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Abstract

Reconstructions of Lagrangian drift, for example for objects lost at
sea, are often uncertain due to unresolved physical phenomena within
the data. Uncertainty is usually overcome by introducing stochas-
ticity into the drift, but this approach requires specific assumptions
for modelling uncertainty. We remove this constraint by presenting a
purely data-driven framework for modelling probabilistic drift in flexible
environments. Using ocean circulation model simulations, we generate
probabilistic trajectories of object location by simulating uncertainty
in the initial object position. We train an emulator of probabilistic
drift over one day given perfectly known velocities and observe good
agreement with numerical simulations. Several loss functions are tested.
Then, we strain our framework by training models where the input
information is imperfect. On these harder scenarios, we observe reason-
able predictions although the effects of data drift become noticeable
when evaluating the models against unseen flow scenarios. Source code
and data is available at https://github.com/JenkinsJR/UncertainDrift.
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1 Introduction

We present a data-driven framework for learning Lagrangian drift over a given
timestep (e.g. one day in our experiments) in the presence of uncertainty.
Uncertainty arises when dynamical systems cannot be perfectly described due
to imperfect modelling of either the dynamics or the system state. Modelling
capabilities are constrained by availability of compute, knowledge of the under-
lying physical phenomena (particularly at small scales), and sensor resolution.
Meanwhile, chaotic systems result in minor state variations to have signifi-
cant and unpredictable influences in the observed behaviour. Thus, modelling
drift with uncertainty is critical for many applications whose dynamics are
chaotic or whose inputs (e.g. velocity field) do not sufficiently resolve the nec-
essary dynamics. This includes applications such as ocean and atmospheric
dynamics [1].

Uncertainty is usually modelled through stochastic differential equations
(SDEs) to account for uncaptured physical phenomena at small scales [2]. If
the phenomena can be captured such that the main source of uncertainty
comes from the effects of chaos, accounting for uncertainty may be simplified
through deterministic sampling of particle drifts with random variations in
the initial conditions e.g. [3]. However, in practice, forecasting applications are
constrained by low resolution models that fail to capture the necessary physical
phenomena and as such must be accounted for e.g. through SDEs.

We follow a different approach to account for uncertainty in the drift which
does not rely on resolving physics equations. We use a deep neural network
(DNN) for modelling the drift (Section 4.2), and we propose a probabilistic
representation of particle location for representing uncertainty (Section 4.1).
Through using this representation, our DNN inherently includes the concept
of uncertainty in its internal modelling. While we demonstrate our approach
using simulated drifts where uncertainty is produced by sampling with respect
to the initial position of particles as in [3], our framework is more general
and may be trained with non-simulated drifts or different ways of producing
uncertainty.

Our simulations are performed on realistic, high-resolution oceanic sur-
face currents representative of real-world past ocean states in the north-west
Mediterranean sea. Thus, we demonstrate our framework by learning a drift
model of floating objects at sea. As our framework is completely data-driven,
it supports a great deal of flexibility in what it can take in as input. Any infor-
mation representative of surface currents such as velocity fields or sea surface
height (SSH) measures may be used. Even if this information does not cap-
ture some of the physical phenomena, a data-driven model may be able to
infer the missing phenomena provided they are captured within the training
examples. We believe these to be considerable advantages compared to tradi-
tional equation-based modelling approaches that lack the flexibility to extract
information from different physical quantities and resolutions.

Our contributions may be summarised as: (1) We propose a new approach
to modelling Lagrangian drift with uncertainty based on deep learning. Our
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framework is applicable to observations representative of any source (simulated
or not) or measure of uncertainty. (2) This approach is supported by a new sta-
tistical representation of particle location for modelling uncertain drift. To the
best of our knowledge, no previous framework used a probabilistic location in
the modelling of Lagrangian drift. (3) We demonstrate the possibility of mod-
elling Lagrangian drift in scenarios that cannot be solved explicitly through
physics equations. (4) We show that performance can be improved by better
aligning the learning criteria with the problem setting.

The rest of this article is organised as follows. Section 2 reviews previous
works on uncertain drift and trajectory modelling. Section 3 introduces our
dataset and Section 4 presents our method. Experimental results are discussed
in Section 5. Section 6 concludes the paper.

2 Previous works

2.1 Modelling uncertainty in Lagrangian drift

Uncertainty in Lagrangian drift is usually modelled using stochastic trajec-
tories through SDEs. Stochasticity may be used to parameterise unresolved
physics at subgrid scales, either by formulating the SDE as a Fokker-Planck
equation [4] or by fitting an SDE to simulated stochastic trajectories [5]. For
the application of sea surface currents, examples of unresolved physics are the
motions of eddies, waves, or small-scale turbulence. For a review on how to
use SDEs to account for oceanic phenomena, see [2]. Stochastic trajectories
may be simulated by the means of randomly varying a particle’s displacement,
velocity, or its acceleration. Contrary to a pure data-driven approach, SDEs
may not be able to describe arbitrary sources of uncertainty. Furthermore,
they are limited in their reliance on specific physical quantities such as velocity
information.

2.2 Machine learning for Lagrangian drift

Previous works utilising machine learning to predict Lagrangian drift aim to
model drift deterministically rather than probabilistically. [6, 7] train their pre-
diction models on individual instances of artificial simulated flows, and as such
they do not consider generalisation to different flows (e.g. real spatio-temporal
conditions). Instead of using simulations, [8, 9] learn from past observations of
drifters at sea. [8] used a neural network to predict drifter displacement from
wind and flow velocity, while [9] solve physics equations with a neural network
implementing an additional term to learn the unknown physical phenomena.
In doing so, [9] demonstrated an ability to model drift behaviour that was not
described by a baseline physics model. However, such modelling capabilities
diminished as the spatio-temporal conditions deviated from the training set,
indicating a lack of generalisation to different flows. Due to the limited avail-
ability of past observations combined with the passive nature of their drift
in real-world environments, the resulting coverage of conditions is typically
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Fig. 1 Overview of data. Left) Example velocity field (downgraded resolution for visu-
alisation). Right) Overlay of 3 probability density snapshots (shown as filled probability
contours). Example trajectories used to estimate the probability density snapshots are shown
in black.

insufficient to meaningfully represent the true distribution. [10] considers the
case of learning to model drift of a scalar field as opposed to individual par-
ticles. However, their methodology is tightly integrated with the equation for
advecting concentration fields, which is fundamentally different to advecting
particles with uncertainty.

3 Data

We generate a simulated dataset of probabilistic trajectories in which an
object’s position is described by a 2D probability distribution as opposed to
a discrete point. In practice, we achieve this by sampling many trajectories
in order to estimate the statistics of the underlying uncertainty distribution.
Trajectories are sampled by advecting particles on velocity fields of surface
currents, which correspond to outputs from a realistic and high resolution
numerical ocean model. In this study, we model drift over one day, so we dis-
cretise the velocity fields and probabilistic trajectories to one day snapshots.
This timestep is motivated by the spatial resolution of the ocean model and
the dynamics of the region considered in our study (north-west Mediterranean
Sea).

We use modelled surface currents which represent the state of the ocean
in our region of study for the years 2018 and 2016. We create one dataset
of probabilistic trajectory snapshots per year, ensuring that the entire year
is sampled in order to representatively capture any seasonal variances in the
currents. The 2018 dataset is used for both training and evaluation1 while
2016 is reserved exclusively for testing. This is to ensure a fair evaluation of
our models’ ability to generalise to unseen flow scenarios.

1Due to the limited number of one-day snapshots in a year, the same flow scenarios are used for
both training and evaluation for the year 2018. However, trajectories are sampled across different
locations (see Section 3.2) which prevents the model from relying on memory.



Manuscript accepted to Applied Intelligence

A DNN Framework for Learning Lagrangian Drift With Uncertainty 5

3.1 Velocity fields of surface currents

3.1.1 Ocean model

We use surface currents from the GLAZUR64 [11] ocean general circulation
model (OGCM) which is based on the NEMO [12] OGCM. The model has been
validated with real observational data (current meters and sea surface temper-
ature/height) [11, 13] in order to provide high-resolution realistic snapshots
of past ocean states within the north-west Mediterranean sea (lon 2–8◦ E, lat
41.3–43.9◦ N). In this study, we consider the surface to be two-dimensional
by utilising the uppermost layer only. In the ocean modelling community, it is
standard to approximate the drift of floating objects by ignoring depth infor-
mation [14]. The two-dimensional resolution is 1⁄64◦ which equates to each grid
cell being representative of ∼1.3×1.3 km.

3.1.2 Data preparation

GLAZUR64 produces an output every minute for numerical stability purposes,
so we average its outputs over a one-day period in order to fulfil our one-day
modelling scenario. Its velocity components (U and V ) are staggered such that
U and V are offset by half a grid cell down and to the right, respectively. Prior
to giving these components as input to our CNN in Section 4.2, we align the
components to the pixel centres using linear interpolation2. We also replace
the NaN values from land pixels to 0 which provides a natural interpretation
of zero flow.

3.2 Probabilistic trajectories

Despite the methodological premise of our work being to model drift across a
single timestep, we generate long trajectories with the purpose of introducing
variance into the level of uncertainty of the snapshots. As a particle traverses
over time, the uncertainty in its position will grow as the potential for it to
take different paths increases (see Fig. 1, right). One-day snapshots are then
extracted from the trajectories to define the groundtruth drifts.

3.2.1 Particle advection

We use the OceanParcels [15] library to advect massless, floating particles on
our velocity fields using a 4th order Runge-Kutta integration scheme, where
we update the state of the particles every six hours. The positioning of par-
ticles is continuous, so OceanParcels performs space-time interpolation of the
discretised velocity fields.

We advect particles for up to 15 days and save their positions daily. Par-
ticles may not always complete a full 15-day trajectory due to interactions at
the boundaries. There are two types of boundaries: the ocean-land boundary
and the open boundary (see Fig. 1). The open boundary is named as such due

2Although U and V are gridded on curvilinear coordinates, the limited region that we consider
makes it reasonable to neglect projection errors and to associate each grid cell to a Cartesian pixel.
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to being caused by the cutoff of our data coverage such that the neighbour-
ing ocean values are unknown. We define two conditions for the premature
termination of particles: 1) an advection step has caused a particle to escape
the ocean-land or open boundary, or 2) a particle has made contact with an
ocean cell (pixel) at the open boundary. The second condition exists to prevent
particles from getting stuck and accumulating at the open boundary.

3.2.2 Introducing uncertainty

As discussed in Section 2.1, introducing random behaviour into the modelling
of Lagrangian drift serves the purpose of accounting for uncertainty within the
data or drift process. Thus, we can estimate the probabilistic nature of the drift
conditioned by the underlying uncertainty by sampling many (NP ) trajecto-
ries that draw from the random distribution. To demonstrate our framework,
we sample trajectories whose initial positions draw from a uniform random
distribution within a 5 km radius3. This choice of randomness is motivated by
being simplistic and efficient, as it allows for the advection process to remain
completely deterministic. For this type of uncertainty, we empirically observe
NP=10,000 as being sufficient for approximating the distribution. In practice,
our methodology could be applied to any desired source of randomness such
as perturbations in a drifting particle’s velocity or position.

3.2.3 Temporal snapshots of probabilistic trajectories

In preparation for training our CNN to model probabilistic drift over a given
timestep (one day in our experiments), we divide the probabilistic trajectories
into temporal snapshots. Each snapshot represents a probability distribution
of a particle’s position in space. As we approximate this distribution by advect-
ing NP particles, our snapshots are initially represented as a group of particles,
before being converted into probability density maps in Section 4.1. As men-
tioned previously, particle advection may be prevented at the boundaries, thus
the sum of a snapshot’s distribution may be less than 1 due to the number of
particles in a snapshot being less than NP .

3.2.4 Deployment of probabilistic trajectories

For each dataset, we deploy NT 15-day probabilistic trajectories whose ini-
tial positions are randomly sampled over the ocean’s spatio-temporal domain.
We choose NT=20,000 to encourage a wide spatio-temporal coverage of our
simulated trajectories. The probabilistic trajectories are split into training4,
validation, and test sets with a ratio of 70/15/15 prior to discretising them
into snapshots to ensure no cross contamination across the sets. To ensure a
full 15-day trajectory can be completed, we set the last deployment date to
December 16th.

3If this results in particles to lie outside of the ocean’s domain then we discard them, and hence
the actual number of particles may be less than NP .

4The training split for the 2016 dataset is not used in this study.
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Fig. 2 Overview of methodology. The input density map at time t is stacked with the
input flow field, which is fed into a U-Net architecture to output the successive density map
snapshot at t+1. We show zoomed overlays (solid white square) of the foreground region of
the density map snapshots (dashed white square). Note that the coastline is not visible in
the density maps due to setting the land values to have probability density values of 0.

4 Methodology

We train a U-Net based CNN to model the probabilistic one-day drift of an
object’s location. The CNN takes as input a probability density map of object
location as well as a representation of the underlying flow field, and outputs
the density map of the following day. Our baseline model inputs the true flow
field, i.e. the two consecutive velocity fields (t & t+1) used to simulate the
drift in Section 3. Thus, our baseline model is an emulator of the simulation
environment. Experiments that train models using incomplete flow fields (e.g.
missing spatial or temporal information) are given in Section 5.2. All models
are trained using a pixel-wise regression–based learning criteria, with various
criteria considered in Section 4.2.2.

4.1 Probability density maps for uncertainty
representation

In Section 3.2, we extracted temporal snapshots from probabilistic trajectories
whose distributions were estimated by sampling a large number of particles.
Here, we process these snapshots of particles into probability density maps by
computing a 2D histogram on their locations with respect to the flow field’s
grid. This allows us to homogenise the representations between the particle
distribution and flow field, which are both given as input into the CNN by
stacking them together (see Fig. 2). To compensate for only having a finite
number of particles, we apply a Gaussian filter (σ=1) to the histogram in
order to smooth out its unnaturally sharp spatial gradients. We note that the
sum of our density maps may not always sum to one due to the possibility of
particles escaping the region, as explained in Section 3.2.1.
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4.2 Neural network

4.2.1 Architecture

While in practice we could use any architecture designed for the context of
pixel-wise regression, such as those used for segmentation [16] and [17], we
demonstrate our methodology using the popular U-Net architecture [18]. Fig. 2
shows an outline of the symmetrical encoder-decoder design of U-Net. Each
block of the encoder halves its spatial dimensionality and doubles the num-
ber of feature channels, while the decoder does the opposite (using bilinear
upsampling) in order to gradually recover the output in image space from low-
dimensional features. Skip connections are used in the form of concatenating
feature maps in order to preserve information at different spatial scales.

We use 64 convolutional channels for the first encoder block, resulting in
1024 feature maps for the final (fifth) encoder block. Unlike the original design,
we normalise convolutional outputs using batch normalisation (BN) [19]. Each
block of the network therefore consists of two consecutive layers of 3×3 con-
volution → BN → ReLU. Another difference is that we employ residual
connections [20] between each block and use the uniform scaling rule as in [21]
in order to stabilise the gradients. The final layer maps the culminating 64
feature maps into a single channel output using a 1×1 convolution. The bias
of this convolution loosely implies the value of the background so we do not
include it (i.e. it is frozen at zero).

4.2.2 Learning criteria

To train CNNs for pixel-wise regression tasks, the most common loss functions
used are mean absolute (L1) and mean squared (L2) [22]. We try both loss
functions in Section 5.1 to see which is better for our learning task. As we
know that probability densities can only exist within the set of ocean pixels
O, we ignore any land pixels during the computation of the loss

1

|O|
∑
x∈O

L(Dt+1
x , D̂x). (1)

As the advection equation is a partial differential equation (PDE), our
learning task can also be seen through the lens of learning to solve a PDE.
Given the residual nature of the solutions, reframing the learning task to explic-
itly learn the residual has been shown to greatly improve the convergence of
optimisation [20]. In section 5.1, we experiment with learning two types of
residual representations. The first uses a long additive skip connection between
the input density map Dt and the output of the final 1×1 convolution layer.
The loss function remains the same as Eq. 1. The second modifies the loss
function to predict the residual map R, which is the difference between the
target density map Dt+1 and the input map Dt

LR = L(R, R̂), (2)
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Zeros
MSE
(1e-9)

Identity
MSE
(1e-9)

Identity
IOU50

(%)

50% contour
size
(px)

Distribution
sum
(1e-2)

Displaced
density
(1e-2)

2018 99.1571.34 136.52115.62 12.1315.05 63.0362.44 92.1621.57 64.8523.74
2016 100.4473.26 132.27114.96 13.3615.57 60.0160.27 90.8823.36 62.5824.04

Table 1 Groundtruth density map statistics over the 2018 and 2016 validation sets
presented as meanstd. ‘Zeros’ assumes the prediction is all zeros and ‘Identity’ assumes the
prediction is the identity function.

R = Dt+1 −Dt. (3)

4.2.3 Optimisation

We use the AdamW [23] optimiser with betas (0.9, 0.999), a weight decay of 1,
and an initial learning rate of 1e-4. We decay the learning rate using a cosine
annealing schedule [24] and use the linear warmup strategy as in [25], which
we apply to both the learning rate and weight decay. We train our models
using mixed precision [26] and a batch size of 24.

5 Experiments

For all experiments, we train three models with different seeds (0–2) and
present the mean and standard deviation of the following metrics:

• L2 Mean squared error (MSE) – a measure related to the learning
criteria which evaluates errors at the local pixel level.

• IOUx – A geometrical measure which evaluates the intersection over union
between the groundtruth and predicted x% probability contours. A probabil-
ity contour represents the smallest distribution with a cumulative probability
of x% (as in Fig. 1). We define two special cases if the total cumulative prob-
ability of the distribution is less than x%. For the groundtruth, the IOU
measure is undefined and not included in the statistics. For the prediction,
the partial contour encompassing its limited distribution is used.

• Mass error – A global physics-based measure which evaluates the difference
between the expected and predicted total displacement of probability density
mass, defined as ∣∣∣∣∣∑

x∈O

Rx −
∑
x∈O

R̂x

∣∣∣∣∣ . (4)

5.1 Learning criteria

5.1.1 Loss function

The results in Table 2 show that L1 loss consistently performs significantly
better than L2 across all metrics. We observe that L2 struggles to model lower
yet important density values, indicating that the value-based exponential term
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L2 (1e-9) IOU50 (%) Mass error (1e-2)

2018 2016 2018 2016 2018 2016

L1 2.490.08 2.520.06 86.680.22 86.750.17 1.630.05 1.590.03
+Dt 2.470.07 2.510.08 86.780.15 86.850.16 1.470.03 1.440.05

LR
1 2.490.01 2.540.04 86.730.06 86.750.03 1.460.00 1.440.03

+Dt 2.630.05 2.690.06 86.430.14 86.430.16 1.440.01 1.480.04

L2 6.670.13 6.490.11 77.670.26 78.240.25 3.190.06 3.080.04
+Dt 6.890.05 6.690.05 77.590.09 78.140.10 2.890.05 2.850.06

LR
2 6.910.05 6.700.06 77.560.10 78.130.12 2.940.03 2.890.03

+Dt 7.370.33 7.140.32 76.740.51 77.330.50 3.080.08 3.040.10

Table 2 Comparison of different learning criteria evaluated on the validation sets. LR

indicates regressing the residual map. +Dt indicates adding the input density map to the
learned output. All models are trained for 12 epochs.

is an unsuitable weighting of importance. This is coherent with the fundamen-
tal characteristic of the dataset we generate in Section 3.2 in which the level
of uncertainty spreads over time. This results in the average density value to
decrease as the area of importance grows larger, thereby causing L2 to favour
earlier snapshots whose density values are more concentrated. The lower IOU
of the 50% probability contour demonstrates that this effect is not limited to
the tail end of the distribution and indeed extends to critical intervals.

We also observe that unlike L1, L2 fails to model the background values
as being exactly zero. This has the possibility of biasing the perceived error
in some metrics due to the abundance of small values. Mass error, defined in
Eq. 4, considers the sum over all ocean pixels and thus the totality of the
background may be non-negligible. IOUx% defines the predicted contour as
the entire distribution when the cumulative probability of the groundtruth is
at least x% but the prediction is less than x%, resulting in the presence of
many small values to inflate the union and decrease the IOU score. However,
we observe that this is rare in practice and does not have a significant impact
on the statistics.

5.1.2 Residual representations

In Table 2, we find that both forms of residual representations results in a
decreased mass error. For L1 loss, regressing the residual map directly as
opposed to adding the input density map to the output also provides the
additional benefit of reducing the variance between runs across all metrics.

While the function to be optimised is equivalent for either residual repre-
sentation, the learning criteria is fundamentally different, and we hypothesise
that regressing the residual map provides a more effective criteria due to focus-
ing on the values that change the most across timesteps. This has the effect of
the gradient providing information that is explicit for optimising the function
that outputs the residual. Otherwise, when regressing the non-residual map,
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L2 (1e-9) IOU50 (%) Mass error (1e-2)

2018 2016 2018 2016 2018 2016

Base–12 2.490.08 2.520.06 86.680.22 86.750.17 1.630.05 1.590.03
LR 2.490.01 2.540.04 86.730.06 86.750.03 1.460.00 1.440.03

Base–18 2.330.00 2.380.02 87.190.06 87.260.04 1.510.02 1.470.01
LR 2.320.01 2.400.01 87.260.08 87.270.06 1.370.01 1.360.01

Base–24 2.200.07 2.300.04 87.510.23 87.480.17 1.450.05 1.460.02
LR 2.250.01 2.370.03 87.410.07 87.370.04 1.370.01 1.400.02

Fcast–12 7.860.36 57.360.17 75.980.53 43.200.14 3.200.11 3.100.08
LR 8.040.16 57.440.15 75.740.24 43.170.12 3.120.10 3.060.06

Fcast–18 6.550.12 57.450.08 78.070.16 43.340.04 2.720.05 2.710.07
LR 6.620.15 57.520.24 78.010.23 43.360.03 2.630.04 2.640.03

Fcast–24 5.840.13 57.630.39 79.280.25 43.380.16 2.490.05 2.500.02
LR 5.810.07 57.530.06 79.400.14 43.450.05 2.350.02 2.420.00

SSH–12 11.141.07 48.580.68 71.341.43 46.670.55 4.560.54 4.530.51
LR 9.690.55 51.902.54 73.130.64 45.681.02 3.810.25 3.860.18

SSH–18 8.820.31 49.731.17 74.410.46 46.700.52 3.660.16 3.690.13
LR 8.160.26 51.842.02 75.390.35 46.010.88 3.260.14 3.390.07

SSH–24 8.030.29 49.361.02 75.550.44 46.990.47 3.360.13 3.440.11
LR 7.290.60 51.261.90 76.660.92 46.410.74 3.000.28 3.190.19

Table 3 Comparison of modelling scenarios (i.e. input to the network). Base refers to
inputting the velocity at both t and t+1, Fcast at t only, and SSH at both t and t+1 for
the variable sea surface height. Results for models trained using both L1 and LR

1 are
presented, and Model–X indicates the number of epochs the model was trained for.

the values that have not changed introduces redundancy and dilutes the train-
ing signal. The difference between the two representations is therefore likely
to be dependent on the dataset.

Given the statistics in Table 1, the drifts in our dataset appear to have a
relatively low degree of redundancy. IOU50 is low between Dt and Dt+1, the
amount of displaced density is ∼70% of the distribution sum, and the MSE
between Dt and Dt+1 is greater than the MSE between Dt and zeros.

Table 2 also presents results for combining the two residual representations,
which in practice has the effect of requiring the negative component of the
drift to be scaled by a factor of two. While the performance is only marginally
impacted, the measurable difference reinforces the importance of defining a
logical learning criteria. Table 3 shows how this can be even more significant
when learning to model more complex tasks.

5.2 Modelling drift given imperfect knowledge of the flow

We experiment with two scenarios of learning to model drift given imperfect
knowledge. The first (denoted Fcast) completely removes information of the
velocity at t+1, thereby requiring the model to implicitly forecast the velocity’s
future state. The second replaces information of the velocity field with sea
surface height (SSH), a variable which provides significant utility in the field
of ocean modelling due to its global availability from satellite observations. It
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Fig. 3 Sample predictions for the three modelling scenarios trained with LR
1 . A range of

uncertainty levels are shown, where plots are zoomed on relevant foreground regions (grid
scale: 202 px). Top 3 rows: samples from 2016, bottom 3 rows: samples from 2018. Column 1
shows density values while columns 2-5 show the change of density values between timesteps.

is implicative of sea surface currents at large scales, but does not describe the
small scale phenomena that is important for short-term drift modelling. These
two scenarios involve learning to recover missing information in the spatial and
temporal dimensions, respectively.

We use the exact same architecture and optimisation scheme described in
Section 4.2 with the only difference being the input to the network. The fore-
casting scenario inputs a 3-channel matrix (Ut, Vt, Dt) and the SSH scenario
inputs a 3-channel matrix (SSHt, SSHt+1, Dt). Table 3 presents results for
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both L1 and LR
1 , as well as for models trained over different epoch lengths (12,

18, 24).
We observe that the harder modelling scenarios suffer from a generalisation

issue when evaluated on a year that was not seen during training (2016).
The error for 2016 appears to have a lower bound which is dependent on
the modelling scenario, where it neither decreases nor increases as the 2018
validation error decreases (e.g. when training over more epochs). This suggests
that the issue is due to data drift rather than overfitting, where the underlying
distribution is changing over time. We can also see that the mass error does
not change between years, which informs us that the predicted drifts are still
physically plausible. With that said, SSH observes an increased lower bound
and an increased mass error for 2016 when using LR

1 as opposed to L1. This
implies that overfitting may still be an issue and that L1 may help to provide a
regularisation effect. Nevertheless, we hypothesise that performance on unseen
years could be improved by broadening the distribution represented in the
training set by sampling from more years. A direction for future work would
be to evaluate the relationship between the number of years represented and
the generalisation error.

Empirical observations from Fig. 3 show that predictions made in the
context of the two harder scenarios are generally coherent with respect to
large-scale patterns in the groundtruth. However, local details are not always
modelled correctly, especially for the unseen year of 2016. For example,
columns 1 (2016) and 4 (2018) of Fig. 3 highlights the difficulties of modelling a
local divergence in the flow. Occasionally, the divergence is modelled but with
an inaccurate weighting of the displacement, and other times the divergence
may not be modelled at all. The latter appears to be more common with SSH.
While the issue of generalisation is apparent, it is still worth noting that our
models have not reached capacity as Table 3 shows a steady improvement when
training over more epochs. Therefore, it is possible that the aforementioned
issues are not fundamental limitations of the modelling scenarios.

5.3 Validation against artificial flow scenarios

In order to gain insight into the internal biases of our models, we validate them
against very simple yet extreme scenarios. These scenarios are static in time,
with the velocity magnitude being homogeneous over the field at 0.11 m/s (the
mean over the 2018 dataset). Fig. 4 shows 6 example scenarios for our base
and forecasting models. We are unable to validate our SSH model due to the
inability to explicitly relate velocity to SSH.

In general, we observe that our base model is able to replicate the expected
drift very well despite such extreme scenarios likely being absent in the train-
ing set. While the forecasting model is able to model the general idea of the
expected flow scenario, we observe that local details are incorrect due to its
internal bias of what it expects the next state should be. For example, row 2
of Fig. 4 presents a very simple scenario where the expected drift is a linear
translation along the horizontal axis. We can infer from its prediction that the
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Fig. 4 Predictions made over a range of artificial flow scenarios. From top to bottom: zero,
constant, vortex, diverging, repelling, and sink. Column 1 shows the superimposed input
velocity field and density map. All input density maps are identical but share the same
colour scale with the drift maps in order to highlight the relative change in density.

model expects the velocity field to undergo downwards curvature in the fol-
lowing state. Similar biases can be observed in other examples such as in rows
4 (diverging) and 5 (repelling). While these exact scenarios do not exist in our
dataset, the model’s inherent pull is likely to be informative of the dataset’s
average flow evolution in similar contexts. The forecasting model performs
well under an artificial vortex scenario likely due to the natural abundance of
similar contexts in the dataset.

Row 1 of Fig. 4 presents a unique scenario in which the input density is
expected to remain entirely static due to being presented with a velocity field of
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zero flow. This scenario only occurs in our dataset for land values, where input
density values cannot exist and output density values are excluded from the
loss function. We observe that this has the effect of predicting the background
as small non-zero values except for the surrounding region of the foreground.
The foreground generally appears to remain static, although some degree of
drift is observed, with the amount of displacement being 6.6% and 17.5% of the
input density’s maximum value for the Base and Fcast models, respectively.
The respective IOU50 scores are relatively high at 96.3% and 82.8%.

Row 6 of Fig. 4 shows an extreme example of the density values being
compressed to a very dense region. The maximum value increases by a factor
of 6.8, but the Base and Fcast models are only able to model an increase
factor of 2.8 and 2.5, respectively, and in the process loses 35% and 28% of the
initial mass. As the general idea of compression has been modelled correctly,
the loss of mass suggests that the models are sensitive to the absolute density
value that can be modelled.

6 Conclusion

We proposed a deep learning framework for modelling Lagrangian drift prob-
abilistically under the influence of uncertainty. Its flexibility allows arbitrary
modelling scenarios to be considered, either with respect to the uncertainty
distribution being modelled or the underlying flow field being given as input.
We demonstrated our framework in the context of modelling floating objects
at sea whose initial positions are uncertain. Groundtruth probabilistic drifts
were generated by simulating trajectories on surface currents output by an
ocean model. We considered three input flow field scenarios for reconstructing
the groundtruth drifts: (1) emulator — surface currents at t & t+1, (2) fore-
cast — surface currents at t only, and (3) SSH — sea surface height at t &
t+1. We observe that for the harder scenarios of (2) and (3), the models suffer
from an inability to generalise well to out of distribution flow scenarios from
a different year. Several toy examples of artificial flows helped to give insight
into the biases learned from the training distribution for the forecast scenario.
We believe that reducing these biases by improving the representativity of the
training distribution should be a key focus for future work.
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