this context, a d-dimensional
rectangle is a set A defined as the product of d intervals of R u {—o0, +0}.

Proposition 3.9. For any n € [1,nmax], for any s € [0,n], consider m = m(n,s) < o, a
set (A" )k<m of (n — s)-dimensional rectangles and a set (¢ )p<m of functions belonging to
CHR™ ). For any 7 € R"™x et 71 s = (T1,...,Tn—s). Define the function ¢ : E — R by

m(n,s)

Ve = (n,s, 7)€ E, ¢z Z 1,4”5 Tin—s)Ph  (TLn—s)-

Then for any X € {H,W} and T > 0, it holds that
G 0) s G ¢ in L.
K—w

25



Let us focus on the second-to-last term, representing infection events occurring within work-
places, as the other two can be treated similarly.

The application ¢(x) = Adws(x)i(z) is of the form described in Proposition 3.9, hence for any

e [0,T], <CW|K Awsi) converges in L' to <ﬁZV‘K,)\Wsi> as K tends to infinity. Also, notice
that as f € C{(R; x E,R), it follows that for any ¢ € [0,T1], f# € C}(E). Thus Proposition 3.9
ensures that for any ¢ € [0,T], (¢, HlK s(ff — fi)) converges in L' to <~H|K s(ff — fi)) as K
tends to infinity.

In particular, the following convergence holds in probability:

= @ s s = ) S Xes= G Awsh s = 1)

and D = {(x,y) : \x! cy 2}, then for any K > 1, (X[, (¢, FVIK s)) €
D and (X, {#}",s)) € D, almost surely. As <§t ,s> converges almost surely to {7}V ,s>, and
the application (z,y) — (2/y)1{y-0 is continuous on D, we deduce the following convergence
in probability:

Letting ¢ = 2A\wn?

masx ||/l

WK : WK i
v = W< G (T — f)y —— ¥y o= AWV GHIE (g2 g,
+ )

i s
In addition, for any K > 1 and any ¢ € [0,T], |V;¥| < 2Aw7nmax || f|lo- Thus using twice
dominated convergence, we first obtain that the above convergence of (Y;)x~1 to Y; also holds

in L', and subsequently the following L'-convergence:

s1 FVIK si
f &« W.I?f: oD (G (7 — it — f & o AV; VG s(F — gy (07)

Reasoning in a similar manner, one also obtains:

T T
|G s it o |Gl AT = fide i L
0 —®© Jo (18)

g <5tHa1> g <77{Iai> ~H 7 o7l
Jy s G — ot |G SF e
Thus, Equations (15-18) imply that all the terms on the right hand side of the definition of
1/17[! (QN"K ) as stated in Equation (14) converge in probability, and thus their linear combination
converges in probability to the linear combination of their limits. In other words, @ZJTH (5K )
converges in probability to %}! (1), which ensures as desired that wjff (¢%) converges in law to

¥ (n). This concludes the proof.
O

In order to conclude, we only need to show that Proposition 3.9 holds.

Proof of Proposition 3.9. Step 1. Recall that a d-dimensional rectangle is a set A defined as
the product of d intervals of R U {—o0, +0oo}. If all d intervals are included in R, the rectangle
will further be said finite.

Let X € {H,W}, n € [1,nmax] and s € [0,n]. We start by showing that for any 7' > 0 and
any finite (n — s)-dimensional rectangle B,

¢ X|K7 1{(ns)}xB) Ko <ﬁ’]){‘K,1{(n,S)}XB> almost surely. (19)
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As 7 € C(Ry, (Mp(E),w)), it follows that for any T, E;('K converges in law to 77 in
D(Ry, (Mp(E),w)). Thus, in order to establish the desired result, it is sufficient to show
that B = {(n,s)} x B is a 7 -continuity set, in which case the Portmanteau theorem allows to
conclude.

For any set A, let 0A be the boundary of A. Then 0B = {(n,s)} x dB. As B is a (n — s)-
dimensional rectangle, there exist a; < b; € R for i € [1,n — s] such that B can be written as the
product of intervals (potentially open, closed or half-open) delimited by a; < b;, for i € [1,n—s].

Thus i
U U (H aj, bj] x {c} x H [ak,bk]>.

1=1 cef{a;,b;} k=i+1

Consider any ¢ € R. We are going to prove that

T > L)) (T by b [T s anabi])) = O (20)
which will be enough to conclude. In order to achieve this, let us introduce a mollifier ¢ € C*(R)
in the same sense as in the proof of Lemma 3.1, with compact support in [—1,1]. For € > 0,
define the function . : z +— e~ 11 (x/e), whose support lies in [—¢, €] and which converges to do
in the sense of distributions, when e goes to zero. For any x = (n,s,7) € F, let

6(2) = Lnr)=ns(e) q(fll%J*wAﬁﬂl*@dn)

J#z

As ¢. € CL(E) and E;QK converges almost surely to 75 in D(Ry, (Mp(E),w)), dominated
convergence implies that

E[(i, ¢0)] = lim E[(G ", 60)].

Notice that
¢=(7) < Lin(a)—s(z)>i} Le * Pe(Ti(T)).

Hence proceeding as in the Proof of Proposition 3.7, it follows that

1 Kx

IX|K c (T
B[, 6] <E Kx ];1 Lixsx(0)>4, (T,fi(O)—T)—cge}] +2fo v([cH(T—t)—¢, c+(T—t)+e])dL.

Absolute continuity of v with regard to the Lebesgue measure and Assumption 2.1 ensure that
the right hand side is dominated by a function c¢(e) which does not depend on K, and which
goes to zero with e. Thus E[(/j, ¢:)] < c(¢). In particular, one may construct a sequence
(€n)n=1 which converges to 0 and satisfies }} -, c(en) < 0. Then on the one hand, the Borel-
Cantelli lemma ensures that (7% , ¢.) converges almost surely to 0 as n tends to infinity. On the
other hand, by dominated convergence, <ﬁ7)§ , ¢y converges almost surely to the left-hand side
of Equation (20) as n tends to infinity, hence Equation (20) is proven to be true.

As a consequence, we conclude that (ijz*,dB) = 0, and thus Equation (19) holds.

Step 2. Consider now a function ¢ as described in the proposition. For any N, let us
introduce a partition of R"™° whose elements consist in (partially open) hypercubes of side
length 2=V, For every k < m(n,s), a partition (B]i\fj)jgl of A® is obtained by taking the
intersection of A}* with those hypercubes. As A;"° is a rectangle itself, the famﬂy (BY )iz
consists of rectangles of side length at most 27V. For every j, consider a point Zk belonging to
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B,f;vj. Finally, define the set Jy (k) = {j = 0 : sup{||z|, : xz € B,]ﬂ\fj} < N}, which contains only a
finite number of elements. Then we can define the following approximation of ¢:

m(n,s) Jn (k
VrzeFE, ¢N($) = Z 1{n(z )=n,s(z)=s} Z Z 90 Zk:,] 1BN (Tln S(x»
1<n<nmax
0<s<n

Using our result from the first step, for every (n,s) such that 1 < n < nyax and 0 < s < n,
for every k < m(n,s) and j < Jy(k), we obtain that

I%im <57)1(|K, on) = (i, ¢n) almost surely. (21)
—00

On the one hand, notice that for any x € E such that ||7(x)[,, > N, ¢n(x) = 0. Hence for
any = = (n, s, T), one obtains the following inequality:

m(n,s) Jy (k)

[on(2) = d(2)] < @)Ly, oy + Z Z [ Ph(-s) gy (Tia-s). (22)
=1

On the one hand, for any such =z, it is clear that limy_,o |<;5(:U)|1{”T” SN} = 0. On the other

hand, as ¢;"* € C} (R"™*), the mean value inequality implies that

Yk <m(n,s),Vj < In(k),Ve e B, oy *(20) — @b (rin-s)| < [ Dol du,

where dy denotes the maximum of the diameters of d-dimensional hypercubes of side length
27N for d < npax. In particular, this ensures that for any z € E, limy_,o [¢n(x) — ¢(z)| = 0.
Thus, by dominated convergence,

(i O = <77T L ). (23)

Furthermore, it follows from Equation (22) that for any K > 1,
X K X K X|K
B[ ow) = G 0 < 10l 500 BUG 1y o] + 10611 dv
Reasoning as in the proof of Proposition 3.7, and using Assumption 2.1, we obtain that

hm sup EKCT 1{H Ol >N}>]

HOO K>

and as a consequence,

lim_sup BII(Gp ", on) = (G, o)1) = 0. (24)

N—ow i

Noticing that

E[[<Gr ", 6)=Ciip ™ o] < EIKG ™ 6=omIHEIIGE ™, owd—Giip ™ omd I EIIG7 ™ on =]

and using Equation (24), as well as dominated convergence applied to Equations (21) and (23),
finally yields that

lim E[[(G ", 6) — G )] = 0

This concludes the proof. ]
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3.1.4 Proof of Theorem 2.2

The previous results are sufficient to establish Theorem 2.2. Indeed, it follows from Propositions
3.7 and 3.8 that from every subsequence of ((¥)g=1, one may extract a subsubsequence con-
verging in D(R,, (Mp(E),w))? to a solution of Equation (4) which is continuous with respect
to the total variation norm. As by assumption, Q({( converges in law to ng € 91, Proposition
3.2 implies that all of these subsubsequences converge to the same limit 7, which is the unique
solution of Equation (4) with initial condition ny. As 1y € 9, Proposition 3.2 further ensures
that 7 € D(R,, M ). This establishes the convergence of (¢¥)g=1 to nin D(R,, M), as desired.

3.2 Proof of Theorem 2.3

This section is devoted to extracting dynamical system (6a—c) from the measure-valued integral
equation (4), under the assumption that v is the exponential distribution of parameter v. From
now on, we suppose that this assumption is satisfied, and further that ny = 7o as given by (5).

3.2.1 Preliminary study of the dynamical system

Before establishing Theorem 2.3 itself, let us start by showing that the solution of dynamical
system (6a—c) endowed with initial condition (7) admits at most a unique solution. Existence
will follow from the proofs of the forthcoming subsections, since they construct a solution to the
dynamical system.

For this section, let us rewrite dynamical system (6a—c) as follows, in order to emphasize the
associated Cauchy problem. Recall that the dynamical system is of dimension d = 2 + 2#S =
T'max (nmax + 1)

Let y € CY(Ry,RY) and f: R? — R? be defined such that dynamical system (6a-c) amounts
to

y'(t) = fy(t)) vt =0. (25)

The components of y (and resp. f) will be called s, i and ”é,]) (resp. fs, fi and fx,s ) for
X € {H,W} and (S,I) € S, in order to simplify their identification with the unknowns of the
corresponding dynamical system. More precisely, consider the applications

A
x(y) = _ X Z ST ”{9,1) for X e {H, W}, and 7¢(y) = Pgi.
mx
(S,1)es
Then f : R - R? is defined as follows, for any y = (s,i,né Ik X e{H,W},(S,1I)eS)eR®:

fs() = —=(ru(y) + Tw(y) + 7a(y)s) and fi(y) = —fs(y) — i,
while for all X € {H,W} and (S,I) €S

<y
fxisn(y) = — {(AXI i XS() + 76y )> S — ’YI] ns.n) + 7T+ D105 111y 1S4 <nman)

=)
+ <Ax(I — 1) + XT + Tg(y)> (S + 1)n€g+171_1)1{[>1}.

Also, notice that there are some natural constraints that we expect the solution of dynamical
system (6a—c) to satisfy. Clearly, s, i and nx ST should belong to [0, 1]. Also, as the population is
partitioned into susceptible, infected and removed individuals, it follows that S+Z 1. Similarly,
as all individuals belong to exactly one household and one workplace, and as n( S corresponds
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to the proportion of structures of type X which contain S susceptible and I infected individuals,
we expect that for X € {H, W},

Z ( n <1, and Z SnSI) mxs. (26)
(S,1)es (S,1)eS

We thus define the following set V' < R¢, which formalizes these constraints:

V=<yel0,1]%:s+i<1, Z ngg,l) <1and mxs— Z 5”@1) >0 VX e{H W}
(S,1)eS (S,1)eS

Proposition 3.10. Let y* € V. Then the following assertions hold:

(i) Suppose that there exists a solution y of the Cauchy problem (25) with initial condition
y(0) = y*. Then y(t) € V for any t = 0 for which y is well defined.

(i) At most, there exists a unique such solution y.

(i1i) In particular, for any e > 0, the dynamical system (6a—c) endowed with initial condition
(7) admits at most a unique solution.

The proof of this proposition is available in Supplementary Material S2. It relies on estab-
lishing the Lipschitz continuity of f on V', from which uniqueness is deduced using Gronwall’s
lemma.

3.2.2 Absolute continuity

Consider any n € [1, nmax] and s € [0,n]. The aim of this section is to establish that condition-
ally on a structure being of size n and containing s susceptibles, the distribution of the remaining
infectious periods of its n — s members who have contracted the disease at some previous time,
is absolutely continuous with respect to the Lebesgue measure on R"%. More precisely, we
will see that at any time t > 0, there exists a function pf(’n’s : R"% — R, such that for any
non-negative measurable function f : F — R, for any X € {H,W} and t > 0,

s(o):s Rn—s

s 1{n (o —n} fe)) = fn,s,7)p ™ (7)dr.
In the following, for any n > 1, let 0,, be the zero of R". Further, for k € [1,n] and 7 € R",
let 7= (71,...,7) and 71 = (71,...,7%). Finally, (€x)1<k<nma, i the canonical basis of R™max,

Lemma 3.11. For each X € {H, W}, there exists a family of measurable functions indexed by
n € [1,nmax]] and s € [0,n] such that

Vse [0,n—1], po™ : Ry x R"* - R,
(t,7) = pp ™5 (7),

which verifies that for any f : E — R non-negative measurable function,

AOEY ( (1,7, O, ) ™" + J (n, s, Zmek o )d7>'

n=1
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The proof relies on studying the distribution 7% conditionally on structures being of given
size and number of susceptibles. Absolute continuity with regard to the Lebesgue measure
is then established by domination with another, absolutely continuous measure. We refer to
Supplementary Material S2 for details.

Notice that in the case n = s, pX™" depends on ¢ alone, whereas for s < n, pX™* depends
both on ¢t and on 7 € R"*. Throughout the following, with some abuse of notation, this
distinction will mostly be implicit. The adaptation to the case s = n is generally straightforward.
For instance, forthcoming Equation (27) reduces to

d X,n,n X Xnn
Tl — A
dtpt I
where
= Ayv— si LA
t ng{ U GnH

When integrating over 7, the case n = s becomes

|, Py = g
RO

Similarly, symbolically, for any 7 € R"~% i(7) = 0 whenever n — s = 0. This makes sense, as in
a structure of size n containing n susceptibles, there are no infected. This leads for example to

X,n X
j Liitry=yp; " (T)dT = p "
RO
When the adaptation is less clear, the case n = s will be treated separately.

Proposition 3.12. The family (pXm’S)KngnmaX’ogsgn 1s a weak solution to the following system
of partial differential equations: for any (n,s) € [1, nmax] % [0,n], for any 7€ R"™% and t = 0,

an Za‘rkpi(ns —S()\XZ( )+AX) XnS(T)

X,n,s+1 — T (27)
+ 1{s+1<n}/\X(8+ Di(Tin—s-1)pp " (Tin-s-1)1ir,_>0pye 7"

Xn,s+1
+ 1{s+1<n}Aix(3 + 1)p; Y

with initial condition given by

Tin—s—1)1(r,_ s0pve” 77",

P = mXe™ and Vs < n,T e RVTS, po ™5 (r) :71'35(2)58(]_—5) 1{TE(R* wsye —Y Xk Tk,

Proof. Let (n,s) € [1,nmax] X [0,n]. In the case s = n, Equation (27) follows directly from
Equation (4) applied to f(z) = 1{n(z)=ns(z)=s) for all m € £ as Af = ff=o.

Suppose now that s < n. Consider f measurable on E such that f(z) = 0 if (n(z),s(z)) #
(n,s) and f(z) = fns(T1,n—s(z)) otherwise, where f, ; € C*(R"™*) is compactly supported. In
particular, for any o > 0 and = € E such that s(z) > 1, notice that f(j(z,0)) is zero, unless
s+ 1 <n and (n(x),s(z)) = (n,s + 1) in which case it is equal to fy, (T1,n—s—1(z) + Te€n_s).
Recalling that fZ(z) = (v, f(i(z, -)), injecting f into Equation (4) and differentiating with regard
to t thus yields

d n—s
S| s ZJ Ore fa(T)P () dr

RTLS

+00

—f 7.()\)(81'( ) )fn 5( ) an( )dT + 1{s_n1}A§(TL< o fn,n—1(061)7670d0> pg(,n,n
+0o0 x "
T 1{s+1<n}J (Axi(u) + Ag()(s +1) ( frs(u+ Uens)')’e_’wdo'> Pt . (u)du.
Rn—s—1 0
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An integration by parts leads to the following equality, as f, s is of compact support which
implies that the boundary terms of the integration by parts vanish:

—ZJ ory Frns (1) dT—Zf Fons (PO, 57 (7).

Injecting this into the previous computation yields that pX:m*

(27).
Finally, initial conditions pg " for n € [1, umay] and s € [0, 7] follow directly from (5). [

is a weak solution to Equation

3.2.3 Proof of Theorem 2.3

Before proceeding, let us introduce the following notation. For f € Cl} (RyxE,R)and T >t >0,
define

fri:xe Ew— f(T,9(x,T,t)) and f%,t cxe B, fri(i(z,-))). (28)

We can now state an intermediate result, which is similar in spirit to Proposition 3.4.

Proposition 3.13. Let n be the unique solution in C(Ry,9M) of Equation (4). Then for any
feCLRy x E,R), for X € {H, W},

T
<77’1)“(7 fT> = <7I())(7 fT,0> + Ax L <77tXa Si(f%,t - fT,t)>dt
+ Axf =i SO 8(fFy — fre) et + 5Gf L s(fFy — fra))dt.
0 Sf o N

Proof. The proof follows the exact same lines as the proof of Proposition 3.4, showing that for
any f € C}(Ry x E), Equation (29) leads to Equation (4) using Lemma 3.3. O

Throughout this section, let h be the Heaviside step function, i.e. h(z) = 1.~y for any real
number z. Also, consider a mollifier v on R in the same sense as in the Proof of Lemma 3.1. For
a > 0, define ¥, (2) = a~%(z/a) for all z € R. Let us introduce, for any o > 0, the function
ha : R — [0, 1] defined by

VzeR, ha(z) =hxty(z).

As 1), converges to dp in the sense of distributions when « tends to zero, the families of functions
(ha)a>0 and (¥q)a=0 serve as smooth approximations of h and &y respectively. This will be useful
in the proofs of this section.

This allows us to establish the following proposition, which serves as a starting point of the
proof of Theorem 2.3.

Proposition 3.14. Under the assumptions of Theorem 2.3, it holds that for any X € {H,W},
(StX)tzo and (Z};X)tgo satisfy

d X X i’ StX
% i X<77t aSl>+ <nt 7Sl>+5G )
q J (30)
d— = dtst +’yzt .
Further,
s = (1 —e)n™ and iff =en™. (31)
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Proof. Notice that s € C}(E,R) is such that As = 0 and s?(z) —s(z) = —1 for all z € E. It thus
follows immediately from Equation (4) that, for any X € {H, W},

T H
5%( = 35( —f <)‘X<77t ,si) + A *<T7t ,Sl>+5G75t ) dt.

0 t

Further, since n € C(R, (M1, ||- |rv)), it follows that for any ¢ > 0, (¢X) k=1 converges in law to

Ne. As s is continuous and bounded on F, this implies that <C£X IK ,sy — (ni¥,s) when K tends

to infinity. The analogous result holds for n. Hence Lemma 1.2 ensures that, for any ¢ > 0,
s /sX = n*/nX. In other words,

St

X X X T H X
S =S — 1N JO ( X<77t 7Sl>+7x<nt 7SI>+BG H X >dt

Asne C(Ry, (M, |- |rv)), and s and i are bounded measurable functions, it follows that the
integrand is continuous with regard to ¢. Thus, the first line of Equation (30) comes from the
fundamental theorem of calculus.

Recall that 19 = 19 as defined in Equation (5). In particular, we now have n

Y ooiw = S N a(T A -9 Camk 0ot @

n=1 =0

X — myx, hence

This yields the first part of Equation (31)

It remains to take an interest in ;. As i does not belong to C{(E,R) we cannot proceed in
the same way. Remember that i(z) = 372 h(7;) for x = (n,s,7) € E. Let us introduce, for
any « > 0, the function iy : E — [[1, nyax] deﬁned by

Mmax

Ve = (n,s,7) e E, iu(zr)= Z ha(Tj).

Fix @ > 0. As ¢/, is bounded, it follows from the usual properties of convolution that
ha € CL(R) and hence i, € C}(F,R). Thus, we may apply Proposition 3.13 and obtain that

T
17y ia) = < (ia) 700 + )\XL (it 8i((ia) Ty — (i) )t
T ;H

71 1
+ x| == s s((a)fy — () e)dt + Ba | <t s((a)Fe — (a)re))dt.
0 sy on

Notice that |[ia||., = max for any a > 0, as well as [|s||,, = Pmax, |[illo; = Tmax, [[Silly, < P2ax
and (™, si)/s;X < npay for any t > 0. As further 1, € My for any ¢ > 0, we may let a go to
zero and use dominated convergence to obtain that

T
G = )+ A | o siG, — i)
0
T 1 X X A r ZH X A (33)
+ox | =t sixnt s, —ipe)ydt + Ba | L nit,s(i, — irg)dt.
0 s 0on

Further, for any 0 > 0, T >t >0and z € F,
i(@(j(l’,a),T, t)) - i(\If(:L',T,t)) = 1{U>(T—t)}7
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hence
it () —irg(2) = v([T —t,00)) = e 7T,

Injecting this into Equation (33) and using as before that s; /st =nX /n yields

X X . X—WTT'yt AX , x . X, X . iHSg(
ip =My »ire) +n-e , e n7<77t ,si) + niy<77t 751>+5Gn X dt. (34)

As ng = no, we may compute the first term of the right-hand side of this equation and obtain
that

o’ iro) = (Moer imoy = e 77 i" Z ( > &)™ M (n—s) = e Men®. (35)

n=1

Using the continuity of the integrand in Equation (34), we may now differentiate it with regard
to T

d x

'H 37)5 X d X
gt = (25 s+ 2 s+ T ) i = - st i

We thus have recovered the second line of Equation (30). Finally, the second half of Equation
(31) is obtained by a computation analogous to (32). This concludes the proof. O

For (8,I) € S, define the function (50 : E — {0,1} by
FED(z) = 1(s(2)=5,i(x)=1}-

For t > 0, let ”59,1) (t) = i, fDY, which defines a continuous function on Ry as f(5:0)
is bounded and measurable and n € C(R4, (9, | - [7v)). In words, this corresponds to the
proportion of structures of type X which contain exactly S susceptible and [ infected individuals.
Notice that

{xe E:s(x)i(zr) >0} ={xe E:s(x)i(x) >0, (s(x),i(z)) € S}.

We may thus rewrite the first line of Equation (30) as follows:

istxz—nX Ax Z Slnfgl)(t)+)\fY Z SIn(YSI)()vLﬁG i’ s
X : X : H X
dt (S Des n* ($Tes nen
Similarly, it holds that
x _ M 1{—1 Ax 'H
Ay = <77t >Sl>+5G7H:7 Z SInS[ +BG H
s St (S,1)es

which may also be written in terms of the notations of Equation (6a—c):
X Sty - i’
Ay = X Tx(t) + BanH-

This motivates a closer study of the functions nfg n for (S,I) € S.
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Proposition 3.15. Let X € {H,W} and (S,I) € S. Under the assumptions of Theorem 2.3, it
holds that

d

2 ® =7 ((+ D0 14y O 1 2nma) — 1050 (1)
+Ax ((5 + 1) = DSy (O Lgsy — SInfs ), (t)) (36)
+ A <(5 + Dnfsirr-n(O1us1y — Sné[)(t)> :

Further

S+1
wn© = (O ) - 0% (37)
Proof. Let X € {H,W} and (S,I) € S. It follows from Lemma 3.11 that
(0 = i 160y = ST 1 S
(S,I) U < {Z(T)=I}10t T)aT,
n=S+1 Rn=

where in the second equality, the sum over n starts at .S + [ as it is impossible to observe S
susceptible and I infected members in a group of size n < S + I. Using Proposition 3.12, we
may deduce that
d < nmax
an(s’l)(t) jn_ 1{Z T) I}atp " (T)dT‘
n=S+1

Equation (27) yields that

d Nmax N— S
Zen® =", J Litr)=1y0npi " (T)dT
n=S+1I k=1 YR"™

Mmax

-2 Lgn Lam=n) (Ax ST = AFS) 5™ ()

’n:S+I - (38)
+ Z 1{s+1<n}J 1= Ax (S + 1)i(T1,n—5- 1)ptxnSH(Tl,n—s—1)1{Tn,s>o}’767w’“sd7
n=S+I

Mmax

+ Z 1{S+1<”}J Listr=n A7 (S + 1)p XnS+1(Tl,n—S—l)l{rn,s>0}’76_'wn‘sdT.
n=S+1

Let us start by noticing that the second line of Equation (38) may be written as
nmax
— (Ax ST — A{*S) f Ligm=np; Xm5(r) = — (Ax ST — AYS) nis.p ().
n=5S+1

Next, let us pay attention to the third and fourth line of Equation (38). For any 7 € R"™5,
it appears that on the event 7,,_g > 0, i(7) = I if and only if i(7y ,—g—1) = I — 1. The third line
thus becomes

) 1{S+1<n}f s )=t AX (S + DI = Do " s )1, mgpre” ™S dr
n=S+1
ST =1) Y Tysiren f Loy ™S (7!
n=S+1 Rr—S-1
=1y Ax(S+ 1) - 1) f Li(ry=1— l}th"SH( Ydr'
n=S+1 Rr—S5-1

= L=y Ax (S + D = Dnfsyy (0
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In this computation, the indicator function of the event {I > 1} appears as for any (n, s), p*™*

never charges the space {i(7) < 0}. As further S + 1 < n whenever S + 1 < n and I > 1, the
indicator function of the set {S + 1 < n} can be removed. Similarly, the fourth line of Equation
(38) becomes

L=y A (S + sy 1) ().
It remains to focus on the first line of Equation (38). In order to do so, we will use another

expression of f(30) . For two integers j < n, let B(n,j) be the set of unordered subsets of j
elements chosen in [1,n]. It then holds that for any (n',s,7) € E,

FED@ s ) = Y] 1{n,zn} oo TInm) T @=nm),
n=§+1 Ls=5 veB(n—_S,I) jJev jel1l,n—S]\v

where h designates as before the Heaviside step function. The idea behind this expression is
that a structure of type (n,s,7) contains S susceptible and I infected members if and only if
s =S, and further exactly I out of the n — S first components of 7 (which describe the states of
members of the structure having contracted the disease at some point, ¢.e. infected and removed
members) are positive. In other words, there exists at most one element v € B(n— S, I') for which
the term in the sum is not equal to zero, in which case the set v corresponds to the indexes of
infectious members, while [1,n — SJ\v is the set of removed members.
In the following, for any integers 1 < j < n and any v € B(n, j), consider the sets

={reR": 7, >0Vkev, 7, <0Vk¢v}
and for any k € v,
Avik = {(T1y - Th 1y Tht 15+ -+, Tn) € R o7 > 0 for j € v\{k} and 7; < 0 for j ¢ v}.

With these notations, it holds that

Nmax N—S Nmax N—S5 X S

= ) ZJ Lir=nfnpr "(n)dr =3 Y D) f Onopp " (T)dT
n=5+1 k=1 n=5+1I k=1 veB(n—S,I)

Nmax N—S5

-y Y ¥ <_1>1<kev>L oS (s 1, 0kt m) [y,
vik

n=S+I k=1 veB(n—=S,I) 1<j<sn
Jj#k

where the second line follows from the first by integrating o, pf( 3

The goal is to show that

over A, with respect to 7.

Jr = ((I + 1)ns {5, 141) (D) 1{S 4 I<nmac} — IN(5.1) (U) ; (39)

which will conclude the proof of Equation (36).
In order to do so, let us define the following function for =z € E:

Mmax TZ—S
F(S’I)(x) = Z 1 n(z)=n Z (_1)1{kEV}1{Tk($):0}H(n’S)7v’k(T(x))’
n=S+1I {s(m):S} k=1 veB(n—S,I)

where for any v € [1,n — S], k€ [1,n — S] and 7 € R™max
HSYEE = TThm) [ @ =hm).
JEV je[1,n—S\v
j#k

j#k
36



It then follows that .J; = (nX, F(31),
Furthermore, distinguishing the cases k € v and k ¢ v yields that

F(S’I) _ a(S,I) _ b(SJ),

where for any z € F,

Mmax n—=S
0@ = X Lz 2 U= 2 HIYH (@),
n=S+I1+1 {s(m):S} k=1 veB(n—=S,1)
k¢v
and g
D@ = 3 V) 0 Ly D) HOIYHr(a)),
n=S+1 {s(m)=5} k=1 veB(n—S,1)
kev

The heart of the proof then lies in the following result.

Lemma 3.16. Under the assumptions of Theorem 2.3, for any X € {H,W} and (S,I) €S, for
anyt =0,

<77;§Xa a(S’I)> = fY(I + 1)”{;,]%&) (t)1{5+1<nmax}7 (40)
and
G WD = 4T (), (41)

Before establishing Lemma 3.16, let us finish the proof of Proposition 3.15. It is clear that
this lemma implies Equation (39), and thus Equation (36).
In order to obtain the initial condition of Equation (37), notice that by definition of 7,

Mmax

g fEy = wif(Z)(l—s)Ss"‘s > fRn_sHh(T’“) [T @ -htm)w(dn)...v(dn_s)
veB(n—S,I) - " kev

n=S+I ke[1,n—S]\v

= Z 7-(-7)5 (Z) (1 _ E)SEn—S Z <y’ h>#v<l/, 1_ h>(n—S)—#v.

n=S+1I veB(n—S,I)

Obviously, whenever (n — S) — #v > 0, the term vanishes as (v,1 —h) = 0. Hence only the case
v = [1,n — S] remains, which in turn corresponds to n = S + I. This concludes the proof. [

Let us now turn to Lemma 3.16.

Proof of Lemma 3.16. Throughout the proof, we will continue using notations from the proof
of Proposition 3.15. We will detail the arguments leading to Equation (40), as Equation (41) is
obtained analogously.

Let (S,I) € S. We may start by noticing that in the case S + I = npax, it holds that
PACED () = 0 for all x € E. Indeed, the sum over n reduces to the case n = npax, and the set
B(nmax — S, I) contains exactly one element, namely [1, I]. Hence for any k € [1, nmax — S], the
set {v € B(nmax — S, 1) : k ¢ v} is empty, implying that a®1) is null on E. From now on, we
will thus assume that S + I < nmax.

Define the function ¢(*!) on E as follows. For any z € E,

Mmax n—=_~
930@) = D) Lnyen) 2 A 3 HOI (@),
n=S+I {s(x):S} k=1 veB(n—S,1-1)
k¢v
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In particular, it holds by definition of ¢(50) that

i, g0y = Infg 1 (1)

Since we assume S + I < npax, the state (S, + 1) belongs to S as well. Thus, we actually
aim to show that for G5+ — ~¢(SI+1) _ 4(S.])

vt =0, (¥, G

In order to achieve this, we will consider the following smooth approximations of a(*!) and

¢8I+ respectively, defined for a > 0. For any z € Ex,
Mmax -
@ = S 2 NHL S (2)),
n=S+I+1 {S(w )=5 } k=
NMmax n—
n=S+I+1 {s(m )=S } k=1
where
Hg_s’lvk(T) = Z H ha(Tj) 1_[ (1 — ha(Tj))'
veB(n—5,1) jev Jje[l,n—S]\v
k¢v Jj#k
Letting G(S I+1) 79&5 I41) _ a((XS’I), dominated convergence ensures that

i G — Gt GBI,

Classical properties of convolution imply that both a(S D and g&S’IH) belong to Cl} (E,R),
allowing us to apply Proposition 3.13 to G(S IH)( ). In order to do so, some preliminary
computations are necessary Indeed, we need to compute fr; and f%’t as defined in Equation
(28) for f = a8 and f= SIH) Let T > 0, then for any ¢ € [0,T], writing e ,,—g for the
vector of dimension Nypax Whose (n—S) first components are set to 1 and the following all equal

Nmax n—=S
()@= Y Lawyouy 2 Yalm@) = (T =) HL S (r(@) = (T = Hera-s).
Tt n=S+I+1 {s(:v)=5} k=1

Similarly, for any ¢ > 0, distinguishing the cases where either K = n — 5, or k # n — S and
n—Sev,ork#n—5Sandn—95¢v leads to

Mmax

(a£79),,,6C.0) = oo | [Valo = (T = ) HZ SIS (7 (2) = (T ~ t)ers-1)

n=S+I1+1 { 1=S

—S—
+ha(o — (T = 1)) Z %(Tk — (T = t)Hy 5~ ((2) = (T = t)ern-s-1)
k=1

-S—
+ (1= ha(o — Z oo — (T — 1)) HP =S~ LIk (7 () — (T — t)eLn_S_l)].

Define m%t(a) = W, ho(-— (T —1t))) and m%t(a) = (W, Ya(-— (T'—1t))). Notice that the second

line is equal to zero if I = 0, as the set B(n — S — I, —1) is empty. Similarly, in the case of the

third line, when n = S + 1+ I the set {veB(n— S —1,1)} reduces to [1,I] and hence for any
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ke [l,n—S], theset {veB(n—S—1,I): k¢ v} is empty. In particular, the third line vanishes
if S+ 1+ 1=nmna. We may thus recognize that

TMmax

T
(D), @ =mp@) D) 1 agyn HE @) — (T = Hernso1)
¥ n=S+I+1 {s(a:)—l:S}
S+1,1—-1 S+1,1
+ m}f‘,t(a)aé;;t )1{121} +(1— m%,t(a))a((x ;t )1{S+1+1<nmx}

Proceeding in the same way also yields

T Mmax
(650) (@) = mh (@) L wia)on, | Ha "5 (@) = (T = Dern-s1)
’ n=S+I+1 |s(z)—1=S
S+1, S+1,1+1
+ i (@)gl D sy + (= (@) ™ s <mn)-
In particular, we thus obtain that
S+1,1 S+1,1+1
(G (@) = mi(@)Colp sy + (1= mlh (@)L st <

Mmax

+ (ymf (@) = mf, (a) n(w)=n, }HQS’I’"S(T(CC) —(T'=t)ern—s-1)-

1
n=S+I1+1 {s(x)flzs

Notice further that, on the one hand,

+o +0o0
m, (@) = jo Y 4z — (T — t))da = j 10 T ()l — e 7T,

On the other hand,

+00
f ye darpe(y — (T —t))dy

+o0 +00
m%t(a) = J e Yo(x — (T —t) — 2)dzdx = fR
y

0 0

_ f e TWHT-D)yy ()dy s T,
R —>

Thus, for any T > 0, we may apply Proposition 3.13 to G&' "),

to obtain by dominated convergence that

SIl
(i, GETHDY = (i Yy

and let o go to zero in order

+ )\Xf (¥, si (e V(T t)G(StH I>1{1>1} +(1—eT t))G(SH I+1)1{S+I+1<nmdx} G(S 0 )>dt

b [ A (TG Ly 4 (1 TG gy~ G

(42)
It is possible to compute <770 , SIH > Indeed, by definition of 19 = no ¢,
Mmax n B
= 3w (g)a-g%e
n=S+I+1
n—=S
<[ Mwdt-1y Y [[whe-1) [] @1-ht-1)]
k=1 veB(n—S,I) jev je[1,n—S\v
kgv j#k
(S,1+1)

Of course, the computation of <770 97,0 > is very similar. It suffices to replace the term
W, 80(- = T)) by v, h(- = T)). As (v, 80(- — T)) = vw, h(- — T)), it follows that

S, I+1
LGy Ty =0, (43)
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Thus the term <173( ,GEFS(’]I+1)> of Equation (42) vanishes. Letting C' = npax(AxMmax +
AxTmax + Ba), we obtain that

T
[nif, G < C j (10X, G oy + 10 GET DN 11 <y + 0, G
’ (44)
Notice that if (S,I) € S is such that S + I < npax, then (S, I') = (S,I + 1) is such that
(S, I')eS, 8"+ I' >3 and I’ > 1. Similarly, on the event I > 1, (S, I') = (S + 1, 1) satisfies
the same conditions, as well as (S',I') = (S+1,1+1) if S+ 1+ 1 < nyax. In order to conclude,
it thus suffices to establish the following lemma.

Lemma 3.17. For any (S,I) €S such that I > 1 and S+ I = 3, for any T > 0,
S I
vte [0,7], & G5y = 0. (45)
The desired result then follows from Equation (44). O

Proof of Lemma 3.17. The key argument will be to apply Gronwall’s lemma to ¢ — {(n;X, G lels I)>
We thus need to show that for any (S,I) € S such that S +1 > 3 and I > 1, the functlon

t — (%, Gg;”} is continuous on [0,T"]. In order to do so, notice that we may apply Proposition

3.13 to t > (GY7) 7, which belongs to CL(R; x E). As for any z € R and u € [0,¢] it holds
that z — (T'—t) — (t —u) = z — (T — u), it follows that

(GENr) = (G

t,u

Thus, proceeding like before and letting o go to zero, dominated convergence allows to conclude
that for any t € [0,T],

S,
<77tX? Tt > <7707 ( I)>

t
[ w8 (TG 1y + (1= TG gy — GED

t
+ Jo Ay dny s (GV(T_u)G(T?;M_l)1{1—121} +(1- e’Y(T_U))Gg“‘S::LI)1{S+I<7Lmax} - ng))ﬂu-

The initial condition ¢ = 0 vanishes according to Equation (43) as it holds for any (S,I) € S
satisfying S + I < nmax, and indeed

{(S,I+1):(S,1)eS, S+ <nmax} ={(5,1)eS:S+1=>3,1=>1}

Further, both integrands are bounded by a constant which does not depend on ¢. The continuity
of t +— (n;¥, Gg,i”) on [0, 7] follows.
We are now ready to reason by induction. Notice that

Nmax k—1

{((S,])eS:S+1> 1}—UU{k 0,0}

=3 (=1

For any k € [3, nmax], for any ¢ € [1,k — 1], Equation (44) becomes

k £+1,0— k £+1,0) k—£,0
[, G+ ”>>|<cf (16, G D a1 G D ey + 1075 G .
(46)
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Let us start with the case k = npax. If further ¢ = 1, Equation (46) reduces to

o @) < € [ o, gy

As Grmax—1L1) — G(nmax L1) , the desired conclusion follows from Gronwall’s lemma. Suppose
now that Equation (40) holds for (S,I) = (nmax — ¢+ 1,0 —1) with £ € [1, nmax — 1]. As further
k = nmax, we may notice that Equation (46) simplifies to

NMmax — nde—Zf
(K, Gty < f e 3\dt.

Again, Gronwall’s lemma implies that Equation (45) holds for (S,1) = (nmax — ¢,¢). We thus

have established that Equation (45) is true for (S,I) = (nmax — ¢, ¢) for all £ € [0, nmax — 1].
Les us now assume that Equation (45) is satisfied for (S,I) = (k+ 1 — ¢, ¢') for some

k € [3, nmax — 1] and for all # € [1,k — 1]. Then in particular, (n;%, G¥;1)> =0 for all ¢t € [0,T7].

Hence proceeding like before leads to the conclusion that (n; ,G(k b 1)> =0 for all te [0,T] as
the first two terms of the integrand of the associated inequality derived from Equation (46) are
null. The same procedure allows to show that if Equation (45) holds for (S,I) = (k—¢+1,{—1)
for some ¢ € [2, k — 1], then using the induction hypothesis, it also holds for (S,I) = (k — ¢, ).

This concludes the proof. O

We may finally focus on the main result of this section, namely Theorem 2.3.

Proof of Theorem 2.3. Before concluding, we need to emphasize that it would have been possible
to chose X = W when replacing S and I by KxS¥* and KxIX for Zg in Proposition 3.5. All
of the subsequent results still hold, simply replacing the household-related quantities in the
definition of the rate for mean-field infections by their workplace-related counterparts.

As a consequence, Propositions 3.14 and 3.15 show that for any X € {H, W},

X = iﬁ (S, 1) eS,n% ¢ (S,1) €S
¥ = \inx mx sy UGN

satisfies the Cauchy problem (25) with initial condition (7). However, Proposition 3.10 ensures
uniqueness of the solutions to this Cauchy problem. It hence is sensible to define, for ¢ > 0,
sty sW(t) i) V(1)

s(t) = p—— and i(t) = = .
H mwy my mw

This leads to dynamical system (6a—c) with initial conditions (7), and concludes the proof. [

Discussion

This paper has focused on proposing a new reduction for an SIR model with two levels of mixing,
which explicitly includes households and workplaces. This reduced model was obtained as its
large population limit, and the associated convergence of the stochastic model was established.
In the general case of an arbitrary distribution v of the length of infectious periods, the stochastic
model converges under the large graph limit to the unique solution of a measure-valued equation.
In the particular case where v is an exponential distribution, we have shown that the epidemic
dynamics can actually be reduced to a closed, finite-dimensional dynamical system. These
results further are of interest since, to our knowledge, none of the previously proposed model
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Figure 3: Comparison of the stochastic model starting from a single infected, with its large population
approximation for two different choices of initial condition. The first initial condition is given by Equation
(7) for ¢ = 0.01. The second initial condition is obtained by simulating a large number (> 2000) of
stochastic epidemic trajectories, starting from a single infected until the proportion of infected reaches
one percent. The initial condition corresponds to the average of the initial conditions observed in each
simulation. Regarding the stochastic model, for this figure, 100 epidemics starting from a single infected
were simulated. Similarly to Figure 2, only those reaching a threshold of 3% of infected are represented,
and a time shift is applied to ease comparison between model outputs. Structure size distributions are
those of Figure 1. Epidemic parameters: (8a, A, Aw,v) = (0.085,0.1,0.001,0.125), Ry = 1.7.

reductions for epidemic models on networks whose nodes may belong to multiple cliques have
been proven to coincide with the large graph limit of their stochastic counterparts.

Regarding the implementation of the reduced model, we have focused on the case where v is
the exponential distribution. Comparing the solution to the dynamical system with stochastic
simulations of epidemic trajectories shows good accordance in practice, as expected. We also
have emphasized that the dynamical system can be implemented in an automatic way, which
implies that despite its high number of equations, it can be used even for larger structure sizes.
Finally, some numerical evidence points to the reduced model being significantly less demanding
than stochastic simulations in terms of computational cost for sufficiently large values of the
reproduction number, which means that it is of interest for numerical explorations. A broader
study of computational cost would be pertinent to refine these results.

Notice here that a possible model extension would be to consider a local level of mixing
containing an arbitrary, yet finite, number of layers. As long as within each layer, each node
is part of exactly one clique, and as long as cliques within each layer are constituted indepen-
dently from one another as in the case for households and workplaces, the adaptation of the
aforementioned results is expected to be straightforward. In particular, the dimension of the cor-
responding dynamical system should still be of order O(n2,,,), implying that the model should
remain tractable.

Furthermore, we have compared the reduced model obtained in this work with the corre-
sponding EBCM in the line of [11]. In the case of our household-workplace model with two levels
of mixing, the EBCM seems the less appropriate choice, as it is less parsimonious and only ap-
proaches the epidemic well if the initial proportion of infected is very small. However, this may
change if a more general contact structure within layers is considered, such as a configuration
model for the global level, in which case it seems sensible to assume that EBCM-like equations
will appear.
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Finally, let us emphasize that by essence, the large population limit obtained here corresponds
to a situation where the number of infected individuals is of the same order as the population
size. In a realistic scenario, however, an epidemic is initiated by very few infected individuals.
In the case of a large epidemic outbreak, the number of infected subsequently grows until it no
longer is negligible when compared to the population size, at which point the large population
limit correctly captures the dynamics of the outbreak. This raises the question: which initial
condition is pertinent for the large population approximation? For uniformly mixing population,
this is rather straightforward, for two main reasons. On the one hand, at each time, infected
individuals are interchangeable in terms of infectious pressure exerted on susceptibles. On the
other hand, the presence of recovered individuals at time ¢ can be neglected in the study of
the epidemic dynamics over the time interval [¢, c0), simply by restricting the study to all other
individuals, which still constitute a uniformly mixing population. As a consequence, in such
a setting, it makes sense to suppose that at time zero, there are only infected and susceptible
individuals, and that infected individuals are chosen uniformly at random in the population,
with independent and identically distributed infectious period lengths.

This idea can of course be extended to our setting, and corresponds to the initial condition
proposed in Theorem 2.3, while similar initial conditions have also been used in the literature in
related settings [11, 11]. In our model however, one actually needs to know how infected and re-
covered individuals are distributed among households and workplaces, meaning that neither can
recovered be ignored, nor is there any reason to believe that infected individuals are distributed
uniformly at random in the population. Indeed, Figure 3 illustrates that when compared to
stochastic simulations starting from a single infected, the large population approximation with
initial condition given by Equation (7) fails to reproduce the epidemic dynamics, while they are
correctly captured when using an initial condition which is inferred from stochastic simulations.
As a consequence, it seems of interest to get a better understanding of this realistic initial con-
dition, which arises from an epidemic started by a single infected. This may be achieved using
a branching process approximation of the epidemic, which is designed to approach the initial,
stochastic phase of the epidemic, and hence would represent a reduced model which complements
the large population limit obtained in the present work.

Acknowledgment. I would like to thank Vincent Bansaye for his continuous support during
the elaboration of this work and detailed feedback on the manuscript, as well as Viet Chi Tran
and Frank Ball for pertinent discussions on related topics. Finally, I am very grateful to Elisabeta
Vergu for her guidance and stimulating remarks. She will be missed.

References

[1] David Aldous. Stopping Times and Tightness. The Annals of Probability, 6(2):335-340,
April 1978.

[2] Hakan Andersson and Tom Britton. Density dependent jump Markov processes. In Stochas-
tic Epidemic Models and Their Statistical Analysis, Lecture Notes in Statistics. Springer,
New York, NY, 2000.

[3] Frank G. Ball, Lorenzo Pellis, and Pieter Trapman. Reproduction numbers for epidemic
models with households and other social structures II: Comparisons and implications for
vaccination. Mathematical Biosciences, 274:108-139, April 2016.

[4] Frank G. Ball, David J. Sirl, and Pieter Trapman. Epidemics on random intersection graphs.
The Annals of Applied Probability, 24(3):1081-1128, June 2014.

43



[5]

[10]

[11]

Vincent Bansaye, Francois Deslandes, Madeleine Kubasch, and Elisabeta Vergu. The epi-
demiological footprint of contact structures in models with two levels of mixing. Available
on arXiv: https://arxiv.org/abs/2303.05287, 2023.

Rosanna C. Barnard, Istvan Z. Kiss, Luc Berthouze, and Joel C. Miller. Edge-Based
Compartmental Modelling of an SIR Epidemic on a Dual-Layer Static-Dynamic Multiplex
Network with Tunable Clustering. Bulletin of Mathematical Biology, 80(10):2698-2733,
October 2018.

Patrick Billingsley. Convergence of Probability Measures. Wiley Series in Probability and
Statistics. Probability and Statistics Section. Wiley, New York, 2nd ed edition, 1999.

Tom Britton and Etienne Pardoux. Chapter 3 A General Two-Level Mixing Model. In Tom
Britton and Etienne Pardoux, editors, Stochastic Epidemic Models with Inference, Lecture
Notes in Mathematics, pages 159-213. Springer International Publishing, Cham, 2019.

Laurent Decreusefond, Jean-Stéphane Dhersin, Pascal Moyal, and Viet Chi Tran. Large
graph limit for an SIR process in random network with heterogeneous connectivity. The
Annals of Applied Probability, 22(2), April 2012.

Maria del Valle Rafo, Juan Pablo Di Mauro, and Juan Pablo Aparicio. Disease dynamics
and mean field models for clustered networks. Journal of Theoretical Biology, 526:110554,
October 2021.

Francesco Di Lauro, Luc Berthouze, Matthew D. Dorey, Joel C. Miller, and Istvian Z.
Kiss. The Impact of Contact Structure and Mixing on Control Measures and Disease-
Induced Herd Immunity in Epidemic Models: A Mean-Field Model Perspective. Bulletin
of Mathematical Biology, 83(11):117, November 2021.

Nicolas Fournier and Sylvie Méléard. A microscopic probabilistic description of a locally
regulated population and macroscopic approximations. The Annals of Applied Probability,
14(4):1880-1919, November 2004.

Laurent Hébert-Dufresne, Pierre-André Noél, Vincent Marceau, Antoine Allard, and
Louis J. Dubé. Propagation dynamics on networks featuring complex topologies. Phys-
ical Review E, 82(3):036115, September 2010.

Thomas House and Matt J. Keeling. Deterministic epidemic models with explicit household
structure. Mathematical Biosciences, 213(1):29-39, May 2008.

Thomas House and Matt J. Keeling. Insights from unifying modern approximations to
infections on networks. Journal of the Royal Society Interface, 8(54):67-73, January 2011.

Karly A. Jacobsen, Mark G. Burch, Joseph H. Tien, and Grzegorz A. Rempalta. The large
graph limit of a stochastic epidemic model on a dynamic multilayer network. Journal of
Biological Dynamics, 12(1):746-788, January 2018.

Svante Janson, Malwina Luczak, and Peter Windridge. Law of large numbers for the
SIR epidemic on a random graph with given degrees. Random Structures & Algorithms,
45(4):726-763, 2014.

Anatole Joffe and Michel Metivier. Weak convergence of sequences of semimartingales with
applications to multitype branching processes. Advances in Applied Probability, 18(1):20—
65, March 1986.

44



[19]

[20]

[21]

[22]

23]

[24]

[25]

Benjamin Jourdain, Sylvie Méléard, and Wojbor A. Woyczynski. Lévy flights in evolution-
ary ecology. Journal of Mathematical Biology, 65(4):677-707, October 2012.

Brian Karrer and M. E. J. Newman. Message passing approach for general epidemic models.
Physical Review E, 82(1):016101, July 2010.

Matt J. Keeling and Ken T. D. Eames. Networks and epidemic models. Journal of the
Royal Society, Interface, 2(4):295-307, September 2005.

Istvan Z. Kiss, Eben Kenah, and Grzegorz A. Rempala. Necessary and sufficient conditions
for exact closures of epidemic equations on configuration model networks, August 2022.

Thomas G. Kurtz. Epidemic models. In Approximation of Population Processes, number 36
in CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial
and Applied Mathematics, Philadelphia, Pa, 1981.

Jennifer Lindquist, Junling Ma, P. van den Driessche, and Frederick H. Willeboordse. Ef-
fective degree network disease models. Journal of Mathematical Biology, 62(2):143-164,
February 2011.

Giancarlo De Luca, Kim Van Kerckhove, Pietro Coletti, Chiara Poletto, Nathalie Bossuyt,
Niel Hens, and Vittoria Colizza. The impact of regular school closure on seasonal influenza

epidemics: A data-driven spatial transmission model for Belgium. BMC Infectious Diseases,
18(1):29, January 2018.

Junling Ma, Pauline van den Driessche, and Frederick H. Willeboordse. Effective degree
household network disease model. Journal of Mathematical Biology, 66(1):75-94, January
2013.

Sylvie Meleard and Vincent Bansaye. Stochastic Models for Structured Populations: Scaling
Limits and Long Time Behavior. Springer International Publishing, Cham, 2015.

Alba Mendez-Brito, Charbel El Bcheraoui, and Francisco Pozo-Martin. Systematic review
of empirical studies comparing the effectiveness of non-pharmaceutical interventions against
COVID-19. Journal of Infection, 83(3):281-293, September 2021.

Joel C. Miller. Percolation and epidemics in random clustered networks. Physical Review
E, 80(2):020901, August 2009.

Joel C Miller. A note on a paper by Erik Volz: SIR dynamics in random networks. Journal
of Mathematical Biology, 62:349-358, 2011.

Mark E. J. Newman. Random graphs with clustering.  Physical Review Letters,
103(5):058701, July 20009.

Lorenzo Pellis, Neil M. Ferguson, and Christophe Fraser. Threshold parameters for a
model of epidemic spread among households and workplaces. Journal of The Royal Society
Interface, 6(40):979-987, November 2009.

Lorenzo Pellis, Neil M. Ferguson, and Christophe Fraser. Epidemic growth rate and house-
hold reproduction number in communities of households, schools and workplaces. Journal
of Mathematical Biology, 63(4):691-734, October 2011.

Sylvie Roelly-Coppoletta. A criterion of convergence of measure-valued processes: Applica-
tion to measure branching processes. Stochastics: An International Journal of Probability
and Stochastic Processes, 17(1-2):43-65, 1986.

45



[35]

[36]

[39]

[40]

[41]

[42]

Neil Sherborne, Joel C. Miller, Konstantin B. Blyuss, and Istvan Z. Kiss. Mean-field models
for non-Markovian epidemics on networks. Journal of Mathematical Biology, 76(3):755-778,
February 2018.

Mario Ignacio Simoy and Juan Pablo Aparicio. Socially structured model for COVID-
19 pandemic: Design and evaluation of control measures. Computational and Applied
Mathematics, 41(1):14, December 2021.

Guillaume St-Onge, Laurent Hébert-Dufresne, and Antoine Allard. Heterogeneous trans-
mission in groups induces a superlinear force of infection, February 2023.

Viet Chi Tran. Modéles particulaires stochastiques pour des problémes d’évolution adaptative
et pour Uapproximation de solutions statistiques. PhD thesis, Université de Nanterre - Paris
X, December 2006.

Viet Chi Tran. Une ballade en foréts aléatoires. Habilitation a Diriger les Recherches,
Université Lille 1, November 2014.

Erik M. Volz. SIR dynamics in random networks with heterogeneous connectivity. Journal
of Mathematical Biology, 56(3):293-310, March 2008.

Erik M. Volz, Joel C. Miller, Alison Galvani, and Lauren Ancel Meyers. Effects of Hetero-
geneous and Clustered Contact Patterns on Infectious Disease Dynamics. PLoS Computa-
tional Biology, 7(6):¢1002042, June 2011.

Robert R. Wilkinson, Frank G. Ball, and Kieran J. Sharkey. The relationships between mes-
sage passing, pairwise, Kermack—McKendrick and stochastic SIR epidemic models. Journal
of Mathematical Biology, 75(6-7), April 2017.

46



Appendix A Implementation of the large population limit

A.1 Automatic implementation of the dynamical system

It is possible to implement dynamical system (6a—c) in an automated way, in the sense that
equations do not need to be written individually. The key lies in the fact that the set S can
be constructed automatically, with an intrinsic organization of the states (S, I) it contains. For
example, one may arrange them by growing number n of susceptible and infected members of
the structure, and for each n, by growing number ¢ of infected, leading to

S ={(2,0),(1,1),..., (Pmax;0), (Pmax — 1, 1), ..., (1, nmax — 1)}

This in turn allows to make an explicit correspondence between any state (S,1) € S and e.g.
some position in a vector containing all functions of our dynamical system of interest. A similar
idea was already employed in [33], for another purpose. With the previous structure of S, one
may for instance notice that for any n € [2,npax] and ¢ € [0,n — 1], the state (n — 4,7) is the
c(n — i,1)-th state enumerated in S, where ¢(n —i,i) = (n — 1)n/2 +i. As a consequence, the
general expression of Equation (6¢) may be used to handle all the dynamics of the functions
n{s.ry for (S,I) € S and X € {H,W}.

Also, notice that in practice, household sizes tend not to be as big as workplace sizes. It
thus makes sense to distinguish explicitly a maximal size for each type of structure. This allows
to avoid implementing unnecessary equations corresponding e.g. to household sizes that are not
actually observed, and which thus artificially increase the dimension of the system.

A.2 Computational performance

The aim of this section is to numerically assess the computational cost associated to solving
the large dimensional dynamic system (6a—c) in comparison to stochastic simulations using
Gillespie’s algorithm, also referred to as SSA (stochastic simulation algorithm). In order to
do so, the average execution times of one stochastic simulation (SSA) and of one resolution of
the associated dynamic system using the ODE solver odeint from the scipy.integrate library are
compared.

Let us start by describing the general procedure. Each of the two scripts (stochastic simu-
lation or reduced model) is executed one hundred times, all runs being independent from one
another. For each run and each script, the computation time of the script of interest is mea-
sured, as well as the computation time of a reference function (summing all integers up to one
billion with a simple for-loop). The ratios of the runtimes of both the script of interest and the
reference function are computed. Comparison of the computation times for the stochastic and
the reduced model is then based on the comparison of the averages of those normalised runtimes.

It remains to take an interest in the choice of the model parameters, namely the structure
size distributions, the epidemic parameters i.e. the contact rates 8g, Ay, Aw and the removal
rate 7y, as well as the initial proportion of infected ¢ and the time interval [0, 7] on which the
epidemic is simulated. For the stochastic model, the population size K will be fixed to ten
thousand individuals. For all scenarios considered here, the structure size distributions will be
those of Figure 1. Further, the initial proportion of individuals will be set to € = 0.005, as
Figure 2 indicates that for the stochastic model, the risk of extinction at the beginning of the
epidemic due to stochastic fluctuations is small when starting from 50 infected at time 0, even
for low values of Ry. However, different values of the epidemic parameters will be considered, as
to obtain scenarios that differ both in terms of Ry and in terms of the proportions of infections
occurring within the general population, within households or within workplaces, respectively
referred to as pg, pg and py. The removal rate v will be fixed at 0.125, and only the contact
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rates will effectively vary. In total, ten different scenarios will be used, characterized by their
values of Ry € {1.2,1.4,1.7,2.0,2.5} and (pg, pa,pw) € {(0.2,0.4,0.4), (0.4,0.4,0.2)}.

Finally, parameter T" will be chosen as follows. For each set of epidemic parameters detailed
above, the reduced model is used to compute the time T} at which the epidemic falls below one
percent of infected individuals in the population, after the epidemic peak. T then is determined
by rounding down T to the closest multiple of five.

(PG, PH, Ppw) =(0.2,0.4,0.4)
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Figure Al: Proportion of susceptible (S) and infected (I) in the population, for each scenario detailed
in Table A1, as given by dynamical system (6a—c). Scenarios are separated by values of (pg, pm, pw) of
infections per layer, namely (0.2,0.4,0.4) and (0.4, 0.4,0.2) for the top and bottom panels, respectively.
The corresponding values of Ry are indicated by the color shades, as shown in the legend. The black
crosses indicate for each curve that the proportion of infected falls below the threshold of one percent.

Figure A1 uses the reduced model to plot the trajectories of the proportion of susceptible
and infected individuals in the population, for each scenario. The corresponding parameters are
summarized in Table Al. Notice that in particular, this includes the parameters of Figure 2.

Let us now turn to the results. For each scenario of Table Al, measurement of average
normalised computation times was repeated three times. The results are shown in Figure A2,
which indicates for each scenario the ratio of the average normalised runtime for one resolution of
dynamical system (6a—c) over the average normalised runtime of one stochastic simulation. Let
us first take an interest in the datasets labeled (pg, pm,pw) = (0.2,0.4,0.4) and (pg, pa, pw) =
(0.4,0.4,0.2). One may notice first that for each scenario, the results of all three repeats are
close to one another, indicating that the results are reproducible. Further, for both possible
values of (pg,pm,pw), the results indicate a shared general trend. Indeed, for values of Ry
close to the critical case Ry = 1, the ratio exceeds one, and diminishes subsequently, falling
below one between Ry = 1.4 and Ry = 1.7 and attaining values of order 10~'. This behavior
suggests that solving dynamic system (6a—c) is advantageous in terms of computation time for
intermediate or high values of Ry, being up to one order of magnitude faster than one stochastic
simulation. As the time interval [0,T] on which the epidemic is studied originally depends on
the scenario and is significantly shorter for larger values of Ry, one may wonder whether this
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Ry=12 Ry=14 Ry=17 Ry=20 Ro=25 (pg pu,pw)

Ba 0.03 0.035 0.045 0.05 0.06

AH 0.05 0.07 0.09 0.15 0.2

Aw  0.0015 0.0016 0.0018 0.002 0.0022 0.2,04,0.4)
T 130 130 105 85 75

Ba 0.06 0.07 0.085 0.1 0.125

AH 0.06 0.07 0.1 0.15 1.5

Aw  0.00075 0.0008 0.001 0.0011 0.00115 (04,04, 0.2)
T 145 130 95 80 95

Table A1l: Values of the contact rates Bg, Ay and Ay considered, grouped by value of Ry and
proportions of infections per layer (pg, pm, pw) characterizing the scenarios.

difference influences the results. As a consequence, we have repeated the same procedure for all
of the scenarios characterised by (pq, pm,pw) = (0.2,0.4,0.4), with fixed T = 75. Figure A2
shows that the associated results are very similar to those obtained previously, pleading against
this hypothesis.

¢ % (PG, PH, pw) =(0.4,0.4,0.2)
® (pG,pH, pw) =(0.2,0.4,0.4)
g O (pG,pPH.Pw)=1(0.2,0.4,0.4), T=75

[
o
1

Ratio of average normalised runtimes
Reduced model over SSA (log scale)
2 -
o @
oo 6® ©
@

1.2 1.4 1.7 2.0 2.5
Ro

Figure A2: Ratio of the average normalised computation time for solving once dynamic system (Ga—
c) over the average normalised computation time for one stochastic simulation (SSA). This ratio was
computed three times for each scenario of Table A1l. The results are presented as a function of Ry, while
colors indicate the value of (pg, pr,pw). Unless stated otherwise, the parameter T from Table Al was
used. The dotted line indicates the threshold of one.

Of course, this comparison could be pushed further. For instance, the most basic version of
the SSA algorithm was used, and more advanced methods such as T-leaping are expected to
accelerate stochastic simulations. Also, a more thorough exploration of the parameter space
would be pertinent, assessing for instance the influence of the structure size distributions.
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Supplementary Material

S1 Edge-based compartmental model
S1.1 Presentation of the EBCM

Let us start by describing how to obtain the population structure of the local level of mixture
described in Section 1.1 using a clique configuration model (CCM). In our case, each node
belongs to exactly one clique within each layer (one household and one workplace, respectively).
Let us briefly notice that whenever a node is picked uniformly at random, the probability of it
belonging to a structure of type X and size n is given by 7?,)1( = mrff /nX, for any n € [1, nmax]
and X € {H,W}. As a consequence, the layer corresponding to structures of type X € {H, W}
is obtained by the following two steps. First, associate to each node a structure size distributed
according to the size-biased law #%. This is done independently for each node. Second, for
k € [1,nmax], form cliques of size k by drawing uniformly without replacement k-tuples in the
set of nodes of associated structure size k. This step stops when all nodes of associated clique
size k belong to a clique. This procedure is repeated independently for each layer, allowing to
assemble households and workplaces.

Let us now turn to deriving the EBCM. Consider s and ¢ the proportions of susceptible and
infected individuals in the population, respectively. Let 6. (t) for X € {H, W} and n € [1, npax]
be the chance of a susceptible belonging to a structure of type X and size n to escape infection
within this structure, and 6%(t) the chance of escaping infection through the mean-field level,
up to time ¢ > 0. The key idea is that a node is susceptible at time ¢ if and only if it has escaped
infection up to time ¢, and the risks of infection within each layer are independent from one
another. This makes use of properties of the CCM, which heuristically explain the decoupling of
the risk of infection in the two local layers from one another. Further, the fact that in an infinite
population, each individual structure has a negligible impact on the proportion of infected yields
the intuition behind the decorrelation of the risks of infection at the local and global level. This

leads to
Tmax
s=09 1] (Z 7%35935).
Xe{HW} \n=1
As we are considering an SIR model, it follows that '(t) = —s'(t) + ~i(t), so that the difficulty
resides in understanding the dynamics of 8¢ and ;X (t), for X € {H, W} and n € [1, nmax].
Define for X € {H, W} and n € [2, nyax]:
Mmax _ _
mpy = 0970 > w0
k=1
which corresponds to the proportion of individuals who are susceptible and belong to a structure
of type X and size n. Also, let né 1 g be the proportion of susceptibles belonging to a structure
of type X containing exactly S susceptibles, I infected and R removed individuals. This allows
us to introduce the following quantities, which participate in the rates at which a member of a
structure of type X and size n is infected, either within the considered structure or outside of
it, respectively:

Mmax  __ ~ X nX

X — )\ ST nX d X = . X 7, 05,

n = X n(SJ,R) an Tn - BGZ + k anax ,ﬁ.X&X :
(S,I,R)eN3 k=1 k=1 "k Yk
S+I+R=n

One obtains the following dynamics:

Do _ —Bgif%, and VX € {H,W},Vn € [2, nmax] dgx _ —ﬁeX
dt - G bl ) Y s ''max|y dt n mX n °
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Figure S1: Comparison of the stochastic model with the large population approximation given by dy-
namical system (6a—c) and the corresponding EBCM. Household and workplace distributions are those
of Figure 1. Epidemic parameters were set to (8¢, Am, Aw,v) = (0.125,1.5,0.00115,0.125). Initial con-
ditions correspond to € € {0.001,0.01,0.05} as indicated for each panel. For each of these scenarios,
Gillespie’s algorithm was used to simulate 50 trajectories of the stochastic model defined in Proposition
1.1 in a population of K = 10000 individuals (faint lines). For Panel (a), only trajectories reaching a
threshold of 0.005 infected were kept, and time was shifted so that time 0 corresponds to the moment
when this threshold is reached. Finally, the deterministic solution (s,%) of both dynamical system (6a—c)
(thick lines) and the EBCM (dashed lines) are represented for each scenario. For Panel (a), the same
time shifting procedure as for simulations is applied.
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Further, for any X € {H,W}, n € [2,nmax] and (S, I, R) € N3 such that S+ + R = n and
either S > 2 or ST > 1:

d x ™ X
an(SJ’R) = — )\XSI + WS + ’)/I n(S,I,R)

n

+y( + 1)”558‘,]+1,R—1)1{R>1}
X
Tn

+ (Ax(s + 1)([ — 1) + W(S + 1)) nfg+17[_17R)1{[>1}.

Additionally, as in a structure of size one, no infection may occur within the structure itself, 61
and 0¥V are constant over time. Finally, it remains to define the initial conditions. Following
Volz et al. [11], we consider the case € « 1. Then the only quantities which are not null at time
zero are: for any X € {H, W}, n € [1,nmax] and I € [1,n — 1],

i(0) = e,
05(0) = 6,(0) =1 —¢,

(S1)

X A X “I_I
Np—1,1,0) = Tn (1—g)" €.

The proportions of susceptible and infected as predicted by both the EBCM and dynamical
system (6a—c) are shown in Figure S1, for different values of €. Let us first notice that in the
case € = 0.001, corresponding to Panel (a) of Figure S1, the solutions (s,7) of both the EBCM
and dynamical system (6a—c) are in perfect accordance, emphasizing the fact that for very small
values of £, the EBCM seems to yield the correct asymptotic population dynamics. However, for
larger values of ¢, the EBCM struggles to reproduce these dynamics. At first, as for € = 0.01 in
Panel (b) of Figure S1, the difference is mainly visible at the beginning of the epidemic and seems
to dampen afterwards. For even larger values of ¢, the solution to the EBCM does not succeed
in reproducing the dynamics over time, as shown in Panel (c¢) of Figure S1. The problem for
capturing the epidemic dynamics for higher values of ¢ lies in the fact that defining the proper
initial condition for the EBCM is not straightforward, leading to initial conditions consisting in
an approximation which is only sensible whenever ¢ is very small.

S1.2 Computational performance

In order to compare the computation times needed to solve either dynamical system (6a—c) or the
dynamical system associated to the EBCM which has been introduced above, we will proceed
similarly as in Appendix A.2, making use of the ODE solver odeint from the scipy.integrate
library in both cases. However, this time, only one parameter set will be used, corresponding to
the parameters chosen for Panel (a) of Figure 2. Further, the average normalised computation
time is only computed once, instead of having three repeats as in Appendix A.2. Considering the
relatively small fluctuations between repeats for all scenarios in Figure A2, this is not expected
to significantly affect the qualitative result.

The model parameters and the associated average runtimes are shown in Table S1. Due to
the excessive computation needed to solve the EBCM, only 10 runs of this script were performed.
However, considering that the average normalised runtime for solving the EBCM is several orders
of magnitude higher than the average normalised runtime for solving dynamical system (6a—c),
this again is not expected to significantly alter the results. Finally, the computation times
necessary for solving the EBCM are relatively homogeneous over all runs, indicating that the
average computation time is not biased by an outlier.
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Runs Normalised runtimes

Average Minimum Maximum
Dynamical system (6a—c) 50 0.15 0.14 0.17
EBCM 10 2076 1887 2254

Table S1: Numerical assessment of the computation time needed to solve either dynamical
system (6a—c) or the EBCM introduced in Appendix S1.1. Model parameters: household and
workplace size distribution from Figure 1; (Bg, A, Aw,7y) = (0.125,1.5,0.00115,0.125); initial
proportion of infected £ = 0.005; resolution of the numerical system over the time interval [0, 30].

S2 Proofs
S2.1 Proof of Proposition 3.10

Let us start with the following lemma, which will be needed afterwards.

Lemma A.1. Consider a solution y of the dynamical system (6a—c) and let A(t) = mxs(t) —
Z(SJ)€S Sné’n (t). Then

d b'e

th( ) =i, (t) — (TG(t) T X

Proof of Lemma A.1. Let X € {H,W}. First, notice that
{(S+1,I-1):(S,1)eS, I =1} ={(S,1)eS: S >1}.

As S — 1 =0 whenever S = 1, we thus obtain that

(S,1)es (S,D)eS (82)
>, SPInfsy— ), (S—=1)SInfyy = >, SInfg
(S,1)es (S,)es (S,1)es

Similarly, {(S, I+ 1): (S, 1) €S, S+ 1 < nmax} =S\{{(S,1)eS: I =0}u{(1,1)}}. AsSI =0
whenever I = 0, it follows that

D, vSIn{sy = Y ST+ )0 1) LSt I <nmad = V00,1 (S3)
(S,1)es (S,1)eS

The desired conclusion then results directly from Equations (6a—c), regrouping the terms of the
form of Equations (S2) and (S3) in order to simplify the expression. O

We are now ready to focus on the desired result.

Proof of proposition 3.10. (i) By assumption, y(0) € V. Let us start by checking that all com-
ponents of y, as well as A, stay non-negative over time.

Let to = 0 be such that y(tg) € V. If i(tg) = 0, then #'(ty) = —5'(t9) = 0 by assumption,
which ensures that ¢ will not become negative on a neighbourhood of ¢y. Similar arguments hold
for the lower bounds of A and s, using Lemma A.1 and inequality (26), respectively.

Let us now turn our attention to né 1) for X € {H,W} and (S,I) € S. Recall from Equation
(6¢) that its derivative may be ill defined, due to the division by s(t). However, inequality
(26) ensures that the ratios Ty’l’b‘()g’ D /s are well defined at all time, for any (S,I) € S. As a
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consequence, we may now notice as previously that, if né 1 (to) = 0, Equation (6¢) ensures that

%nfgu) (to) = 0.
The desired conclusion follows: whenever either of the quantities of interest reach zero, their
derivatives are non-negative which ensures that they do not become negative shortly thereafter.
Next, let us have a look at the upper bounds. For X € {H, W}, a brief computation yields

d Y, nisn(t) = —n{ () <0.
(S,I)es
This assures that starting from y* € V', the inequality Z(& Des né 1 (t) < 1 holds. For X €
{H,W} and (S,I) € S, it follows that if né])(to) = 1, then for any (5',I') € S\(S,I),
ngg,/yp)(to) = 0. Thus

d S
%né,f)(to) (AXSI+ TX(to) (t ) +Tg(t0)5+’71> 0,

from which one may deduce that nfg n remains less than or equal to one. The remaining upper
bounds on s, ¢ and s + ¢ may be obtained using similar arguments.
We thus have established that if y* € V', then y(¢) € V for all ¢ such that y is well defined.

(ii) In order to prove that there exists at most a unique solution y for any initial condition
y* e V, let us start by showing that f is Lipschitz continuous on V.
First, consider fs. Let y = (s,1, n(SI) X e {H,W},(S,I)eS) and § = (4,1, n(SI) X e

{H,W},(S,I) €S) be two elements of V, and let X € {H, W}. Letting cx = Ax#S(nmax)?/mx,
we obtain that

N Ax . .
I7x(y) — 7x(9)] < o Z Sﬂné,z) —”é,f)’ <ex |y =9l -
X (8,1)es

Further, recall that 0 < 7¢(y) < B¢ for any y e V.
Letting ¢; = ¢y + cw + Bg, it follows that

|fs(y) = fs@)] < ltu(y) — @] + [tw (y) —w (@) + l7a(y)s — 7¢(9)8] < cslly — 9l -
Similarly, letting ¢; = ¢s + 7,

fiy) = Fil@I < 1fs(y) = @)+l =il < cilly =Gl -

Finally, notice that inequality (26) implies that maX(Sn(S I)/S,Sﬁ(SI)/é) < mx for any
X e{H,W} and (S,I) € S. As a consequence, we obtain that

(5.0 Sis 1y A .
- 7x(v) p | <mx|rx(y) — @) < mxex |y — 9l

from which we may deduce, letting Cx = 2(Ax (max)? + mxcx + Ba + ), that
|fx05,0 () — Fxys,n (@) < Cx [ly — 9l -

This establishes the desired Lipschitz continuity of f on V, with associated Lipschitz constant
cr, = max(Ch, Cyw).

Suppose now that there are two solutions y and g of Equations (6a—c) and such that y(0) =
9(0). It then holds that for any T' > 0,

T T
ly(T) —9(Dll, < L 1 () = F(G(0)l dt < CLL ly(@) = 5Ol » -
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Thus Gronwall’s lemma ensures that ||y(t) — g(¢)||,, = 0 for any ¢ < T. T being arbitrary, the
desired conclusion on uniqueness follows.

(iii) In order to establish (iii), it simply remains to show that the initial condition y* defined
by Equation (7) belongs to V. Let us start by noticing that, following Equation (7), for any
X e{H W},

Mmax n—1 Mmax
n n— n
1 onln0) = > X <I>51(1—5) F= M aX(a-em<i
(S,1)eS n=2 I=0 n=2
Similarly,
Mmax n—1 n Mmax
DS 0) = > Y (n—1) (1)51(1 —e)" = > min(l-¢)
(S,I)eS n=2 I=0 n=2

where we have used the fact that s(0) = 1 — ¢, and recognizing E[n — B] for B ~ B(n,¢) to
deduce the second equality. The other conditions following immediately from (7), we conclude
that y* e V. O

S2.2 Proof of Lemma 3.11
Let X € {H,W}. To begin with, let us introduce the family of sets

B ={re E:n(z) =n,s(x) = s}, Y(n,s) € [1,nmax] x [0,7]

which constitutes a partition of E. In the following, let (n, s, 7¢) be distributed according to
ni, for any ¢t > 0. Let f be a non-negative measurable function on E. Then

<77tXa ) =E[f(ne,st,7)]

Mmax N

= X DIE[f(ns, s, m0) e =, 50 = s|P(ng = n, 50 = 5).

n=1 s=0

Conditionally on {n; = n,s; = s}, almost surely (n¢,s:,7t) € E, s and (1) = 0 for any
k >mn —s. Thus

Mmax

<77tX’f> = Z f(n7n70nmax)IP)(nt =Nn,s = 8)
n=1

(S4)
Nmax N—1 n—s
+ 2 Z E [f (n,s, Z(Tt)k6k> ‘nt =n,s = s] P(ny =n, sy = s).

n=1 s=0 k=1
Let p;(n,s) = P(n; = n, s; = s). Then on the one hand, define for any n € [1, nmax],

X
P = g ().

On the other hand, for s < n, let ﬁtX’”’s be the distribution of ((7¢)1,- .., (7¢)n—s) conditionally
on {n; = n,s; = s}. If we manage to show that ﬁ;X ™% is absolutely continuous with regard to

the Lebesgue measure on R"™*, then letting ﬁgx’"’s be its density, the result follows with

Vr e RS, pg{,n,S(T) _ th(’I’L, S)ﬁix,ms(’r).
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In order to show that for any n € [1, nmax] and s € [1,n— 1], 7™ is absolutely continuous

with regard to the Lebesgue measure on R" %, we will proceed by induction.

Let us first consider the case s = n — 1. We want to apply Equation (4) to test functions
©* € C}(E,Ry) which are equal to zero outside of the set {z € E : n(z) = n,s(z) = n — 1}.
Hence, let ¢ € C}(R) be non-negative, and define ¢* € C}(E,R;) by

Vee E, ¢*(x)=o(11(2)1{(n()s)=(n.s)}-

Let T' > 0 and for t € [0,T], define fi(z) = ¢*(¥(x,T,t)) for x € E. Using Equation (S4) and
applying Equation (4) to f; after noticing that Afi(x) = 0 for any (¢,2) € Ry x E, we obtain
that

"’X» ) -1
th(nan_l)<77Tnn 790>:<771)“(a90*>:<77¥7fT>

T T
= (i, fo) + A fo (g si(fF = fo)ydt + fo A s(fE = f)ydt.

As ¢ = 0 and letting C' = nmax(AHMmax + Awnmax + Ba), it follows that

T
P (mm — DG 05 < (i foy + C L S £yt (55)

Notice that Equation (5) with a change of variables z = o — T" implies that

<775(’ f0> - Tlﬂi((l o 5)n_16 JR SD(Z)1{z>—T}’ye_W(Z+T)dZ.

Furthermore, by definition, for any z € F,

+00
TE (@) = Ln(@)=n.s(@)=n} JO p(o— (T —t))ye 7do.

Thus Equation (S4), Fubini’s theorem and a change of variables z = o — (T' — t) lead to

T T
f (¥, fEdt :J w(z)f pf((n,n)fye*”(”(T’t))dtdz.
0 R 0

Let
Hi,{(’"’nfl :2z€R (mrff(l - 5)”_151{Z>_T}7e_7(z+T))

T
+ J piX (n,n)ye 7EHT=D) gy,
0

Then HJ{( =l g integrable on R with respect to the Lebesgue measure, as its integral is equal
to the right-hand side of Equation (S5) which is finite. It further satisfies

P (n, )XY o < f HE™ 1 () (2)d.

In particular, let B be a Borel set which is null for the Lebesgue measure. Consider a mollifier
1) on R in the same sense as for the Proof of Lemma 3.1. For a > 0, let 1, : z € R — a~19(2/a).
Then for any a > 0, we may define ¢, = 1p * 14, which is an element of C!(R) with compact
support. Thus for every a > 0,

P (1, )™, ) < jR HEm () g (2)dz. (56)
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n—1 . Xnn—1

As ¢, further is bounded by 1 for every o > 0, and as ﬁ? o is a finite measure and H;,
is integrable on R with respect to the Lebesgue measure, dominated convergence allows to let
a go to 0 on both sides of inequality (S6). As B is a null set for the Lebesgue measure, the
right-hand side goes to 0. This demonstrates that 771)5 g absolutely continuous with respect
to the Lebesgue measure on R.

Let us now suppose that 77 is absolutely continuous with respect to the Lebesgue
measure on R"57! for some n’ € [1, nmax] and some s € [0,n — 2]. This time, let ¢ € C} (R"*)

be non-negative and define ¢* € C}(E,Ry) by

~ X n,s+1

Vee B, ¢"(2) = Ln@)=ns(@)=s}P(T1(D), - - -, Ta—s(2)).

Forany T > 0 and t € [0,T], let f; : x € E — ¢*(V(x,T,t)). Proceeding like before, we obtain
that

T
P ()0 < o+ O [ i 1 (57)
In order to simplify notations in the following, define for 7' > ¢ > 0 and (71, ..., 7—s) € R"™*
the function
ort(T1s .o, Taes) = (11 — (T — 1), — (T,1)).

Then similarly to the case (n,n — 1), Equation (5) leads to
n n—s
Wik, foy = mX (1 —¢g)%e"® er0(o1,. .y on—s) | | Lig.svve 7%9)doy ... doy—s. (S8)
s {o;>0}
n—s j:l

Notice here that for any 7' > 0 and ¢ € [0, 7], the application z € R"™* — z — > 7' (T — t)ey,
where e, is the k-th vector of the canonical basis of R"~%, defines a C!-diffeomorphism from
R™* into itself, whose Jacobian matrix is the identity matrix of dimension n — s. Using the
case t = 0, Equation (S8) becomes by change of variables:

n s — (e
<775(,f0>=7r,)f <S>(1—5)55” J ) (21,5 Zn—s H 1> 1yve 7(1+T))d21...dzn,s.

Moreover, notice that this time, for any x € F and o > 0,

ftl—(x) = 1{n(:p):n,s(a:)71:s}90T,t(Tl ($)7 R Tn—S—l(x>7 U)‘
Thus, for t € [0,T],

+o0
@4 = f - (J e ’Tvb—s—lvff)ve”gd”)px(n s+ D" dr, ATy ).
Fubini’s theorem together with the induction hypothesis yield
1) = J f P (T Tamsm1,0)P7 (0,5 4+ 1) T é4—1)(7'17 e Tn—s—1)dT1 ... dTp_s_17ve 7 do.

The previously introduced family of C!-diffeomorphisms may serve again for a change of vari-
ables, allowing to obtain that

i, B = pi(n, s + 1)f ) (go(zl, e P—s—1, Zn—s)1{zn_s>7(T,t)}fye*7(zn—s+(T*t))

X th,n,s-&-l(zl +(T—1t),...,2n-5-1+ (T — t))) dzy . ..dz,_s.
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For z = (Zlv R 7zn—s> e R"7%, define
n,8 n S _NnN—s T — 2z
1) - 7r’)”‘(<s)(1 —e) " [ [ (s oomyre D)
j=1

T
+ fo P e + (T 1), 2 + (T — t))l{zn75>—(T—t)}’7e_’Y(zn75+(T_t))dt-

It then follows like before from Equation (S7) that H;f ™% i integrable on R"¢ with respect to
the Lebesgue measure, and

' X
Py (n, 8) (™, o) < Hy " (21, 2pes)d2r .. dzp—s.
Rn—s
The absolute continuity of fh}f ™% with respect to the Lebesgue measure on R"~% follows using
the same arguments as previously. This concludes the proof. O
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