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ABSTRACT
Direct imaging is an active research topic in astronomy for the detection and the characterization of young sub-stellar objects.
The very high contrast between the host star and its companions makes the observations particularly challenging. In this context,
post-processing methods combining several images recorded with the pupil tracking mode of telescope are needed. In previous
works, we have presented a data-driven algorithm, PACO, capturing locally the spatial correlations of the data with a multi-variate
Gaussian model. PACO delivers better detection sensitivity and confidence than the standard post-processing methods of the
field. However, there is room for improvement due to the approximate fidelity of the PACO statistical model to the time evolving
observations. In this paper, we propose to combine the statistical model of PACO with supervised deep learning. The data are
first pre-processed with the PACO framework to improve the stationarity and the contrast. A convolutional neural network (CNN)
is then trained in a supervised fashion to detect the residual signature of synthetic sources. Finally, the trained network delivers
a detection map. The photometry of detected sources is estimated by a second CNN. We apply the proposed approach to several
datasets from the VLT/SPHERE instrument. Our results show that its detection stage performs significantly better than baseline
methods (cADI, PCA), and leads to a contrast improvement up to half a magnitude compared to PACO. The characterization stage
of the proposed method performs on average on par with or better than the comparative algorithms (PCA, PACO) for angular
separation above 0.5”.

Key words: techniques: high angular resolution – techniques: image processing – methods: numerical – methods: statistical –
methods: data analysis

1 INTRODUCTION

High-contrast imaging is an observational method used to study
the close environment of stars (Traub & Oppenheimer 2010; Bowler
2016; Pueyo 2018). It is particularly adapted to detect young, massive
and hot exoplanets (see e.g. Chauvin et al. (2004, 2005); Schneider
et al. (2011); Nielsen et al. (2019)), thus complementing well indirect
exoplanet detection methods such as transit photometry or Doppler
spectroscopy (Santos 2008). Direct imaging offers other appealing
characteristics like the detection of candidate companions from a
few hours of observations and the ability to characterize them in
terms of age, surface gravity, effective temperature and composition
(Allard et al. 2003, 2007), or to predict their evolution (Burrows
et al. 1997; Chabrier et al. 2000). Despite these promises, only a few
dozens exoplanets have been unveiled and characterized since the
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emergence of direct imaging in the early 2000s (Marois et al. 2008;
Lagrange et al. 2009; Nielsen et al. 2012; Macintosh et al. 2015;
Chauvin et al. 2017; Keppler et al. 2018). This is mainly due to (i)
the relatively low occurrence of giant exoplanets, (ii) the very high
contrast between the host star and the exoplanets (typically, higher
than 105 in the infrared), and (iii) the required high angular resolution
(typically, better than a tenth of arcsec).

In this context, cutting-edge ground-based facilities like
VLT/SPHERE (Beuzit et al. 2019), Gemini/GPI (Macintosh et al.
2014), Keck/NIRC2 (Castellá et al. 2016), Magellan/MagAO
(Morzinski et al. 2014) or SUBARU/SCExAO (Jovanovic et al.
2015) are equipped with an (extreme) adaptive optics system and
a coronagraph to attenuate as much as possible the glare of the star.
Currently, the non-blocked residual starlight contamination and its
temporal fluctuations remain the main limitation. It takes the form of
spatially-correlated speckles that resemble the expected signature of
a point-like source (e.g., an exoplanet, a brown dwarf, a background
star). The observations are also impacted by additional sources of
noise (i.e., thermal background flux, detector readout, photon noise).
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Together, speckles and noise form a spatially and non-stationary nui-
sance component that corrupts the signals of the sought objects.
Off-axis objects can either take the form of point-like sources or that
of spatially extended features like circumstellar disks. In this paper,
we focus on the detection of point-like sources, leaving the problem
of disk reconstruction for future work.

In order to unmix the sought objects from the nuisance component,
high-contrast observations are performed with dedicated strategies
like angular differential imaging (ADI; Marois et al. (2006)), that we
consider in this paper. ADI consists in tracking the observed target
over time, with the telescope derotator tuned to keep the telescope
pupil stable while the field of view rotates around the host star.
Consequently, in the resulting 3-D datasets (2-D + time), the objects
of interest follow an apparent motion along a deterministic circular
trajectory centered on the star while the telescope pupil remains
static. With ADI, speckles due to residual starlight aberrations are
quasi-static, i.e., they are strongly correlated across exposures. ADI
also allows to extract the astrometry and the photometry of detected
sources. These estimates can be used to characterize the physical
properties of the detected sources by fitting orbital and atmospheric
models (Vigan et al. 2010; Cheetham et al. 2019; Mesa et al. 2019).
In this paper, we address two tasks: (i) the detection of point-like
sources, and (ii) the estimation of their photometry.

The last cornerstone of high-contrast imaging is data reduction,
i.e., the combination of the recorded images by dedicated post-
processing algorithms. This critical step brings the additional gain
in contrast (between one and three orders of magnitudes for existing
methods) needed to detect the faint signals coming from thermal self-
emission of giant exoplanets. The classical principle is to estimate a
reference image (so-called on-axis PSF) of the nuisance component,
that can be subtracted from the data in order to unveil the sought
objects. A simple practical implementation of this general strategy
consists in subtracting the temporal mean or median of the dataset
from each frame of the ADI stack. The residual images are then
co-aligned to the true-North so that the signals of the sought objects
are superimposed and can be combined by temporal stacking. This is
the principle of the cADI method designed to process the first direct
imaging observations (Marois et al. 2006; Lagrange et al. 2009). In
the last decade, several more advanced methods have been developed,
see, e.g., Pueyo (2018) for a review. In particular, TLOCI (Marois
et al. 2013, 2014) (or its variants such as LOCI (Lafrenière et al.
2007), ALOCI (Currie et al. 2012a,b), MLOCI (Wahhaj et al. 2015)),
and KLIP/PCA (Soummer et al. 2012; Amara & Quanz 2012) are
currently implemented in most reduction pipelines (Amara & Quanz
2012; Gonzalez et al. 2017; Galicher et al. 2018). LOCI-based and
PCA-based algorithms are considered as standards to process high-
contrast observations. With the (A, M, T)-LOCI algorithm, the on-
axis PSF is estimated by combining images selected in a library.
The combined images are selected and weighted to minimize the
residual noise and maximize the throughput of point-like sources
simultaneously. The PCA algorithm performs a principal component
analysis of the data, and a low-rank estimate of the on-axis PSF is
formed by keeping the first principal components of the decomposi-
tion. In the same vein, the LLSG algorithm (Gonzalez et al. 2016)
decomposes the dataset into low-rank, sparse and Gaussian compo-
nents. Because few sources are expected in the field of view, their
signatures are mainly recovered in the sparse component. The RSM
algorithm (Dahlqvist et al. 2020, 2021a,b) combines residual images
obtained with different post-processing algorithms (e.g., cADI and
PCA) to leverage their specific benefits and mitigate their respective
drawbacks. Since all of these algorithms are based on the estimation
and subtraction of an off-axis PSF, they are facing a common pitfall:

they fail in deriving a statistically grounded detection map, especially
at short angular separations. As a consequence, the identification of
candidate sources partly relies on visual inspection of the detection
map.

To circumvent this issue, several works have considered alternative
ways to reduce the data in order to produce more quantitative outputs.
The derivation of a custom signal-to-noise ratio (S/N) through a 𝑡-test
empirically corrected for the varying number of samples as a function
of the angular separation (Mawet et al. 2014) is a pioneering work
in this direction. Jensen-Clem et al. (2017) recommend the adop-
tion of metrics combining the achievable contrast with the fraction
of detected sources. Instead of normalizing the combined residual
images by the empirical standard-deviation of the noise (roughly)
approximated on annuli, Pairet et al. (2019) propose to build a detec-
tion map directly from the set of residual images by comparing the
variance of samples located on the expected trajectory of putative
sources. Other methods reformulate the detection task as an inverse
problem. Among them, ANDROMEDA (Mugnier et al. 2009; Can-
talloube et al. 2015) and FMMF (Ruffio et al. 2017) build a model of
the residual off-axis signal after subtraction of the estimated on-axis
PSF. The PACO algorithm (Flasseur et al. 2018a,b,c, 2020a,b) builds
a more consistent statistical model, self-calibrated on the data, that
accounts for the spatial correlations of the nuisance component at the
scale of small image patches of a few tens of pixels, see Sect. 2.1.1.

Given the success of data-driven approaches in solving various
high-level imaging tasks (e.g., detection, segmentation, classifica-
tion) in very diverse fields (e.g., photography, microscopy, bio-
medical imaging, remote sensing), machine learning and deep learn-
ing approaches have also been investigated by the direct imaging
community. Fergus et al. (2014) report one of the first steps in this
direction with a discriminative approach exploiting the specific struc-
ture of high-contrast data. Based on support vector machines, the
underlying model is trained from two-classes samples generated by
resorting to massive injections of fake companions. Gonzalez et al.
(2018) formalize the detection problem as a binary classification task
and propose a fully supervised deep learning approach also trained in
a supervised fashion. They use collections of patches pre-processed
by PCA for different numbers of principal components as input of
a random forest or of a convolutional neural network that decides
in favor of the presence or on the absence of a point-like source
in each patch. While demonstrating powerful detection capabilities,
this algorithm showed to be prone to a high level of false alarms in
some cases (Cantalloube et al. 2020). Besides, the tuning of hyper-
parameters remains a critical point making the operating point dif-
ficult to reach. Generative adversarial networks (GANs, Goodfellow
et al. (2014)) have been used to produce multiple realizations of pure
nuisance component as an alternative way to generate a large basis
of labeled samples used to train a deep discriminative model (Yip
et al. 2019). Recent works (Samland et al. 2021; Gebhard et al. 2022)
recast the unmixing problem as a regularized regression task. The
underlying linear model is in charge of explaining the evolution of
the nuisance component (and possibly, the evolution of the source
signals) in a time series extracted at a given pixel location from
temporal series of reference selected to be signal free and causally
independent from the putative source signals.

Intensive testing of PACO, both on public (Cantalloube et al. 2020)
as well as on consortia data challenges, and more recently on a sub-
sample of about 75 observations from the SPHERE’s SHINE survey
(Chomez et al. 2023) shows that PACO is one of the algorithms of
choice to process high-contrast observations. In particular, the latter
work (Chomez et al. 2023) demonstrates the expected gain in terms
of achievable contrast (up to 10−7 at a few arcsec), and in terms
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of the underlying exoplanet population (with a mass up to 5 MJup
at 5 AU for stars at about 60 parsec away). Thanks to its unique
data-driven modeling of the nuisance component, accounting for its
non-stationary spatial correlations, PACO is especially well suited to
process observations in which the typical spatial extent of speckles
lies in a patch of a few tens of pixels. However, the statistical model of
PACO is approximate in case of spatial correlations spread over a patch
of a few tens of pixels (e.g., for background-limited observations
and/or in case of unstable observing conditions). This motivates the
path we follow in this work: we propose a new detection algorithm,
named deep PACO, that combines the statistical model of PACOwith
a supervised deep learning framework. The statistical model of PACO
is used to improve the stationarity and the contrast of the data in a
pre-processing step, while deep learning is in charge of correcting for
the (putative) approximate fidelity of the statistical model of PACO
to the reality of the observations. To do so, the data are centered and
whitened locally using the PACO framework, and a CNN is trained
in a supervised fashion to detect the residual signature of synthetic
sources from pre-processed science data. The network is trained
from scratch using full frame samples generated with a custom data
augmentation strategy allowing to build a large training set from a
single ADI dataset. Finally, the underlying discriminative model is
applied to the pre-processed observations and delivers a detection
map. Detected sources are then photometrically characterized by a
second deep neural network, also trained from scratch using patch
samples generated with a dedicated data augmentation step. On this
latter part, while the recent astronomy literature reports several works
for photometry estimation through deep learning models (see e.g.,
Boucaud et al. (2020); Cabayol et al. (2021); Huertas-Company &
Lanusse (2022) for galaxie’s photometry or red-shift estimation), to
the best of your knowledge this is the first time that deep learning is
employed to estimate the flux of detected sources in direct imaging
at high-contrast.

This paper1 is organized as follow. Section 2 presents the main
ingredients of the detection part of the proposed algorithm. Section
3 focuses on the characterization stage of the proposed method.
Section 4 evaluates the detection and characterization performance
on several high-contrast observations from the IRDIS imager (Dohlen
et al. 2008) of the VLT/SPHERE instrument (Beuzit et al. 2019).
Finally, Sect. 5 draws the paper conclusions and gives future research
prospects.

Throughout the text, the reader can refer to Table 1, Figs. 1-2, and
Table B1, summarizing respectively the main notations, the process-
ing pipeline of the proposed approach, and the main setting of the
different parameters.

2 SOURCE DETECTION ALGORITHM

2.1 Stastical model of the non-stationary patch covariances

Section 2.1.1 recalls for completeness the main ingredients of the
statistical model embedded in the PACO algorithm for ADI observa-
tions (Flasseur et al. 2018b, 2020a). Section 2.1.2 describes how to
use this model to attenuate the strong and spatially non-stationary
correlations of the data as well as to improve the contrast. Resulting
residuals from this pre-processing step are centered and whitened

1 A preliminary version of this work was presented in the form of a confer-
ence contribution in Flasseur et al. (2022). The present manuscript contains
a significant amount of additional methodological developments, technical
improvements, and experiments.

Table 1. Summary of the main notations.

Not. Range Definition

▶ constants

𝑁 N number of pixels in a frame
𝑀 N number of pixels in a detection map
𝑇 N number of temporal frames
𝐾 N number of pixels in a patch (pre-processing)
𝐽 N number of pixels in a patch (characterization)
𝑄 N number of samples involved in shrinkage
𝑃 N total number of training sources
𝑆 N total number of training sets

▶ indexes

𝑛 ⟦1; 𝑁⟧ pixel index
𝑡 ⟦1;𝑇⟧ temporal index
𝑝 ⟦1; 𝑃⟧ source index
𝑠 ⟦1; 𝑆⟧ training set index
𝜙 R2

+ 2-D (sub-pixel) angular location of a source

▶ data quantities

𝒓 R𝑁×𝑇 observations
𝒇 R𝑁×𝑇 nuisance component
𝒉 R𝑁 off-axis PSF
�̃� R𝑁×𝑇 pre-processed observations without injections
𝒓 R𝑁×𝑇 observations with injections
q𝒓 R𝑁×𝑇 pre-processed observations with injections

(

𝒓 R𝑁×𝑇 input (images) of the CNN (detection)

(

𝒑 R𝐽 input (patch) of the CNN (characterization)

▶ operators

E R𝑁× . ↦→ R𝐾× . patch extractor (pre-processing)
W R𝐾× . ↦→ R𝐾× . centering and whitening (pre-processing)
D R .×𝑇 ↦→ R .×𝑇 frame derotator by parallactic angles

▶ losses and metrics

Ldetect. [0; 1]2×𝑀 ↦→ R+ Dice2 score (detection loss)
Lcarac. R2

+ ↦→ R+ absolute relative error (characterization loss)
TPR [0; 1] true positive rate (detection metric)
FDR [0; 1] false discovery rate (detection metric)
F1R [0; 1] harmonic mean of TPR and FDR (detection metric)

▶ estimated quantities

�̂� [0; 1]𝑀 detection map
𝛼 R+ photometry (in source to star contrast)
�̂� R𝑁 temporal mean
𝜌 [0; 1] shrinkage factor
Ŝ R𝐾×𝐾 empirical spatial covariance
Ĉ R𝐾×𝐾 shrunk spatial covariance
L̂ R𝐾×𝐾 Cholesky’s factorization of Ĉ

observations from which our detection and characterization models
are built by supervised deep learning, see Sect. 2.2. While obtained
through the statistical model of PACO, these custom pre-processed
observations are not directly produced by the PACO algorithm.

Ablation studies have shown that this pre-processing step is of
primary importance: the training step fails to converge in its absence
due to the high non-stationarity of the nuisance component and the
large fluctuations it displays near the star, see Fig. 1. This effect is
due to the fact that standard deep learning architectures assume some
degree of invariance, in particular that the data are normalized in a
specific range and are corrupted by a stationary noise, see also Sect.
4.2.1.

MNRAS 000, 1–28 (2023)
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Figure 1. (a) Typical observations 𝒓 from the VLT/SPHERE-IRDIS instrument conducted in pupil tracking mode (i.e., with the ADI technique). Zooms around
two known background faint sources are displayed in the red circles, a zoom on the nuisance component 𝒇 near the star is highlighted in the green circle, and a
view of the sought exoplanetary signal, taking the form of the off-axis PSF 𝒉, is shown in the blue circle. Two spatio-temporal slice cuts along the black solid
and dashed lines are shown on the right, as an illustration of the spatial non-stationarity of the correlations of the nuisance. (b) Illustration of the main operations
performed during step 1 of the proposed approach, namely the pre-processing of the observations by statistical learning. The estimation of the mean �̂� and of
the covariance matrices Ĉ are based on the PACO model of the nuisance component. Examples of estimated spatial covariance matrices are displayed in squares
for four regions of interest pickled at about 0.5 (pink), 1.0 (green), 1.5 (purple), and 2.0 (orange) arcsec. It results from this pre-processing step centered and
whitened observations from which our detection and characterization models are built by supervised deep learning, see Fig. 2. Dataset: HIP 72192 (2015-05-10),
see Sect. 4 for the recording logs.

2.1.1 Statistical model of the nuisance component

A dataset 𝒓 in R𝑁×𝑇 recorded with the ADI technique is formed
by 𝑁-pixel images captured at different times 𝑡 in ⟦1;𝑇⟧. The direct
model for the observed intensity is:

𝒓 = 𝒇 +
𝑃∑︁
𝑝=1

𝛼𝑝 𝒉(𝜙𝑝) , (1)

where 𝒇 in R𝑁×𝑇 is the nuisance component, and 𝒉
(
𝜙𝑝

)
in R𝑁×𝑇

stands for the contribution of a point source 𝑝 ∈ ⟦1; 𝑃⟧ with a
contrast 𝛼𝑝 in R+ that is assumed constant during the few hours of
the total observations. The contribution of a source 𝑝 takes the form of
the off-axis PSF centered at location F𝑡 (𝜙𝑝) in the 𝑡-th image, where
𝜙𝑝 is its initial location on an image at a reference time 𝑡ref (e.g.,
𝑡ref = 𝑡1). The function F𝑡 is a geometric transform (typically in ADI,
a circular translation with respect to the star located at the center of the
images) modeling the apparent motion of the field of view between
the observation configurations at time 𝑡ref and time 𝑡. The mapping
F𝑡 is deterministic since it depends solely on the measured parallactic
angles. Given that very few sources are expected in the field of view,

we assume that the measured intensity is the superimposition of the
nuisance component and at most one unresolved point-like source 𝑝
at each pixel location 𝑛, i.e., multiple sources do not overlap.

In previous works on the PACO algorithm (Flasseur et al. 2018a,b,c),
we have proposed to describe the random fluctuations of the nuisance
component 𝒇 by a statistical model whose parameters are estimated
in a data-driven fashion. We recall hereafter the main ingredients of
this statistical model.

Given the spatial non-stationarity of the nuisance component, the
model is built locally at the scale of a patch with an area of a few tens
of pixels. It models the distribution of𝑇 patches2 𝒇𝑛 = {E𝑛,𝑡 𝒇 }𝑡=1:𝑇
in R𝐾×𝑇 extracted around pixel 𝑛 (E𝑛,𝑡 denotes the 𝐾-pixel patch
extraction operator at location 𝑛 and time 𝑡) with a multi-variate
Gaussian N(𝒎𝑛,C𝑛). The covariance matrix C𝑛 is non-diagonal,
i.e., it accounts for the local correlations of 𝒇 . The sample estima-
tors {𝒎𝑛; Ŝ𝑛} of the local mean and covariances coming from the

2 For the convenience, we use in the equations a vectorized version of 2-D
patches.
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deep PACO: deep learning meets PAtch COvariances 5

Figure 2. Schematic representation of the main operations performed during the detection and characterization steps of the proposed algorithm by supervised
deep learning. The first line displays a view of the main parameters defining synthetic sources injected into the pre-processed observations (see Fig. 1) at training
time. The second line shows common operations performed for both the detection and the characterization steps. The left (respectively, the right) part of the
third line is for operations applied solely during the detection (respectively, the characterization) step. Throughout this paper, synthetic training sources injected
to build our models are highlighted in orange while (possibly unknown) real and synthetic sources that we aim to detect and to characterize at inference time are
displayed in light blue in the schematic representations. Dataset: HIP 72192 (2015-05-10), see Sect. 4 for the recording logs.

maximum likelihood are the following:
𝒎𝑛 = 1

𝑇

𝑇∑
𝑡=1

E𝑛,𝑡 𝒓 ∈ R𝐾 ,

Ŝ𝑛 = 1
𝑇

𝑇∑
𝑡=1

(E𝑛,𝑡 𝒓 − 𝒎𝑛) (E𝑛,𝑡 𝒓 − 𝒎𝑛)⊤ ∈ R𝐾×𝐾 .
(2)

Since the number of samples available, i.e. the number 𝑇 of temporal
frames, is typically equivalent or smaller than the number 𝐾 of pixels
in a patch3, the sample covariance Ŝ𝑛 is very noisy and may even be
rank deficient. A form of regularization must be enforced to stabilize
the estimate and allow the inversion of the covariance matrix involved
in the data whitening step (see Sect. 2.1.2). We use a shrinkage
estimator (Ledoit & Wolf 2004; Chen et al. 2010) formed by a convex
combination between the low bias/high variance estimator Ŝ𝑛 and a
high bias/low variance estimator F̂𝑛:

Ĉ𝑛 = (1 − �̂�𝑛) Ŝ𝑛 + �̂�𝑛 F̂𝑛 , (3)

3 The number of pixels in a patch is determined in a data-driven fashion, as
described in Flasseur et al. (2018b) for the PACO algorithm. It corresponds to
twice the full width at half maximum (FWHM) of the measured off-axis PSF
at the given wavelength. In practice, this empirical rule typically leads to𝐾 in
⟦72; 122⟧ pixels for the VLT/SPHERE instrument operating at a wavelength
_ ∈ [0.9; 2.2] µm.

where F̂𝑛 is a diagonal matrix encoding the sample variances:[
F̂𝑛

]
𝑘𝑘′

=

{[
Ŝ𝑛

]
𝑘𝑘′

if 𝑘 = 𝑘′

0 if 𝑘 ≠ 𝑘′ .
(4)

The hyper-parameter �̂�𝑛 plays a central role since it governs a bias-
variance trade-off. In our previous works (Flasseur et al. 2018b,
2021), we have derived its closed-form expression, which is an exten-
sion of the results of Chen et al. (2010) in the case of a non-constant
shrinkage matrix F̂𝑛:

�̂�𝑛 =
tr
(
Ŝ2
𝑛

)
+ tr2

(
Ŝ𝑛

)
− 2

∑𝐾
𝑘=1

[
Ŝ𝑛

]2
𝑘𝑘

(𝑄 + 1)
(
tr
(
Ŝ2
𝑛

)
−∑𝐾

𝑘=1
[
Ŝ𝑛

]2
𝑘𝑘

) , (5)

where 𝑄 is the number of non-null patches involved in the computa-
tion of Ŝ𝑛. Here, 𝑄 is equal to 𝑇 everywhere.

In Appendix A1, we discuss a refinement of this statistical model
to account for the temporal fluctuations of the observations. It leads
to a slight improvement in terms of detection performance at the
cost of an increase of the computational burden by a factor 10 to
30. For these reasons, it is not applied by default in the following.
We recommend to use it, in a second step, to refine the analysis
of ambiguous candidate detections found by the proposed method
embedding a multi-variate Gaussian model.

MNRAS 000, 1–28 (2023)
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Figure 3. Schematic view of the quantity 𝒒, representing the number of
patches contributing to the computation of the pre-processed observations �̃�
at each pixel of the field of view, as a function of the patch shape and of
the tessellation of the field of view. Non-overlapping circular patches are not
considered in this work since they do not allow a complete paving of the field
of view. The spatial scale is not respected for the purpose of illustration.

2.1.2 Centering and local whitening of the observations

We consider a set of locations P where the statistics of the nuisance
component should be computed. The cardinal of P depends solely
on the patch shape and on the patch stride4 used to cover the whole
field of view. For a given patch stride, we first define the number of
(centered and whitened) patches averaged at each location 𝑛′ of the
field of view:

𝑞𝑛′ =
∑︁
𝑛∈P

𝛿1𝑛 1⊤
𝑛′ ≠ 0 ,∀𝑛′ ∈ ⟦1; 𝑁⟧ , (6)

where 𝛿 is the indicator function (i.e., 𝛿𝑥=𝑦 is either equal to 1 if
the condition 𝑥 = 𝑦 is met, and equal to 0 otherwise), and 1𝑛 ∈ R𝐾
(respectively, 1𝑛′ ∈ R𝐾 ) is the vectorization of a 1-valued patch
centered at location 𝑛 (respectively, 𝑛′). Figure 3 gives a view of
the quantity 𝒒 ∈ N𝑁 in the general case, i.e. for either square and
circular patches as well as non-overlapping and overlapping patches.
By default, we consider square patches of 𝐾 pixels area. The pre-
processed images �̃� in R𝑁×𝑇 , after centering and whitening, are
obtained by:

�̃�𝑛′ =

[ ∑
𝑛∈P

E⊤𝑛 W𝑛 E𝑛 𝒓
]
𝑛′

𝑞𝑛′
,

=

[ ∑
𝑛∈P

E⊤𝑛 L̂⊤𝑛 (𝒓𝑛 − 𝒎𝑛)
]
𝑛′

𝑞𝑛′
,∀𝑛′ ∈ ⟦1; 𝑁⟧ , (7)

where W𝑛 is an operator performing centering and whitening of the
collection of patches 𝒓𝑛 R

𝐾×𝑇 at location 𝑛, such that L̂𝑛 is the
Cholesky’s factorization of Ĉ−1

𝑛 (i.e., L̂𝑛 L̂⊤𝑛 = Ĉ−1
𝑛 ). In the specific

case (considered by default in this paper) of non-overlapping square
patches of 𝐾 pixels, card(P) = ⌊𝑁/𝐾⌉, and Eqs. (6)-(7) simplify as:{
𝑞′𝑛 = 1 ,∀𝑛′ ∈ ⟦1; 𝑁⟧ ,
�̃�𝑛 = W𝑛 𝒓𝑛 = L̂⊤𝑛 (𝒓𝑛 − 𝒎𝑛) ,∀𝑛 ∈ P .

(8)

4 We define the patch stride as the distance (in pixels) between the centers of
two adjacent patches, both in the 𝑥 and 𝑦 directions.

In Appendix A2, we discuss a refinement of the intermediate quan-
tity �̃� produced by the pre-processing step under the same statistical
model as described in Sect. 2.1.1 or in Appendix A1. It can be noted
that overlapping patches should be used with this refinement, and
that the patch shape can be either squared or circular. This alterna-
tive approach leads to a better stability and robustness of the method
for datasets recorded under bad observing conditions5. However, the
computational burden of this variant is increased by a factor 2 × 𝐾 ,
typically lying in ⟦100; 250⟧ for the VLT/SPHERE instrument. For
these reasons, this variant is not applied by default in the follow-
ing. We recommend to apply it, in a second step, when the training,
validation, or inference results are clearly impacted by a significant
number of false alarms, much higher than expected, which is an
unambiguous sign of the limited fidelity to the observations of the
pre-processing procedure used by default.

2.2 Exoplanet detection by supervised deep learning

We formalize the detection problem as a supervised pixel-wise classi-
fication task: starting from a temporal series of pre-processed images
including synthetic sources, the goal is to infer a detection map �̂� in
[0; 1]𝑀 , where each pixel value represents a score between 0 and
1 such that a high (respectively, a low) score values the presence
(respectively, the absence) of a source centered at that location. In-
terpreting this score as a true probability of presence of a source
requires a control of the uncertainties with dedicated methods (see
e.g., Gawlikowski et al. (2021); Hüllermeier & Waegeman (2021) for
recent review papers) that is left for future work. For this reason, in the
following, we refer to this score as a pseudo-probability. Besides, the
𝑀-pixel detection map is larger than a 𝑁-pixel single temporal frame
of the pre-processed data. Due to the apparent rotation induced by
ADI, it is theoretically possible to detect a source lying in the sensor
field of view at a single date, see Figs. 2(c) and 9. By derotating each
individual temporal frame with the corresponding parallactic an-
gle and combining the resulting transformed measurements, an area
larger than 𝑁 pixels can be scrutinized. Its resulting spatial extent
depends solely on the total amount of parallactic rotation between
the first and the last frame.

Section 2.2.1 details the construction process of the training set,
Sect. 2.2.2 describes the selected model architecture, and Sect. 2.2.3
discusses the metrics we consider to evaluate the performance of the
proposed method.

2.2.1 Construction of the training basis

In high-contrast imaging, obtaining real ground-truth data is a
twofold challenge.

First, the overall number of positive samples is limited as relatively
few point-like sources have been confirmed to date. Second, negative
samples are hard to define since some undiscovered sources might be
present in the observed data. To overcome these difficulties, we adopt

5 Since the notion of observing conditions is relative and can be characterized
by several metrics (e.g., Strehl ratio, coherence time, air mass, etc.), we did
not find quantitative values for these measures indicating the strict use of the
variant version described in Appendix A2. This large effort would require the
processing of hundreds of datasets, which is left for future work. Qualitatively,
we observed that datasets impacted by a bright wind-driven halo, displaying
the same apparent motion than the objects of interest, are more subject to
lead to an increased false alarm rate without the pre-processing described in
Appendix A2.
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the following training strategy: the training set consists of 𝑆 pairs
{ (

𝒓 [𝑠] ; 𝒚 [𝑠] }𝑠=1:𝑆 of samples resulting from the massive injection
of synthetic point-like sources. In this framework, (

𝒓 [𝑠] ∈ R𝑁×𝑇

represents observations, with injected synthetic sources, that have
been pre-processed. The quantity 𝒚 [𝑠] ∈ ⟦0, 1⟧𝑀 is the ground-
truth map pointing the injection locations of any synthetic training
source falling within the field of view at least in one temporal frame.
The ground truth map is built for a given (and arbitrary) orientation of
the field of view, e.g. aligned with the true North. The implemented
simulation process is quite realistic since the injected source signature
corresponds to the off-axis PSF of the target star usually measured just
before or just after the main sequence of observations by decentering
the coronagraph.

Second, the nuisance component varies drastically from one ob-
servation to the other, as it is highly dependent on the observing
conditions, the magnitude of the star, and the instrument settings. As
a consequence, we follow an observation-dependent approach, and
train a different model on each observation. It means that the model
parameters (except algorithmic and optimization hyper-parameters,
see Sect. 2.2.4) are optimized from scratch for each dataset.

This setup implies the design of a custom data-augmentation strat-
egy (i) to prevent over-fitting of the model that is trained from a
unique temporal series of images, and (ii) to account for our lack of
knowledge about real sources –unknown at training time but that we
aim to detect at test time–. To circumvent these issues, we apply a
random permutation of the 𝑇 images forming the observations 𝒓 for
each new training sample 𝑠 ∈ ⟦1; 𝑆⟧. This operation allows us (i) to
create artificially different training sets, and (ii) to break the temporal
consistency of (known and unknown) real sources. Synthetic sources
are then injected in the temporally permuted data using the parallactic
angles and the best fit of the off-axis PSF by a Gaussian and an Airy
pattern. Besides, the off-axis PSF is assumed to be time-invariant.
We have checked numerically that this assumption is reasonable for
our classification task. Similarly, assuming a slightly different pat-
tern for the off-axis PSF (e.g., measured versus fitted model) between
the data generation process and the training step does not lead to a
significant drop in the detection performance. At this intermediate
stage, each training sample 𝒓 [𝑠] is obtained by:

𝒓 [𝑠] = P[𝑠] 𝒓 +
𝑃 [𝑠]∑︁
𝑝=1

𝛼
[𝑠]
𝑝 𝒉

(
𝜙
[𝑠]
𝑝

)
, (9)

where P is an operator performing the random temporal permutation
of the images of 𝒓 and 𝒉

(
𝜙𝑝

)
inR𝑁×𝑇 represents the spatio-temporal

contribution of a synthetic source centered at location 𝜙𝑝 on a refer-
ence image at time 𝑡ref, see Sect. 1. The number of sources 𝑃[𝑠] , their
contrasts {𝛼[𝑠]𝑝 }𝑝=1:𝑃 [𝑠] and their initial locations {𝜙[𝑠]𝑝 }𝑝=1:𝑃 [𝑠]

are free parameters. In practice, the number 𝑃[𝑠] of injected sources
in each training sample is drawn uniformly in ⟦1; 10⟧. This setting
represents a realistic scenario since we expect a few faint point-like
sources in the field of view. We denote by 𝑃 the total number of in-
jected sources over the 𝑆 training sets, i.e. 𝑃 =

∑𝑆
𝑠=1 𝑃

[𝑠] . The initial
locations {𝜙𝑝}𝑝=1:𝑃 of the injected sources are drawn uniformly in
polar coordinates (i.e., the center of the field of view is more sampled
than farther away). Note that we have compared this setting with a
uniform sampling in cartesian coordinates (i.e., uniform density over
the field of view), and we found very similar detection performance
for both settings. The selected one (i.e., uniform in polar coordi-
nates) slightly speeds up the training procedure, likely because the
pre-processed observations fluctuate slightly more near the star than
farther away, thus requiring more training samples to discriminate a
source from the nuisance. The range of injected flux is also a criti-

cal choice. For instance, if the lower bound is too low, class overlap
can occur and the model is not able to discriminate between sources
and the nuisance component leading to a high level of false alarms.
In the opposite case, if the upper bound is too low, evident bright
sources will not be detected since there are no similar examples in
the training set. In practice, we set the injection range in an unsuper-
vised fashion. We train our model on sources which are challenging
to detect with other methods: the contrast {𝛼𝑝}𝑝=1:𝑃 of the injected
sources is drawn uniformly in

[
3�̂�PACO
𝜙𝑝

; 12�̂�PACO
𝜙𝑝

]
where �̂�PACO

𝜙𝑝
is the

1-sigma contrast reached by PACO at location 𝜙𝑝 . This setting cov-
ers both sources that are detectable above the standard 5𝜎 detection
confidence and sources whose detection confidence remains below
the 5𝜎 detection limit reached by PACO. In practice, we found that
this setting is suitable to detect both faint sources and bright sources
without generating large number of false alarms.

As the pre-processing is an expensive procedure and becomes
the bottleneck during online data generation, we adopt a local update
strategy to reduce its computational cost. Prior to the injection of syn-
thetic sources, the whole dataset is pre-processed, i.e. centered and
spatially whitened, see Fig. 1 (b). We denote by �̃� the pre-computed
cube. After each batch 𝑠 of injections, the set S[𝑠] of locations im-
pacted by the signal of the 𝑃[𝑠] sources is determined. Outside S[𝑠] ,
the pre-processed images are obtained from the temporal permuta-
tion of �̃�. Inside S[𝑠] , the statistics of the nuisance component are
updated given the contamination of the 𝑃[𝑠] injected sources, and
the pre-processed images are updated with these refined statistics. At
this intermediate stage, each training sample q𝒓 [𝑠] is obtained by:

q𝒓
[𝑠]
𝑛 =

{
W𝑛 𝒓

[𝑠]
𝑛 , for 𝑛 ∈ S[𝑠] ∩ P ,

P[𝑠] �̃�𝑛, for 𝑛 ∈ P − S[𝑠] ∩ P .
(10)

This dual strategy, illustrated by Fig. 4, is applied to prevent any
detection bias (i.e., an over-estimation of the actual detection perfor-
mance of the proposed algorithm) since we have shown in previous
work on the PACO algorithm (Flasseur et al. 2018b) that the statis-
tics of the nuisance component can suffer from a (slight) bias, in
particular at short angular separations and/or when the total amount
of parallactic rotation is low. This slight potential bias is due to the
contamination of a source whose signal is partly encoded both in the
mean and in the spatial covariances of the nuisance component.

Finally, the intermediate images of each training sample are dero-
tated with the opposite of the parallactic angles so that signal of the
synthetic sources are spatially co-aligned along the temporal axis:

(

𝒓 [𝑠] = D q𝒓 [𝑠] , (11)

where D is a derotation operator. This derotation step is mandatory
to perform a semantic segmentation with the CNN we consider (see
Sect. 2.2.2) given the limited spatial extent of its receptive field.

The binary ground-truth segmentation map 𝒚 [𝑠] is obtained by
setting to 1 circular areas centered at the locations {𝜙𝑝}𝑝=1:𝑃 [𝑠] of
the 𝑃[𝑠] injected sources. Other regions of 𝒚 [𝑠] are set to 0. The
radius of the circles is set to the full width at half maximum of the
off-axis PSF, which corresponds to the expected spatial extent of an
exoplanetary signature in the data.

A schematic summary of the construction of the training set is
given in Fig. 2.

2.2.2 Model and architecture

Deep convolutional neural networks reach state-of-art performance
in solving pixel-wise classification tasks for various imaging fields
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Figure 4. Schematic illustration of the local update of the pre-processing
embedded in the training step of the proposed detection algorithm. (a) Illus-
tration of the sets P and S[𝑠] for a given training set 𝑠 with three injected
training sources displayed in orange. (b) Illustration of the computation of the
pre-processed observations q𝒓 in the presence of injected training sources from
pre-computed (i.e., before injections) centered and whitened observations �̃� .
The spatial scale is not respected for the purpose of illustration.

including microscopy, astronomy, medical imaging or remote sens-
ing. A large variety of model architecture has been studied in the
literature (e.g., auto-encoder (Badrinarayanan et al. 2017), VGG (Si-
monyan & Zisserman 2015), ResNet (He et al. 2016)) and their
performance often rely on an intricate trade-off between model com-
plexity, the amount of data available for training, and their fidelity
with the data used at test time. A common feature of some classical
deep architectures is to encode the diversity of the training samples
in a low dimensional subspace by transforming the network input
with a cascade of convolution and downsampling operations. Start-
ing from this latent representation, the initial image size is retrieved
by a decoder performing reverse transformations with a cascade of
deconvolution and upsampling operations.

We also based our model on the above-mentioned category of
architectures. We chose a U-Net (Ronneberger et al. 2015) with a
ResNet18 (He et al. 2016) as encoder backbone (≃11 millions of
free parameters), which is an architecture widely used for image
segmentation. Its residual connections preserve of the input’s spatial
information along the cascade of convolution and downsampling
operations thanks to a direct mapping of the output of each layer of the
compression arm into the corresponding layer of the decompression
arm. We use the architecture implemented in the SMP package6.
The encoder and decoder parts are formed by four blocks, each one
is composed by a series of convolution layers, batch normalization
layers, rectified linear unit (ReLU) activation, and max pooling layers.

6 The SMP package containing the network architecture used in this paper is
available at https://github.com/qubvel/segmentation_models.pytorch.

The final layer of the network has a sigmoid activation function to
produce a detection map �̂� ∈ [0; 1]𝑀 . The detailed description of
the architecture, the number of parameters per layer, and the input /
output shapes of each layer can be found at the above mentioned link.

The network weights are trained from scratch with the samples gen-
erated with the procedure described in Sect. 2.2.1. Initial weights are
drawn uniformly through a He-Kaiming distribution (He et al. 2015).
The SMP package also provides pre-trained weights. Pre-training is
performed with the ImageNet dataset (RGB conventional images)
either in a supervised, semi-supervised, or weakly-supervised learn-
ing fashion (Yalniz et al. 2019). In case of pre-training, the weights
of the first convolutional layer are replicated in order to match the
𝑇-depth of our inputs. We compared all of these strategies against a
supervised learning from scratch with our custom training set (see
Sect. 2.2.1). We found similar performance with all approaches, and
opted for an end-to-end learning.

2.2.3 Loss function and accuracy metrics

The design of loss function used for optimizing the network weights
at training time is driven by three criteria: (i) handling with the strong
class imbalance (the number of background pixels being much larger
than the number of pixels from the sources), (ii) being computa-
tionally efficient, (iii) matching the astrophysical goals (i.e., having
a measure close to a detection accuracy score). We compare losses
classically used for semantic segmentation, such as the binary cross-
entropy (BCE), ℓ1 and ℓ2 norms, mean square error and Hinge loss.
We have also compared losses based on a similarity measure such
as the Dice score (Milletari et al. 2016) and hybrid losses combin-
ing at least two individual loss measurements (e.g., BCE with Dice
score). Our experiments have consistently shown better performance
with Dice-based scores. We selected the Dice2 loss (the 2 means for
two classes), first introduced for biomedical imaging segmentation
with very unbalanced classes (Sudre et al. 2017; Wang et al. 2020).
Given a training set of ground-truth and predicted detection maps
{𝒚 [𝑠] ; �̂� [𝑠] }, the Dice2 score is defined by:

Ldetect.
(
𝒚 [𝑠] , �̂� [𝑠]

)
= 1 −

𝑀∑
𝑚=1

(1 − 𝒚
[𝑠]
𝑚 ) (1 − �̂�

[𝑠]
𝑚 + 𝜖)

𝑀∑
𝑚=1

2 − 𝒚
[𝑠]
𝑚 − �̂�

[𝑠]
𝑚 + 𝜖︸                                ︷︷                                ︸

background error

−

𝑀∑
𝑚=1

𝒚
[𝑠]
𝑚 �̂�

[𝑠]
𝑚 + 𝜖

𝑀∑
𝑚=1

𝒚
[𝑠]
𝑚 + �̂�

[𝑠]
𝑚 + 𝜖︸                   ︷︷                   ︸

source error

, (12)

where 𝜖 is a minimum-value smoothing and stability parameter added
to avoid division by zero. Targeted loss property (i) is satisfied since
errors in the source and background areas are penalized equally re-
gardless the relative occurrence of these two classes in 𝒚 [𝑠] . Property
(ii) is also satisfied, and we illustrate numerically in the two following
paragraphs that property (iii) is also reached.

At validation time, we evaluate the ability of the model to de-
tect point-like sources while simultaneously avoiding false alarms at
best as possible. In other words, we aim to obtain a model obeying
a precision-recall trade-off. For a predicted detection map �̂� [𝑠] in
[0; 1]𝑀 thresholded at 𝜏 in [0; 1], we count the number of true pos-
itives (TP, i.e., true detections), false positives (FP, i.e., false alarms)
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Figure 5. Example of training and validation results. (a) Examples of detection maps obtained at validation time for the best epoch (number 20). (b) Evolution
of the loss function at training and validation time, as well as the evolution of the F1R accuracy metric at validation time. (c) ROCs representing the TPR, FDR
and F1R as a function of the prescribed detection threshold 𝜏 for the best epoch (number 20, symbolized by the gray vertical line in panel (b)). Dataset: HD
95086 (2015-05-05), see Sect. 4 for the recording logs.

and false negatives (FN, i.e., missed detections). Following standard
practice in direct imaging (see e.g., Flasseur et al. (2018b); Gonza-
lez et al. (2018); Cantalloube et al. (2020)), detections are treated
as blobs of one resolution element radius which corresponds to the
expected spatial extent of an exoplanetary signature in the data. From
TP, FP, and FN, we derive the true positive rate (TPR, i.e., the recall),
the false discovery rate (FDR, i.e., the precision), and the F1R score,
which is the harmonic mean between TPR and FDR, that we use as
an overall measure of the precision-recall trade-off:

TPR = TP
TP+FN ∈ [0; 1] ,

FDR = FP
FP+TP ∈ [0; 1] ,

F1R = 2
1

TPR+
1

FDR
= 2TP

2TP+FN+FP ∈ [0; 1] .
(13)

From TPR, FDR, and F1R, receiver operating curves (ROCs; Kay
(1993)) are built. ROCs are obtained by evaluating the figures of
merit defined in Eq. (13) as a function of the detection threshold
𝜏. Finally, the area under the curve (AUC) for the F1R score is
computed as an aggregate score of the model performance (best when
close to 1). Gonzalez et al. (2016, 2018); Flasseur et al. (2018b);
Dahlqvist et al. (2020); Cantalloube et al. (2020); Daglayan et al.
(2022) exemplified the relevance of ROCs in high-contrast imaging

to derive an aggregate measurement of the targeted precision-recall
trade-off.

Figure 5(a) displays some examples of detection maps obtained
at validation time for the best validation epoch. These maps illus-
trate qualitatively the ability of our model to detect synthetic sources
while simultaneously avoiding false alarms. Figure 5(b) shows the
evolution of the empirical risk (see Eq. (12)) at training and valida-
tion time as well as the evolution of the F1R accuracy metric (see
Eq. (13)) at validation time. The loss function does not exhibit sig-
nificant discrepancy between training and validation steps and the
convergence is reached in a few epochs7. Besides, the accuracy score
is high and well anti-correlated with the loss. This latter observa-
tion illustrates that the loss function is a satisfactory estimate of the
overall accuracy metric (see targeted property (iii) at the beginning

7 In machine or deep learning, an epoch refers to a group of multiple training
sets from which the network weights are optimized sequentially by stochastic
gradient descent. Multiple epochs, formed by a random selection and ordering
of some training sets taken from the training base, are generally needed to
reach convergence of the network weights. Learning and optimization hyper-
parameters can also be tuned between two consecutive epochs according to a
pre-defined scheduling, see Sect. 2.2.4.
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of Sect. 2.2.3). Finally, Fig. 5(c) gives an illustration of validation
ROC obtained for the best epoch (symbolized by a gray vertical line
in Fig. 5(b)). The validation ROC confirms the good ability of the
trained model to discriminate (synthetic) point-like sources from the
nuisance component.

2.2.4 Implementation details

Pairs of samples { (

𝒓 [𝑠] ; 𝒚 [𝑠] } are generated on the fly at training and
evaluation time following the procedure described in Sect. 2.2.1. To
avoid over-fitting, each realization 𝑠 is unique with no repetition for
the different epochs. The notion of epoch is used only as a way to
evaluate regularly the performance of the model with the validation
procedure described in Sect. 2.2.3, and also to adapt the learning rate
through a pre-defined scheduling. The optimization of the network
weights is performed with an iterative stochastic gradient-descent
strategy on mini-batches of samples formed (possibly) by the con-
catenation of multiple training sets. It means that, at each iteration,
the model weights are updated in the opposite direction to the gra-
dient of the loss. The loss is evaluated from the current mini-batch
of samples with respect to the model weights. Since we work on se-
ries of 𝑇 images, with 𝑇 typically lying between 50 and 100 images,
the batch-size (i.e., the number of training sets comprised within
a mini-batch) is fixed at 1 given memory constraints. This setting
does not affect the overall performance of the method and only re-
quires to perform more iterations to reach convergence since the cost
function is quite noisy, see Fig. 5(a). Even under this setting, the
convergence is typically reached in a few epochs, see Sect. 2.2.3
and Fig. 5(b). In practice, for each training epoch, 𝑆 = 100 pairs of
samples { (

𝒓 [𝑠] ; 𝒚 [𝑠] } are generated and fed sequentially as input of
the network. For each validation epoch, 𝑆 is fixed at 10 given the
computational burden required to build ROCs representing the F1R
score as a function of the detection threshold 𝜏. The training pro-
cess stops when the accuracy metric AUCF1R (i.e., AUC under ROC
representing the F1R score as a function of the detection threshold
𝜏 at validation time) evolves in less than 2% during the ten previous
epochs. The model optimization is performed with the adaptive gra-
dient algorithm AMSGrad (Reddi et al. 2019) which is a variant of the
Adam (Kingma & Ba 2014) optimizer with a longer-term memory of
past gradients. The parameters of the optimizer and of the scheduler
have been fine tuned on two datasets and are kept constant for all
our experiments. In practice, we observed that the optimized val-
ues are quite robust with respect to the dataset diversity. The weight
decay8 is fixed at 10−5 and the initial learning rate is set to 10−3

with a regular decrease by 10% every 10 epochs. The optimization
of the network weights is performed with the high-performance deep
learning library PyTorch (Paszke et al. 2019) on GPUs server with
NVIDIA system equipped with either Tesla V100 or GTX 1080 Ti
cards. The pre-processing step is highly parallelized and has a double
implementation so that it can performed either on CPUs or on GPUs
depending on the number of available CPUs cores and on the server
specifications.

3 SOURCE CHARACTERIZATION ALGORITHM

Once sources have been detected, they can be characterized in terms
of astrometry and of photometry. In this section, we present a new

8 In machine or deep learning, the weight decay refers to a regularization
technique reducing the complexity of a model to prevent over-fitting.

Figure 6. Influence of the whitening of the spatial correlations during the
pre-processing step of the characterization algorithm. ARE (see Sect. 3.2.3
for the definition of the metric) on the estimated photometry is reported
as a function of the angular separation, with and without whitening of the
spatial correlations. The performance of PACO are displayed as a purpose of
comparison. The results are averaged azimuthally for 40,000 sources of flux
drawn uniformly between 1 × 10−6 and 3 × 10−5. The known real sources
were masked out and were not considered. Dataset: HD 95086 (2015-05-05),
see Sect. 4 for the recording logs.

method based on supervised deep learning to estimate the photome-
try of detected point-like sources. The sub-pixel estimation of the as-
trometry is not addressed in this paper because it requires a sub-pixel
estimation of the detection criterion as well as statistical guarantees
on its significance. These specific developments are left for future
work, and the proposed characterization algorithm can be use to es-
timate the photometry at the pixel barycenter of (candidate) sources
revealed by the detection stage presented in Sect. 2. As in Sect. 2,
we successively discuss the pre-processing stage, the formalization
of the problem as a regression task, the model and the underlying
architecture, the metric we use for training and evaluation, and some
implementation details.

3.1 Pre-processing aspects

We adopt a simple patch-based approach, in which we predict the flux
of a putative source from a unique (reduced) patch centered on the
approximate location of the source. We propose to parameterize the
mapping between the input patch and the flux with a CNN trained in
a supervised fashion, from the dataset of interest (i.e., the underlying
model is data-dependent, as for the detection stage of this paper).

The dataset is first reduced to a single frame, from which the input
patches are extracted. This pre-processing consists in three steps.
First, the temporal mean is computed and subtracted pixel-wise in
order to remove most of the quasi-static speckles. Second, the dataset
is derotated by the opposite of the parallactic angles to co-align
the signal of the sources. Third, the dataset is averaged temporally,
resulting in a single averaged frame. This last step allows to obtain an
efficient training procedure as it reduces the size of the input data by a
factor 𝑇 . Besides, we observed empirically that this step is beneficial
to improve the estimation accuracy as it acts as a simple denoiser:
the source signal is constant along time, while residual speckles are
not quasi-static after cube derotation, thus canceling out. Keeping
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Figure 7. Influence of the patch size 𝐽 in the characterization algorithm. ARE
(see Sect. 3.2.3 for the definition of the metric) on the estimated photometry is
reported as a function of the angular separation, for patches between 𝐽 = 152

and 𝐽 = 312 pixels area. The results are averaged azimuthally for 40,000
sources of flux drawn uniformly between 1 × 10−6 and 3 × 10−5. The known
real sources were masked out and were not considered. Dataset: HD 95086
(2015-05-05), see Sect. 4 for the recording logs.

the notation introduced in Sect. 2, these operations transform a given
(intermediate) training dataset 𝒓 in R𝑁×𝑇 with injected synthetic
sources as follows:


q𝒓𝑛 = 𝒓𝑛 − 𝒎𝑛 ,∀𝑛 ∈ P , (step 1) ,

(

𝒓 = 1
𝑇

𝑇∑
𝑡=1

[D q𝒓]𝑡 , (steps 2 and 3) .
(14)

In this framework, and unlike the detection stage, we do not apply a
whitening of the spatial correlations at step 1. Indeed, we observed
empirically that whitening the dataset between steps 1 and 2-3 de-
grades the performance of our model, as illustrated by Fig. 6. More
quantitatively, the absolute error of estimation is increased, whatever
the angular separation, by a factor between three and five. Besides,
keeping a whitening step for photometry estimation does not allow
to obtain better results than PACO for most of the field of view. This
is expected as the whitening distorts the shape and the norm of the
source signal, thus hampering the recovery of its flux. The detection
algorithm is not subject to this constraint as its task is to determine
whether a source is present or not, regardless of its flux. This fact
illustrates that deriving a quantitative result (as a flux estimate) is
a more complex task than providing a qualitative result (as related
to the presence or to the absence of a source) with our algorithmic
setting. We can expect that building the model from several datasets
of observations (instead of a single one in this work) would relax
these constraints. These specific developments are left for future
work, see also Sect. 5 for a discussion. After pre-processing, square
patches (

𝒑 [𝑝] ∈ R𝐽 are finally extracted around the location of each
injected synthetic source 𝑝 during the training and validation steps,
or around each (candidate) real point-like source 𝑝 at inference time.
The patch size 𝐽 is an hyper-parameter whose setting is discussed in
more details in Sect. 3.2.4.

Table 2. Architecture of the proposed CNN for source characterization. The
shapes of the layers are indicated for a unit batch size.

layer shape

Input 1 × 31 × 31
Conv2D + ReLU 128 × 25 × 25
Conv2D + ReLU 128 × 21 × 21
Conv2D + ReLU 256 × 17 × 17

MaxPooling 256 × 1 × 1
DenseLayer + ReLU 256 × 1 × 1

DenseLayer 1 × 1 × 1

3.2 Regression by supervised deep learning

3.2.1 Construction of the training basis

As with the detection procedure of Sect. 5, we resort to massive in-
jections of synthetic sources with various fluxes to build our training
basis.

Prior to the injections, the first step consists in masking any real
and/or synthetic detected sources that we aim to estimate the photom-
etry at inference time. This operation prevents, as best as possible,
data leakages between training and test sets so that training patches
do not contain any pixel from patches considered at inference time.
In practice, source masking is performed by replacing, for each tem-
poral frame, the local area impacted by the signal of the sources
of interest by their pixel-wise temporal mean. Like for the genera-
tion of the training basis of the detection stage, we also apply, as a
data-augmentation strategy, a random permutation of the temporal
frames prior to the construction of a training set 𝑠 from which training
samples with injected sources are extracted.

We then build each training set 𝑠 by injecting a dozen of synthetic
sources, with a relative flux (i.e., exoplanet to star contrast) ranging
from 1×10−6 to 3×10−5 with respect to the flux of the host star. Given
the current instrumental and processing performance in direct imag-
ing, this setting corresponds to sources with relatively low flux, for
which the estimation is usually the most flawed. This operation range
can be easily modified in the algorithm to characterize (expected)
sources with a lower or higher contrast level, if needed. The con-
trast of synthetic sources is drawn uniformly in the above-mentioned
range, regardless of the angular separation. After injection, each
training set is pre-processed and the input patches are extracted fol-
lowing the method described in Sect. 3.1. This procedure is repeated
to get a prescribed number 𝑃 of training patches { q𝒑 [𝑝] ∈ R𝐽 }𝑝=1:𝑃 .
The number of training patches, hence the total number 𝑃 of injected
synthetic sources, is an additional hyper-parameter whose setting is
discussed in more details in Sect. 3.2.4.

3.2.2 Model and architecture

We built a custom network based on VGG, an architecture initially
proposed for image classification (Simonyan & Zisserman 2015).
The underlying model has 1.2 million of free parameters, and its
detailed architecture is described in Table 2. We use a stride9 of one
for all convolutional layers. We have also tested alternative models,
both with a deeper and shallower architecture, all leading to worst
estimation performance than the selected one. In particular, we expe-
rienced a significant degradation of the performance at short angular
separations with deeper architectures. The later are the more subject

9 In deep learning, the convolutional stride (in pixels) set how far the convo-
lutional filters move from one node of the image grid to the next one.
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Figure 8. Influence of the number of training sources 𝑃 in the characteriza-
tion algorithm. ARE (see Sect. 3.2.3 for the definition of the metric) on the
estimated photometry is reported as a function of the angular separation, for
𝑃 ∈ {400,000; 40,000; 20,000; 4,000} sources. The results are averaged az-
imuthally for sources of flux drawn uniformly between 1×10−6 and 3×10−5.
The mean ARE (denoted by ARE) averaged over the angular separation is also
reported as an overall measure of the performance. The known real sources
were masked out and were not considered. Datasets: the eleven SPHERE-
IRDIS datasets considered in this work, see Sect. 4 for the recording logs.

to over-fitting (due to the increase in terms of model complexity),
especially in the absence of a whitening procedure preventing mem-
orization of the nuisance structures by the network.

From an input patch (

𝒑 [𝑝] ∈ R𝐽 , the network produces a single
scalar �̂�[𝑝] ∈ R+, representing the estimated source’s photometry.

3.2.3 Loss function and accuracy metric

Our choice of the loss function Lcarac. is driven by the two follow-
ing criteria: (i) being computationally efficient, and (ii) matching
the astrophysical goals. We chose the absolute relative error (ARE)
between the ground-truth and the predicted photometry, which is a
classical loss for regression problems:

Lcarac.
(
𝛼[𝑝] , �̂�[𝑝]

)
(%) = 100 ×

��𝛼[𝑝] − �̂�[𝑝] ��
𝛼[𝑝]

. (15)

The ARE has the advantage of giving the same contribution to each
individual source 𝑝 regardless of its flux, when it is averaged over
multiples ones. Since this metric is computationally very efficient,
we also use it to evaluate the overall performance of the method at
validation time.

3.2.4 Implementation details

In this section, we successively discuss the setting of the patch size,
the number of training sources, the sampling strategy of injected
synthetic sources, and some optimization aspects.

Due to the pre-processing described in Sect. 3.1, part of the signal of
the sources can be encoded in the temporal mean that is subtracted
to the full frames in order to attenuate the quasi-static speckles.
As a result, a (negative) contribution, taking the form of an arc,
can spread out along the trajectory of the sources in the reduced

frame. This well-known phenomenon in direct imaging is usually
referred as self-subtraction. As a consequence, we can expect that
the performance of the predictor would increase with the patch size
𝐽, to be able to capture the (extended) signature of sources induced
by self-subtraction. Besides, increasing the patch size increases the
context (i.e., local realizations of the nuisance component) that could
be beneficial to unmix the different contributions. As shown by Fig. 7,
increasing the patch size is indeed beneficial as it reduced the mean
relative error of estimation. The gain is more pronounced as the
angular separation increases, which could be due to the larger extent
of the self-subtraction signature (as the apparent motion of sources
induced by ADI increases with the angular separation). However,
large patches are not convenient in the case of adjacent sources, as
both signals will be contained in both input patches. As a trade-off,
we chose a patch size of 𝐽 = 312 pixels, as it encompasses the core
of the signal of the source without being impractical when multiple
sources are present in the field of view.

The number 𝑃 of synthetic sources (which also corresponds to
the number of patches) used at training time is an additional hyper-
parameter obeying a trade-off. On the one hand, it should be large
enough to be representative of the variety of real sources in terms of
flux and locations. On the other hand, it should be sufficiently small
to avoid over-fitting on the training set. These expected behaviors
are confirmed by numerical experiments presented in Fig. 8. The
error at small angular separations increases with 𝑃 since this is the
area of the field of view the more subject to data leakages when
generating multiple samples from a few tens of pixels only. The
overall performance also degrades when 𝑃 is too small. Based on
this study, we include 𝑃 = 40, 000 patches in our training set since it
leads to the smallest ARE averaged over the whole of view.

Concerning the source’s sampling strategy, we are interested at
evaluation time in assessing the performance of the model per angular
separation. As such, it is natural to sample test sources uniformly in
the polar coordinates system. However, polar sampling is detrimental
during the training phase, as pixels at short angular separations would
be over-represented in the training set, leading to an over-fitting of
the model in this area. It can be noted that this effect does not occur in
the detection stage of the proposed approach given that the training
sets consist of full frames of pre-processed observations; each pixel
of the field of view being equally represented in the training base. We
experimentally observed that sampling training sources uniformly in
the Cartesian coordinates system reduces significantly over-fitting at
short angular separations, without degrading performance in the rest
of the field of view. As a result, we opt during training for a uniform
sampling of the coordinates of synthetic sources in the Cartesian
system.

Concerning the optimization process, pairs of samples
{ (

𝒑 [𝑝] ;𝛼[𝑝] } are pre-generated before training and evaluation. As
for the detection stage, each realization 𝑝 is unique to limit over-fitting
as best as possible. Unlike the detection stage, the characterization
stage operates on a single patch (instead of the 𝑇 temporal images),
thus allowing to chose a batch size higher than one to improve the
stability and to reduce the computation time of the optimization pro-
cess. In practice, the batch size is fixed at 1024. The number of epochs
is fixed at 300, which shown to be sufficient to reach convergence
of the network weights for all the considered observations. For each
training epoch, the full set of training samples is fed as input of the
network in a random order. The model optimization is performed
with Adam (Kingma & Ba 2014) with a learning rate of 10−3. As for
the detection stage, the optimization of the network weights is done
in PyTorch (Paszke et al. 2019) on either Tesla V100 or GTX 1080
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Table 3. Observing parameters of ADI sequences from the VLT/SPHERE-IRDIS instrument considered in this paper. Columns are: target name, ESO survey
ID, observation date, spectral filter _, number 𝑇 of available temporal frames, total apparent rotation Δpar of the field of view, number NDIT of sub-integration
exposures, individual exposure time DIT, average coherence time 𝜏0, average seeing, and the first paper reporting analysis of the same data. All the observations
are performed with the apodized Lyot coronagraph (Carbillet et al. 2011) of the VLT/SPHERE instrument. (a)Since the EIDC aimed to perform a blind
benchmark, information that would allow to identify the datasets are not known. (b)This dataset was recorded with the star-hopping technique recently available
for the VLT/SPHERE instrument (Wahhaj et al. 2021) and its analysis is not reported yet. We do not exploit the dataset associated to the observation of the
reference star. The dataset associated to the target star (HD 95086) is processed like all other datasets considered in this paper. (c)This dataset is only used for
additional experiments conducted in Appendix A2.

Target ESO ID Obs. date _ (µm) 𝑇 Δpar (°) NDIT DIT (s) 𝜏0 (ms) Seeing (”) Related paper

VLT/SPHERE-IRDIS observations from the EIDC challenge

IRDIS 1(a) −(a) −(a) 1.625 252 40.3 −(a) −(a) −(a) −(a) Cantalloube et al. (2020)
IRDIS 2(a) −(a) −(a) 1.593 80 31.5 −(a) −(a) −(a) −(a) Cantalloube et al. (2020)
IRDIS 3(a) −(a) −(a) 1.593 228 80.5 −(a) −(a) −(a) −(a) Cantalloube et al. (2020)

VLT/SPHERE-IRDIS observations

HD 95086 095.C-0298(A) 2015-05-05 2.110 52 18.2 4 64 2.3 0.89 Chauvin et al. (2018)
HD 95086 1100.C-0481(E) 2018-01-05 2.110 70 41.0 10 96 7.8 0.32 Desgrange et al. (2022)
HD 95086 106.21VL.001 2021-03-11 2.110 104 41.4 2 32 7.0 0.77 −(b)

HIP 88399 095.C-0298(A) 2015-05-10 1.593 46 34.3 4 64 1.2 1.05 Langlois et al. (2021)
HIP 88399 097.C-0865(A) 2016-04-16 1.593 54 37.3 5 64 2.0 1.45 Langlois et al. (2021)
HIP 88399 1100.C-0481(F) 2018-04-11 1.593 40 31.9 10 96 5.5 0.74 Langlois et al. (2021)
HD 131399 095.C-0389(A) 2015-06-12 2.110 92 36.7 6 16 1.9 0.90 Wagner et al. (2016)
HD 131399 296.C-5036(A) 2016-05-07 2.110 56 39.5 7 32 3.6 0.98 Wagner et al. (2016)
HIP 65426 198.C-0209(E) 2017-02-09 2.110 55 49.1 4 64 4.4 0.82 Chauvin et al. (2017)
HIP 65426 1100.C-0481(G) 2018-05-13 2.110 40 31.7 10 96 4.3 0.81 Cheetham et al. (2019)
HIP 72192 095.C-0389(A) 2015-06-11 2.110 96 17.3 6 16 1.9 1.03 Flasseur et al. (2018b)
HR 8799(c) 095.C-0298(C) 2015-07-04 2.110 112 17.9 8 32 2.3 0.94 Langlois et al. (2021)

Ti cards. The pre-processing step is highly parallelized, and it is run
on CPUs.

4 RESULTS

4.1 Datasets description and reduction strategies

For our comparative analysis, we have selected 15 datasets recorded
with the SPHERE-IRDIS instrument.

Three of the 15 SPHERE-IRDIS datasets were extracted from
the exoplanet imaging data challenge (EIDC) initially designed to
ground the detection performance of existing post-processing al-
gorithms for high-contrast imaging (Cantalloube et al. 2020). These
datasets are used as a sanity check to assess the ability of the proposed
algorithm to detect injected sources at moderate levels of contrast.

To study in more details the performance of the proposed method,
we selected 12 additional datasets, mostly part from the SHINE sur-
vey of the SPHERE-IRDIS instrument (Desidera et al. 2021; Langlois
et al. 2021; Vigan et al. 2021). They were obtained by the observation
of the following stars:
– HD 95086, a A8III type star of the Carina constellation, hosting
an exoplanet discovered by direct imaging with the SPHERE instru-
ment (Rameau et al. 2013a,b). Ten known background point sources
are also within the SPHERE-IRDIS field of view. In addition, based
on the analysis of PACO and deep PACO detection maps, we have
identified two additional (unbounded) candidate point-like sources.
Given their unknown status, we exclude these sources from our gen-
eral analysis (i.e., there are not considered as true detections or false
alarms). We briefly discuss there status in Sect. 4.2.3.
– HIP 88399, a F6V type star of the Vela constellation, without
known bounded exoplanet. However, six faint background sources
fall within the SPHERE-IRDIS field of view.
– HD 131399 A, a A1V type star of a triple system located in the Cen-

taurus constellation, with a known faint point source (HD 131399 Ab)
discovered by direct imaging (Wagner et al. 2016). While first sup-
posed to be an exoplanet, follow-up analysis of its astro-photometry
show that HD 131399 Ab is more likely a background brown dwarf
(Nielsen et al. 2017). Besides, a bright background star falls within
the SPHERE-IRDIS field of view.
– HIP 65426, a A8III type star of the Carina constellation, hosting an
exoplanet discovered by direct imaging with the SPHERE instrument
(Chauvin et al. 2017).
– HIP 72192, a A0V type star of the Lupus constellation, without
known bounded exoplanet. However, two faint background sources
fall within the SPHERE-IRDIS field of view.

Considered SPHERE-IRDIS observations were obtained in H2-
H3 (i.e., _H2 = 1.593µm, _H3 = 1.667µm) or in K1-K2 (i.e.,
_K1 = 2.110µm, _K2 = 2.251µm) dual spectral bands. The main
parameters of each observation are summarized in Table 3. The diver-
sity in the experienced observing conditions is quite representative
of the SPHERE observations.

The raw observations were pre-reduced10 with the DRH pipeline
(Pavlov et al. 2008) of the SPHERE instrument, which performs
thermal background subtraction, flat-field correction, anamorphism
correction, compensation for spectral transmission, flux normaliza-
tion, bad pixels identification and interpolation, frame centering,
true-North alignment, wavelength calibration, astrometric calibra-
tion, and frame selection. These operations are complemented by
custom routines implemented in the SPHERE data center (Delorme
et al. 2017), in particular to improve bad pixels correction. Finally,

10 In this paper, we use the term pre-reduction to stand for the extraction,
mapping, and correction of the raw data. We use the term pre-processing to
stand for the centering and whitening of the pre-reduced observations with
the statistical model detailed in Sect. 2.1, that serve as inputs of the supervised
deep learning stage detailed in Sect. 2.2.
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the SPHERE data center combines the pre-reduced observations and
delivers the calibrated ADI datasets we consider in this work. ADI
reduction is performed by considering the first spectral channel (i.e.,
either at _H2 = 1.593µm or at _K1 = 2.110µm) given that the con-
trast is significantly more favorable in this channel than in the second
one.

To ground the performance of the proposed algorithm, we resort
to massive injections of synthetic sources, as done to train the deep
model of the proposed algorithm, see Sect. 2.2.1. Given the simplicity
of the signature of the sought objects (i.e., taking the form of a blob
spatially correlated over only a few pixel width), we did not find
significant bias in using the same injection procedure for the training
and evaluation steps. Injections of synthetic sources in the EIDC
benchmark were performed by there authors with the VIP pipeline.

The detection performance of the proposed method are compared
in Sect. 4.2 with the cADI, PCA, and PACO algorithms, (see Sect. 1
for their respective principle). For cADI, we have re-implemented the
original method (Marois et al. 2006) based on a full-frame estimation
of the off-axis PSF and of the S/N map, i.e., without angular-specific
processing. We have also used the refined implementation of cADI
available in the VIP package (Gonzalez et al. 2017), which includes
a protection angle strategy accounting for a minimal field rotation
between successive images when building the off-axis PSF in order
to limit the self-subtraction effect. After computation of the off-
axis PSF, a S/N map is derived by accounting for an annular-based
estimation of the noise in the residual images. We also applied the VIP
implementation of the PCA-based algorithm combined with the same
protection angle strategy and the annular-based computation of the
S/N. For PCA reductions, the number of modes has been optimized
in annuli by maximizing the S/N of synthetic sources with similar
ranges of contrast than the ones we consider for our comparisons. The
other parameters of the VIP implementation of cADI and PCA are
less critical and are fixed at pre-set values (Gonzalez et al. 2017). For
PACO, we performed the data reduction with our fully unsupervised
processing pipeline (Flasseur et al. 2018a).

Concerning the photometry estimation, we compare in Sect. 4.3
the performance of the proposed method with PACO and the VIP
implementation of the PCA. PACO parameters are estimated auto-
matically in a data-driven fashion. In a nutshell, the characterization
of a point-like source 𝑝 is performed by a joint estimation of (i) the
statistics (i.e., mean 𝒎𝑛 and covariances C𝑛) of the nuisance compo-
nent 𝒇 , and (ii) of the photometry (i.e., flux 𝛼𝑝) of the given source,
see Eq. (1). For the PCA, we resort to a similar procedure than for
the detection step to set the parameters. In particular, the number of
modes is optimized for each injected source to be characterized by
maximizing its S/N. Once the setting fixed, the flux of a given source
is estimated by minimizing the residuals through the injection of neg-
ative fake companions (Wertz et al. 2017). This is performed with a
two steps procedure, as recommended in the VIP package: (i) a first
guess estimate is obtained by performing a grid-search, (ii) a local
optimization is performed with a Nelder-Mead simplex algorithm
(Nocedal & Wright 1999). Given computational constraints (largely
dominated by the PCA), the exact (known) sub-pixel location 𝜙𝑝 of
each injected source 𝑝 is provided to the different algorithms (i.e.,
it is not optimized), and the photometry is estimated at this ground-
truth position. When estimating the photometry of real sources, both
the astrometry and the photometry are optimized by the different
algorithms.

Table 4. Mean results of AUC for ROCs giving the TPR as a function of
the FDR. The scores are averaged over the eleven SPHERE-IRDIS datasets
considered in this paper, see Sect. 4 for the observation logs. Only the 59
known real sources present in these datasets were considered. Figure 7 of
(Flasseur et al. 2022) display the corresponding ROC from which these mean
results were aggregated.

sep. (”) cADI cADI (VIP) PCA (VIP) PACO proposed

[0; 9] 0.38 0.72 0.66 0.88 0.95

4.2 Detection results

4.2.1 Detection of known real sources

A first classical sanity test to evaluate the detection performance of
a post-processing algorithm is to study qualitatively its ability to re-
detect real known sources initially detected with different algorithms,
and possibly from different datasets. We present detailed results for
one dataset (HD 95086, 2015-05-05, see Table 3) selected among
the eleven SPHERE-IRDIS observations we consider because HD
95086 is the star having the larger number of known real sources
in the SPHERE-IRDIS field of view. Results obtained for the ten
other datasets are given in supplementary material. Figures 9 and 10
give detection maps produced with the five tested algorithms. The
detection threshold is set to 𝜏 = 5 for the algorithms producing a S/N
map (i.e., cADI, cADI (VIP), PCA (VIP), PACO), and to 𝜏 = 0.5 for
the proposed method producing a pseudo-probability map. Due to
the binary pixel-wise classification task we consider for the training
step of the proposed method (see Sect. 2.2), its detection map is
almost binary (i.e., each pixel value is close either to 0 or 1) so that
the setting of the threshold 𝜏 is quite flexible. Based on the analysis
of the detection maps, PACO and the proposed method lead to the best
qualitative results since there are the only algorithms able to detect
all real known sources without any false alarm in most of the field of
view. With the proposed method, only two false alarms occur very
near the borders of the field of view due to the limited number (much
lower than 𝑇) of temporal samples available in this area to build a
consistent model of the nuisance. This claim is also supported by the
PACO detection map that displays a few false alarms in the same area.

Figure 11 gives a more quantitative analysis of the previous results
through ROCs representing the TPR as a function of the FDR (see
Sect. 2.2.3 and Eq. (13)) for the same dataset of HD 95086 (2015-05-
05). This type of representation gives a comparison of the precision-
recall trade-off reached by each method, regardless the detection
quantity (S/N or pseudo-probability) they produce. These curves are
obtained by counting the number of true positives (TPs), and false
alarms (FAs) for the full range of possible detection thresholds, i.e.
𝜏 ∈ [0; 1] for the proposed method, and 𝜏 ∈ [min( �̂�); max( �̂�)] for
cADI, PCA, and PACO. Table 4 presents averaged results over the
eleven SPHERE-IRDIS datasets we consider in this study, and the
detailed scores for each dataset are given in Table 1 of the supple-
mentary material. These results illustrate the benefits of the proposed
method in terms of precision-recall trade-off: the AUC under ROC is
improved by at least 7% with respect to the comparative algorithms.

As a final study based on the detection of known real sources,
we evaluate the importance of our pre-processing step by resorting
to model ablation. Removing the whitening procedure and keeping
only the temporal centering in the pre-processing step does not allow
to reach convergence of the network weights at training time. This
is due to the high dynamics and to the high spatial non-stationarity
of the residual images. We also test to account only for the pixel
variances in the whitening procedure, i.e. we neglect the spatial co-
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Figure 9. Detection maps obtained with the selected algorithms (see Sect. 4.1). Sources are classified as true, missed and false detections. The two additional
candidate point-like sources whose identification is discussed in Sect. 4.2.3 are not classified. The detection threshold is set to 𝜏 = 5 for cADI, cADI (VIP),
PCA (VIP) and PACO. It is set to 𝜏 = 0.5 for the proposed algorithm. The light blue line represents the sensor field of view (encompassed withing a 𝑁 -pixels
square support) while the dashed blue line represents the extended field of view (encompassed withing a 𝑀-pixels square support) on which the detection can
be performed due to the apparent rotation of the field induced by ADI. Dataset: HD 95086 (2015-05-05), see Sect. 4 for the observation logs.

Figure 10. Same caption than Fig. 9. Zoom near the host star. Dataset: HD 95086 (2015-05-05), see Sect. 4 for the observation logs.
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Figure 11. ROCs showing the TPR as a function of the FDR for real sources.
Dataset: HD 95086 (2015-05-05), see Sect. 4 for the observation logs.
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Figure 12. Ablation study on the influence of the whitening procedure of
the pre-preprocessing step. The ROCs show the TPR as a function of the
FDR built from the 11 SPHERE-IRDIS datasets we consider in this work
(containing 59 known real sources), see Sect. 4 for the observation logs.

variances so that matrices Ŝ𝑛 in Eq. (2) are considered diagonal.
Figure 12 compares the precision-recall trade-off of this downgraded
model to the model of the proposed approach (accounting locally
for the spatial covariances). When neglecting covariances, the over-
all precision-recall trade-off of the detector is decreased by 8% in
average and the sensitivity of detection is especially lowered for low
false discovery rates (which is, in practice, the most useful regime in
high-contrast imaging). While several whitening methods could be
used in conjunction with our method, this study confirms the impor-
tance of our custom whitening procedure accounting for the spatial
covariances of the nuisance in order to reach the best performance of
a detector built by supervised deep learning. This observation is also
in agreement with studies performed in other works through alter-
native whitening procedures. For instance, the SODINN algorithm
(see Sect. 1) that also trains a CNN to perform a detection task by
supervised deep learning is sometimes prone to a large false alarm
rate (Cantalloube et al. 2020). Likely, this side effect is (at least in
part) due to the embedded pre-processing step that builds an empiri-
cal model of the nuisance component through PCA; an approach that
does not explicitly model the spatial covariances of the nuisance, thus
leading to spatially non-stationary residual images used at training
time.

true detections missed detections false detections 0.20''

dataset: IRDIS 1 dataset: IRDIS 2 dataset: IRDIS 3

Figure 13. Detection maps obtained with the proposed algorithm on the three
SPHERE-IRDIS datasets from the EIDC data challenge, see Sect. 4 for the
observation logs. Sources are classified as true, missed and false detections.
The detection threshold is set to 𝜏 = 0.5.

4.2.2 Detection of synthetic sources

In this section, we evaluate quantitatively the detection performance
of the proposed method with ROCs and contrast curves built from
massively injected synthetic sources.

As a first step, we apply the proposed detection algorithm on the
three SPHERE-IRDIS datasets from the public EIDC data challenge
(Cantalloube et al. 2020). The resulting detection maps are given in
Fig. 13. Using the same procedure than Cantalloube et al. (2020)
to benchmark 22 post-processing algorithms (including cADI, PCA,
and PACO), we compute the F1R score at the set detection threshold
(𝜏 = 0.5), and ROCs for the TPR and the FDR scores, as defined
in Eqs. (13), by varying the detection threshold. The AUC is then
computed from ROCs. Table 5 summarizes the results we obtained
with the proposed algorithm. As a purpose of comparison, we also
report the PACO results that have been published in Cantalloube et al.
(2020). It emphasizes the interesting precision-recall of the proposed
approach that performs, on these datasets, on par with or better
than the 22 post-processing algorithms considered in the EIDC data
challenge. However, these results should be taken with caution since
they are based on a few datasets, with only six injected sources
at relatively bright levels of contrast. Besides, several algorithms
(including PACO) are also able to detect the injected sources without
any false alarm in the field of view for a sufficiently large detection
threshold. At this stage, the better performance of deep PACO in
terms of false alarms rejection (quantified by the AUCFDR metric)
are mostly explained by the fact that the proposed algorithm produces
detection maps with almost binary values. It can be noted that this
effect is also encountered for all the algorithms of the EIDC data
challenge producing the same type of outputs like RSM (Dahlqvist
et al. 2020) or SODINN (Gonzalez et al. 2018).

To ground in details the precision-recall trade-off of the proposed
detection algorithm, it is necessary to build consistent ROCs and con-
trast curves by resorting to massive injections of synthetic sources
–unknown at training time but that we aim to detect at inference
time– for various levels of contrast. For that purpose, the most re-
alistic procedure, hereafter called reference procedure, consists in
(i) splitting the whole set of synthetic sources in small subsets, (ii)
injecting synthetic sources of one subset in the dataset of interest
so that injected fake sources mimic the behaviour of real (possibly
unknown) sources, (iii) training the detection model with the proce-
dure described in Sect. 2, and (iv) applying the trained model to the
dataset containing the synthetic sources injected in step (ii). Steps (ii)
to (iv) are repeated for all subsets of synthetic sources. This procedure
simulates the real situation when we face a new dataset with real un-
known exoplanets that we aim to detect at inference time. Due to the
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Table 5. Detection scores: F1R at detection threshold 𝜏 = 0.5 (the higher, the better), AUC under the ROC representing the TPR as a function of 𝜏 (the higher,
the better), and AUC under the ROC representing the FDR as a function of 𝜏 (the lower, the better). Scores reported for PACO are extracted from the EIDC
data challenge (Cantalloube et al. 2020), and deep PACO scores are computed with a similar procedure for the three SPHERE-IRDIS datasets from the EIDC.
–(a)Metrics can not be computed since there is no injected source in this dataset.

IRDIS 1 IRDIS 2 IRDIS 3 mean rank IRDIS 1 IRDIS 2 IRDIS 3 mean rank
PACO deep PACO

F1R 1.00 –(a) 1.00 1.00 1st/22 (on par) 1.00 –(a) 1.00 1.00 1st/23 (on par)
AUCTPR 1.00 –(a) 0.93 0.97 1st/22 (on par) 1.00 –(a) 0.96 0.98 1st/23
AUCFDR 0.39 –(a) 0.32 0.36 6/22 0.01 –(a) 0.01 0.01 1st/23

Figure 14. Schematic representation of the reference and proxy procedures used to evaluate the performance of the proposed approach through massive injections
of synthetic sources mimicking the behavior (i.e., same apparent motion) of real sources.

computational burden of step (iii), repeating this full procedure for
all subsets of synthetic sources that we aim to detect at inference time
is not realistic to build ROCs and contrast curves. To circumvent this
issue, we resort to a proxy procedure: instead of training a different
model for each subset of injected sources, we train a unique model
without synthetic sources mimicking the behaviour of real (possi-
bly unknown) sources. Synthetic sources are injected a posteriori,
i.e., after completing the training step (iii), and the trained model is
applied on the resulting dataset. Figure 14 illustrates the principle
of the reference and proxy procedures. The proxy procedure leads
to an improvement in terms of algorithmic complexity by a factor
equal to the number of subsets (typically 2,000, with in average 5
synthetic sources in each subset), that is determinant to be used in
practice. At this stage, we still need to show that the proxy procedure
we defined leads to reliable results so that our comparisons with

state-of-the-art algorithms are fair. In particular, we aim to show
that the model resulting from the proxy procedure is not prone to
over-fitting induced by an imperfect separation between training and
testing data. In the proxy procedure, over-fitting could possibly occur
if the model partially memorizes the nuisance component that is seen
by the network without the injected sources we aim to detect at in-
ference time. Figure 15 shows examples of detection maps obtained
with the procedure of reference described previously and its proxy
version on the three datasets of HD 95086 (2015-05-05, 2018-02-
23, 2021-03-11) considered in this work. In these experiments, we
considered more than 700 synthetic sources spread over the whole
field of view. Table 6 compares quantitatively the two approaches in
terms of detection performance. These results show that the proxy
procedure leads to reliable and conservative estimations of the over-
all performance of deep PACO. In addition, since synthetic sources
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Figure 15. Comparison between the reference procedure and its proxy ver-
sion for evaluation of the detection performance of the proposed algorithm.
Synthetic sources are classified as true or missed detections using a detection
threshold at 𝜏 = 0.5. Examples of detection maps obtained in the presence
of injected synthetic sources are given on three datasets of HD 95086 (2015-
05-05, 2018-02-23, 2021-03-11), see Sect. 4 for the observation logs.

mimicking the behaviour of real unknown sources are recovered with
comparable rates between the two procedures, it emphasizes that the
custom data-augmentation strategy of the training step, including a
random permutation of the images of the data series, is efficient to
circumvent the absence of ground-truth about real sources. In the
following, we safely use the proxy procedure to compare the de-
tection capability of the proposed deep PACO algorithm with other
post-processing methods.

Following the previously defined proxy procedure, we present
detailed results obtained on HIP 88399 (2018-04-11), which is a
SPHERE-IRDIS dataset representative of the mean results we ob-
tained over the eleven ones we consider in this work. Results for the
ten other datasets are reported in the supplementary material. Figure
16 shows detection results on a sample of 10,000 synthetic sources
in a diagram contrast versus angular separation for PACO and the pro-
posed method. Each synthetic source is classified as missed, true, or
false detection using the detection thresholds defined in Sect. 4.2.1.
For PACO, setting the detection threshold at 𝜏 = 5 corresponds, in
average, to a realistic control (Flasseur et al. 2018a,b,c, 2020a) of the

Table 6. Comparison between the reference procedure and its proxy ver-
sion for evaluation of the detection performance of the proposed algorithm.
Synthetic sources are classified as true, missed, or false detections using a
detection threshold at 𝜏 = 0.5. Mean detection results are averaged for the
three datasets of HD 95086 (2015-05-05, 2018-02-23, 2021-03-11), see Sect.
4 for the observation logs.

reference procedure proxy procedure
true detections 583/728 (80.0%) 564/728 (77.5%)

missed detections 145/728 (20.0%) 162/728 (22.5%)
false detections 0 0

probability of false alarms (PFA) at 5𝜎 (i.e., PFA ≃ 3×10−7). While
the PFA should theoretically be controlled by the other algorithms
producing a S/N map (cADI and PCA), we have shown in previous
works (Flasseur et al. 2018a,b,c, 2020a) that the contrast curves are
over-optimistic for these algorithms (i.e., there are significantly more
false alarms than expected) due to a miss-modeling of the nuisance
component. This claim is also supported by the detection maps given
in Figs. 1 to 20 of the supplementary material for which the number
of experienced false alarms is significantly higher than expected at
S/N = 5. For the proposed method, converting pseudo-probabilities
into S/N scores is not feasible given that the pseudo-probabilities are
very close either to 0 or 1 due to the underlying binary pixel-wise
classification task considered at training time. For this reason, we
can only check empirically that the targeted false alarm rate at 5𝜎 is
satisfied. To do so, we capitalize on our experiments with synthetic
sources by counting the number of false alarms, i.e. detection blobs
above the threshold 𝜏 = 0.5, that do not correspond to the location
of an injected synthetic source. The number of false alarms is then
converted into an empirical PFA by dividing the number of counts
by the total number of possible detection blobs (each with a radius
of one resolution element, i.e. four pixels radius for SPHERE-IRDIS
observations) within the detection maps. By applying this procedure
on several dozens of detection maps obtained with the proposed al-
gorithm, we experienced in average a lower or equal empirical PFA
than statistically expected at 5𝜎. As a conclusion of this study, the
contrast estimates we will derive for the proposed approach can be
fairly compared with the PACO results since they correspond to similar
probabilities of false alarms and of detections. Figure 16 illustrates
the capability of the proposed method to detect fainter sources than
PACO. From the large number of synthetic sources classified as true,
missed and false detections in Fig. 16, we now derive the contrast
curve of each algorithm. Concerning the proposed approach, given
that we showed empirically that the probability of false alarms is con-
trolled at 5𝜎, it simply remains to compute the contrast level for which
and equal amount of true and of missed detections is experienced.
This procedure is repeated for the full range of angular separations
with a sliding window of 0.05 arcsec wide. The same procedure is
applied for the other algorithms. Figure 17 summarizes the resulting
contrast curves obtained with the five considered algorithms. The
proposed method achieves the best detection sensitivity with an im-
provement in contrast up to a factor four with respect to the PACO
algorithm. We also compare the detection sensitivity of deep PACO
with the fundamental detection limit driven by the photon noise. The
procedure to compute the photon noise limit is based on a careful
evaluation of the contribution of the different sources of noise (i.e.,
photon, thermal background, and detector readout noise) combined
with a statistical evaluation of the underlying S/N. This procedure
will be described in details in a paper currently in preparation. We
observe that deep PACO can reach for some datasets (see e.g. HIP
88399 (2018-04-11) in Fig. 17, and HIP 88399 (2015-05-10) as well
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Figure 16. Detection results for 10,000 synthetic sources in a diagram plotting
contrast versus angular separation. Each synthetic source is classified as
missed, true or false detection. The angular separation of false alarms is
reported on the 𝑥-axis, and they are not associated to contrast value since
they do not correspond to injected synthetic sources. Dataset: HIP 88399
(2018-04-11), see Sect. 4 for the observation logs.

as HIP 88399 (2016-04-16) in the supplementary material) at large
separations the best achievable detection limit driven by the photon
noise, which corresponds to an optimal unmixing between the signal
of the sources of interest and the nuisance component. Near the star,
an important gap remains (by a factor 5 to 10) between the actual
performance and the theoretical lower limit, which a sign of a lack of
angular diversity in this area. In practice, the gap between the actual
contrast and the lower bound limit depends on several characteris-
tics such as the quality and the stability of the observing conditions,
the total amount of parallactic rotation, the number 𝑇 of temporal
frames, etc., as illustrated in Figs. 21 and 22 of the supplementary
materials. Reducing this gap at close separation could be addressed
by investigating ways to perform the training step of our model from
various datasets for which the presence of sources at similar locations
is very unlikely. This adaptation requires specific developments that
are left for future work.

Figure 18 focuses on the comparison between PACO and the pro-
posed deep PACO algorithm. It represents the TPR of deep PACO
for synthetic sources missed by PACO (i.e., for S/N ≤ 5) as a function
of the angular separation and of the PACO’s S/N of detection. For
instance, on this dataset about 65% of sources below 0.5 arcsec with
a S/N of detection between 3.5 and 4.0 with PACO are detected with
deep PACO (i.e., above the detection threshold 𝜏 = 0.5). Similarly,
more than 86% of sources between 2.0 and 4.0 arcsec with a S/N
of detection between 3.5 and 4.0 with PACO are detected with deep
PACO (above the detection threshold 𝜏 = 0.5). For these two exam-

proposed

fundamental lower limit
(photon noise)

Figure 17. Contrast as a function of the angular separation. These results are
based on the classification between true and missed detections of massively
injected synthetic sources at various levels of contrast, see Fig. 16. It can be
noted that the contrast curves of cADI and PCA are over-optimistic (see text)
since the targeted PFA is not reached. For that reason, the angular separations
leading to a PFA locally higher than ten times the targeted PFA at 5𝜎 are not
reported. The black dashed line represents the ultimate detection limit driven
by the photon noise. Dataset: HIP 88399 (2018-04-11), see Sect. 4 for the
observation logs.

/

Figure 18. TPR (in percent) of deep PACO for synthetic sources missed by
PACO (i.e., for S/N ≤ 5) as a function of the angular separation (on the 𝑥-axis)
and of the PACO’s S/N of detection (on the 𝑦-axis). The black dashed line
represents the equivalent PACO’s detection threshold to reach TPR = 50%
with deep PACO (we recall that the classical detection threshold at 5𝜎 with
PACO also corresponds to TPR = 50%). Dataset: HIP 88399 (2018-04-11),
see Sect. 4 for the observation logs.

Table 7. Mean results of AUC for ROCs giving the TPR as a function of
the FDR. The scores are averaged over the eleven SPHERE-IRDIS datasets
considered in this paper, see Sect. 4 for the observation logs. Only massively
injected sources (10,000 per dataset) were considered. Figures 8 of (Flasseur
et al. 2022) displays the corresponding ROC from which these mean results
were aggregated.

sep. (”) cADI cADI (VIP) PCA (VIP) PACO proposed

[0; 2] 0.53 0.60 0.62 0.81 0.91
[2; 4] 0.60 0.65 0.67 0.83 0.92
[4; 6] 0.11 0.59 0.55 0.71 0.88
[6; 7] 0.15 0.38 0.33 0.77 0.90

MNRAS 000, 1–28 (2023)



20 O. Flasseur et al.
tr

ue
 p

os
iti

ve
 ra

te
 (T

PR
)

proposed

false discovery rate (FDR)

tr
ue

 p
os

iti
ve

 ra
te

 (T
PR

)

false discovery rate (FDR)

tr
ue

 p
os

iti
ve

 ra
te

 (T
PR

)

false discovery rate (FDR)

tr
ue

 p
os

iti
ve

 ra
te

 (T
PR

)

angular separation: [0 ; 2] arcsec angular separation: [2 ; 4] arcsec

angular separation: [6 ; 7] arcsecangular separation: [4 ; 6] arcsec

proposed

proposed

proposed

false discovery rate (FDR)

Figure 19. ROCs showing the TPR as a function of the FDR for injected synthetic sources. Dataset: HIP 88399 (2018-04-11), see Sect. 4 for the observation
logs.

ples, achieving the same TPR with PACO would require to decrease
the detection threshold at the price to an increase of the FPR up to a
mean factor of 800. Figures 23 and 24 of the supplementary mate-
rial give similar type of representation than Fig. 18 for the ten other
SPHERE-IRDIS datasets analyzed in this work.

Figure 19 gives ROCs representing the TPR as a function of the
FDR for the HIP 88399 (2018-04-11) dataset. There results are ob-
tained with the 10,000 synthetic sources considered for results pre-
sented in Fig. 16. The results are split in four different angular sep-
aration ranges: [0; 2], [2; 4], [4; 6], and [6; 7] arcsec. Table 7 com-
plements this study by presenting averaged results over the eleven
SPHERE-IRDIS datasets we consider in this study, and the detailed
scores for each dataset are given in Table 2 of the supplementary
material. These results illustrate again the benefits of the proposed
method in terms of precision-recall trade-off: the AUC under ROC is
improved by 9 to 17% with respect to the best comparative algorithm
for the four angular separation ranges we consider.

4.2.3 Identification of candidate background point-like sources

In this section, we take the example of a joint analysis of datasets
of HD 95086 considered in this work to illustrate the ability of
the proposed approach to detect candidate faint point-like sources.
Figure 20 shows the detection maps obtained with PACO and the
proposed deep PACO approach on the 2015 and 2018 observations
of HD 95086. It emphasizes that two candidate point-like sources
(respectively denoted CC-11 and CC-12) are detected with PACO at

a S/N above 5 only for one of the two epochs (in 2018, which is
also one of the best SPHERE-IRDIS observations of this star) while
they remain just below the classical detection threshold at 5𝜎 on the
2015 epoch. These two point-like sources are detected with deep
PACO on the same two epochs. Based on their astrometry, these
two faint point sources are co-moving with the other background
stars seen in the projected field of view of the instrument, so that
they could be background stars too11. These candidate point-like
sources are not reported in the last detailed study of the HD 95086
architecture based on the analysis of ten SPHERE-IRDIS datasets
(including the 2015 epoch but not the 2018 epoch) with classical
post-processing algorithms (i.e., cADI, PCA, TLOCI), see Fig. 2
of Chauvin et al. (2018). The analysis of more recent and better
datasets (including the 2018 one) in the SHINE survey (Langlois
et al. 2021) of the SPHERE instrument allows to identify by visual
inspection (i.e., not based on a strict measure of S/N above the
classical detection threshold at 5𝜎) CC-11 while CC-12 has not been
identified yet. The detection of the two CCs in the worst epoch data
(2015-05-05) emphasizes again the benefits of the proposed deep
PACO algorithm. This example also illustrates the complementarity
of PACO and deep PACO. Even if deep PACO does not provide tight
confidence scores (i.e., its outputs can not be directly interpreted in

11 The goal of this paper is not to study in details these CCs, but rather to
present a new post-processing algorithm. These CCs should be taken with
caution, and a detailed analysis is needed, in particular to exclude systematic
sources of errors.
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Figure 20. Detection maps obtained with PACO and deep PACO on two
epochs of the HD 95086 star observed with SPHERE-IRDIS. Symbols clas-
sify sources as true, missed, and false detections based on our analysis. The
detection threshold was set to 𝜏 = 5 for PACO producing a S/N map, and to
𝜏 = 0.5 for deep PACO producing a pseudo-probability map. Colors clas-
sify sources as known real sources, candidate (background) sources, and
detections with unknown status. Datasets: HD 95086 (2015-05-05 and 2018-
01-05), see Sect. 4 for the observation logs.

terms of a S/N), it allows to identify candidate point-like sources.
Given the locations found by deep PACO, an estimation of the PFA
can be derived from the S/N extracted on the PACO detection maps
at the same locations. Using this procedure, the theoretical PFA (not
including systematic sources of errors) for the co-localization of the
candidate point sources CC-11 and CC-12 in the two epochs is small.
None of CC-11 and CC-12 are detected in the 2021 epoch of HD
95086, as shown by Figs. 3 and 4 of the supplementary material. This
observation is consistent with the fact that the achievable contrast is
worse for this dataset than for the 2015 and 2018 observations, likely
because the observing conditions were quite average for the 2021
observations and that only half of the total integration time was spent
on the target star (the 2021’s epoch being recorded with the star-
hopping technique, and the resulting reference dataset remaining not
exploited in this paper).
PACO and deep PACO detection maps from the 2015 and 2018

epochs also display a few blobs, circled in red, above the detection
threshold that are not consistently detected on multiple epochs. These
detections are located very near the borders of the (extended) field
of view. They are likely artifacts due to the lack of temporal samples
in this area to estimate the model parameters. This hypothesis is also
supported by the fact that PACO detection maps are not stationary and
does not follow a centered Gaussian distribution with unit variance
in this area. deep PACO detection map from the 2021 epoch display
a blob at 0.25”, that we likely identified as a false alarm since we
have experienced a few false alarms in the same area during training

time due to a strong stellar leakage (see Figs. 3, 4, and 22(b) of the
supplementary material).

4.3 Characterization results

In Sect. 4.3.1, we ground the performance of the proposed photome-
try estimation module on the same datasets than the considered ones
for the detection stage by resorting to massive injections of synthetic
sources. For that purpose, we use the ARE metric (Eq. (15)) averaged
per angular separation. We also put in perspective the results of the
detection and of the characterization stages to ground the global gain
brought by the proposed algorithm. In Sect. 4.3.2, we propose a fast
(and approximate) evaluation procedure suited when large amounts
of synthetic sources are considered. Finally, in Sect. 4.3.3 we briefly
discuss and compare photometry estimations provided by our method
with estimations coming from the literature on some known sources
(either exoplanets, brown dwarfs or background sources) present in
the eleven SPHERE-IRDIS datasets considered in this paper.

4.3.1 Characterization of synthetic sources

To assess the performance of our method, we reproduce a real setting,
hereafter called reference procedure, in which we estimate the flux
of injected synthetic sources representative of (possibly unknown)
exoplanets. To do so, we first inject synthetic test sources in the
considered dataset, and then extract the patches used for training the
model. It is crucial to perform these steps in that order otherwise
the model could have the opportunity to learn the residual nuisance
component below the test sources, and a bias could be introduced.

Following this strategy, Fig. 21 shows the ARE score on the esti-
mated photometry of synthetic sources massively injected with the
reference procedure as a function of the their contrast and of their
angular separation. Figure 26 of the supplementary material gives
the same type of plots for the throughput (i.e., the ratio �̂�/𝛼 between
the retrieved and ground-truth source’s contrast). In both cases, re-
sults are averaged over the eleven SPHERE-IRDIS datasets of this
study. Figure 22 complements this study by aggregating the ARE
score over the source contrast. These results show that the proposed
algorithm leads, in average, to better characterization performance
than PCA (VIP) and PACO for angular separations larger than 0.8”,
with a reduction of the ARE by a factor between 1.10 and 10 with
respect to PCA (VIP), and by a factor between 1.10 and 5 with
respect to PACO. Closer to the star, the advantage is on average to
PACO and to the proposed approach, the best of the two algorithms
depending on the dataset and of the source location. The fact that
PACO can perform better than the proposed algorithm is due to the
complexity to train a deep model, without leak between the train
and the test sets, from a unique dataset of interest. This effect occurs
only at short angular separations since this is the region of the field
of view where generating multiple non-redundant training samples
is the most tricky. As illustrated in Sect. 4.2.2, this side effect does
not occur in the detection stage of the proposed approach thanks
to the included whitening procedure, which removes most of the
quasi-static speckles (i.e., only residual structures non-captured by
the statistical model remain). Except these residual structures that we
aim to capture by deep learning, each new training set thus contain,
before injection of synthetic sources, a quasi-random realization of
uncorrelated Gaussian noise. This key property prevents a leak be-
tween the train and the test sets as well as the memorization of the
nuisance structures by the network during its training.
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Figure 21. Mean ARE score on the estimated photometry of injected synthetic sources as a function of the their contrast and of their angular separation. From
top to bottom, the panels corresponds respectively to PCA (VIP), PACO, and the proposed algorithm. For each panel, the mean detection limit (straight line) and
the mean photon noise limit (dashed line) are superimposed. The results are averaged azimuthally for 40,000 sources of flux drawn uniformly between 1 × 10−6

and 3 × 10−5. Datasets: the eleven SPHERE-IRDIS datasets considered in this work, see Sect. 4 for the recording logs.
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Figure 22. Mean ARE score on the estimated photometry of injected synthetic
sources as a function of their angular separation. The results are averaged
azimuthally for sources, of flux drawn uniformly between 1 × 10−6 and 3 ×
10−5, that have been considered in Fig. 21. Note that because of the azimuthal
average, some sources belonging below the detection limit contribute to the
display results, especially at short angular separations, see Fig. 21. Datasets:
the eleven SPHERE-IRDIS datasets considered in this work, see Sect. 4 for
the recording logs.

4.3.2 Efficient (and approximate) evaluation procedure

When the massive injection of synthetic sources withing multiple
datasets is needed to ground the performance of a built detector, the
reference procedure described and applied in Sect. 4.3.1 is compu-
tationally expensive. The computational bottleneck is related to the
need to train a new model for every test dataset containing a dozen of
synthetic test sources. As an illustration, 30 different models must be
trained to get a test set of only 300 samples. In this context and in a
similar fashion to the detection stage (see Sect. 4.2.1 and Fig. 14), we
also propose a fast and approximate version of the reference proce-
dure, that is referred as the proxy procedure in the following. Instead
of training a different model for each subset of injected sources, we
train a unique model without additional synthetic sources mimicking
the behaviour of real sources. Synthetic sources are injected a poste-
riori, i.e., after training. Finally, the trained model is applied on the
resulting dataset. The gain in terms of algorithmic complexity (about
a factor 2,000 with in average 5 synthetic sources in each subset) is
similar to the one brought by the proxy procedure of the detection
step.

At this stage, we have to measure the ability of the proxy proce-
dure to provide a fair estimate of the real performance that would
be achieved with the reference procedure. Figure 23(a) compares
the performance of the two procedures in terms of mean ARE on the
eleven SPHERE-IRDIS datasets considered in this paper. In these ex-

MNRAS 000, 1–28 (2023)



deep PACO: deep learning meets PAtch COvariances 23

reference procedure
proxy procedure

angular separation (arcsec)

AR
E 

sc
or

e

inner working
angle

p-
va

lu
e

inner working
angle

threshold at 5% significance

(a)

(b)

Figure 23. Comparison between the reference procedure and its proxy version
for evaluation of the characterization performance of the proposed algorithm.
(a) Mean ARE scores (see definition in Eq. (15)) are reported as a function
of the angular separation. (b) 𝑝-values are reported as a function of the
angular separation, and can be compared with the 5% significance threshold
given by the dashed red curve. Datasets: the eleven SPHERE-IRDIS datasets
considered in this work, see Sect. 4 for the recording logs.

periments, we considered around 3,300 synthetic sources spread over
the whole field of view. We observe that the proxy procedure leads
to results very close to the ones provided by the reference procedure,
excepted near the star where the proxy procedure is over-optimistic,
i.e. a positive bias is present (up to a factor five, at worst). This bias at
short angular separations can be attributed to data leakages between
the train and the test sets in the absence of whitening procedure.
Basically, as for the detection part, the model is data-dependent and
the absence of whitening procedure as well as of the associated tem-
poral shuffling of the frames induces that some parts of the nuisance
component are seen and memorized by the network using the proxy
procedure. This effect occurs only at short angular separations since
this is the area of the field of view where training patches contain most
likely some similar parts of the nuisance component. This hypothesis
is also supported by the absence of bias between the proxy and the
reference procedures of the detection stage. The latter encompasses
a whitening procedure and a temporal shuffling of the frames that
prevents data leakages between the train and test sets.

So, it remains to decide for a suited cut-off in terms of angular
separation to switch from the reference to the proxy procedure. For
that purpose, we resort to a binary hypothesis test. It performs a paired
𝑡-test (Kendall et al. 1948), where theH0 (null) hypothesis represents
the equality between the reference and the proxy procedures while the
H1 (alternative) hypothesis represents better results with the proxy
procedure. From the results presented in Fig. 23(a), we conduct in Fig.
23(b) this statistical test on the same datasets. It displays the resulting
𝑝-values as a function of the angular separation, and compares them
with a 5% significance threshold. For the prescribed significance
level, the two procedures can be considered as equivalent for angular
separations larger than 0.5 arcsec.

As a conclusion of this study, when the number of synthetic sources

for which the photometry should be evaluated at inference time con-
stitutes a computational bottleneck, the efficient and approximate
proxy procedure can be safely used in the main part of the field of
view and the more expensive procedure of reference should be used
near the star.

4.3.3 Characterization of real sources

In this section, we compare the photometry estimations obtained
with the tested algorithms on some real known sources present in
the considered datasets. When available, we also compare them with
measurements published in the literature that have been obtained
either with the SPHERE Data Center implementations of TLOCI
and PCA or with ANDROMEDA (for HD 95086 b only). For PCA
(VIP), the reported uncertainties are computed from the residual
combined image (i.e., after subtraction of the on-axis PSF, derotation,
and stacking) in an annulus at the same angular separation than
the source of interest. For PACO, the photometry is estimated by
accounting for the spatial correlations of the nuisance component.
As concerns the proposed algorithm, and as for its detection stage,
the control of the uncertainties is an intricate task given that the
core of the deep model works as a black-box. For that reason, we
did not produce estimations of the standard-deviation, which is left
for future work. For the experiments we conduct with PCA (VIP),
PACO and the proposed method, we use the same pre-reduction of
the raw observations and the same off-axis PSF template that has
been measured prior the science observations. It is not ensured that
these specificity also hold for photometry estimates extracted from
the literature, which could induce (unknown) systematic variations
that are not taken into account. Similarly, given the variability of
the observing conditions between different observations, absolute
comparisons between multiple epochs of the same target should be
done with caution.

Table 8 reports the photometry estimations on known real sources.
Even in the absence of absolute ground-truth, we can make some
relative comparisons for a given dataset and for a given source. In
that view, photometry estimates produced by the proposed method
are compatible with published and/or obtained results with PCA
(VIP) and PACO for almost all sources. The largest discrepancy is for
CC5 of HIP 88399 (2018-04-11), where a factor six lies between the
estimates from PCA (VIP) and the proposed algorithm. Very likely,
the PCA (VIP) estimate is not reliable as the source is located at large
angular separation, i.e. in an area of the field of view where PCA
(VIP) is prone to large errors (see Fig. 21). Besides, PACO and the
proposed method lead to quite close estimations, which also supports
the previous claim.

Photometry estimates of CC-12 that we identified from HD 95086
datasets in Sect. 4.2.3 are consistent among the different algorithms.
They are also consistent between the two epochs where CC-12 has
been detected. For CC-11 that we identified from the same datasets,
we note a discrepancy by about 40% between the estimates obtained
(i) by the proposed method, and (ii) by the other tested algorithms.
However, this two groups of estimations are consistent between the
2015 and 2018 epochs. The discrepancy could be attributed to the
presence of a bright background source (denoted by CC-8 in Fig.
20) that could lead to an overestimation of the photometry with
algorithms that do not rely on a training step with synthetic sources. In
any case, these two candidate point-like sources should be considered
with caution.
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Table 8. Estimated photometry on some known real sources present in the considered datasets. For HD 95086, the (candidate) point-like sources are denoted as
in Fig. 20. For HIP 88399 (respectively, HIP 72192), point-like sources are denoted by CC1 to CC5 (respectively, CC1 and CC2) through increasing angular
separations. The astrometry (angular separation and true-North angle) has been estimated with PACO. Photometry estimations extracted from the literature has
been obtained with TLOCI by (Langlois et al. 2021) for (a), TLOCI by (Desgrange et al. 2022) for (b), ANDROMEDA by (Desgrange et al. 2022) for (c), PCA
by (Chauvin et al. 2017) for (e), and TLOCI by (Cheetham et al. 2019) for (f). Reported uncertainties correspond to three times the estimated standard-deviation.

identification estimated photometry 𝜶 (contrast)
target obs. date source ang. sep. (”) angle (°) literature PCA (VIP) PACO proposed

HD 95086 2015-05-05 b 0.619 ± 0.003 148.4 ± 0.2 (a)(1.13 ± 0.46)×10−5 (1.06 ± 0.06)×10−5 (1.14 ± 0.17)×10−5 1.11×10−5
(b)(1.10 ± 0.55)×10−5
(c)(1.58 ± 1.75)×10−5

HD 95086 2015-05-05 CC1 2.207 ± 0.003 35.1 ± 0.1 (a)(6.19 ± 1.94)×10−6 (6.33 ± 0.57)×10−6 (7.05 ± 0.72)×10−6 6.41×10−6

HD 95086 2015-05-05 CC11 2.346 ± 0.006 305.4 ± 0.2 – (2.06 ± 4.61)×10−6 (3.14 ± 0.70)×10−6 1.80×10−6

HD 95086 2015-05-05 CC12 4.546 ± 0.010 52.3 ± 0.1 – (2.53 ± 1.31)×10−6 (2.70 ± 0.90)×10−6 1.94×10−6

HD 95086 2018-01-05 b 0.617 ± 0.002 145.7 ± 0.2 (b)(1.20 ± 0.32)×10−5 (1.23 ± 0.23)×10−5 (1.20 ± 0.06)×10−5 1.18×10−5
(c)(1.32 ± 0.35)×10−5

HD 95086 2018-01-05 CC1 2.241 ± 0.002 37.4 ± 0.1 – (6.25 ± 1.88)×10−6 (6.59 ± 0.37)×10−6 6.39×10−6

HD 95086 2018-01-05 CC11 2.262 ± 0.004 305.9 ± 0.1 – (2.56 ± 0.28)×10−6 (2.75 ± 0.35)×10−6 1.90×10−6

HD 95086 2018-01-05 CC12 4.606 ± 0.006 53.0 ± 0.1 – (2.73 ± 3.00)×10−6 (2.39 ± 0.40)×10−6 2.40×10−6

HD 95086 2021-03-11 b 0.630 ± 0.003 142.4 ± 0.2 – (1.21 ± 0.23)×10−5 (1.25 ± 0.18)×10−5 1.20×10−5

HD 95086 2021-03-11 CC1 2.293 ± 0.005 40.8 ± 0.1 – (5.66 ± 0.73)×10−6 (6.30 ± 1.56)×10−6 5.48×10−6

HD 95086 2021-03-11 CC11 S/N too low S/N too low S/N too low S/N too low S/N too low S/N too low
HD 95086 2021-03-11 CC12 S/N too low S/N too low S/N too low S/N too low S/N too low S/N too low

HIP 88399 2015-05-10 CC1 1.302 ± 0.002 210.4 ± 0.1 – (7.09 ± 0.72)×10−6 (7.39 ± 0.66)×10−6 6.67×10−6

HIP 88399 2015-05-10 CC2 3.488 ± 0.006 142.4 ± 0.1 (a)(7.94 ± 2.10)×10−6 (7.10 ± 0.36)×10−6 (7.56 ± 0.27)×10−6 7.61×10−6

HIP 88399 2015-05-10 CC3 4.281 ± 0.006 227.7 ± 0.1 – (2.36 ± 0.17)×10−7 (3.42 ± 1.03)×10−7 2.52×10−7

HIP 88399 2015-05-10 CC4 5.208 ± 0.003 322.1 ± 0.1 (a)(5.11 ± 6.00)×10−7 (5.57 ± 5.06)×10−7 (4.89 ± 0.95)×10−7 4.94×10−7

HIP 88399 2015-05-10 CC5 S/N too low S/N too low S/N too low S/N too low S/N too low S/N too low

HIP 88399 2016-04-16 CC1 1.237 ± 0.003 212.8 ± 0.1 (a)(9.38 ± 6.99)×10−6 (1.04 ± 0.13)×10−5 (1.22 ± 0.18)×10−5 1.11×10−5

HIP 88399 2016-04-16 CC2 3.422 ± 0.001 141.7 ± 0.1 (a)(1.32 ± 2.97)×10−5 (1.47 ± 0.05)×10−5 (1.64 ± 0.05)×10−5 1.57×10−5

HIP 88399 2016-04-16 CC3 4.240 ± 0.003 228.6 ± 0.1 (a)(5.35 ± 4.20)×10−7 (5.10 ± 4.65)×10−7 (7.64 ± 1.36)×10−7 5.78×10−7

HIP 88399 2016-04-16 CC4 5.282 ± 0.003 322.6 ± 0.1 (a)(5.11 ± 6.00)×10−7 (7.21 ± 1.14)×10−7 (8.02 ± 1.25)×10−7 7.58×10−7

HIP 88399 2016-04-16 CC5 6.561 ± 0.003 201.8 ± 0.1 – (1.10 ± 2.19)×10−6 (1.22 ± 0.94)×10−6 1.18×10−6

HIP 88399 2018-04-11 CC1 1.106 ± 0.001 217.9 ± 0.1 (a)(1.61 ± 1.27)×10−5 (2.01 ± 0.25)×10−5 (2.22 ± 0.15)×10−5 2.22×10−5

HIP 88399 2018-04-11 CC2 3.289 ± 0.001 140.1 ± 0.1 (a)(2.21 ± 1.74)×10−5 (2.65 ± 2.19)×10−5 (2.82 ± 0.06)×10−5 2.88×10−5

HIP 88399 2018-04-11 CC3 4.140 ± 0.003 230.3 ± 0.1 (a)(8.79 ± 6.90)×10−7 (1.10 ± 0.46)×10−6 (9.70 ± 1.31)×10−7 1.03×10−6

HIP 88399 2018-04-11 CC4 5.411 ± 0.002 323.6 ± 0.1 (a)(1.21 ± 0.95)×10−6 (1.31 ± 0.25)×10−6 (1.40 ± 0.12)×10−6 1.38×10−6

HIP 88399 2018-04-11 CC5 6.429 ± 0.002 202.5 ± 0.1 – (4.68 ± 1.85)×10−7 (2.83 ± 0.33)×10−6 2.81×10−6

HD 131399 2015-06-12 Ab 0.845 ± 0.004 195.6 ± 0.2 (d)(7.94 ± 2.10)×10−6 (9.36 ± 8.01)×10−6 (1.05 ± 0.17)×10−5 8.23×10−6

HD 131399 2016-05-07 Ab 0.825 ± 0.003 194.2 ± 0.2 (d)(7.66 ± 2.21)×10−6 (7.58 ± 2.10)×10−6 (7.92 ± 1.37)×10−6 7.86×10−6

HIP 65426 2017-02-09 b 0.834 ± 0.001 149.9 ± 0.1 (e)(9.91 ± 7.38)×10−5 (6.20 ± 0.46)×10−5 (5.87 ± 0.17)×10−5 6.17×10−5

HIP 65426 2018-05-13 b 0.825 ± 0.001 149.9 ± 0.1 (a)(8.47 ± 2.24)×10−5 (9.08 ± 2.44)×10−5 (8.98 ± 0.09)×10−5 9.06×10−5
(f)(8.39 ± 2.22)×10−5

HIP 72192 2015-06-11 CC1 4.632 ± 0.012 166.7 ± 0.1 – (2.94 ± 2.31)×10−6 (3.24 ± 1.07)×10−6 2.88×10−6

HIP 72192 2015-06-11 CC2 4.891 ± 0.006 342.8 ± 0.1 – (5.44 ± 1.85)×10−6 (6.07 ± 1.10)×10−6 5.95×10−6

5 CONCLUSION

We have described the key principles of a new algorithm for detecting
and characterizing point-like sources at high contrast from ADI ob-
servations. The detection stage combines the statistics-based model
of PACO with deep learning in a three step procedure: (i) the data
are centered and whitened using the PACO framework, (ii) a CNN is
trained to detect synthetic sources from the pre-processed images,
and (iii) a detection map is inferred. While the CNN itself works
as a black-box approach, the proposed method encompasses prior
domain knowledge such as the apparent motion of sources and the
expected shape of the exoplanetary signal inside the ADI datasets.
More importantly, the proposed detection approach capitalizes on
the statistical model of the nuisance component embedded in PACO

to improve the stationarity and the contrast during a pre-processing
step. Once a candidate source has been identified, its photometry can
be estimated using a dedicated deep learning module, also trained in
a supervised fashion.

Tested on eleven SPHERE-IRDIS datasets, the proposed detec-
tion method performs better than standard algorithms of the field
like PCA as well as PACO in terms of precision-recall trade-off. The
detection sensitivity is improved by a factor between two and five
in average with respect to PACO for the whole range of angular sep-
arations. This gain in even more important compared to baseline
methods as cADI or PCA. Interestingly, we showed experimentally
that the proposed approach is able to (mostly) reach the fundamental
detection sensitivity driven by the photon noise limit for angular sep-
arations above 0.5”. This corresponds to an optimal extraction of the
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sought signals in that regime of separations. The gain brought by the
characterization stage of the proposed approach is more moderate
but non-negligible. The absolute error of photometric estimation is
reduced by a factor two with respect to PACO for sources of contrast
up to 10−6 located above 0.5”. Nearer the star, the advantage is on
average either to PACO or to the proposed approach, depending on
the dataset and of the source location. The gain brought by the char-
acterization module of the proposed approach could allow to further
constrain the physical properties of detected exoplanets, usually per-
formed by fitting atmospheric models to the extracted photometry.

Based on the analysis of these results, several lessons can be drawn
regarding the deployed methodology. As a major point, this work il-
lustrates the feasibility to build a complex model (with millions of
parameters) of the nuisance component through supervised deep
learning from a single ADI dataset of observations. The underlying
detection model is learned, without over-fitting, thanks to a custom
data-augmentation strategy based on two key ingredients: (i) a ran-
dom temporal shuffling of the individual images applied before in-
jections of each set of synthetic training sources, (ii) a pre-processing
step encompassing a whitening procedure that removes most of the
spatial correlations of the nuisance component. Prior to the injection
of synthetic training sources, each training set is thus formed by a
quasi-random realization of (mostly) uncorrelated Gaussian noise.
This property prevents a leak between the train and the test sets as
well as a potential memorization of the nuisance structures by the net-
work during its training. Beyond that aspects, the pre-processing step
allows to improve the stationarity of the data, thus preventing the high
number of false alarms that can occur with other approaches of the
field based on supervised deep learning. Our results also emphasize
that deriving a flux estimate is a more complex task than providing a
qualitative result related to the presence or to the absence of a source
with our hybrid modeling of the nuisance component. In particular,
we illustrate numerically that the whitening process is detrimental
for source characterization (hence, it is not applied) because it mod-
ifies both the shape and the amplitude of the exoplanetary signature.
In the absence of the whitening procedure, a shallower architecture
should be used to avoid over-fitting.

We are currently working on the extension of the proposed algo-
rithm for the joint processing of multi-spectral datasets such as the
ones provided by the SPHERE-IFS instrument using the angular plus
spectral differential imaging technique. Besides, we are currently in-
vestigating the three main limitations of the proposed approach: (i)
the lack of control of the uncertainties, (ii) its task-dependence which
is not adapted to reconstruct spatially resolved objects like circum-
stellar disks, and (iii) the data-dependence of the learning procedure
which does not take benefits from multiple observations to build a
more general and robust model of the nuisance component. Con-
cerning the later point, building a model from multiple observations
could be a promising step to reduce the remaining gap (by a factor 10
to 30) between the current detection performance and the theoretical
ultimate detection sensitivity driven by the fundamental photon noise
limit. Besides, we would like to incorporate within our deep mod-
els some meta-data (e.g., monitoring of the observing conditions,
telemetry of the adaptive optics), with the aim to further improve
their sensitivity and robustness.

ACKNOWLEDGEMENTS

We thank the anonymous referee for her/his careful reading of the
manuscript as well as her/his insightful comments and suggestions.

This project is supported in part by the European Research Coun-

cil (ERC) under the European Union’s Horizon 2020 research and
innovation programme (COBREX; grant agreement n° 885593). The
work of TB and JP was supported in part by the Inria/NYU collab-
oration, the Louis Vuitton/ENS chair on artificial intelligence and
the French government under management of Agence Nationale de
la Recherche as part of the Investissements d’avenir program, refer-
ence ANR19-P3IA0001 (PRAIRIE 3IA Institute). The work of JM
was supported in part by the ERC grant number 714381 (SOLARIS
project) and by ANR 3IA MIAI@Grenoble-Alpes (ANR-19-P3IA-
0003).

This work was granted access to the HPC resources of IDRIS
under the allocation 2022-AD011013643 made by GENCI.

OF, TB, JM, JP, ML, and AML conceived and designed the method
as well as the analysis presented in this paper. OF and TB developed,
tested, and implemented the algorithm. OF and ML selected the raw
data. ML pre-reduced them through the SPHERE Data Centre. OF
and TB performed the analysis of the data. OF, TB, JM, JP, ML, and
AML wrote the manuscript.

DATA AVAILABILITY

The raw data used in this article are freely available on the ESO
archive facility at http://archive.eso.org/eso/eso_archive_main.html.
They were pre-reduced with the SPHERE Data Centre, jointly oper-
ated by OSUG/IPAG (Grenoble), PYTHEAS/LAM/CESAM (Mar-
seille), OCA/Lagrange (Nice), Observatoire de Paris/LESIA (Paris),
and Observatoire de Lyon/CRAL (Lyon, France). The resulting pre-
processed datasets will be shared based on reasonable request to the
corresponding author.

REFERENCES

Allard F., Guillot T., Ludwig H.-G., Hauschildt P. H., Schweitzer A., Alexan-
der D. R., Ferguson J. W., 2003, in Symposium-International Astronom-
ical Union. pp 325–332

Allard F., Allard N. F., Homeier D., Kielkopf J., McCaughrean M. J., Spiegel-
man F., 2007, Astronomy & Astrophysics, 474, L21

Amara A., Quanz S. P., 2012, Monthly Notices of the Royal Astronomical
Society, 427, 948

Badrinarayanan V., Kendall A., Cipolla R., 2017, IEEE transactions on pattern
analysis and machine intelligence, 39, 2481

Beuzit J.-L., et al., 2019, Astronomy & Astrophysics, 631, A155
Boucaud A., et al., 2020, Monthly Notices of the Royal Astronomical Society,

491, 2481
Bowler B. P., 2016, Publications of the Astronomical Society of the Pacific,

128, 102001
Burrows A., et al., 1997, The Astrophysical Journal, 491, 856
Cabayol L., et al., 2021, Monthly Notices of the Royal Astronomical Society,

506, 4048
Cantalloube F., et al., 2015, Astronomy & Astrophysics, 582, A89
Cantalloube F., et al., 2020, in Adaptive Optics Systems VII. pp 1027–1062
Carbillet M., et al., 2011, Experimental Astronomy, 30, 39
Castellá B. F., et al., 2016, in Adaptive Optics Systems V. pp 697–710
Chabrier G., Baraffe I., Allard F., Hauschildt P., 2000, The Astrophysical

Journal, 542, 464
Chauvin G., Lagrange A.-M., Dumas C., Zuckerman B., Mouillet D., Song

I., Beuzit J.-L., Lowrance P., 2004, Astronomy & Astrophysics, 425, L29
Chauvin G., et al., 2005, Astronomy & Astrophysics, 438, L29
Chauvin G., et al., 2017, Astronomy & Astrophysics, 605, L9
Chauvin G., et al., 2018, Astronomy & Astrophysics, 617, A76
Cheetham A., et al., 2019, Astronomy & Astrophysics, 622, A80
Chen Y., Wiesel A., Eldar Y. C., Hero A. O., 2010, IEEE Transactions on

Signal Processing, 58, 5016

MNRAS 000, 1–28 (2023)

http://archive.eso.org/eso/eso_archive_main.html


26 O. Flasseur et al.

Chomez A., et al., 2023, accepted to Astronomy & Astrophysics
Conte E., Lops M., Ricci G., 1995, IEEE Transactions on Aerospace and

Electronic Systems, 31, 617
Currie T., Fukagawa M., Thalmann C., Matsumura S., Plavchan P., 2012a,

The Astrophysical Journal Letters, 755, L34
Currie T., et al., 2012b, The Astrophysical Journal Letters, 760, L32
Daglayan H., Vary S., Cantalloube F., Absil P.-A., Absil O., 2022, arXiv

preprint arXiv:2210.10609
Dahlqvist C.-H., Cantalloube F., Absil O., 2020, Astronomy & Astrophysics,

633, A95
Dahlqvist C.-H., Louppe G., Absil O., 2021a, Astronomy & Astrophysics,

646, A49
Dahlqvist C.-H., Cantalloube F., Absil O., 2021b, Astronomy & Astrophysics,

656, A54
Delorme P., et al., 2017, in Annual meeting of the French Society of Astron-

omy and Astrophysics.
Desgrange C., et al., 2022, arXiv preprint arXiv:2206.00425, 639, A113
Desidera S., et al., 2021, Astronomy & Astrophysics, 651, A70
Dohlen K., Saisse M., Origne A., Moreaux G., Fabron C., Zamkotsian F.,

Lanzoni P., Lemarquis F., 2008, in SPIE Astronomical Telescopes +
Instrumentation. p. 701859

Fergus R., Hogg D. W., Oppenheimer R., Brenner D., Pueyo L., 2014, The
Astrophysical Journal, 794, 161

Flasseur O., Denis L., Thiébaut É., Langlois M., 2018a, in IEEE International
Conference on Image Processing. pp 2735–2739

Flasseur O., Denis L., Thiébaut É., Langlois M., 2018b, Astronomy & Astro-
physics, 618, A138

Flasseur O., Denis L., Thiébaut É. M., Langlois M., 2018c, in SPIE Astro-
nomical Telescopes + Instrumentation. p. 107032R

Flasseur O., Denis L., Thiébaut É., Langlois M., 2020a, Astronomy & Astro-
physics, 634, A2

Flasseur O., Denis L., Thiébaut É., Langlois M., 2020b, Astronomy & Astro-
physics, 637, A9

Flasseur O., Thé S., Denis L., Thiébaut É., Langlois M., 2021, A&A, 651,
A62

Flasseur O., Bodrito T., Mairal J., Ponce J., Langlois M., Lagrange A.-M.,
2022, in Adaptive Optics Systems VIII. pp 1154–1167

Galicher R., et al., 2018, Astronomy & Astrophysics, 615, A92
Gawlikowski J., et al., 2021, arXiv preprint arXiv:2107.03342
Gebhard T. D., Bonse M. J., Quanz S. P., Schölkopf B., 2022, arXiv preprint

arXiv:2204.03439
Gonzalez C. G., Absil O., Absil P.-A., Van Droogenbroeck M., Mawet D.,

Surdej J., 2016, Astronomy & Astrophysics, 589, A54
Gonzalez C. A. G., et al., 2017, The Astronomical Journal, 154, 12pp
Gonzalez C., Absil O., Van Droogenbroeck M., 2018, Astronomy & Astro-

physics, 613, A71
Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S.,

Courville A., Bengio Y., 2014, Advances in neural information processing
systems, 27

He K., Zhang X., Ren S., Sun J., 2015, in Proceedings of the IEEE interna-
tional conference on computer vision. pp 1026–1034

He K., Zhang X., Ren S., Sun J., 2016, in Proceedings of the IEEE conference
on computer vision and pattern recognition. pp 770–778

Huertas-Company M., Lanusse F., 2022, arXiv preprint arXiv:2210.01813
Hüllermeier E., Waegeman W., 2021, Machine Learning, 110, 457
Jensen-Clem R., et al., 2017, The Astronomical Journal, 155, 19
Jovanovic N., et al., 2015, Publications of the Astronomical Society of the

Pacific, 127, 890
Kay S. M., 1993, Fundamentals of statistical signal processing: estimation

theory. Prentice-Hall, Inc.
Kendall M. G., Stuart A., Ord J. K., 1948, The advanced theory of statistics.

Vol. 1, JSTOR
Keppler M., et al., 2018, Astronomy & Astrophysics, 617, A44
Kingma D. P., Ba J., 2014, arXiv preprint arXiv:1412.6980
Lafrenière D., Marois C., Doyon R., Nadeau D., Artigau E., 2007, The As-

trophysical Journal, 660, 770
Lagrange A.-M., et al., 2009, Astronomy & Astrophysics, 493, L21
Langlois M., et al., 2021, Astronomy & Astrophysics, 651, A71

Ledoit O., Wolf M., 2004, Journal of Multivariate Analysis, 88, 365
Macintosh B., et al., 2014, Proceedings of the National Academy of Sciences,

111, 12661
Macintosh B., et al., 2015, Science, 350, 64
Marois C., Lafrenière D., Doyon R., Macintosh B., Nadeau D., 2006, The

Astrophysical Journal, 641, 556
Marois C., Macintosh B., Barman T., Zuckerman B., Song I., Patience J.,

Lafrenière D., Doyon R., 2008, Science, 322, 1348
Marois C., Correia C., Véran J.-P., Currie T., 2013, Proceedings of the Inter-

national Astronomical Union, 8, 48
Marois C., Correia C., Galicher R., Ingraham P., Macintosh B., Currie T.,

De Rosa R., 2014, in SPIE Astronomical Intrumentation + Telescopes.
p. 91480U

Mawet D., et al., 2014, The Astrophysical Journal, 792, 97
Mesa D., et al., 2019, Monthly Notices of the Royal Astronomical Society,

488, 37
Milletari F., Navab N., Ahmadi S.-A., 2016, in 2016 fourth international

conference on 3D vision (3DV). pp 565–571
Morzinski K. M., et al., 2014, in Adaptive Optics Systems IV. p. 914804
Mugnier L. M., Cornia A., Sauvage J.-F., Rousset G., Fusco T., Védrenne N.,

2009, Journal of the Optical Society of America A, 26, 1326
Nielsen E. L., et al., 2012, The Astrophysical Journal, 750, 53
Nielsen E. L., et al., 2017, The Astronomical Journal, 154, 218
Nielsen E. L., et al., 2019, The Astronomical Journal, 158, 13
Nocedal J., Wright S. J., 1999, Numerical optimization. Springer
Pairet B., Cantalloube F., Gomez Gonzalez C. A., Absil O., Jacques L., 2019,

Monthly Notices of the Royal Astronomical Society, 487, 2262
Paszke A., et al., 2019, Curran Associates, Inc., pp 8024–8035
Pavlov A., Möller-Nilsson O., Feldt M., Henning T., Beuzit J.-L., Mouillet

D., 2008, in SPIE Astronomical Telescopes + Instrumentation. p. 701939
Pueyo L., 2018, Handbook of Exoplanets, pp 705–765
Rameau J., et al., 2013a, The Astrophysical journal letters, 772, L15
Rameau J., et al., 2013b, The Astrophysical Journal Letters, 779, L26
Reddi S. J., Kale S., Kumar S., 2019, arXiv preprint arXiv:1904.09237
Ronneberger O., Fischer P., Brox T., 2015, in International Conference on

Medical image computing and computer-assisted intervention. pp 234–
241

Ruffio J.-B., et al., 2017, The Astrophysical Journal, 842, 14
Samland M., Bouwman J., Hogg D., Brandner W., Henning T., Janson M.,

2021, Astronomy & Astrophysics, 646, A24
Santos N. C., 2008, New Astronomy Reviews, 52, 154
Schneider J., Dedieu C., Le Sidaner P., Savalle R., Zolotukhin I., 2011,

Astronomy & Astrophysics, 532, A79
Simonyan K., Zisserman A., 2015
Soummer R., Pueyo L., Larkin J., 2012, The Astrophysical Journal Letters,

755, L28
Sudre C. H., Li W., Vercauteren T., Ourselin S., Jorge Cardoso M., 2017, in

, Deep learning in medical image analysis and multimodal learning for
clinical decision support. Springer, pp 240–248

Traub W. A., Oppenheimer B. R., 2010, Exoplanets, pp 111–156
Vigan A., Moutou C., Langlois M., Allard F., Boccaletti A., Carbillet M.,

Mouillet D., Smith I., 2010, Monthly Notices of the Royal Astronomical
Society, 407, 71

Vigan A., et al., 2021, Astronomy & Astrophysics, 651, A72
Wagner K., Apai D., Kasper M., Kratter K., McClure M., Robberto M., Beuzit

J.-L., 2016, Science, 353, 673
Wahhaj Z., et al., 2015, Astronomy & Astrophysics, 581, A24
Wahhaj Z., et al., 2021, arXiv preprint arXiv:2101.08268
Wainwright M. J., Simoncelli E. P., 2000, in Advances in Neural Information

Processing Systems. pp 855–861
Wang L., Wang C., Sun Z., Chen S., 2020, IEEE Access, 8, 167939
Wertz O., Absil O., González C. G., Milli J., Girard J. H., Mawet D., Pueyo

L., 2017, Astronomy & Astrophysics, 598, A83
Yalniz I. Z., Jégou H., Chen K., Paluri M., Mahajan D., 2019, arXiv preprint

arXiv:1905.00546
Yip K. H., et al., 2019, in Joint European Conference on Machine Learning

and Knowledge Discovery in Databases. pp 322–338

MNRAS 000, 1–28 (2023)



deep PACO: deep learning meets PAtch COvariances 27

Table A1. Comparison between a multi-variate Gaussian model (Eqs. (2))
and a GSM model (Eqs. (A1)) for the statistical modeling of the nuisance
component in the pre-processing step of the proposed detection approach.
Reported scores are AUC of F1R score (best when close to 1) as an overall
measurement of the precision-recall trade-off of the underlying detector. Mean
results and standard-deviation are obtained on the eleven SPHERE-IRDIS
datasets considered in this work, see Sect. 4 for the recording logs.

Ang. Sep. (”) Gaussian model (default) GSM model (variant)
[0; 2]” 0.88 ± 0.03 0.90 ± 0.03
[2; 4]” 0.90 ± 0.05 0.91 ± 0.04
[4; 6]” 0.89 ± 0.04 0.91 ± 0.01
[6; 7]” 0.88 ± 0.06 0.90 ± 0.03

APPENDIX A: DISCUSSION ABOUT THE STATISTICAL
MODEL AND THE WHITENING OF THE OBSERVATIONS

A1 Refinement of the statistical model

Concerning the statistical model of the nuisance component, the
multi-variate Gaussian assumption described in Sect. 2.1.1 is a con-
venient approximation leading to closed-form expressions for the
underlying estimators. However, this formulation neglects all tempo-
ral fluctuations of the data. In Flasseur et al. (2020a,b), we con-
sider a refinement of this model using a multi-variate Gaussian
scaled mixture (GSM; Conte et al. (1995); Wainwright & Simon-
celli (2000)). It amounts to model the distribution of patch 𝒇𝑛,𝑡 cen-
tered around pixel 𝑛 at time 𝑡 by a temporally weighted multi-variate
Gaussian N(𝒎𝑛, 𝜎2

𝑛,𝑡 C𝑛). Under this model, the sample estimates
{𝒎𝑛; �̂�2

𝑛,𝑡 ; Ŝ𝑛} of the local mean, of the temporal scaling factors, and
of the covariance coming from the maximum likelihood are obtained
with a fixed-point iterative method as follows (Flasseur et al. 2020a):



𝒎𝑛 = 1
𝑇∑
𝑡=1

1/�̂�2
𝑛,𝑡

·
𝑇∑
𝑡=1

1
�̂�2
𝑛,𝑡

E𝑛,𝑡 𝒓 ∈ R𝐾 ,

�̂�2
𝑛,𝑡 =

1
𝐾
(E𝑛,𝑡 𝒓 − 𝒎𝑛)⊤ Ŝ−1

𝑛 (E𝑛,𝑡 𝒓 − 𝒎𝑛) ∈ R+ ,

Ŝ𝑛 = 1
𝑇

𝑇∑
𝑡=1

1
�̂�2
𝑛,𝑡

(E𝑛,𝑡 𝒓 − 𝒎𝑛) (E𝑛,𝑡 𝒓 − 𝒎𝑛)⊤ ∈ R𝐾×𝐾 .

(A1)

The regularized covariance Ĉ𝑛 is estimated on the fly by shrinkage of

Ŝ𝑛 as defined in Eq. (5), with 𝑄 =

(∑𝑇
𝑡=1 1/�̂�2

𝑛,𝑡

)2 / (∑𝑇
𝑡=1 1/�̂�4

𝑛,𝑡

)
the equivalent number of patches involved in the computation of Ŝ𝑛
in the presence of the weighting factors {�̂�2

𝑛,𝑡 }𝑡=1:𝑇 , see Flasseur
et al. (2020a). The scaling factors {�̂�2

𝑛,𝑡 }𝑡=1:𝑇 can be interpreted as
the local variance of the the residual data (i.e., after centering and
whitening). This approach allows to identify and to neutralize out-
liers, taking the form both of spatially interpolated defective pixels
and of local areas displaying fluctuations on some temporal frames
larger than on other ones. These properties transfer to the estimators
of the statistics of the nuisance component with an improved robust-
ness against bad data, thus leading to a better detection sensitivity
and characterization accuracy.

We tested to integrate a GSM model in the pre-processing step of
the proposed algorithm. Table A1 compares, with the same proce-
dure as described in Sect. 2.2.3, the detection performance in terms
of precision and recall of the proposed algorithm using either a multi-
variate Gaussian model (Eqs. (2)) or a GSM model (Eqs. (A1)) in
the pre-processing step. It illustrates that, as for PACO, the GSM
model leads to an improved detection sensitivity, with an improved
stability over datasets (i.e., smaller error bars). However, the gain is
significantly smaller than the typical gain, reaching 10 to 15%, ob-

Table A2. Comparison between non-normalized (Eqs. (7)) and normalized
(Eqs. (A2)) outputs produced by the pre-processing step of the proposed
detection approach. Reported scores are AUC of F1R score (best when close to
1) as an overall measurement of the precision-recall trade-off of the underlying
detector. Mean results and standard-deviation are obtained on the eleven
SPHERE-IRDIS datasets considered in this work, see Sect. 4 for the recording
logs.

Ang. Sep. (”) Not normalized (default) Normalized (variant)
[0; 2] 0.88 ± 0.03 0.88 ± 0.04
[2; 4] 0.90 ± 0.05 0.92 ± 0.05
[4; 6] 0.89 ± 0.04 0.92 ± 0.03
[6; 7] 0.88 ± 0.06 0.91 ± 0.05

tained when substituting the multi-variate Gaussian assumption with
a GSM model in the PACO algorithm (Flasseur et al. 2020a). This
observation can be attributed to the presence of the additional learn-
ing stage of our proposed method that, hopefully, partially correcting
for the approximate fidelity (with respect to the observations) of the
statistical model embedded in the pre-processing step.

Given the increased computational burden of the proposed detec-
tion approach with a GSM model by a factor between 10 and 30
(which represents the typical number of iterations needed to reach
convergence of the estimators (A1)), we recommend, for practical
reasons, to use the standard version of deep PACO embedding a
multi-variate Gaussian model, as defined in Sect. 2.1.1. This is also
the choice we made for the presentation of the results in the main core
of this paper. The alternative version of the algorithm embedding a
GSM model can be reserved to refine, in a second step, the reduction
of some datasets with ambiguous detections. When comparing with
state-of-the-art detection algorithms, we use for PACO the version
embedding a GSM model to compare fairly the proposed method
against the best setting of existing methods.

A2 Refinement of the whitening of the observations

The pre-processing step (centering and local whitening) described in
Sect. 2.1.2 is computationally quite efficient since it involves, for non-
overlapping square patches, only ⌊𝑁/𝐾⌉ (≃ 104 for the SPHERE-
IRDIS instrument) matrix multiplications of size 𝐾 × 𝐾 . However,
it has two drawbacks: (i) it leads to some spatial discontinuities
between adjacent patches, (ii) it does not account for the spatially
non-stationary transformation induced by the whitening process on
the off-axis PSF in terms of shape and of intensity. In practice,
we observe that this approach sometimes lacks of robustness for
observations recorded under medium to bad conditions, i.e., where
the unmixing between the nuisance component and the sought objects
is even more difficult. Limitation (i) can be addressed by considering
overlapping patches (e.g., with a patch stride of one pixel). Limitation
(ii) can be addressed by adding an output term explicitly accounting
for the shape and intensity transformation induced by the whitening
process. In this context, the pre-processed images �̃� inR𝑁×2 are now
formed by the concatenation of two images �̃� in R𝑁 and �̃� in R𝑁
defined by:


�̃�𝑛′ =

[ ∑
𝑛∈P

E⊤𝑛 𝒉⊤Ĉ−1
𝑛 (𝒓𝑛−�̂�𝑛 )

]
𝑛′

𝑞𝑛′
,∀𝑛′ ∈ ⟦1; 𝑁⟧ ,

�̃�𝑛′ =

[ ∑
𝑛∈P

E⊤𝑛 𝒉⊤Ĉ−1
𝑛 𝒉

]
𝑛′

𝑞𝑛′
,∀𝑛′ ∈ ⟦1; 𝑁⟧ ,

(A2)
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Figure A1. (a): Illustration of two data frames impacted by a wind-driven
halo near the star. The direction of main elongation of the halo is symbolized
by the white arrow. (b): Detection map obtained on the corresponding dataset
with the proposed detection algorithm embedding the whitening procedure
either defined in Sect. 2.1.2 (i.e., without normalization by the whitened off-
axis PSF) or defined in Appendix A2 (i.e., with normalization by the whitened
off-axis PSF). The four known exoplanets (HR 8799 b, c, d, e) are circled in
green. Dataset: HR 8799 (2015-07-04), see Sect. 4 for the observation logs.

with 𝑞𝑛′ the number of patches averaged at each location 𝑛′ of the
field of view, as defined in Eq. (6). For overlapping square patches12

with a unit patch stride, 𝑞𝑛′ is equal to𝐾 almost everywhere, excepted
on the borders of the field of view where it progressively tends to
zero. The term 𝒃 can be interpreted as the correlation between the
whitened off-axis PSF and the centered plus whitened observations,
while 𝒂 is a normalization term representing the auto-correlation of
the whitened off-axis PSF. It can be noted that for each pixel 𝑛′ of
the field of view, the ratio �̃�𝑛′/

√︁
�̃�𝑛′ (respectively, the ratio �̃�𝑛′/�̃�𝑛′ )

corresponds to the S/N of detection (respectively, to the source flux)
that would be estimated by PACO at pixel 𝑛′ (Flasseur et al. 2018b). To
prevent the deep model (built from the outputs of the pre-processing
step) to learn only the mapping �̃� → �̃�/

√
�̃�, we resort to a residual

learning procedure. It consists in evaluating the loss function (see
Sect. 2.2.3) jointly on the detection map produced by the proposed
algorithm and also on the PACO S/N map �̃�/

√
�̃� computed on the fly.

This strategy explicit rewards the deep model to perform better than
PACO.

Table A2 compares, with the same procedure as described in Sect.

12 Given the typical circular shape of speckles, we also considered circular
overlapping patches. Square and circular patches lead to very comparable
detection performance.

2.2.3, the detection performance in terms of precision and recall
of the proposed algorithm using either the whitening procedure de-
scribed in Sect. 2.1.2, and the whitening procedure described in this
Appendix. It shows that for the eleven SPHERE-IRDIS datasets we
study in details in this work, the variant approach accounting for the
transformation induced by the whitening process on the off-axis PSF
leads only to a slight improvement of the overall detection perfor-
mance. This is due to the fact that none of the eleven considered
datasets was recorded under bad observing conditions. Figure A1
gives a qualitative comparison between the two approaches for a
dataset of HR 8799 (see Sect. 4 for the recording logs) impacted by
the wind-driven halo effect. The variant procedure described in this
appendix allows to avoid numerous evident false alarms occurring
when the normalization of the pre-processed frames is omitted.

Compared to the whitening procedure described in Sect. 2.1.2,
the variant described in this appendix has a computational burden
increased by a factor 4 × 𝐾 , i.e. by typically a factor between 200
and 500 for the VLT/SPHERE instrument. For practical reasons, we
recommend to use the standard whitening procedure by default, as
defined in Sect. 2.1.2. This is also the choice we made for the pre-
sentation of the results in the main core of this paper. The alternative
version of the algorithm accounting for the whitening of the off-
axis PSF can be reserved to refine, in a second step, the reduction
of some datasets for which obvious and numerous false alarms are
experienced at inference time.

APPENDIX B: MAIN SETTINGS OF THE DETECTION
AND CHARACTERIZATION STAGES OF THE PROPOSED
ALGORITHM

Table B1 gives a quick-look summary of the main settings for the pro-
posed algorithm, both for the detection and for the characterization
modules. Fields are classified in three categories: pre-processing,
generation of the training set, and deep learning model.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Table B1. Summary of the main settings used for the detection and characterization modules of the proposed algorithm. (a)We recall that the training sets are
generated on the fly for the detection stage, i.e., the notion of epochs is used only to schedule the learning rate. For the characterization stage, the term epoch is
used in a classical meaning so that the generated patches are seen multiple times (corresponding to the number of epochs) by the network.

parameters detection characterization

▶ pre-processing

input observations 𝒓 ∈ R𝑁×𝑇 observations 𝒓 ∈ R𝑁×𝑇

strategy for known sources (training only) temporal shuffling source masking + temporal shuffling
temporal centering yes yes
spatial whitening yes no

whitening patch shape square –
whitening patch area 𝐾 ∈ ⟦72; 122⟧ pixels (automatic) –
whitening patch stride ⌊

√
𝐾 ⌉ pixels (default) or 1 pixel (variants of App. A) –

whitening statistical model multi-variate Gaussian (default) or GSM (variant of App. A1) –
whitening output quantity L̂⊤

𝑛 (𝒓𝑛 − 𝒎𝑛 ) s.t. L̂𝑛 L̂⊤
𝑛 = Ĉ−1

𝑛 , ∀𝑛 ∈ P (default) or –

concat.
( [ ∑
𝑛∈P

E⊤
𝑛 𝒉

⊤ Ĉ−1
𝑛 (𝒓𝑛 − 𝒎𝑛 )

]
𝑛′

;
[ ∑
𝑛∈P

E⊤
𝑛 𝒉

⊤ Ĉ−1
𝑛 𝒉

]
𝑛′

)
, ∀𝑛′ ∈ ⟦1; 𝑁⟧ (variant of Appendix A2)

parallactic derotation yes yes
temporal collapsing no yes (after injections if any)

implantation GPUs or CPUs (parallelized) GPUs or CPUs (parallelized)
output pre-processed observations �̃� ∈ R𝑁×𝑇 pre-processed observations �̃� ∈ R𝑁×𝑇

▶ generation of the training set

input pre-processed observations �̃� ∈ R𝑁×𝑇 pre-processed observations �̃� ∈ R𝑁×𝑇

pre-processing update on injection arcs yes yes
data augmentation yes yes

total number 𝑃 of sources ∈ ⟦25, 000; 50, 000⟧ ≃ 40, 000
number 𝑆 of training sets ∈ ⟦500; 1, 000⟧ ≃ 8, 000

number 𝑃 [𝑠] of sources per set 𝑠 ∈ ⟦1, 10⟧ ∈ ⟦1; 10⟧
location 𝜙 of sources uniform in polar system uniform in Cartesian system
contrast 𝛼 of sources uniform in

[
3𝜎PACO

𝜙𝑝
; 12𝜎PACO

𝜙𝑝

]
uniform in

[
1 × 10−6; 3 × 10−5] (default)

cropping patch area 𝐽 – 312 pixels
implantation CPUs (parallelized) CPUs (parallelized)

output sets of pre-processed observations with injections { (

𝒓 [𝑠] ∈ R𝑁×𝑇 }𝑠=1:𝑆 sets of pre-processed patches with injections { (

𝒑 [𝑝] ∈ R𝐽 }𝑝=1:𝑃

▶ deep learning model

input a set of pre-processed observations with injections (
𝒓 [𝑠] ∈ R𝑁×𝑇 a pre-processed patch with injection (

𝒑 [𝑝] ∈ R𝐽
architecture U-Net (Res-Net 18 backbone) custom VGG-like

task pixel-wise classification regression
number of weights ≃ 11 millions ≃ 1.2 millions
pre-trained weights no no
optimization loss Dice2 (overlap measure) absolute relative error

optimizer AMSGrad Adam
validation metric F1R score (precision / recall trade-off) absolute relative error

batch size 1 (set of pre-processed observations with injections) 1024 (pre-processed patches with injections)
weight decay 10−5 0

initial learning rate 10−3 10−3

learning rate scheduling yes (-10% every 10 epochs) yes (-70% every 50 epochs)
number of epochs(a) ∈ ⟦1; 100⟧ (on the fly) 300 (fixed)

implantation GPUs GPUs
output detection map �̂� ∈ [0; 1]𝑀 photometry estimates 𝛼 ∈ R+



deep PACO: Combining statistical models with deep learning for

exoplanet detection and characterization in direct imaging at high contrast

supplementary material

Olivier Flasseur, Théo Bodrito, Julien Mairal, Jean Ponce, Maud Langlois, Anne-Marie Lagrange

This supplementary material complements the corresponding
main paper by presenting detailed results for SPHERE-IRDIS
datasets we considered in this work. Concerning the detec-
tion stage, Figs. 1 to 20 display detection maps, Figs. 21
and 22 give contrast curves, Figs. 23 and 24 represent the
TPR of the proposed algorithm as a function of the PACO’s
S/N of detection as well as of the angular separation. Finally,
Tables 1 and 2 give AUC under ROCs (TPR as a function of
the FDR) for known real sources and for injected synthetic
sources, respectively. Concerning the characterization stage,
Fig. 25 gives the throughput of the tested algorithms aver-
aged over the eleven SPHERE-IRDIS datasets we considered
in this work.
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Figure 1: Detection maps obtained with the selected algorithms (see Sect. 4.1 of the main paper). Sources are classified as
true, missed and false detections. The detection threshold is set to τ = 5 for cADI, cADI (VIP), PCA (VIP) and PACO. It is
set to τ = 0.5 for the proposed algorithm. The light blue line represents the sensor field of view while the dashed blue line
represents the extended field of view on which the detection can be performed due to the apparent rotation of the field induced
by ADI. Dataset: HD 95086 (2018-01-05), see Sect. 4 of the main paper for the observation logs.
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Figure 2: Same caption than Fig. 1. Zoom near the host star. Dataset: HD 95086 (2018-01-05), see Sect. 4 of the main paper
for the observation logs.
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Figure 3: Same caption than Fig. 1. Dataset: HD 95086 (2021-03-11), see Sect. 4 of the main paper for the observation logs.
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Figure 4: Same caption than Fig. 2. Dataset: HD 95086 (2021-03-11), see Sect. 4 of the main paper for the observation logs.
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Figure 5: Same caption than Fig. 1. Dataset: HIP 88399 (2015-05-10), see Sect. 4 of the main paper for the observation logs.
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Figure 6: Same caption than Fig. 2. Dataset: HIP 88399 (2015-05-10), see Sect. 4 of the main paper for the observation logs.
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Figure 7: Same caption than Fig. 1. Dataset: HIP 88399 (2016-04-16), see Sect. 4 of the main paper for the observation logs.
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Figure 8: Same caption than Fig. 2. Dataset: HIP 88399 (2016-04-16), see Sect. 4 of the main paper for the observation logs.
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Figure 9: Same caption than Fig. 1. Dataset: HIP 88399 (2018-04-11), see Sect. 4 of the main paper for the observation logs.
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Figure 10: Same caption than Fig. 2. Dataset: HIP 88399 (2018-04-11), see Sect. 4 of the main paper for the observation logs.
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Figure 11: Same caption than Fig. 1. Dataset: HD 131399 (2015-06-12), see Sect. 4 of the main paper for the observation logs.
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Figure 12: Same caption than Fig. 2. Dataset: HIP 131399 (2015-06-12), see Sect. 4 of the main paper for the observation
logs.
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Figure 13: Same caption than Fig. 1. Dataset: HD 131399 (2016-05-07), see Sect. 4 of the main paper for the observation logs.
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Figure 14: Same caption than Fig. 2. Dataset: HIP 131399 (2016-05-07), see Sect. 4 of the main paper for the observation
logs.
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Figure 15: Same caption than Fig. 1. Dataset: HIP 65426 (2017-02-09), see Sect. 4 of the main paper for the observation logs.

-5

5

0

-5

5

0

-5

5

0

-5

5

0

proposed
1

0

Figure 16: Same caption than Fig. 2. Dataset: HIP 65426 (2017-02-09), see Sect. 4 of the main paper for the observation logs.
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Figure 17: Same caption than Fig. 1. Dataset: HIP 65426 (2018-05-13), see Sect. 4 of the main paper for the observation logs.
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Figure 18: Same caption than Fig. 2. Dataset: HIP 65426 (2018-05-13), see Sect. 4 of the main paper for the observation logs.
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Figure 19: Same caption than Fig. 1. Dataset: HIP 72192 (2015-06-11), see Sect. 4 of the main paper for the observation logs.
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Figure 20: Same caption than Fig. 2. Dataset: HIP 72192 (2015-06-11), see Sect. 4 of the main paper for the observation logs.
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Figure 21: Contrast as a function of the angular separation. The black dashed line represents the ultimate detection limit driven
by the photon noise. The contrast curves of cADI and PCA are over-optimistic and the angular separations leading to a PFA
locally higher than ten times the targeted PFA at 5σ are not shown. For the 2021-03-11 epoch of HD 95086, we experienced
during training, validation and inference a few false alarms with the proposed approach in an area localized very near the star.
This area is marked by a gray rectangular in panel (b), and the contrast is not statistically grounded in the corresponding
range of angular separations. Datasets: HD 95086 (2015-05-05), HD 95086 (2018-01-05), HD 95086 (2021-03-11), HIP 88399
(2015-05-10), HIP 88399 (2016-04-16) and HD 131399 (2015-06-12), see Sect. 4 of the main paper for the observation logs.
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Figure 22: Continuation of Fig. 21. Datasets: HD 131399 (2016-05-07), HIP 65426 (2017-02-09), HIP 65426 (2018-05-13) and
HIP 72192 (2015-06-11), see Sect. 4 of the main paper for the observation logs.
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Figure 23: TPR (in percent) of the proposed deep PACO algorithm for synthetic sources missed by PACO (i.e., for S/N ≤ 5) as
a function of the angular separation (on the x-axis) and of the PACO ’s S/N of detection (on the y-axis). The black dashed line
represents the equivalent PACO’s detection threshold to reach TPR = 50% with deep PACO (we recall that the classical detection
threshold at 5σ with PACO also corresponds to TPR = 50%). Datasets: HD 95086 (2015-05-05), HD 95086 (2018-01-05), HD
95086 (2021-03-11), HIP 88399 (2015-05-10), HIP 88399 (2016-04-16) and HD 131399 (2015-06-12), see Sect. 4 of the main
paper for the observation logs.
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Figure 24: Continuation of Fig. 23. Datasets: HD 131399 (2016-05-07), HIP 65426 (2017-02-09), HIP 65426 (2018-05-13) and
HIP 72192 (2015-06-11), see Sect. 4 of the main paper for the observation logs.
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Table 1: AUC for ROCs giving the TPR as a function of the FDR. The experiments were conducted by considering only known real sources. The scores are detailed for the eleven
SPHERE-IRDIS datasets considered in this work, see Sect. 4 of the main paper for the observation logs. The best results are emphasized in bold.

dataset cADI cADI (VIP) PCA (VIP) PACO proposed

HD 95086 (2015-05-05) 0.45 0.59 0.56 0.78 0.93
HD 95086 (2018-01-05) 0.77 0.81 0.80 0.96 1.00
HD 95086 (2021-03-11) 0.04 0.68 0.69 0.87 0.94
HIP 88399 (2015-05-10) 0.17 0.64 0.34 0.67 0.83
HIP 88399 (2016-04-16) 0.20 0.83 0.65 1.00 1.00
HIP 88399 (2018-04-11) 0.23 0.83 0.67 0.95 0.93
HD 131399 (2015-06-12) 0.50 0.92 0.72 1.00 1.00
HD 131399 (2016-05-07) 0.50 0.71 0.72 1.00 1.00
HIP 65426 (2017-02-09) 1.00 1.00 1.00 1.00 1.00
HIP 65426 (2018-05-16) 1.00 1.00 1.00 1.00 1.00
HIP 72192 (2015-06-11) 0.05 0.50 0.85 1.00 1.00

Table 2: AUC for ROCs giving the TPR as a function of the FDR. The experiments were conducted by resorting to massive injections of synthetic sources, and known real sources
were excluded of this study. The scores are detailed for the eleven SPHERE-IRDIS datasets considered in this work, see Sect. 4 of the main paper for the observation logs.
Algorithm (1), (2), (3), (4), and (5) stands respectively for cADI, cADI (VIP), PCA (VIP), PACO, and the proposed deep PACO algorithm. For each range of angular separations,
the best results are emphasized in bold.

angular separation: [0; 2]” [2; 4]” [4; 6]” [6; 7]”

dataset / algorithm (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

HD 95086 (2015-05-05) 0.62 0.61 0.54 0.78 0.87 0.60 0.84 0.84 0.89 0.91 0.17 0.54 0.53 0.76 0.84 0.05 0.36 0.37 0.62 0.86
HD 95086 (2018-01-05) 0.62 0.87 0.78 0.93 0.94 0.59 0.82 0.82 0.89 0.95 0.15 0.52 0.47 0.46 0.86 0.06 0.38 0.41 0.63 0.97
HD 95086 (2021-03-11) 0.68 0.68 0.73 0.86 0.86 0.67 0.82 0.81 0.83 0.88 0.01 0.57 0.55 0.76 0.89 0.02 0.39 0.45 0.82 0.93
HIP 88399 (2015-05-10) 0.19 0.54 0.42 0.89 0.90 0.73 0.87 0.86 0.94 0.97 0.06 0.76 0.52 0.89 0.94 0.02 0.47 0.33 0.66 0.81
HIP 88399 (2016-04-16) 0.33 0.51 0.60 0.93 0.95 0.73 0.92 0.91 0.94 0.96 0.02 0.86 0.28 0.88 0.94 0.01 0.48 0.26 0.79 0.86
HIP 88399 (2018-04-11) 0.40 0.72 0.61 0.93 0.95 0.70 0.91 0.87 0.93 0.98 0.33 0.71 0.43 0.87 0.90 0.20 0.25 0.25 0.86 0.90
HD 131399 (2015-06-12) 0.62 0.75 0.69 0.88 0.94 0.28 0.35 0.25 0.73 0.82 0.03 0.68 0.75 0.81 0.89 0.25 0.36 0.37 0.88 0.96
HD 131399 (2016-05-07) 0.68 0.88 0.79 0.94 0.95 0.28 0.45 0.28 0.81 0.87 0.01 0.76 0.76 0.82 0.91 0.11 0.39 0.41 0.87 0.96
HIP 65426 (2017-02-09) 0.26 0.42 0.43 0.66 0.76 0.66 0.85 0.84 0.94 0.96 0.03 0.72 0.72 0.86 0.95 0.01 0.61 0.62 0.68 0.83
HIP 65426 (2018-05-16) 0.73 0.86 0.86 0.96 0.96 0.72 0.90 0.86 0.94 0.96 0.05 0.80 0.77 0.81 0.95 0.22 0.41 0.37 0.83 0.93
HIP 72192 (2015-06-11) 0.72 0.70 0.70 0.81 0.89 0.66 0.76 0.80 0.85 0.92 0.22 0.62 0.74 0.53 0.60 0.38 0.43 0.48 0.79 0.91
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Figure 25: Mean throughput (α̂/α) on the estimated photometry of injected synthetic sources as a function of the their
contrast and of their angular separation. From top to bottom, the panels corresponds respectively to PCA (VIP), PACO, and
the proposed algorithm. For each panel, the mean detection limit (straight line) and the mean photon noise limit (dashed line)
are superimposed. The results are averaged azimuthally for sources of flux drawn uniformly between 1 × 10−6 and 3 × 10−5.
Datasets: the eleven SPHERE-IRDIS datasets considered in this work, see Sect. 4 of the main paper for the recording logs.
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