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Adaptive observer and control of spatiotemporal delayed neural fields

Lucas Brivadisa,∗, Antoine Chailleta, Jean Auriola

aUniversité Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes, 91190, Gif-sur-Yvette, France.

Abstract

An adaptive observer is proposed to estimate the synaptic distribution between neurons asymptotically from the
measurement of a part of the neuronal activity and a delayed neural field evolution model. The convergence of the
observer is proved under a persistency of excitation condition. Then, the observer is used to derive a feedback law
ensuring asymptotic stabilization of the neural fields. Finally, the feedback law is modified to ensure simultaneously
practical stabilization of the neural fields and asymptotic convergence of the observer under additional restrictions on
the system. Numerical simulations confirm the relevance of the approach.
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1. Introduction

Neural fields are nonlinear integro-differential equa-
tions used to model the activity of neuronal populations
[7, 15]. They constitute a continuum approximation of
brain structures motivated by the high density of neurons
and synapses. Their infinite-dimensional nature allows for
accounting for the spatial heterogeneity of the neurons’ ac-
tivity and the complex synaptic interconnection between
them. Their delayed version also allows to take into ac-
count the non-instantaneous communication between neu-
rons. Yet, unlike numerical models of interconnected neu-
rons, in which every single neuron is represented by a set
of differential equations, neural fields remain amenable to
mathematical analysis. A vast range of mathematical tools
are now available to predict and influence their behavior,
including existence of stationary patterns [10, 25] stabil-
ity analysis [26], bifurcation analysis [2, 43], and feedback
stabilization [14].

This interesting compromise between biological signif-
icance and abstraction explains the wide range of neu-
ral fields applications, which cover primary visual cortex
[3, 37], auditory system [6], working memory [31], sensory
cortex [21], and deep brain structures involved in Parkin-
son’s disease [14].

The refinement of modern technologies (such as multi-
electrode arrays or calcium imagining) allows to measure
neuronal activity with higher and higher spatial resolu-
tion. Using these measurements to estimate the synaptic
distribution between neurons would greatly help decipher
the internal organization of particular brain structures.
Currently, this is mostly addressed by offline algorithms
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based on kernel reconstruction techniques [1], although
some recent works propose online observers (see [11] for
conductance-based models or [9] for delayed neural fields).

In turn, estimating this synaptic distribution could be of
interest to improving feedback control of neuronal popula-
tions. A particularly relevant example is that of deep brain
stimulation (DBS), which consists in electrically stimulat-
ing deep brain structures of the brain involved in neuro-
logical disorders such as Parkinson’s disease [32]. Several
attempts have been made to adapt the delivered stimula-
tion based on real-time recordings of the brain activity
[13]. Among them, it has been shown that a stimula-
tion proportional to the activity of a brain structure called
the subthalamic nucleus is enough to disrupt Parkinsonian
brain oscillations [14]. Yet, the value of the proportional
gain depends crucially on the synaptic strength between
the neurons involved: estimating it would thus allow for
more respectful stimulation strategies.

In this paper, we thus develop an online strategy to es-
timate the synaptic distribution of delayed neural fields.
This estimation relies on the assumed knowledge of the
activation function of the population, the time constants
involved, and the propagation delays between neurons, as
well as online measurement of a part of the neuronal ac-
tivity. It exploits the theory of adaptive observers for
nonlinear systems developed in [4, 5, 38] and allows to
reconstruct the unmeasured quantities based on real-time
measurements. We then exploit this feature to propose
a stabilizing feedback strategy that may be of particular
interest to disrupt pathological brain oscillations. This
control law estimates the synaptic kernel in real-time and
adapts the stimulation accordingly, thus resulting in a dy-
namic output feedback controller.

The delayed neural fields model is presented in Section 2
together with an introduction to the necessary mathemati-
cal formalism. The synaptic kernel estimation is presented

Preprint submitted to Elsevier March 12, 2024



in Section 3, whereas its use for feedback stabilization is
presented in Section 4. Numerical simulations to assess the
performance of the proposed estimation and stabilization
techniques are presented in Section 5.

2. Problem statement and mathematical prelimi-
naries

2.1. Delayed neural fields

Given a compact set Ω ⊂ Rq (where, typically, q ∈
{1, 2, 3}) representing the physical support of a neuronal
population, the evolution of the neuronal activity z(t, r) ∈
Rn at time t ∈ R+ and position r ∈ Ω is modeled as the
following delayed neural fields [7, 15]:

τ(r)
∂z

∂t
(t, r) =− z(t, r) + u(t, r)

+

∫
Ω

w(r, r′)S(z(t− d(r, r′), r′))dr′. (1)

n ∈ N represents the number of considered neuronal pop-
ulation types; for instance, imagery techniques often allow
for discrimination between an excitatory and an inhibitory
population, in which case n = 2. τ(r) is a positive defi-
nite diagonal matrix of size n × n, continuous in r, rep-
resenting the time decay constant of neuronal activity at
position r. S : Rn → Rn is a nonlinear activation func-
tion; it is often taken as a monotone function, possibly
bounded (for instance, a sigmoid). w(r, r′) ∈ Rn×n de-
fines a kernel describing the synaptic strength between lo-
cations r and r′; its sign indicates whether the considered
presynaptic neurons are excitatory or inhibitory, whereas
its absolute value represents the strength of the synaptic
coupling between them. d(r, r′) ∈ [0,d], for some d > 0,
represents the synaptic delay between the neurons at posi-
tions r and r′ that typically mainly results from the finite
propagation speed along the axons. Finally, u(t, r) ∈ Rn is
an input representing either the influence of non-modeled
brain structures or an artificial stimulation signal. Neu-
ral fields are widely used to model neuronal populations,
as reviewed in [15, 7]. We stress that the synaptic kernel
w acts outside from the activation function S; in the ter-
minology of [24], (1) thus corresponds to a voltage-based
model.

We assume that the neuronal population can be decom-
posed into z(t, r) = (z1(t, r), z2(t, r)) ∈ Rn1×Rn2 where z1
corresponds to the measured part of the state and z2 to the
unmeasured part. In the case where all the state is mea-
sured, we simply write z = z1 and n2 = 0. Such a decom-
position is natural when the two considered populations
are physically separated, as it happens in the brain struc-
tures involved in Parkinson’s disease [14]. It can also be
relevant for imagery techniques that discriminate among
neuron types within a given population. Accordingly, we
define τi, Sij wij and ui of suitable dimensions for each
population i, j ∈ {1, 2} so that

τi(r)
∂zi
∂t

(t, r) = −zi(t, r) + ui(t, r)

+

2∑
j=1

∫
Ω

wij(r, r
′)Sij(zj(t− dij(r, r

′), r′))dr′. (2)

2.2. Problem statement

In the present paper, we are interested in the following
control and observation problems:

Problem 2.1 (Estimation). From the knowledge of Sij ,
w2j , τi and dij and the online measurement of ui(t) and
z1(t) for all i, j ∈ {1, 2}, estimate online z2(t), w11 and
w12.

Problem 2.2 (Stabilization). From the knowledge of Sij ,
w2j , τi and dij for all i, j ∈ {1, 2} and the online mea-
surement of z1(t), find u1 in the form of a dynamic output
feedback law that stabilizes z1 and z2 at some reference
when u2 = 0.

As already said, Problem 2.1 is motivated by the ad-
vances in imagery and recording technologies and the im-
portance of determining synaptic distribution in the un-
derstanding of brain functioning. The assumption that
the transmission delays are known is practically mean-
ingful, as these delays are typically proportional to the
distance |r − r′| between the considered neurons via the
axonal transmission speed, which is typically known a pri-
ori. Similarly, the time constants τi(r) are usually directly
dependent on the conductance properties of the neurons.
The precise knowledge of the activation function Sij is
probably more debatable, although recent techniques al-
low to estimate them based on the underlying neuron type
[12].

Problem 2.2 is motivated by the development of deep
brain stimulation (DBS) technologies that allow electri-
cally stimulating some areas of the brain whose pathologi-
cal oscillations are correlated to Parkinson’s disease symp-
toms. In our context, the neuronal activity measured and
actuated by DBS through u1 is denoted by z1, which cor-
responds to a deep brain region known as the subthala-
mic nucleus (STN). We refer to [20] for more details on
feedback techniques for DBS. One hypothesis, defended
by [29], is that these pathological oscillations may result
from the interaction between STN and a narrow part of
the brain, the external globus pallidus (GPe). The neu-
ronal activity in this area is inaccessible to measurements
or stimulation in clinical practice, but it is internally stable
and corresponds to z2 in our model.

A strategy relying on a high-gain approach answered
Problem 2.2 in [14]. The system under consideration was
similar, except that the nonlinear activation function was
not applied to the delayed neuronal activity but to the re-
sulting synaptic coupling. In [24], system (1) is referred to
as a voltage-based model, while [14] focused on activity-
based models. It is proven in [14, Proposition 3] that
under a strong dissipativity assumption (equivalent1 to

1Actually, there is a typo in the condition stated in [14, Proposi-
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our Assumption 3.1 below), for any positive continuous
map γ : Ω → R and any square-integral reference signal
zref : Ω → Rn1 there exists a positive constant α∗ de-
pending on parameters of the system such that, for all
α > α∗, system (2) coupled with the output feedback
law u1(t, r) = −αγ(r)(z1(t, r) − zref(r)) and u2(t, r) = 0
is globally asymptotically stable (and even input-to-state
stable) at some equilibrium whose existence is proved in
[10]. However, one of the drawbacks of this result is that
α∗ is proportional to the L2-norm of w11, which is usually
unknown or uncertain. In practice, this implies a high-gain
choice in the controller, which may lead to large values of
u1(t, r) that are incompatible with the safety constraints
imposed by DBS techniques. On the contrary, our goal in
this paper is to propose an adaptive strategy that does not
rely on any prior knowledge of the synaptic distributions
w11 and w12, but at the price of more knowledge on other
parameters of the system.

In a preliminary work [9], we have shown that an ob-
server may be designed in the delay-free case to esti-
mate z2(t), w11 and w12, hence to answer Problem 2.1.
However, this work was done in a framework that does
not encompass time-delay systems, and Problem 2.2
was not addressed at all. With such an observer, a
natural dynamic output feedback stabilization strategy
would be to choose u1(t, r) = −α(z1(t, r) − z1,ref(r)) +
z1(t, r) −

∫
r′∈Ω

ŵ11(t, r, r
′)S11(z1(t − d11(r, r

′), r′))dr′ −∫
r′∈Ω

ŵ12(t, r, r
′)S12(ẑ2(t−d12(r, r

′), r′))dr′ where α > 0 is
a tunable controller gain, z1,ref is a reference signal, ŵ1j(t)
denotes the estimation of w1j made by the observer at
time t and ẑ2(t) is the estimation of z2(t). Doing so, if
the observer has converged to the state, i.e., ŵ1j = w1j

and ẑ2 = z2, then the remaining dynamics of z1 would be
τ1(r)

∂z1
∂t (t, r) = −α(z1(t, r) − z1,ref(r)) so that z1 would

tend towards z1,ref . Assuming adequate contraction prop-
erties of the z2 dynamics, z2 would tend towards some
reference z2,ref that depends on z1,ref . In particular, patho-
logical oscillations would vanish in state-state, without any
large-gain assumption on the control policy. This moti-
vates us to investigate Problem 2.1 and use the observer
in dynamic output feedback to address Problem 2.2.

2.3. Definitions and notations

Let q be a positive integer, Ω be an open subset of Rq

and X be a Hilbert space endowed with the norm ∥ · ∥X
and scalar product ⟨·, ·⟩X . Denote by L2(Ω, (X , ∥ · ∥X )) :=
{f : Ω → X Lebesgue-measurable |

∫
Ω
∥f∥2F < +∞} the

Hilbert space of X -valued square integrable functions. De-
note by W 1,2(Ω, (X , ∥ · ∥X )) := {f ∈ L2(Ω, (X , ∥ · ∥X )) |
f ′ ∈ L2(Ω, (X , ∥·∥X )} and by Wm,2(Ω, (X , ∥·∥X )) := {f ∈
Wm−1,2(Ω, (X , ∥ · ∥X )) | f ′ ∈ Wm−1,2(Ω, (X , ∥ · ∥X )} for
m > 1 the usual Sobolev spaces. If Ω is a compact set,

tion 3]. The mistake is corrected in the proof, making it equivalent to
our Assumption 3.1. See also [19, Theorem 3] for a corrected version
of the hypothesis.

the above definitions hold by replacing Ω by its interior,
and we denote by µ(Ω) :=

∫
Ω
dr the Lebesgue measure

of Ω. If I is an interval of R, the space of k-times con-
tinuously differentiable functions from I to X is denoted
by Ck(I,X ). We endow C0(I,X ) with the norm defined
by ∥x∥C0(I,X ) := supt∈I ∥x(t)∥X for all x ∈ C0(I,X ). If
x ∈ X , denote by x∗ ∈ X its adjoint. If X is a Hilbert
space and Y is a Banach (resp. Hilbert) space, then the
Banach (resp. Hilbert) space of linear bounded operators
from X to Y is denoted by L(X ,Y). For anyW ∈ L(X ,Y),
denote by KerW its kernel and RanW its range. The map
X ∋ x 7→ ∥Wx∥Y defines a semi-norm on W , that is said
to be induced by W . It is a norm if and only if W is in-
jective. Set L(X ) := L(X ,X ). Denote by IdX the identity
operator over X .

For any positive integers n and m and any matrix
w ∈ Rn×m, denote by w⊤ its transpose, Tr(w) its
trace, ∥w∥ its norm induced by the Euclidean norm, and
∥w∥F =

√
Tr(w⊤w) its Frobenius norm. Recall that

these norms are equivalent and ∥w∥ ⩽ ∥w∥F . Hence, for
any positive integers n and m, L2(Ω, (Rn×m, ∥ · ∥)) and
L2(Ω, (Rn×m, ∥ · ∥F )) are equivalent Hilbert spaces and
∥ · ∥L2(Ω,(Rn×m,∥·∥)) ⩽ ∥ · ∥L2(Ω,(Rn×m,∥·∥F )).

For all i, j ∈ {1, 2}, set Xzi = L2(Ω,Rni) and Xwij
=

L2(Ω2,Rni×nj ), so that Xzi (resp. Xwij
) will be used as

the state space of zi (resp. wij). Set also Xz = Xz1 × Xz2

and Xw = Xw11 × Xw12 . By abuse of notations, we write
∥ ·∥(Xwij

,∥·∥) := ∥ ·∥L2(Ω2,(Rni×nj ,∥·∥)) and ∥ ·∥(Xwij
,∥·∥F ) :=

∥·∥L2(Ω2,(Rni×nj ,∥·∥F )). For any positive constant d and any

Hilbert space X , if x ∈ C0([−d,+∞),X ), we denote by xt

the history of x over the latest time interval of length d,
i.e., xt(s) = x(t+s) for all t ⩾ 0 and all s ∈ [−d, 0]. For any
n ∈ N, denote by Dn

++ ⊂ Rn×n the set of positive diagonal
matrices. For the sake of reading, if di2 does not depend
on r, i.e. if di2(·, r′) is constant for all r′ ∈ Ω, we simply
write dij(r

′) := dij(r, r
′). For any globally Lipschitz map

Sij : Rnj → Rni , denote by ℓij its Lipschitz constant and
set S̄ij := supRni |Sij | .

Remark 2.3. The set Ω is defined as a compact set of Rq

where q is typically an integer with values 1, 2, or 3, de-
pending on the considered dimension of the neuronal pop-
ulation. For instance, for neuronal phenomena involving a
single direction, we can consider q = 1 [22]. For in vitro
cultures, brain slices, or to study planar patterns, we can
often consider q = 2 [41], whereas for in vivo populations,
in order to model the volume of a brain structure, we will
typically consider q = 3 [18]. No specific mathematical
form is imposed for Ω, as long as it is compact. It can be
made of a connected set or be the union of non-overlapping
sets to model physically distinct brain structures [18].

Remark 2.4. To ease the reading, we have chosen to con-
sider that the integral over Ω is a Lebesgue integral, i.e.,
that Ω is endowed with the Lebesgue measure. However,
note that our work remains identical when considering any
other measure for which Ω is measurable. In particular,
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an interesting case is when Ω = ∪N
k=1{rk} for some fi-

nite family (rk)1⩽k⩽N in Rq and the measure is the count-
ing measure. In that case, (1) can be rewritten as the
usual finite-dimensional Wilson-Cowan equation [45]: for
all k ∈ {1, . . . , N},

τ(rk)
∂z

∂t
(t, rk) = −z(t, rk) + u(t, rk)

+

N∑
ℓ=1

w(rk, rℓ)S(z(t− d(rk, rℓ), rℓ). (3)

This case will be further investigated in Section 4.2.

2.4. Preliminaries on Hilbert-Schmidt operators

Let q, n and m be positive integers and Ω be an
open subset of Rq. To any map w ∈ L2(Ω2,Rn×m),
one can associates a Hilbert-Schmidt (HS) integral oper-
ator W : L2(Ω,Rm) → L2(Ω,Rn) defined by (Wz)(r) =∫
Ω
w(r, r′)z(r′)dr′ for all r ∈ Ω. The map w is said to

be the kernel of W . Let us recall some basic notions
on such operators (see e.g. [27] for more details). The
space L2(L

2(Ω,Rm), L2(Ω,Rn)) of HS integral operators
is a subspace of L(L2(Ω,Rm), L2(Ω,Rn)), and is a Hilbert
space when endowed with the scalar product defined by

⟨Wa,Wb⟩L2(L2(Ω,Rm),L2(Ω,Rn)) := ⟨wa, wb⟩(L2(Ω2,Rn×m,∥·∥F ))

for all Wa and Wb in L2(L
2(Ω,Rn×m)) with

kernels wa and wb, respectively. For any
Hilbert basis (ek)k∈N of L2(Ω,Rm), we have that
∥W∥2L2(L2(Ω,Rm),L2(Ω,Rn)) =

∑
k∈N ∥Wek∥2L2(Ω,Rn) for all

W ∈ L2(L
2(Ω,Rm), L2(Ω,Rn)), i.e.,

∥w∥2L2(Ω2,(Rn×m,∥·∥F )) =
∑
k∈N

∫
Ω

∣∣∣ ∫
Ω

w(r, r′)ek(r
′)dr′

∣∣∣2dr
for all w ∈ L2(Ω2,Rn×m).
Let p be another positive integer. If W and P are

two HS integral operators with kernels w and ρ, in
L2(L

2(Ω,Rm), L2(Ω,Rn)) and L2(L
2(Ω,Rn), L2(Ω,Rp))

respectively, the composition WP is also a HS integral op-
erators, in L2(L

2(Ω,Rm), L2(Ω,Rp)). Moreover, its kernel
is denoted by w ◦ ρ and satisfies

(w ◦ ρ)(r, r′) =
∫
Ω

w(r, r′′)ρ(r′′, r′)dr′′

for all r, r′ ∈ Ω.
If W ∈ L2(L

2(Ω,Rm), L2(Ω,Rn)) has kernel w, then its
adjoint W ∗ is also a HS integral operator and its kernel w∗

satisfies w∗(r, r′) = w(r′, r)⊤ for all r, r′ ∈ Ω. In particu-
lar, W is self-adjoint if and only if n = m and w(r, r′) =
w(r′, r)⊤ for all r, r′ ∈ Ω, and w is a positive-definite kernel
if and only if so is W . In that case, w induces a norm on
L2(Ω,Rn), defined by z 7→ ∥Wz∥L2(Ω,Rn), that is weaker
than or equivalent to the usual norm ∥ · ∥L2(Ω,Rn).

To answer Problem 2.1, we propose to estimate w1j ’s
in the norm L2(Ω, (Rn×m, ∥ · ∥F )), which, by the pre-
vious remarks, is equivalent to estimate their associated
HS operators. This operator-based approach has been fol-
lowed in [9] to answer Problem 2.1 in the delay-free case.
In the present paper, we focus on estimating the kernels
rather than their associated operators. From a practical
viewpoint, the use of the Frobenius norm corresponds to
a coefficientwise estimation of the matrices w1j(r, r

′).

2.5. Properties of the system

Let us recall the well-posedness of the system (2) under
consideration (that was proved in [26, Theorem 3.2.1]), as
well as a bounded-input bounded-state (BIBS) property
(that we prove below).

Assumption 2.5. The set Ω ⊂ Rq is compact and, for
all i, j ∈ {1, 2}, τi ∈ C0(Ω,Dni

++), ui ∈ C0(R+,Xzi),
dij ∈ C0(Ω2, [0,d]) for some d > 0, wij ∈ Xwij

, and
Sij ∈ C0(Rnj ,Rni) is bounded and globally Lipschitz.

These assumptions are standard in neural field analysis
(see, e.g., [14]). In particular, the boundedness of S reflects
the biological limitations of the maximal activity that the
population can reach.

Proposition 2.1 (Open-loop well-posedness and BIBS).
Suppose that Assumption 2.5 is satisfied. Then, for
any initial condition (z1,0, z2,0) ∈ C0([−d, 0],Xz1) ×
C0([−d, 0],Xz2), the open-loop system (2) admits a unique
corresponding solution (z1, z2) ∈ C1([0,+∞),Xz1 ×Xz2)∩
C0([−d,+∞),Xz1 × Xz2). Moreover, if ui is bounded for
all i ∈ {1, 2}, then all solutions (z1, z2) of (2) are such
that zi and

dzi
dt are also bounded.

Proof. Well-posedness. The only difference with [26, The-
orem 3.2.1] is that τ depends on r. However, since τ is
assumed to be continuous and positive, the proof remains
identical to the one given in [26, Theorem 3.2.1].

BIBS. For all i ∈ {1, 2}, let τ i be the smallest diagonal
entry of τi(r) when r spans Ω (which exists since τi is
continuous and Ω is compact). For all t ⩾ 0, we have by
Young’s and Cauchy-Schwartz inequalities that

τ i
2

d

dt
∥zi(t)∥2Xzi

⩽ −
∫
Ω

|zi(t, r)|2dr +
∫
Ω

zi(t, r)
⊤ui(t, r)dr

+

∫
Ω

zi(t, r)
⊤

2∑
j=1

∫
Ω

wij(r, r
′)Sij(zj(t− dij(r, r

′), r′))dr′dr

⩽ −
∫
Ω

|zi(t, r)|2dr +
1

4

∫
Ω

|zi(t, r)|2dr +
∫
Ω

|ui(t, r)|2dr

+
1

4

∫
Ω

|zi(t, r)|2dr

+

2∑
j=1

∫
Ω2

∥wij(r, r
′)∥2|Sij(zj(t− dij(r, r

′), r′))|2dr′dr

⩽ −1

2
∥zi(t)∥2Xzi

+ ∥ui(t)∥2Xui
+

2∑
j=1

S̄2
ij∥wij∥2(Xwij

,∥·∥).
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Hence, if ui remains bounded, then zi also remains
bounded by Grönwall’s inequality. Moreover,

∥τi
∂zi
∂t

(t)∥Xzi
⩽ ∥zi(t)∥Xzi

+ ∥ui(t)∥Xzi

+

√√√√∫
Ω

∣∣∣∣∣
2∑

j=1

∫
Ω

wij(r, r′)Sij(zj(t− dij(r, r′), r′))dr′

∣∣∣∣∣
2

dr

⩽ ∥zi(t)∥Xzi
+ ∥ui(t)∥Xzi

+

2∑
j=1

S̄ij∥wij∥(Xwij
,∥·∥).

Hence dzi
dt is also bounded if ui is bounded. ■

In the rest of the paper, we always make the Assump-
tion 2.5, so that the well-posedness of the system is always
guaranteed.

3. Adaptive observer

3.1. Observer design

In order to design an observer, we first make a dissipa-
tivity assumption on the unmeasured part z2 of the state.

Assumption 3.1 (Strong dissipativity). It holds that
ℓ22∥w22∥(Xw22 ,∥·∥) < 1.

Assumption 3.1 yields that for any pair (za2 , z
b
2) of solu-

tions of (1) (replacing τ , w, S and d by τ22, w22, S22 and
d22), the distance ∥za2 (t)− zb2(t)∥Xz2

is converging towards
0 as t goes to +∞ (this fact will be proved and explained in
Remark 3.13). Assumption 3.1 can thus be interpreted as
a detectability hypothesis: the unknown part of the state
has contracting dynamics with respect to some norm.

We also stress that Assumption 3.1 is commonly used
in the stability analysis of neural fields [24] and ensures
dissipativity even in the presence of axonal propagation
delays [19].

Inspired by the delay-free case investigated in [9], let us
consider the following observer:

τ1(r)
∂ẑ1
∂t

(t, r) =− α(ẑ1(t, r)− z1(t, r))− z1(t, r) + u1(t, r)

+

∫
Ω

ŵ11(t, r, r
′)S11(z1(t− d11(r, r

′), r′))dr′

+

∫
Ω

ŵ12(t, r, r
′)S12(ẑ2(t− d12(r, r

′), r′))dr′

τ2(r)
∂ẑ2
∂t

(t, r) =− ẑ2(t, r) + u2(t, r)

+

∫
Ω

w21(r, r
′)S21(z1(t− d21(r, r

′), r′))dr′

+

∫
Ω

w22(r, r
′)S22(ẑ2(t− d22(r, r

′), r′))dr′

τ1(r)
∂ŵ11

∂t
(t, r, r′) =− (ẑ1(t, r)− z1(t, r))

S11(z1(t− d11(r, r
′), r′))⊤

τ1(r)
∂ŵ12

∂t
(t, r, r′) =− (ẑ1(t, r)− z1(t, r))

S12(ẑ2(t− d12(r, r
′), r′))⊤

(4)
where α > 0 is a tunable observer gain, to be selected
later.

Note that ẑ2 has the same dynamics as z2. Hence the
dissipativity Assumption 3.1 shall be employed to prove
observer convergence. The correction terms are inspired
by [4] that dealt with the finite-dimensional delay-free con-
text.

The well-posedness of the observer system is a direct
adaptation of [26, Theorem 3.2.1]. The main differences
are that τi’s are space-dependent and ŵ1i are solutions of
a dynamical system.

Proposition 3.1 (Observer well-posedness). Suppose
that Assumption 2.5 is satisfied. Then, for any initial
condition (z1,0, ẑ1,0, z2,0, ẑ2,0, ŵ11,0, ŵ12,0) ∈ C0( [−d, 0],
Xz1)

2 × C0([−d, 0],Xz2)
2 × Xw11

× Xw12
, the open-loop

system (2)-(4) admits a unique corresponding solution
(z1, ẑ1, z2, ẑ2, ŵ11, ŵ12) ∈ C1([0,+∞),X 2

z1 × X 2
z2 × Xw11

×
Xw12) ∩ C0([−d,+∞),X 2

z1 ×X 2
z2 ×Xw11 ×Xw12).

Proof. The proof is based on [28, Lemma 2.1 and The-
orem 2.3], and follows the lines of [26, Lemma 3.1.1].
First, note that (2)-(4) is a cascade system where the ob-
server (4) is driven by the system’s dynamics (2). The
well-posedness of (2) is guaranteed by Proposition 2.1.
Now, let (z1, z2) be a solution of (2) and let us prove the
existence and uniqueness of (ẑ1, ẑ2, ŵ11, ŵ12) solution of
(4) starting from the given initial condition. Let us con-
sider the map F : R+ × Xz1 × C0([−d, 0],Xz2) × Xw11

×
Xw12

→ Xz1 × Xz2 × Xw11
× Xw12

such that (4) can be
rewritten as d

dt (ẑ1, ẑ2, ŵ11, ŵ12)(t) = F (t, ẑ1, ẑ2t, ŵ11, ŵ12).
Since τi are continuous and positive, Sij are bounded
and wij are square-integrable over Ω2, di are continuous
and ui ∈ C0(R+,Xzi), the map F is well-defined by the
same arguments than [26, Lemma 3.1.1]. Let us show
that F is continuous, and globally Lipschitz with respect
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to (ẑ1, ẑ1t, ŵ11, ŵ12), so that we can conclude with [28,
Lemma 2.1 and Theorem 2.3]. Define F1 taking values in
Xz1 , F2 taking values in Xz2 , F3 taking values in Xw11

and
F4 taking values in Xw12

so that F = (Fi)i∈{1,2,3,4} From
the proof of [26, Lemma 3.1.1], F1 and F2 are continuous
and globally Lipschitz with respect to the last variables.
From the boundedness of S, F3 and F4 are also continuous
and globally Lipschitz with respect to the last variables.
This concludes the proof of Proposition 3.1. ■

Let us define the estimation error (z̃1, z̃2, w̃11, w̃12) =
(ẑ1 − z1, ẑ2 − z2, ŵ11 − w11, ŵ12 − w12). It is ruled by the
following dynamical system:

τ1(r)
∂z̃1
∂t

(t, r) = −αz̃1(t, r) +

∫
Ω

w̃11(t, r, r
′)S11(z1(t− d11

(r, r′), r′))dr′ +

∫
Ω

ŵ12(t, r, r
′)S12(ẑ2(t− d12(r, r

′), r′))dr′

−
∫
Ω

w12(r, r
′)S12(z2(t− d12(r, r

′), r′))dr′

= −αz̃1(t, r) +

∫
Ω

w̃11(t, r, r
′)S11(z1(t− d11(r, r

′), r′))dr′

+

∫
Ω

w̃12(t, r, r
′)S12(ẑ2(t− d12(r, r

′), r′))dr′

+

∫
Ω

w12(r, r
′)(S12(ẑ2(t− d12(r, r

′), r′))

− S12(z2(t− d12(r, r
′), r′)))dr′

τ2(r)
∂z̃2
∂t

(t, r) = −z̃2(t, r) +

∫
Ω

w22(t, r, r
′)(S22(ẑ2(t−

d22(r, r
′), r′))− S22(z2(t− d22(r, r

′), r′)))dr′

τ1(r)
∂w̃11

∂t
(t, r, r′) = −z̃1(t, r)S11(z1(t− d11(r, r

′), r′))⊤

τ2(r)
∂w̃12

∂t
(t, r, r′) = −z̃1(t, r)S12(ẑ2(t− d12(r, r

′), r′))⊤

3.2. Observer convergence

In what follows, we wish to exhibit sufficient condi-
tions for the convergence of the observer towards the
state, meaning the convergence of the estimation error
(z̃1, z̃2, w̃11, w̃12) towards 0. To do so, we introduce a no-
tion of persistence of excitation over infinite-dimensional
spaces.

Definition 3.2 (Persistence of excitation). Let X be a
Hilbert space and Y be a Banach space. A continuous sig-
nal g : R+ → X is persistently exciting (PE) with respect
to a bounded linear operator P ∈ L(X ,Y) if there exist
positive constants T and κ such that∫ t+T

t

|⟨g(τ), x⟩X |2dτ ⩾ κ∥Px∥2Y , ∀x ∈ X ,∀t ⩾ 0. (5)

Remark 3.3. If X = Y is finite-dimensional and P is a
self-adjoint positive-definite operator, then Definition (3.2)
coincides with the usual notion of persistence of excitation
since all norms on X are equivalent. However, if X = Y

is infinite-dimensional, then there does not exist any PE
signal with respect to the identity operator on X . (Actu-
ally, it is a characterization of the infinite dimensionality
of X ). Indeed, if P = IdX , then (5) at t = 0 together
with the spectral theorem for compact operators implies

that
∫ T

0
g(τ)g(τ)∗dτ is not a compact operator, which is

in contradiction with the fact that the sequence of finite
range operators

∑N
j=0 g(

jT
N )g( jTN )∗ converges to it as N

goes to infinity. This is the reason for which we intro-
duce this new PE condition which is feasible even if X is
infinite-dimensional. Indeed, P induces a semi-norm on X
that is weaker than or equivalent to ∥ · ∥X .

Remark 3.4. When X is infinite-dimensional, note that
there exist signals that are PE with respect to an operator
P inducing a norm on X (weaker than ∥·∥X ), and not only
a semi-norm. For example, consider X = Y = l2(N,R) the
Hilbert space of square summable real sequences. The sig-

nal g : R+ → X defined by g(τ) = ( sin(kτ)k2 )k∈N is PE with

respect to P : X → X defined by P (xk)k∈N =
(

xk

k2

)
k∈N

with constants T = 2π and κ = π since
∫ 2π

0
sin2(kτ)dτ = π

for all k ∈ N.

Remark 3.5. If X = L2(Ω,Rn) for some positive integer
n and if P is a HS integral operator with kernel ρ, then
∀x ∈ X ,∀t ⩾ 0, equation (5) is equivalent to

∫ t+T

t

|⟨g(τ), x⟩X |2dτ ⩾ κ

∫
Ω

∣∣∣∣∣
∫
Ω

ρ(r, r′)v(r′)dr′

∣∣∣∣∣
2

dr. (6)

As explained in Remark 3.3, the role of ρ is to weaken
the norm with respect to which g has to be PE. If one
changes the Lebesgue measure for the counting measure
over a finite set Ω as suggested in Remark 2.4, a possible
choice of ρ is the Dirac mass: ρ(r, r′) = 1 if r = r′, 0
otherwise. In that case, X is finite-dimensional, and we
recover the usual PE notion.

Now, let us state the main theorem of this section that
solves Problem 2.1.

Theorem 3.2 (Observer convergence). Suppose that As-
sumptions 2.5 and 3.1 are satisfied. Define α∗ :=

ℓ212∥w12∥2
(Xw12

,∥·∥)

2(1−ℓ222∥w22∥2
(Xw22 ,∥·∥))

. Then, for all α > α∗, for all

u1, u2 ∈ C0(R+ × Ω,Rni), any solution of (2)-(5) is such
that

lim
t→+∞

∥z̃1(t)∥Xz1
= lim

t→+∞
∥z̃2(t)∥Xz2

= 0

and ∥w̃11(t)∥(Xw11
,∥·∥F ) and ∥w̃12(t)∥(Xw12

,∥·∥F ) remain
bounded for all t ⩾ 0.

Moreover, for any solution of (2), the corresponding er-
ror system (5) is uniformly Lyapunov stable at the origin,
that is, for all ε > 0, there exists δ > 0 such that, if

∥z̃1(t0), z̃2t0 , w̃11(t0), w̃12(t0)∥Xz1
×C0([−d,0],Xz2

)×Xw11
×Xw12

⩽ δ
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for some t0 ⩾ 0, then

∥z̃1(t), z̃2(t), w̃11(t), w̃12(t)∥Xz1
×Xz2

×Xw11
×Xw12

⩽ ε

for all t ⩾ t0.

Furthermore, if S11 and S12 are differentiable, u1 and
u2 are bounded2 and if ρ1 ∈ L2(Ω2,Rn1×n1) and ρ2 ∈
L2(Ω2,Rn2×n2) are self-adjoint positive-definite kernels
such that the signal g : t 7→ ((r, r′) 7→ (S11(z1(t −
d11(r, r

′), r′)), S12(z2(t−d12(r, r
′), r′)))) is PE with respect

to P ∈ L(L2(Ω2,Rn1+n2), L2(Ω,Rn1+n2)) defined by

(P (x1, x2))(r) :=

(∫
Ω2

ρ1(r, r
′)x1(r

′′, r′)dr′′dr′,

∫
Ω2

ρ2(r, r
′)x2(r

′′, r′)dr′′dr′

)

for all (x1, x2) ∈ L2(Ω2,Rn1+n2) and all r ∈ Ω, then

lim
t→+∞

∥w̃11(t) ◦ ρ1∥(Xw11
,∥·∥F )

= lim
t→+∞

∥w̃12(t) ◦ ρ2∥(Xw12
,∥·∥F ) = 0. (7)

The proof of Theorem 3.2 is postponed to Section 3.3.

Remark 3.6. In the case where all the state is measured,
i.e., n2 = 0, note that α∗ = 0. Hence, under the PE as-
sumption on g, the convergence of ŵ11 ◦ ρ1 towards w11 is
guaranteed for any positive observer gain α. This means
that the observer does not rely on any high-gain approach.
This fact will be of importance in Section 4, to show that
the controller answering Problem 2.2 is not high-gain when
the full state is measured, contrary to the approach devel-
oped in [14].

Remark 3.7. The obtained estimations of the kernels w11

and w12 in (Xw11
, ∥ · ∥F ) is blurred by the kernels ρ1 and

ρ2. The stronger is the semi-norm induced by ρj (which is
a norm if and only if ρj is positive-definite), the stronger
is the PE assumption, and the finer is the estimation of
w1j . In particular, if the counting measure replaces the
Lebesgue measure over a finite set Ω and ρj is a Dirac mass
as suggested in Remark 3.5, then w̃1j ◦ρj = w̃1j , hence the
convergence of ŵ1j to w1j obtained in Theorem 3.2 is in the
topology of L2(Ω2, (Rni×nj , ∥ · ∥F )), i.e., coefficientwise.

Remark 3.8. The main requirement of Theorem 3.2
lies in the persistence of excitation requirement, which
is a common hypothesis to ensure convergence of adap-
tive observers (see, for instance, [4, 23, 39] in the finite-
dimensional context and [17, 16] in the infinite-dimensional
case). Roughly speaking, it states that the parameters
to be estimated are sufficiently “excited” by the sys-
tem dynamics. However, this assumption is difficult to

2This assumption is missing in [9] while it is implicitly used in
the proof.

check in practice since it depends on the trajectories of
the system itself. In Section 5, we choose in numeri-
cal simulations a persistently exciting input (u1, u2) in
order to generate persistence of excitation in the signal
(S11(z1 − d11), S12(z2 − d12)). This strategy seems to be
numerically efficient, but the theoretical analysis of the
link between the persistence of excitation of (u1, u2) and
that of (S11(z1−d11), S12(z2−d12)) remains an open ques-
tion, not only in the present work but also for general
classes of adaptive observers. This issue is further inves-
tigated in Section 4.2, where we look for a feedback law
allowing simultaneous kernel estimation and practical sta-
bilization. Another approach could be to design an ob-
server not relying on PE, inspired by [44, 38] for exam-
ple. These methods, however, do not readily extend to
the infinite-dimensional delayed context that is considered
in the present paper. They could be investigated in future
works. Finally, we emphasize that the persistence of ex-
citation assumption is not required for the convergence of
ẑ2 (it is only used to make ŵ1j converge, meaning to es-
timate the synaptic distribution of neurons projecting to
Population 1).

Remark 3.9. According to Definition 3.2, the PE as-
sumption on g in Theorem 3.2 can be rewritten as follows:
there exist positive constants T and κ such that, for all
(x1, x2) ∈ L2(Ω2,Rn1+n2),∫ T

0

∣∣∣∣∣
2∑

j=1

∫
Ω2

gj(t+ τ, r, r′)Txj(r, r
′)drdr′

∣∣∣∣∣
2

dτ

⩾ κ

2∑
j=1

∫
Ω

∣∣∣∣∣
∫
Ω2

ρj(r, r
′)xj(r

′′, r′)dr′′dr′

∣∣∣∣∣
2

dr (8)

This characterization will be used in the proof of Theo-
rem 3.2.

Remark 3.10. The choice of the operator P is a cru-
cial part of Theorem 3.2. First, its null space is given
by KerP = {(x1, x2) ∈ L2(Ω2,Rn1+n2) |

∫
Ω
xj(r, ·)dr ∈

KerPj ,∀j ∈ {1, 2}} = {(x1, x2) ∈ L2(Ω2,Rn1+n2) |
∥
∫
Ω
xj(r, ·)dr∥L2(Ω,Rnj ) = 0,∀j ∈ {1, 2}} (where Pj de-

notes the HS integral operator of kernel ρj), since ρ1 and
ρ2 are positive-definite. Secondly, remark that P can be
written as a block-diagonal operator, with two blocks in
L(L2(Ω,Rn1)) and L(L2(Ω2,Rn2)), respectively. Roughly
speaking, this means that the PE signal g must excite
“separately” on its two components so that we are able
to distinguish them and to reconstruct separately w11 and
w12. Finally, note that if d1j does not depend on r (i.e.,
d1j(·, r′) is constant for all r′ ∈ Ω), then neither does gj
(we write gj(t, r

′) := gj(t, r, r
′) by abuse of notations), and

the kernel of P simply means that we do not require to ex-
cite the system along r. In other words, in that case, (8)
can be rewritten as∫ T

0

∣∣∣∣∣
2∑

j=1

∫
Ω

gj(t+ τ, r′)TXj(r
′)dr′

∣∣∣∣∣
2

dτ
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⩾κ

2∑
j=1

∫
Ω

∣∣∣∣∣
∫
Ω

ρj(r, r
′)Xj(r

′)dr′

∣∣∣∣∣
2

dr

where Xj defined by Xj(r
′) =

∫
Ω
xj(r, r

′)dr spans
L2(Ω,Rnj ) as xj spans L

2(Ω2,Rnj ), which means that g is
PE with respect to the HS integral operator having kernel
diag(ρ1, ρ2), which is a self-adjoint positive-definite endo-
morphism of L2(Ω,Rn1+n2).

Remark 3.11. One of the drawbacks of the observer (4)
is that Theorem 3.2 does not guarantee input-to-state sta-
bility (ISS; see, e.g., [40, 34]) of the error system with re-
spect to perturbations of the measured output z1 or model
errors. This is an important issue in the context of neu-
rosciences since model parameters are often uncertain. In
particular, the assumption that Sij and dij are known is
based on models that may vary with time and with individ-
uals. From a mathematical point of view, it is due to the
fact that the Lyapunov function V (see (9)) used to inves-
tigate the system’s stability cannot easily be shaped into
a control Lyapunov function. Numerical experiments are
performed in Section 5 to investigate robustness to mea-
surement noise. From a theoretical viewpoint, in order
to obtain additional robustness properties, new observers
should be investigated in order to obtain global exponen-
tial contraction of the error system, for example, inspired
by [11]. In any case, the Lyapunov analysis performed in
Section 3.3.1 is still a bottleneck for proving the conver-
gence of observers of this kind.

Remark 3.12. Note that, in Theorem 3.2 as in all the re-
sults of this paper, the maximal delay d can be arbitrarily
large. The only assumption made on delays is that dij are
known.

3.3. Proof of Theorem 3.2 (observer convergence)

3.3.1. Step 1: Proof that limt→+∞ ∥z̃1(t)∥Xz1
=

limt→+∞ ∥z̃2(t)∥Xz2
= 0

In order to obtain the first part of the result, we seek a
Lyapunov functional V for the estimation error dynamics.
Inspired by the analysis performed in [14], let us consider
the following candidate Lyapunov function:

V (z̃1, z̃2t, w̃11, w̃12) :=V z
1 (z̃1) + V z

2 (z̃2) + V w
1 (w̃11)

+ V w
2 (w̃12) +W1(z̃2t) +W2(z̃2t)

(9)

where, for all (z̃1, z̃2t, w̃11, w̃12) ∈ Xz1 ×C0([−d, 0],Xz2)×
Xw11

×Xw12
,

V z
i (z̃i) :=

1

2

∫
Ω

z̃i(r)
⊤τi(r)z̃i(r)dr, (10)

V w
j (w̃1j) :=

1

2

∫
Ω2

Tr(w̃1j(r, r
′)⊤τj(r)w̃1j(r, r

′))dr′dr,

(11)

Wi(z̃2t) :=

∫
Ω2

γi(r)

∫ 0

−di2(r,r′)

|z̃2t(s, r′)|2dsdr′dr, (12)

and γi ∈ L2(Ω,R), for i ∈ {1, 2}, are to be chosen later.
Computing the time derivative of these functions along

solutions of (5), we get:

d

dt
V z
1 (z̃1(t)) = −α

∫
Ω

|z̃1(t, r)|2dr

+

∫
Ω2

z̃1(t, r)
⊤
(
w̃11(t, r, r

′)(S11(z1(t− d11(r, r
′), r′)))

+ w̃12(t, r, r
′)(S12(ẑ2(t− d12(r, r

′), r′)))

+ w12(t, r, r
′)(S12(ẑ2(t− d12(r, r

′), r′))

− S12(z2(t− d12(r, r
′), r′)))

)
dr′dr,

d

dt
V z
2 (z̃2(t)) = −

∫
Ω

|z̃2(t, r)|2dr

+

∫
Ω2

z̃2(t, r)
⊤
(
w22(t, r, r

′)(S22(ẑ2(t− d22(r, r
′), r′))

− S22(z2(t− d22(r, r
′), r′)))

)
dr′dr,

d

dt
(V w

1 (w̃11(t)) + V w
2 (w̃12(t)))

= −
∫
Ω2

Tr(w̃11(t, r, r
′)⊤z̃1(t, r)S11(z1(t− d11(r, r

′), r′))⊤)dr′dr

−
∫
Ω2

Tr(w̃12(t, r, r
′)⊤z̃1(t, r)S12(ẑ2(t− d12(r, r

′), r′))⊤)dr′dr

= −
∫
Ω2

z̃1(t, r)
⊤
(
w̃11(r, r

′)S11(z1(t− d11(r, r
′), r′))

+ w̃12(r, r
′)S12(ẑ2(t− d12(r, r

′), r′))
)
dr′dr,

and

d

dt
Wi(z̃2t) =

∫
Ω2

γi(r)(|z̃2(t, r′)|2 − |z̃2(t− di2(r, r
′), r′)|2)dr′dr.

Combining the previous computations, we obtain that

d

dt
V (z̃1(t), z̃2t, w̃11(t), w̃12(t)) = −α∥z̃1(t)∥2Xz1

−
(
1−

2∑
i=1

∫
Ω

γi(r)dr
)
∥z̃2(t)∥2Xz2

+

2∑
i=1

Ni(z̃i(t), ẑ2t, z2t)

−
2∑

i=1

∫
Ω2

γi(r)|z̃2(t− di2(r, r
′), r′)|2dr′dr

where

Ni(z̃i(t), ẑ2t, z2t) :=

∫
Ω2

z̃i(t, r)
⊤
(
wi2(r, r

′)(Si2(ẑ2(t− di2(r, r
′),

r′))− Si2(z2(t− di2(r, r
′), r′)))

)
dr′dr.

Let us provide a bound of Ni by applying Cauchy-
Schwartz and Young’s inequalities.

|Ni(z̃i(t), ẑ2t, z2t)|
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=

∣∣∣∣∣
∫
Ω2

z̃i(t, r)
⊤wi2(r, r

′)
(
Si2(ẑ2(t− di2(r, r

′), r′))

− Si2(z2(t− di2(r, r
′), r′))

)
dr′dr

∣∣∣∣∣
⩽
∫
Ω

∣∣∣z̃i(t, r)∣∣∣
∣∣∣∣∣
∫
Ω

wi2(r, r
′)
(
Si2(ẑ2(t− di2(r, r

′), r′)

− Si2(z2(t− di2(r, r
′), r′))

)
dr′

∣∣∣∣∣dr
⩽

√∫
Ω

∣∣∣z̃i(t, r)∣∣∣2dr(∫
Ω

∣∣∣∣∣
∫
Ω

wi2(r, r
′)
(
Si2(ẑ2(t− di2(r, r

′), r′)

− Si2(z2(t− di2(r, r
′), r′))

)
dr′

∣∣∣∣∣
2

dr
) 1

2

⩽
1

2εi
∥z̃i(t)∥2Xzi

+
εi
2

∫
Ω

∣∣∣∣∣
∫
Ω

∥wi2(r, r
′)∥
∣∣∣Si2(ẑ2(t−

di2(r, r
′), r′)− Si2(z2(t− di2(r, r

′), r′))
∣∣∣dr′∣∣∣∣∣

2

dr

⩽
1

2εi
∥z̃i(t)∥2Xzi

+
εi
2

∫
Ω

∫
Ω

∥wi2(r, r
′)∥2dr′

∫
Ω

∣∣∣Si2(ẑ2

(t− di2(r, r
′), r′)− Si2(z2(t− di2(r, r

′), r′))
∣∣∣2dr′dr

⩽
1

2εi
∥z̃i(t)∥2Xzi

+
εiℓ

2
i2

2

∫
Ω

∫
Ω

∥wi2(r, r
′)∥2dr′

∫
Ω

|z̃2(t−

di2(r, r
′), r′)|2dr′dr

for all εi > 0. Now, set γi(r) :=
εiℓ

2
i2

2

∫
Ω
∥wi2(r, r

′)∥2dr′
for all i ∈ {1, 2}. We finally get that

d

dt
V (z̃1(t), z̃2t, w̃11(t), w̃12(t)) ⩽ −

(
α− 1

2ε1

)
∥z̃1(t)∥2Xz1

−

(
1−

2∑
i=1

∫
Ω

γi(r)dr −
1

2ε2

)
∥z̃2(t)∥2Xz2

.

(13)
In order to make V a Lyapunov function, it remains
to choose the constants εi. By definition of γi, we
have

∑2
i=1

∫
Ω
γi(r)dr = 1

2

∑2
i=1 εiℓ

2
i2∥wi2∥2(Xwi2

,∥·∥). Re-

call that, by Assumption 3.1 and by definition of α∗,

ℓ222∥w22∥2(Xw22
,∥·∥) < 1 and α >

ℓ212∥w12∥2
(Xw12

,∥·∥)

2(1−ℓ222∥w22∥2
(Xw22

,∥·∥))
. Pick

ε1 :=
1− ℓ222∥w22∥2(Xw22 ,∥·∥)

ℓ212∥w12∥2(Xw12
,∥·∥)

and ε2 :=
1 + ℓ222∥w22∥2(Xw22 ,∥·∥)

2ℓ222∥w22∥2(Xw22
,∥·∥)

.

Then, there exist two positive constants c1 and c2, given
by c1 = α − α∗ and c2 = 1

4 (1 − ℓ222∥w22∥2(Xw22 ,∥·∥)
), such

that for any solution of (5),

d

dt
V (z̃1(t), z̃2t, w̃11(t), w̃12(t)) ⩽ −c1∥z̃1(t)∥2Xz1

− c2∥z̃2(t)∥2Xz2
.

(14)

Since τi ∈ C0(Ω,Dni
++), V z

i and V w
j define norms that

are equivalent to the norms of Xzi and (Xw1j , ∥ · ∥F ), re-
spectively. Hence, the error system is uniformly Lyapunov
stable, since V is non-increasing. Moreover, z̃i, and w̃1j

are bounded for i, j ∈ {1, 2}. Moreover, we have for all
t ⩾ 0,

d

dt
V z
1 (z̃1(t)) ⩽ −α∥z̃1(t)∥2Xz1

+

∫
Ω

|z̃1(t, r)|
∣∣∣ ∫

Ω

w̃11(t, r, r
′)(S11(z1(t− d11(r, r

′), r′)))

+ w̃12(t, r, r
′)(S12(ẑ2(t− d12(r, r

′), r′)))

+ w12(t, r, r
′)(S12(ẑ2(t− d12(r, r

′), r′))

− S12(z2(t− d12(r, r
′), r′)))dr′

∣∣∣dr,
⩽ −α∥z̃1(t)∥2Xz1

+
1

2
∥z̃1(t)∥2Xz1

+
1

2
S̄2
11∥w̃11∥2(Xw11

,∥·∥)

+
1

2
S̄2
12∥w̃12∥2(Xw12

,∥·∥) + 2S̄2
12∥w12∥2(Xw12

,∥·∥)

and

d

dt
V z
2 (z̃2) ⩽ −∥z̃2(t)∥2Xz2

+

∫
Ω

|z̃2(t, r)|
∣∣∣ ∫

Ω

w22(t, r, r
′)

(S22(ẑ2(t− d22(r, r
′), r′))− S22(z2(t− d22(r, r

′), r′)))dr′
∣∣∣dr,

⩽ −∥z̃2(t)∥2Xz2
+

1

2
∥z̃2(t)∥2Xz2

+ 2S̄2
22∥w22∥2(Xw22

,∥·∥).

Hence d
dtV

z
1 (z̃1) and d

dtV
z
2 (z̃2) are bounded since z̃i, and

w̃1j are bounded for all i, j ∈ {1, 2}. Thus, according
to Barbalat’s lemma applied to V z

i (z̃i), V
z
i (z̃i(t)) → 0 as

t → +∞, hence ∥z̃i(t)∥Xzi
→ 0.

Remark 3.13. At this stage, note that d
dt (V

z
2 (z̃2) +

W2(z̃2t)) ⩽ −c2∥z̃2∥2Xz2
whenever γ2 and ε2 are chosen

as above. Hence, Assumption 3.1 implies that z̃2 is con-
verging towards 0. This justifies that Assumption 3.1 is
indeed a dissipativity assumption of the z2 sub-system, i.e.
a detectability assumption, since ẑ2 has the same dynamics
than z2.

3.3.2. Step 2: Proof that limt→+∞ ∥w̃11(t)PX∥Xw11
=

limt→+∞ ∥w̃12(t)PY ∥Xw12
= 0

Now, assume that t 7→ (S11(z1(t−d11)), S12(z2(t−d12)))
is PE with respect to ρ. The error dynamics (5) can be
rewritten as

τ1(r)
∂z̃1
∂t

(t, r) = f0(t, r) +

∫
Ω

w̃11(t, r, r
′)g1(t, r, r

′)dr′

+

∫
Ω

w̃12(t, r, r
′)g2(t, r, r

′)dr′

9



τ1(r)
∂w̃11

∂t
(t, r, r′) = f1(t, r, r

′)

τ2(r)
∂w̃12

∂t
(t, r, r′) = f2(t, r, r

′)

where

gj(t, r, r
′) := S1j(zj(t− d1j(r, r

′), r′)), ∀j ∈ {1, 2},

∥f0(t)∥2Xz1
:=

∫
Ω

∣∣∣∣∣− αz̃1(t, r) +

∫
Ω

ŵ12(t, r, r
′)(S12(ẑ2(t−

d12(r, r
′), r′))− S12(z2(t− d12(r, r

′), r′)))dr′

∣∣∣∣∣
2

dr

⩽ 2α2∥z̃1(t)∥2Xz1
+ 2ℓ212

∫
Ω

∫
Ω

∥ŵ12(t, r, r
′)∥2dr′

∫
Ω

∥z̃2(t

− d12(r, r
′), r′)∥2dr′dr

⩽ 2α2∥z̃1(t)∥2Xz1
+ 2ℓ212∥ŵ12(t)∥2(Xw12

,∥·∥) sup
s∈[−d,0]

∥z̃2t(s)∥2Xz2
,

∥f1(t)∥(Xw11
,∥·∥) :=

∫
Ω2

|z̃1(t, r)S11(z1(t− d11(r, r
′), r′))|2

⩽ S̄2
11µ(Ω)∥z̃1(t)∥2Xz1

,

and

∥f2(t)∥(Xw12
,∥·∥) :=

∫
Ω2

|z̃1(t, r)S12(ẑ2(t− d12(r, r
′), r′))|2

⩽ S̄2
12µ(Ω)∥z̃1(t)∥2Xz1

.

Recall that, according to Step 1, ∥z̃i(t)∥Xzi
→ 0 for all

i ∈ {1, 2}, and ∥ŵ12(t)∥(Xw12
,∥·∥) ⩽ ∥w̃12(t)∥(Xw12

,∥·∥) +
∥w12(t)∥(Xw12

,∥·∥) remains bounded as t → +∞. Hence
∥f0(t)∥(Xz1 ,∥·∥) → 0 and ∥fj(t)∥(Xw1j

,∥·∥) → 0 as t → +∞
for all j ∈ {1, 2}. Moreover, t 7→ (g1(t), g2(t)) is PE with
respect to ρ by assumption.
Applying twice Duhamel’s formula (once on z̃1, then

once on w̃1j) , we get that for all t, τ ⩾ 0,

τ1(r)z̃1(t+ τ, r) = τ1(r)z̃1(t, r) +

∫ τ

0

f0(t+ s, r)ds

+

2∑
j=1

∫
Ω

∫ τ

0

w̃1j(t+ s, r, r′)gj(t+ s, r, r′)dsdr′

= τ1(r)z̃1(t, r) +

∫ τ

0

f0(t+ s, r)ds+

2∑
j=1

∫
Ω

w̃1j(t, r, r
′)

∫ τ

0

gj(t+ s, r, r′)dsdr′ +

2∑
j=1

∫
Ω

∫ τ

0

∫ s

0

τj(r)
−1fj(t+

σ, r, r′)gj(t+ s, r, r′)dσdsdr′.

For any t, T ⩾ 0, define O(t, T ) :=
∫ T

0

∫
Ω
z̃1(t +

τ, r)⊤τ1(r)
2z̃1(t + τ, r)drdτ . Since ∥z̃1(t)∥Xz1

→ 0,

O(t, T ) → 0 as t → +∞ for all T ⩾ 0. Moreover,

O(t, T ) =

∫ T

0

∫
Ω

∣∣∣∣∣τ1(r)z̃1(t, r) +
∫ τ

0

f0(t+ s, r)ds+

2∑
j=1

∫
Ω

∫ τ

0

∫ s

0

τj(r)
−1fj(t+ σ, r, r′)gj(t+ s, r, r′)dσdsdr′

∣∣∣∣∣
2

drdτ

+

∫ T

0

∫
Ω

∣∣∣∣∣
2∑

j=1

∫
Ω

w̃1j(t, r, r
′)

∫ τ

0

gj(t+ s, r, r′)dsdr′

∣∣∣∣∣
2

drdτ

+ 2

∫ T

0

∫
Ω

( 2∑
j=1

∫
Ω

w̃1j(t, r, r
′)

∫ τ

0

gj(t+ s, r, r′)dsdr′
)⊤

(
τ1(r)z̃1(t, r) +

∫ τ

0

f0(t+ s, r)ds+

2∑
j=1

∫
Ω

∫ τ

0

∫ s

0

τj(r)
−1

fj(t+ σ, r, r′)gj(t+ s, r, r′)dσdsdr′
)
drdτ

Since ∥z̃1(t)∥Xz1
→ 0, ∥f0(t)∥(Xz1

,∥·∥) → 0 and

∥fj(t)∥(Xw1j
,∥·∥) → 0 as t → +∞, |gj(t, r, r′)| ⩽ S̄1j for all

t ⩾ 0 and all r, r′ ∈ Ω, and t 7→ ∥w̃1j(t)∥Xw1j
is bounded,

we get that for any T > 0,

lim
t→+∞

∫ T

0

∫
Ω

∣∣∣∣∣
2∑

j=1

∫
Ω

w̃1j(t, r, r
′)

∫ τ

0

gj(t+ s, r, r′)dsdr′

∣∣∣∣∣
2

drdτ = 0. (15)

For all t, τ ⩾ 0 and all r ∈ Ω, define h(t, τ, r) :=∑2
j=1

∫
Ω
w̃1j(t, r, r

′)
∫ τ

0
gj(t + s, r, r′)dsdr′. By (15),

∥h(t, ·)∥L2((0,T ),Xz1
) → 0 as t → +∞. Note that

∂h
∂τ (t, τ, r) =

∑2
j=1

∫
Ω
w̃1j(t, r, r

′)gj(t + τ, r, r′)dr′ hence

h(t, ·) ∈ W 1,2((0, T ),Xz1) and is bounded since gj ’s
are bounded. Moreover, since uj is supposed to be
bounded for all j ∈ {1, 2}, dzi

dt is also bounded ac-
cording to Proposition 2.1. Hence, since S1j ’s are

differentiable with bounded derivative, ∂2h
∂τ2 (t, τ, r) =∑2

j=1

∫
Ω
w̃1j(t, r, r

′)
∂gj
∂τ (t + τ, r, r′)dr′ is well-defined and

bounded. Therefore, for all t ⩾ 0, h(t, ·) ∈
W 2,2((0, T ),Xz1) and ∥h(t, ·)∥W 2,2((0,T ),Xz1

) ⩽ c3 for some
positive constant c3 independent of t. According to the
interpolation inequality (see, e.g., [42, Section II.2.1]),

∥h(t, ·)∥2W 1,2((0,T ),Xz1
) ⩽ c3∥h(t, ·)∥L2((0,T ),Xz1

).

Thus ∥∂h
∂τ (t, τ)∥L2((0,T ),Xz1 )

→ 0, meaning that

lim
t→+∞

∫ T

0

∫
Ω

∣∣∣∣∣
2∑

j=1

∫
Ω

w̃1j(t, r, r
′)gj(t+τ, r, r′)dr′

∣∣∣∣∣
2

drdτ = 0.

(16)
Let (ek)k∈N be a Hilbert basis of Xz1 . We have, for all
t ⩾ 0,

∫ T

0

∫
Ω

∣∣∣∣∣
2∑

j=1

∫
Ω

w̃1j(t, r, r
′)gj(t+ τ, r, r′)dr′

∣∣∣∣∣
2

drdτ

=

∫ T

0

∑
k∈N

∣∣∣∣∣
2∑

j=1

∫
Ω2

(
w̃1j(t, r, r

′)gj(t+ τ, r, r′)
)⊤

ek(r)dr
′dr

∣∣∣∣∣
2

dτ
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=
∑
k∈N

∫ T

0

∣∣∣∣∣
2∑

j=1

∫
Ω2

gj(t+ τ, r, r′)⊤w̃1j(t, r, r
′)⊤ek(r)dr

′dr

∣∣∣∣∣
2

dτ.

Now, since g is PE with respect to ρ over L2(Ω2,Rn1+n2),
there exist positive constants T and κ such that (8) holds.
for all xj ∈ L2(Ω2,Rnj ), j ∈ {1, 2}, and all t ⩾ 0. Choos-
ing xj(r, r

′) = w̃1j(t, r, r
′)⊤ek(r), we get

∫ T

0

∫
Ω

∣∣∣∣∣
2∑

j=1

∫
Ω

w̃1j(t, r, r
′)gj(t+ τ, r, r′)dr′

∣∣∣∣∣
2

drdτ

⩾
∑
k∈N

κ

2∑
j=1

∫
Ω

∣∣∣∣∣
∫
Ω2

ρj(r, r
′)w̃1j(t, r

′′, r′)⊤ek(r
′′)dr′′dr′

∣∣∣∣∣
2

dr.

On the other hand,

2∑
j=1

∥w̃1j(t) ◦ ρj∥2(Xw1j
,∥·∥F )

=

2∑
j=1

∥w̃(t) ◦ ρj∥2L2(Ω2,(Rn1×nj ,∥·∥F ))

=

2∑
j=1

∥ρj ◦ w̃(t)∗∥2L2(Ω2,(Rnj×n1 ,∥·∥F ))

=

2∑
j=1

∑
k∈N

∫
Ω

∣∣∣∣∣
∫
Ω

(ρj ◦ w̃(t)∗)(r, r′′)ek(r′′)dr′′
∣∣∣∣∣
2

dr

=

2∑
j=1

∑
k∈N

∫
Ω

∣∣∣∣∣
∫
Ω2

ρj(r, r
′)w̃1j(t, r

′′, r′)⊤dr′ek(r
′′)dr′′

∣∣∣∣∣
2

dr

=

2∑
j=1

∑
k∈N

∫
Ω

∣∣∣∣∣
∫
Ω2

ρj(r, r
′)w̃1j(t, r

′′, r′)⊤ek(r
′′)dr′′dr′

∣∣∣∣∣
2

dr

⩽
1

κ

∫ T

0

∫
Ω

∣∣∣∣∣
2∑

j=1

∫
Ω

w̃1j(t, r, r
′)gj(t+ τ, r, r′)dr′

∣∣∣∣∣
2

drdτ.

Thus, by (16),

0 = lim
t→+∞

∥w̃12(t) ◦ ρ2∥(Xw12 ,∥·∥F )

= lim
t→+∞

∥w̃11(t) ◦ ρ1∥(Xw11
,∥·∥F ),

which concludes the proof of Theorem 3.2.

4. Adaptive control

In order to tackle Problem 2.2, we now introduce an
adaptive controller based on the previous observer design.

4.1. Exact stabilization

Let z1,ref ∈ Xz1 be a constant reference signal at which
we aim to stabilize z1. The z2 dynamics of (2) can be

written as

τ2(r)
∂z2
∂t

(t, r) = −z2(t, r) +

∫
Ω

w22(r, r
′)S22(z2(t− d22(r

, r′), r′))dr′ + v2,ref(r) + v2(t, r)
(17)

where

v2,ref(r) :=

∫
Ω

w21(r, r
′)S21(z1,ref(r

′))dr′

and

v2(t, r) := u2(t, r) +

∫
Ω

w21(r, r
′)(S21(z1(t, r))

− S21(z1,ref(r
′)))dr′.

When z1 is constantly equal to z1,ref and u2 = 0, we
have v2 = 0. Hence, according to [24, Proposition 3.6],
system (17) admits, in that case, a stationary solution,
i.e., there exists z2,ref ∈ Xz2 such that

z2,ref(r) =

∫
Ω

w22(r, r
′)S22(z2,ref(r

′))dr′+v2,ref(r), ∀r ∈ Ω.

Moreover, we have the following stability result.

Lemma 4.1 ([14, Proposition 1]). Under Assumption 3.1,
system (17) is input-to-state stable ( ISS) at z2,ref with re-
spect to v2, that is, there exist functions β of class KL and
ν of class K∞ such that, for all z2,0 ∈ C0([−d, 0],Xz2)
and all v2 ∈ C0(R+,Xz2), the corresponding solution z2 of
(17) satisfies, for all t ⩾ 0,

∥z2(t)− z2,ref∥Xz2
⩽β(∥z2(0)− z2,ref∥Xz2

, t)

+ ν
(

sup
τ∈[0,t]

∥v2(τ)∥Xz2

)
.

Remark 4.1. The result given in [14, Proposition 1] holds
for systems whose dynamics is of the form (after a change
of variable)

τ2(r)
∂z2
∂t

(t, r) = − z2(t, r) + S22(

∫
Ω

w22(r, r
′)z2(t−

d22(r, r
′), r′)dr′) + v2,ref(r) + v2(t, r),

which is slightly different from (17). However, one can
easily check that this modification does not impact at all
the proof given in [14]. In particular, the control Lyapunov
function given in [14] remains a Lyapunov function for (17)
(where v2 is the input).

In particular, Assumption 3.1 implies that z2,ref is
unique. In the case where z1,ref = 0 and S2j(0) = 0 for all
j ∈ {1, 2}, we also have z2,ref = 0.

We aim to define a dynamic output feedback law that
stabilizes (z1, z2) at the reference (z1,ref , z2,ref). We pro-
pose the following feedback strategy: for all t ⩾ 0 and all
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r ∈ Ω, set

u1(t, r) = − α(z1(t, r)− z1,ref(r)) + z1(t, r)

−
∫
r′∈Ω

ŵ11(t, r, r
′)S11(z1(t− d11(r, r

′), r′))dr′

−
∫
r′∈Ω

ŵ12(t, r, r
′)S12(ẑ2(t− d12(r, r

′), r′))dr′,

u2(t, r) = 0,
(18)

where α > 0 is a tunable controller gain. The motivation
of this controller is that, when w1j = ŵ1j and ẑ2 = z2, the
resulting dynamics of z1 is τ1

∂z1
∂t = −α(z1−z1,ref). Hence,

since z2 has a contracting dynamics by Assumption 3.1,
this would lead (z1, z2) towards (z1,ref , z2,ref). Note that
for the controller (18), the resulting dynamics of ẑ1 in (4)
is τ1

∂ẑ1
∂t = −α(ẑ1 − z1,ref). Hence, since the choice of

the initial condition of the observer is free, one particular
instance of the closed-loop observer is given by ẑ1(t, r) =
z1,ref(r) for all t ⩾ 0 and all r ∈ Ω. For this reason, in
the stabilization strategy, we can reduce the dimension of
the observer by setting ẑ1 = z1,ref , i.e., z̃1 = z1,ref − z1.
Finally, the closed-loop system that we investigate can be
rewritten as system (2) coupled with the controller (18)
and the observer system given by

τ2(r)
∂ẑ2
∂t

(t, r) = +

∫
Ω

w21(r, r
′)S21(z1(t− d21(r, r

′), r′))dr′

+

∫
Ω

w22(r, r
′)S22(ẑ2(t− d22(r, r

′), r′))dr′ − ẑ2(t, r)

τ1(r)
∂ŵ11

∂t
(t, r, r′) = (z1(t, r)− z1,ref(r))

· S11(z1(t− d11(r, r
′), r′))⊤

τ1(r)
∂ŵ12

∂t
(t, r, r′) = (z1(t, r)− z1,ref(r))

· S12(ẑ2(t− d12(r, r
′), r′))⊤.

(19)
First, let us ensure the well-posedness of the resulting

closed-loop system.

Proposition 4.2 (Closed-loop well-posedness). Suppose
that Assumption 2.5 is satisfied. For any initial con-
dition (z1,0, z2,0, ẑ2,0, ŵ11,0, ŵ12,0) ∈ C0([−d, 0],Xz1) ×
C0([−d, 0],Xz2)

2 × Xw11
× Xw12

, the closed-loop sys-
tem (2)-(18)-(19) admits a unique corresponding solution
(z1, z2, ẑ2, ŵ11, ŵ12) ∈ C1([0,+∞),Xz1 × X 2

z2 × Xw11 ×
Xw12

) ∩ C0([−d,+∞),Xz1 ×X 2
z2 ×Xw11

×Xw12
).

Proof. We adapt the proof of Proposition 3.1. The main
difference is that, since the system is in closed loop, the
state variables (z1, z2) cannot be taken as external in-
puts in the observer dynamics. Therefore, we consider
the map F : R+ × C0([−d, 0],Xz1) × C0([−d, 0],Xz2)

2 ×
Xw11

× Xw12
→ Xz1 × X 2

z2 × Xw11
× Xw12

such that

(4) can be rewritten as d
dt (z1, z2, ẑ2, ŵ11, ŵ12)(t) =

F (t, z1t, z2t, ẑ2t, ŵ11, ŵ12). Since τi are continuous and
positive, Sij are bounded and wij are square-integrable

over Ω2 and di are continuous, the map F is well-defined
by the same arguments than [26, Lemma 3.1.1]. Let us
show that F is continuous, and globally Lipschitz with re-
spect to (ẑ1, ẑ1t, ŵ11, ŵ12), so that we can conclude with
[28, Lemma 2.1 and Theorem 2.3]. Define F1 taking
values in Xz1 , F2 and F3 taking values in Xz2 , F4 tak-
ing values in Xw11 and F5 taking values in Xw12 so that
F = (Fi)i∈{1,2,3,4,5} From the proof of [26, Lemma 3.1.1],
F1, F2, and F3 are continuous and globally Lipschitz with
respect to the last variables. From the boundedness and
global Lipschitz continuity of S, F4, and F5 are also con-
tinuous and globally Lipschitz with respect to the last vari-
ables. This concludes the proof of Proposition 4.2. ■

Now, the main theorem of this section can be stated.

Theorem 4.3 (Exact stabilization). Suppose that As-
sumptions 2.5 and 3.1 are satisfied. Define α∗ :=

ℓ212∥w12∥2
(Xw12

,∥·∥)

2(1−ℓ222∥w22∥2
(Xw22

,∥·∥))
. Then, for all α > α∗, any solution

of (2)-(18)-(19) is such that

lim
t→+∞

∥z1(t)− z1,ref∥Xz1
= lim

t→+∞
∥z2(t)− z2,ref∥Xz2

= lim
t→+∞

∥ẑ2(t)− z2(t)∥Xz2
= 0

and ∥ŵ11(t)∥(Xw11
,∥·∥F ) and ∥ŵ12(t)∥(Xw12

,∥·∥F ) remain
bounded for all t ⩾ 0.

Moreover, the system (2)-(18)-(19) is uniformly Lya-
punov stable at (z1,ref , z2,ref , z2,ref , w11, w12), that is, for
all ε > 0, there exists δ > 0 such that, if

∥z1(t0)− z1,ref , z2t0 − z2,ref , ẑ2t0 − z2,ref , ŵ11(t0)− w11,

ŵ12(t0)− w12∥Xz1
×C0([−d,0],X 2

z2
)×Xw11

×Xw12
⩽ δ

for some t0 ⩾ 0, then

∥z1(t)− z1,ref , z2(t)− z2,ref , ẑ2(t)− z2,ref , ŵ11(t)− w11,

ŵ12(t)− w12∥Xz1
×X 2

z2
×Xw11

×Xw12
⩽ ε

for all t ⩾ t0.

Proof. As in Section 3, define the observer error z̃2 =
ẑ2 − z2 and w̃1j = ŵ1j −w1j . Define also z̃1 := z1,ref − z1.
Then (z̃1, z̃2, w̃11, w̃12) satisfies (5). Thus, the first part
(i.e. the part without PE assumption) of Theorem 3.2 can
be applied. It implies that (z̃1, z̃2) → 0 in Xz1 × Xz1 ,
(w̃11, w̃12) remains bounded, and this autonomous sys-
tem is uniformly Lyapunov stable at the origin. More-
over, z2 satisfies the dynamics (17) with v2(t, r) =∫
Ω
w21(r, r

′)(S21(z1,ref(r
′) − z̃1(t, r

′)) − S21(z1,ref(r
′)))dr′.

In other words, (z̃1, z̃2, w̃11, w̃12) coupled with z2 is a cas-
cade system where z2 is driven by the other variables. Ac-
cording to Lemma 4.1, (17) is ISS with respect to v2. Thus,
z2 → z2,ref in Xz2 and is uniformly Lyapunov stable at
z2,ref . ■
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Note that this exact stabilization result does not rely
on any PE assumption, i.e. that the convergence of ŵ1j

towards w1j is not crucial for stabilization. This can also
be seen in the proof, since only the first part of Theorem
3.2 is used.

Remark 4.2. Let us consider the case where the full state
is measured, i.e., n2 = 0. Then α∗ = 0, which means
that the controller does not rely on any high-gain approach
(see Remark 3.6). This is the main difference between the
present work and the approach developed in [14], where
the gain has to be chosen sufficiently large even in the
fully measured context.

Remark 4.3. Convergence of the kernel estimation ŵ1j

towards w1j is not investigated in Theorem 4.3. Ac-
tually, one can apply the last part of Theorem 3.2 to
show that, under a PE assumption on the signal g =
(S11(z1(t − d11)), S12(z2(t − d12))), the kernel estimation
is guaranteed in the sense of (7). However, since the feed-
back law is made to stabilize the system, z1 and z2 are
converging towards (z1,ref , z2,ref). Hence, for g to be PE
with respect to P , one must have that for some positive
constant T and κ,

T |(S11(z1,ref), S12(z2,ref))
∗v|2 ⩾ κ∥Px∥2Y , ∀x ∈ X ,∀t ⩾ 0.

i.e. that (S11(z1,ref), S12(z2,ref))
∗ induces a semi-norm on

X stronger than the one induced by P . This operator
being a linear form, it implies that the kernel of P must
contain a hyperplane, which makes the convergence of ŵ1j

towards w1j too much blurred by P to claim that any
interesting information on w1j can be reconstructed by
this method, except when dimX = 1. In particular, if
(S11(z1,ref), S12(z2,ref)) = (0, 0), then P = 0, hence no con-
vergence of ŵ1j towards w1j is guaranteed. The objective
of simultaneously stabilizing the neuronal activity while
estimating the kernels is investigated in the next section.

4.2. Simultaneous kernel estimation and practical stabi-
lization

The goal of this section is to propose an observer and
a controller that allow to simultaneously answer Prob-
lems 2.1 and 2.2. In order to do so, we make the following
set of restrictions (in this subsection only) for reasons that
will be pointed in Remark 4.5:

(i) Exact stabilization is now replaced by practical stabi-
lization, that is, for any arbitrary small neighborhood
of the reference, a controller that stabilizes the system
within this neighborhood has to be designed.

(ii) All the neuronal activity is measured, i.e., n2 = 0.
Hence, we set z = z1, w11 = w, u = u1, S = S11,
τ = τ1 and d = d11 to ease the notations.

(iii) The state space Xz is finite-dimensional. To do so,
as suggested in Remark 2.4, we replace the Lebesgue
measure with the counting measure and take Ω as

a finite collection of N points in Rq, so that Xz ≃
R(N×n).

(iv) The delay d is constant. We write d := d(r, r′) for all
r, r′ ∈ Ω by abuse of notations.

(v) The decay rate τ(r) is constant and all its components
are equal, that is, τ(r) = τ IdRn for all r ∈ Ω for some
positive real constant τ .

(vi) The reference signal is zref is constant and S(zref) = 0.

(vii) S is locally linear near zref , that is, there exists ε > 0
such that S(z) = dS

dz (zref)(z− zref) for all z ∈ Rn sat-

isfying |z − zref | ⩽ ε. Moreover, dS
dz (zref) is invertible.

Under these restrictions, we now consider the following
problem.

Problem 4.4. Consider the system (3). From the knowl-
edge of S, τ and d and the online measurement of u(t)
and z(t), for any arbitrary small neighborhood of 0 ∈ Xz,
find u in the form of a dynamic output feedback law that
stabilizes z in this neighborhood, and estimate online w.

As explained in Remark 4.3, there is no hope of estimat-
ing w when employing the feedback law (18), since stabiliz-
ing z at zref prevents the persistency condition from being
satisfied. For this reason, we suggest adding to the con-
trol law a small excitatory signal, whose role is to improve
persistency without perturbing too much the z dynamics.
Of course, this strategy prevents obtaining exact stabiliza-
tion. This is why this condition has been relaxed in (i).
More precisely, to answer Problem 4.4, we suggest to con-
sider the feedback law

u(t, r) =v(t, r)− α(z(t, r)− zref) + z(t, r)

−
∫
r′∈Ω

ŵ(t, r, r′)S(z(t− d, r′))dr′, (20)

coupled with the observer

τ
∂ẑ

∂t
(t, r) = −αẑ(t, r) + v(t, r)

τ
∂ŵ

∂t
(t, r, r′) = −(ẑ(t, r)− z(t, r))S(z(t− d, r′))⊤

(21)

where α > 0 is a tunable controller gain and v is a signal
to be chosen both small enough in order to ensure practi-
cal convergence of z towards 0 and persistent in order to
ensure convergence of ŵ towards w. In practice, v can also
be seen as an external signal arising from interaction with
other neurons whose dynamics are not modeled.

Since v is supposed to be continuous, the proof of well-
posedness is identical to the proof of Proposition 4.2 and
we get the following.
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Proposition 4.4 (Well-posedness of (1)-(20)-(21)). Sup-
pose that Assumption 2.5 is satisfied. For any v ∈
C0(R+,Xz) and any initial condition (z0, ẑ0, ŵ0) ∈
C0([−d, 0],Xz)

2 × Xw, the closed-loop system (1)-(20)-
(21) admits a unique corresponding solution (z, ẑ, ŵ) ∈
C1([0,+∞),X 2

z ×Xw) ∩ C0([−d,+∞),X 2
z ×Xw).

Theorem 4.5 (Simultaneous estimation and practical
stabilization). Suppose that Assumption 2.5 is satisfied.
Then, for all α > 0 and all input v ∈ C0(R+,Xz), any
solution of (2)-(20)-(21) is such that

lim sup
t→+∞

∥z(t)∥Xz
⩽ lim sup

t→+∞
∥v(t)∥Xz

and ∥ŵ(t)∥(Xw,∥·∥F ) remains bounded for all t ⩾ 0.

Moreover, there exists ε > 0 such that if v ∈ C1(R+,X )
is bounded by ε, has bounded derivative, and is PE with
respect to IdX , then we also have

lim
t→+∞

∥ŵ(t)− w∥(Xw,∥·∥F ) = 0.

The proof of Theorem 4.5 relies on the following lemma
that states standard properties of the PE condition.

Lemma 4.6 (Properties of PE). Let X be a Hilbert space
and Y be a Banach space. Let g ∈ C0(R+,X ) and P ∈
L(X ,Y).

(a) If (5) is satisfied only for t ⩾ t0 for some t0 ⩾ 0, then
g is PE with respect to P .

(b) If g is PE with respect to P , then t 7→ g(t− d) is also
PE with respect to P for any positive delay d ⩾ 0.

(c) If g is PE with respect to P and W ∈ L(X ), then Wg
is PE with respect to PW ∗.

Moreover, if X = Y is finite-dimensional and P = IdX ,
we also have:

(d) If g is PE with respect to IdX with constants T and κ
in (5), and g is bounded by some positive constant M ,
then M ⩾

√
κ
T . Conversely, for all positive constants

T , κ and M such that M ⩾
√

2κ dimX
T , there exists

g ∈ C1(R+,X ) that is bounded by M and PE with
respect to IdX with constants (T , κ).

(e) If g is bounded and PE with respect to IdX and δ ∈
C0(R+,X ) is such that δ(t) → 0 as t → +∞, then
g + δ is also PE with respect to IdX .

(f) If µ is a positive constant and g ∈ C1(R+,X ) is
bounded, with bounded derivative, and PE with re-
spect to IdX , then any solution z ∈ C1(R+,X ) of
dz
dt = −µz(t) + g(t) is also PE with respect to IdX .

Lemma 4.6 is proved in Appendix A.

Proof of Theorem 4.5. Clearly, from (21) and
Grönwall’s inequality, lim supt→+∞ ∥ẑ(t)∥Xz

⩽
lim supt→+∞ ∥v(t)∥Xz

. Moreover, setting z̃1 = ẑ − z
and w̃11 = ŵ − w, we see that, due to the choice of u
given by (20), (z̃1, w̃11) satisfies (5). Hence, according to
Theorem 3.2, lim supt→+∞ ∥ẑ(t) − z(t)∥Xz = 0 and ŵ(t)
remains bounded. This yields the first part of the result.
To show the second part of the result, it is sufficient to
show that t 7→ (r 7→ S(z(t − d, r)) is PE with respect to
IdXz

in order to apply the second part of Theorem 3.2.

To end the proof of Theorem 4.5, we use Lemma 4.6
as follows. Using Assumption (vii), let ε > 0 be such
that S(z) = dS

dz (zref)(z − zref) for all z ∈ X satisfying
|z − zref | ⩽ 2ε

α . Assume that v ∈ C1(R+,X ) is bounded
by ε, has bounded derivative, and is PE with respect to
IdX . Such a signal v exists by (d). By (c), τ−1v is also
PE with respect to IdX . Since ẑ − zref satisfies (21), (f)
with µ = τ−1α shows that ẑ− zref is also PE with respect
to IdX . Moreover, by Grönwall’s inequality, there exists
t0 ⩾ 0 such that |ẑ(t, rk) − zref | ⩽ 2ε

α for all t ⩾ t0 and

all k ∈ {1, . . . , N}. Then, S(ẑ(t, rk)) = dS
dz (zref)(ẑ(rk) −

zref). Hence, (a) and (c) ensure that t 7→ S(ẑ(t)) is PE
with respect to dS

dz (zref)
⊤. Since dS

dz (zref) is invertible, t 7→
S(ẑ(t)) is PE with respect to IdX . Since ẑ(t) − z(t) →
0 as t → +∞ and S has bounded derivative, S(ẑ(t)) −
S(z(t)) → 0. Hence, according to (e), t 7→ S(z(t)) is also
PE with respect to IdX . Hence, by (b), t 7→ S(z(t − d))
is PE with respect to IdXz , which concludes the proof of
Theorem 4.5. ■

Remark 4.5. All assumptions (i)-(vii) have been used
in the second part of the proof of Theorem 4.5 at cru-
cial points where, without them, one cannot conclude. In
particular, these assumptions allow to use the properties
stated in Lemma 4.6. Without them, stronger versions of
these properties should be required to show that S(ẑ(·−d))
is PE with respect to IdXz

. For example, without (iii), the
property (e) would be required in an infinite-dimensional
context, which is impossible since counter-examples can
easily be found. Without (v), (f) would be required for
filters of the form dz

dt = −Σz(t)+g(t) where Σ is a positive
definite matrix, which is also known to be false (see [36,
Example 7]). Similarly, (ii) is required to have that ẑ is
a filter of v in the form of (21), which is necessary to use
(f). Without (iv), (b) would be required for non-constants
delays, which is not possible due to counter-examples such
as R+ ∋ t 7→ (sin(t−d1), cos(t−d2)) ∈ R2 with d1 = 0 and
d2 = π

2 . Properties (vi) and (vii) are used in the end of the
proof of Theorem 4.5. Without them, passing from ẑ−zref
being PE to S(ẑ) being PE remains an open problem.

5. Numerical simulations

We provide numerical simulations of the observer and
controllers proposed in Theorems 3.2, 4.3, and 4.5. The
observer simulations are in line with those presented in [9],
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while the two controllers (exact stabilization and simul-
taneous practical stabilization and estimation) are new.
Although disturbances could not be accounted for in our
theoretical developments, we also assess robustness of the
developed control law to perturbations.

We consider the case of a two-dimensional neural field
(namely, n1 = n2 = 1) over the unit circle Ω = S1 with
constant delay d. The kernels are given by Gaussian func-
tions depending on the distance between r and r′, as it
is frequently assumed in practice (see [14]): wij(r, r

′) =
ωijg(r, r

′)/∥g∥L2(Ω2;R), with g(r, r′) = exp(−σ|r− r′|2) for
constant parameters σ and ωij given in Table 1. Simu-
lations code can be found in repository [8]. The system
is spatially discretized over Ω with a constant space step
∆r = 1/20, and the resulting delay differential equation is
solved with an explicit Runge-Kutta (2, 3) method. Initial
conditions are taken as z1(0, r) = z2(0, r) = ẑ1(0, r) = 1,
ẑ2(0, r) = ŵ11(0, r, r

′) = ŵ12(0, r, r
′) = 0 for all r, r′ ∈ Ω.

In order to test the observer (4), the inputs ui are cho-
sen as spatiotemporal periodic signals with irrational fre-
quency ratio, i.e., ui(t, r) = µ sin(λitr) with µ = 103 and
λ1/λ2 irrational. This choice is made to ensure persis-
tency of excitation of the input (u1, u2), which in prac-
tice seems to be sufficient to induce persistency of exci-
tation of t 7→ (S11(z1(t − d)), S12(z2(t − d))). Note that
for u1 = u2 = 0, the persistency of excitation assumption
seems to be not guaranteed. Hence the observer does not
converge (the plot is not reported). For testing the con-
trollers, the inputs are respectively chosen as (18) for exact
stabilization and (20) with v(t, r) = µ sin(λ1tr), µ ∈ R,
for simultaneous practical stabilization and estimation. In
the latter case, we must fix n2 = 0 as imposed by Sec-
tion 4.2 (ii).
The parameters of the system (2), the observer (4), and

the controller (18) are set as in Table 1, so that Assump-
tions 2.5 and 3.1 are fulfilled. The convergence of the
observer error (5) towards zero is verified in Figure 2. In
particular, the estimation of w11 by the observer is shown
at several time steps in Figure 1. The convergence of the
state towards zero ensured by the controller (18) is shown
in Figure 3. As explained in Remark 4.3, no convergence
of the kernels estimation can be hoped for in Figure 3 since
stabilizing the state prevents PE.

Figure 4 enlightens the compromise made by the feed-
back law (20) between observation and estimation: by
choosing v(t, r) = µ sin(λ1tr) with µ = 100, the asymp-
totic regime of the state remains in a neighborhood of zero
(practical stabilization), which allows the convergence of
the kernel estimation ŵ towards w. When increasing µ,
the estimation rate increases (one obtains a plot similar
to Figure 2 for µ = 103) but the asymptotic regime of the
state moves away from zero. On the contrary, when de-
creasing µ towards zero, one obtains an asymptotic regime
of z closer to zero (one obtains a plot similar to Figure 3
for µ = 0.1), but the convergence of ŵ towards w is slower.
In order to numerically assess robustness to uncertain-

ties or disturbances, we have considered a situation in

which a constant and spatially uniform perturbation is
added to the control input (in the case where the neuronal
population is fully actuated, namely n2 = dim z2 = 0).
Figure 5 reports the steady-state behavior of the L2-norm
of z1 as a function of the value of the applied perturba-
tion. Two indicators are used to that aim: the lim sup
of ∥z1(t)∥L2 as t → +∞ (computed here as the maximal
value reached by ∥z1(t)∥L2 over the time interval [5, 10])
and the steady-state average of ∥z1(t)∥L2 (computed here

as 1
5

∫ 10

5
∥z1(t)∥L2dt). We see that, although not guaran-

teed by our theoretical results, the proposed output feed-
back control law seems to exhibit some robustness to actu-
ation perturbations, as the steady-state value of ∥z1(t)∥L2

remains small for sufficiently small perturbations. Inter-
estingly, for a perturbation above 10, some steady-state os-
cillations take place, which explains why the steady-state
value of the average of ∥z1(t)∥L2 (red dots) becomes sig-
nificantly lower than that of its maximal value (blue dots).

To theoretically show this result, a natural property
to require is the input-to-state stability (ISS) (see. e.g.,
[35]). Roughly speaking, it requires that, in the presence
of an approximately known delay, disturbance, or noise,
the state still converges to a neighborhood of the target
point, whose size tends towards 0 as the uncertainty’s am-
plitude tends towards 0. Going from asymptotic stability
to ISS is not an easy task in general. The most com-
mon way is to derive an ISS-Lyapunov function from the
original Lyapunov function used in the paper. This path
has been followed in [14] for example. However, it does
not work in our case because our Lyapunov function is
non-strict: its derivative along the system’s solutions in-
volves negative terms in only part of the state variables
(see inequality (15)). Therefore, being able to derive ISS
remains an open question that would probably require a
strictification technique and potentially a modification of
our algorithm.

Despite the robustness suggested by Figure 5, it is worth
mentioning that the adaptive observer considered here is
not free from a possible parameter drift. For a constant
perturbation of amplitude 2, Figure 6 shows that the L2

norm of the estimation error w̃ diverges. This well-known
phenomenon in adaptive control [30] raises practical im-
plementability issues as ŵ is involved in the control law.
Nevertheless, interestingly, the right graph of Figure 6 sug-
gests that, despite this parameter drift, the control law
(18) remains bounded over time.

Sij = tanh τi = 1 λ1 = 100 λ2 = 100
√
2

α = 100 d = 0.1 zi,ref = 0 σ = 60
ω11 = 2 ω12 = 2 ω21 = −2 ω22 = 0.1

Table 1: System and observer parameters for the numerical simula-
tion of Figures 2–4
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Figure 1: Evolution of the kernel estimation ŵ11(t, r, r′) when run-
ning the observer (4).
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Figure 2: Evolution of the estimation errors ∥w̃1i∥Xw1i
and ∥z̃i∥Xzi

for i ∈ {1, 2} of the observer (4).
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Figure 3: Evolution of the norm of the state zi, of the estimation
errors w̃1i and z̃i for i ∈ {1, 2}, and of input u1, for the control law
(18).

6. Conclusion

In this paper, a new adaptive observer has been pro-
posed to estimate online the synaptic strength between
neurons from partial measurement of the neuronal activity.
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Figure 4: Evolution of the norm of the state ∥z∥Xz and of the
estimation errors ∥w̃∥Xw and ∥z̃∥Xz for the control law (20) with
v(t, r) = 100 sin(λ1tr).
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Figure 5: Steady-state behavior of ∥z1(t)∥L2 , in terms of its maximal
(blue dots) and average (red dots) values for the control law (18), as
a function of the value of the applied additive disturbance.
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Figure 6: Evolution of the estimations errors w̃ and z̃ (left) and of
the control input u1 (right) for (18) in the presence of an additive
perturbation of amplitude 2.

We proved the convergence of the observer under a per-
sistency of excitation condition by designing a Lyapunov
functional taking into account the infinite-dimensional na-
ture of the state due to the spatial distribution of the neu-
ronal activity and to the time-delay. We have shown that
this observer can be used to design dynamic feedback laws
that stabilize the system to a target point, even without
persistency of excitation. From the theoretical viewpoint,
the main open question remains to extend our result on
simultaneous estimation and stabilization. It currently re-
lies on important limitations on the system, that cannot
be lifted without a deeper analysis of the PE condition
proposed in the paper. In particular, sufficient conditions
ensuring that choosing a PE input signal guarantees PE
of the state of the neural fields should be sought.

16



Appendix A. Proof of Lemma 4.6

(a) If, for all t ⩾ t0,
∫ t+T

t
|⟨g(τ), x⟩X |2dτ ⩾ κ∥Px∥2Y for

all x ∈ X , then for all t ⩾ 0,∫ t+t0+T

t

|⟨g(τ), x⟩X |2dτ ⩾
∫ t+t0+T

t+t0

|⟨g(τ), x⟩X |2dτ

⩾ κ∥Px∥2Y , ∀x ∈ X ,

which shows that g is PE with respect to P .

(b) If, for all t ⩾ 0,
∫ t+T

t
|⟨g(τ), x⟩X |2dτ ⩾ κ∥Px∥2Y for

all x ∈ X , then for all t ⩾ d,∫ t+T

t

|⟨g(τ − d), x⟩X |2dτ =

∫ t+T−d

t−d

|⟨g(τ), x⟩X |2dτ

⩾ κ∥Px∥2Y , ∀x ∈ X ,

which shows that t 7→ g(t − d) is PE with respect to
P by (a).

(c) If, for all t ⩾ 0,
∫ t+T

t
|⟨g(τ), x⟩X |2dτ ⩾ κ∥Px∥2Y for

all x ∈ X , then for all t ⩾ 0,∫ t+T

t

|⟨Wg(τ), x⟩X |2dτ =

∫ t+T

t

|⟨g(τ),W ∗x⟩X |2dτ

⩾ κ∥PW ∗x∥2Y , ∀x ∈ X ,

which shows that Wg is PE with respect to PW ∗ by
(a).

(d) If g is bounded by M and for all t ⩾ 0,∫ t+T

t
|⟨g(τ), x⟩X |2dτ ⩾ κ∥x∥2X for all x ∈ X ,

then Cauchy-Schwartz inequality yields∫ t+T

t
|⟨g(τ), x⟩X |2dτ ⩽ TM2∥x∥2X , hence M ⩾

√
κ
T .

Conversely, set g(τ) =
√

2κ
T

∑dimX
ℓ=1 sin( 2ℓπτT )eℓ,

where e is a basis of X . Then g is bounded by√
2κ dimX

T and has a bounded derivative. Moreover,

for all t ⩾ 0 and all x =
∑dimX

ℓ=1 xℓeℓ ∈ X ,∫ t+T

t

|⟨g(τ), x⟩X |2dτ =
2κ

T

∫ t+T

t

|
dimX∑
ℓ=1

xℓ

sin

(
2ℓπτ

T

)
|2dτ =

2κ

T

dimX∑
ℓ=1

x2
ℓ

∫ T

0

sin2
(
2ℓπτ

T

)
dτ

= κ∥x∥2X .

Hence, g is PE with respect to IdX with constants T
and κ.

(e) Denote by M a bound of g. Denote by T and κ the
PE constants of g with respect to IdX . Let ε = κ

4MT .
Let t0 > 0 be such that ∥δ(t)∥X ⩽ ε for all t ⩾ t0.
Then for all t ⩾ t0 and all x ∈ X ,∫ t+T

t

|⟨g(τ) + δ(τ), x⟩X |2dτ ⩾
∫ t+T

t

|⟨g(τ), x⟩X |2dτ

− 2

∫ t+T

t

|⟨g(τ), x⟩X ⟨δ(τ), x⟩X |dτ

⩾ (κ− 2MTε)∥x∥2X
⩾

κ

2
∥x∥2X .

Hence, g + δ is PE with respect to IdX by (a).

(f) This proof follows the one given in [33, Property 4].
We give it here for the sake of completeness. Denote
by M a bound of g and ġ. Let z be a solution of
dz
dt = −µz(t) + g(t). By Duhamel’s formula,

∥z(t)∥X ⩽ e−µt∥z(0)∥X +

∫ t

0

e−µ(t−τ)∥g(τ)∥Xdτ

⩽ e−µt∥z(0)∥X +
M

µ
.

Hence there exists t0 ⩾ 0 such that ∥z(t)∥X ⩽ 2M
µ

for all t ⩾ t0. For any x ∈ X , define ϕx : R+ → R
by ϕx(t) = −⟨z(t), x⟩X ⟨g(t), x⟩X . Then ϕx is contin-
uously differentiable and ϕ̇x = ⟨z, x⟩X ⟨µg − ġ, x⟩X −
|⟨g, x⟩X |2. Hence, for all t ⩾ t0 and all T > 0,

ϕx(t+ T )− ϕx(t) =

∫ t+T

t

⟨z(τ), x⟩X ⟨µg(τ)−

ġ(τ), x⟩Xdτ −
∫ t+T

t

|⟨g(τ), x⟩X |2dτ. (A.1)

Since g is PE with respect to IdX , there exist T, κ > 0
such that, for any k ∈ N,∫ t+kT

t

|⟨g(τ), x⟩X |2dτ ⩾ kκ∥x∥2X , ∀x ∈ X , ∀t ⩾ 0.

(A.2)
Moreover, by Cauchy-Schwartz inequality, |ϕx(t)| ⩽
2M2

µ ∥x∥2. Hence ϕx(t + T ) − ϕx(t) ⩾ − 4M2

µ ∥x∥2.
Choose k large enough that kκ > 4M2

µ . Combining

(A.1) and (A.2) yields, for all t ⩾ t0 and all x ∈ X ,∫ t+kT

t

⟨z(τ), x⟩X ⟨µg(τ)− ġ(τ), x⟩Xdτ ⩾

(
kκ− 4M2

µ

)
∥x∥2X .

(A.3)

Finally, we get by Cauchy-Schwartz inequality that∫ t+kT

t

⟨z(τ), x⟩X ⟨µg(τ)− ġ(τ), x⟩Xdτ ⩽ (µ+ 1)M

∥x∥X
∫ t+kT

t

⟨z(τ), x⟩Xdτ (A.4)

and∫ t+kT

t

⟨z(τ), x⟩Xdτ ⩽
√
kT

√∫ t+kT

t

|⟨z(τ), x⟩X |2dτ .

(A.5)
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Combining (A.3)-(A.4)-(A.5), we obtain that for all
x ∈ X and all t ⩾ t0,∫ t+kT

t

|⟨z(τ), x⟩X |2dτ ⩾
(kκ− 4M2

µ )2

kT (µ+ 1)2M2
∥x∥2X

which implies that z is persistently exciting with re-
spect to IdX by Lemma 4.6 and (a).
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