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1. MOTIVATIONS

A classical method to study the expressivity of Graph Neural
Networks (GNNs) is to compare them to the Weisfeiler-
Lehman test for the graph isomorphism problem. Nevertheless,
this approach becomes questionable for very large graphs.
Real large graphs are rarely fully known, and their structure
can change quickly over time. In such cases, we rather
focus on global tendencies for which useful tools are random
graphs. Let (X ⊂ Rd, P ) be a compact probability space,
from a measurable kernel W : X 2 → [0, 1] one can sample
random graphs. Specifically, Gn drawn from this model has
vertices {X1, . . . , Xn} ⊂ X and weights wij where :

X1, . . . , Xn
iid∼ P, wij = wji =W (Xi, Xj).

Our purpose is to examine whether a message passing GNN
(MPGNN) with an unspecified aggregation on a large Gn is
close to a continuous counterpart on the underlying random
graph model. We give sufficient conditions under which the
discrete model is a good approximation of the continuous
analogue. Moreover, assuming some regularity on the
aggregation, we provide explicit non asymptotic bounds for
the deviation between a discrete MPGNN and its continuous
counterpart. Our main contribution involves considering a
generic aggregation function while previous related work has
focused on particular cases, such as Graph Convolutional
Network [?, ?], or degree normalized mean [?].

2. MPGNN

A L-layer MPGNN iteratively propagates a signal over a
graph. At each step, the current representations of every
node’s neighbors are gathered, transformed, and combined
to update the node’s representation. Let G be a graph on the
vertex set {1, . . . , n}, and Z = Z(0) ∈ Rn×d0 be a signal on
it. There are L operators (F (l))1≤l≤L such that, at each layer,
the update Z(l+1) of the signal is computed node-wise by:

z
(l+1)
i = F (l+1)

(
z
(l)
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∈ Rdl+1 . (1)

The F (l) are referred to as aggregations. They are the core of

a MPGNN and their fundamental property is to be invariant
to the permutation of the neighbors, so that the full network
is consistent with graph isomorphism. This is ensured in (1)
since a multiset (double braces) is taken as argument.
Typically, the aggregation first transforms the z(l)j through a
learnable transformation ψ(l+1). Then combine them using a
weighted mean

⊕
(in a broad sense, such as arithmetic mean,

point-wise maximum, etc..) with weights
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)
(2)

such that (1) can be rewritten as

z
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Examples of different aggregations

1. Convolution :
z
(l+1)
i = 1

|N (i)|
∑

j∈N (i) wi,jψ
(l+1)(z

(l)
j ).

2. Max Convolution :
z
(l+1)
i = maxj∈N (i) wijψ

(l+1)(z
(l)
j ).

3. Degree Normalized Convolution :
z
(l+1)
i =

∑
j∈N (i)

wij∑
k∈N(i) wi,k

ψ(l+1)(z
(l)
j ).

4. Graph Attention (GAT): the c(l) from (2) are learnable

: z(l+1)
i =

∑
j∈N (vi)

c
(l+1)
ij∑
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ik

ψ(l+1)(z
(l)
j ).

3. CONTINUOUS MPGNN

Let (W,P ) be a random graph model, a L-layer continuous
MPGNN (cMPPGNN) propagates a function over the latent
space X . For an input f = f (0) ∈ C(X ,Rd0), f (l+1) is
computed by:

f (l+1)(x) = F (l+1)
P

(
f (l)(x),

(
f (l),W (x, ·)

))
∈ Rdl+1 .

(3)

Examples (continuous equivalents of 1, 2, 3 and 4) :

a. Convolution :
f (l+1)(x) =

∫
y
W (x, y)ψ(l+1)(f (l)(y))dP.



b. Max Convolution :
f (l+1)(x) = esssupPW (x, .)ψ(l+1)(f (l)(.)).

c. Degree Normalized Convolution :
f (l+1)(x) =

∫
y

W (x,y)∫
t
W (x,t)dP (t)

ψ(l+1)(f (l)(y))dP.

d. GAT :
f (l+1)(x) =

∫
y

c(l+1)(x,y)∫
t
c(l+1)(x,t)dP (t)

ψ(l+1)
(
f (l)(y)

)
dP.

4. CONVERGENCE ON DENSE RANDOM GRAPHS

We are interested in a MPGNN on a random graph Gn drawn
from (W,P ). For such a discrete MPGNN, we shall define its
continuous counterpart on (W,P ). Omitting technical details

Definition 4.1. We say that F is the continuous counterpart
of F if for any f , for any P ,

x 7→ FP (f(x), (f,W (x, ·)))

is the uniform limit, as n tends to infinity, of

x 7→ E [F (f(x), {{(f(Xk),W (x,Xk))}}1≤k≤n)]

where Xk
iid∼ P . The rate of this convergence is called an.

For each example calculate 1, 2, 3 or 4, we prove that the
continuous equivalent is indeed a, b, c or d, and we calculate
the corresponding an.
Denote X = (X1, . . . , Xn) the vertices of Gn and SX the
sampling operator at X . For an input function f , SX(f)
is a signal on Gn. To compare the output of this signal
through the discrete network to the output of f through the
continuous counterpart, we shall use the Maximum Absolute
Error (MAE) defined by :

MAE(f) = max
i

∥∥∥(SX(f))
(L)
i − f (L)(Xi)

∥∥∥
∞
.

Our main result is a sufficient condition for this MAE to
be arbitrary small with high probability. We provide a non
asymptotic bound with high probability that relies on the so
called McDiarmid inequality.

Theorem 4.1. Call D(l)
n the bounded differences of the F (l)

and Dn their maximum over l. Call dmax the maximum of
the dl over l. Then, up to some regularity assumptions on the
F (l), for any ρ > 0, with probability at least 1− ρ :

MAE(f) . LDn

√
n ln

(
n2Ldmax

ρ

)
+ an. (4)

Where . hides multiplicative constants independent of n.

This bound suggests that if the bounded differences are sharp
enough, typically Dn = o(1/

√
n lnn), the MAE is small.
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Fig. 1: illustration of (5) for different values of d, the dashed
line represented (1/n)1/d and the plain line the MAE. The
plot is log scaled.

Corollary 4.1.1. If Dn = o(1/
√
n lnn) then

maxi

∥∥∥(SX(f))
(L)
i − f (L)(Xi)

∥∥∥
∞
→ 0 in probability.

We check this condition on the examples. It appears that it
is verified by 1, 3 and 4 with a Dn = O(1/n) but not by 2.
Nevertheless, the convergence remains true for that case with
a different bound.

Theorem 4.2. For a Max Conv. MPGNN, assume that P ≥
Cλ for some C > 0 where λ is the Lebesgue measure. Then
for any ρ > 0, we have with probability at least 1− ρ,

MAE(f) . L

(
1

n
ln

(
2L−1ndmax

ρ

))1/d

. (5)

This bound indicates a different behaviour when the aggregation
is a maximum. It depends on the input space’s dimension and
decreases significantly slower than (4) for a large d.
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