The future of child and adolescent clinical psychopharmacology: A systematic review of phase 2, 3, or 4 randomized controlled trials of pharmacologic agents without regulatory approval or for unapproved indications

To cite this version:
Samuele Cortese, Katherine McGinn, Mikkel Højlund, Alan S. Apter, Celso Arango, et al.. The future of child and adolescent clinical psychopharmacology: A systematic review of phase 2, 3, or 4 randomized controlled trials of pharmacologic agents without regulatory approval or for unapproved indications. Neuroscience and Biobehavioral Reviews, 2023, 149, 10.1016/j.neubiorev.2023.105149. hal-04106311

HAL Id: hal-04106311
https://hal.science/hal-04106311
Submitted on 2 Jun 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The future of child and adolescent clinical psychopharmacology: A systematic review of phase 2, 3, or 4 randomized controlled trials of pharmacologic agents without regulatory approval or for unapproved indications

Samuele Cortese a,b,c,d,e,bl,1, Katherine McGinn f,g,bl,1, Mikkel Højlund h,i,bl, Alan Apter j,k,bl, Celso Arango l,bl, Immaculada Baesa m,bl, Tobias Banaschewski n,bl, Jan Buitelaar o,p,bl, Josefinä Castro-Fornieles m,bl, David Coghill q,r,bl, David Cohen s,t,bl, Edna Grünblatt u,v,w,bl, Pieter J. Hoekstra x,bl, Anthony James y,z,bl, Pia Jeppesen a,a,ab,bl, Péter Nagy ac,bl, Anne Katrine Pargsberg ad,ac,bl, Mara Parelada l,bl, Antonio M. Persico af,bl, Diane Purper-Ouakil ag,ah,bl, Veit Roessner ah,bl, Paramala Santosh aj,ak,bl, Emily Simonoff al,am,an,bl, Dejan Stevanovic ap,bl, Argyris Stringaris aq,ar,bl, Benedetto Vitiello as,bl, Susanne Walitza u,v,w,bl, Abraham Weizman at,bl, Tamar Wohlfarth au,av,bl, Ian C.K. Wong aw,ax,ay,az,bl, Gil Zalsman ba,bf,bh,bl, Alessandro Zuddas bc,bl,2 Carmen Moreno a,bl, Marco Solmi bd,hc,bf,bg,bh,bl,bl,3, Christoph U. Correll bi,bj,bk,bl,3

a Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
b Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
c Solent NHS Trust, Southampton, UK
d Hasenfeld Children’s Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
e Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
f University Department of Psychiatry, Academic Centre, Southampton, UK

Wesse Country, UK

g Department of Psychiatry Aarhus, Mental Health Services in the Region of Southern Denmark, Aabenraa, Denmark
h Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
i Schneider Children’s Medical Center of Israel, Peachu Tikva, Israel
j Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitari Gregorio Marañón, IISGM, CIBERSAM, ISCIII, School of Medicine, Universidad Complutense, Madrid, Spain
k Child and Adolescent Psychiatry and Psychology Department, 2021SGR-1319, Institute Clinic of Neurosciences, Hospital Clínico de Barcelona, University of Barcelona, IDIBAPS, CIBERSAM-ISCIII, Spain and 2017/2021SGR01319-881, Hospital Clínico de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), IDIBAPS, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
l Dep of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
m Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University M edical Centre, Nijmegen, the Netherlands
n Children’s Research Institute, Melbourne, Australia
o Department of Paediatrics and Psychiatry, University of Melbourne, Australia
p Murdoch Children’s research Institute, Melbourne, Australia
q Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, APHP-SU, Paris, France
r CNRS UMR 7222, Institute for Intelligent Systems and Robotics, Sorbonne Université, Paris, France
s Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
t Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
u Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
v University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry & Accare Child Study Center, the Netherlands
w Oxford University Department of Psychiatry and Oxford Health Biomedical Research Centre, Oxford, UK
x Oxford Health NHS Foundation Trust, Oxford, UK

* Correspondence to: Centre for Innovation in Mental Health (CIMH), Faculty of Environmental and Life Sciences, University of Southampton, Highfield Campus, Building 44, Southampton SO17 1BJ, UK.
E-mail address: samuele.cortese@soton.ac.uk (S. Cortese).

https://doi.org/10.1016/j.neubiorev.2023.105149
Received 11 January 2023; Received in revised form 26 March 2023; Accepted 27 March 2023
Available online 29 March 2023
0149-7634/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Neuroscience and Biobehavioral Reviews 149 (2023) 105149

We aimed to identify promising novel medications for child and adolescent mental health problems. We systematically searched https://clinicaltrials.gov/ and https://www.clinicaltrialsregister.eu/ (from 01/01/2010–08/23/2022) for phase 2 or 3 randomized controlled trials (RCTs) of medications without regulatory approval in the US, Europe or Asia, including also RCTs of dietary interventions/probiotics. Additionally, we searched phase 4 RCTs of agents targeting unlicensed indications for children/adolescents with mental health disorders. We retrieved 234 ongoing or completed RCTs, including 26 (11%) with positive findings on ≥ 1 primary outcome, 43 (18%) with negative/unavailable results on every primary outcome, and 165 (70%) without publicly available statistical results. The only two compounds with evidence of significant effects that were replicated in ≥ 1 additional RCT without any negative RCTs were dasotraline for attention-deficit/hyperactivity disorder, and carbetocin for hyperphagia in Prader-Willi syndrome. Among other strategies, targeting specific symptom dimensions in samples stratified based on clinical characteristics or established biomarkers may increase chances of success in future development programmes.

1. Introduction

The aim of this review was to systematically search clinical trial registries for randomized controlled trials (RCTs) of medications for child and adolescent mental health problems. We included randomized controlled trials (RCTs) of medications without regulatory approval in the US, Europe or Asia, including also RCTs of dietary interventions/probiotics. Additionally, we searched phase 4 RCTs of agents targeting unlicensed indications for children/adolescents with mental health disorders. We retrieved 234 ongoing or completed RCTs, including 26 (11%) with positive findings on ≥ 1 primary outcome, 43 (18%) with negative/unavailable results on every primary outcome, and 165 (70%) without publicly available statistical results. The only two compounds with evidence of significant effects that were replicated in ≥ 1 additional RCT without any negative RCTs were dasotraline for attention-deficit/hyperactivity disorder, and carbetocin for hyperphagia in Prader-Willi syndrome. Among other strategies, targeting specific symptom dimensions in samples stratified based on clinical characteristics or established biomarkers may increase chances of success in future development programmes.

1 Co-first authors, equally contributed.
2 Posthumously.
3 Co-senior authors, equally contributed.
Neuroscience and Biobehavioral Reviews 149 (2023) 105149

3

01/01/2010, which, as in the systematic review by Correll et al. (2023) striking. For instance, their effects on executive dysfunctions (McKenzie (birth-17); 4) phase: phase 2/phase 3 or 4; 5) study start: from tting/terminated/completed/unknown status; 3) age group: established. The following filters were used for the search in clinicaltrials.gov:

1) study type: interventional studies (Clinical Trials); 2) recruitment: not yet recruiting/recruiting/enrolling by invitation/active, not recruiting/terminated/completed/unknown status; 3) age group: “Child” (birth-17); 4) phase: phase 2/phase 3 or 4; 5) study start: from 01/01/2010, which, as in the systematic review by Correll et al. (2023) in adults, was deemed adequate to reflect recent developments in the field. We assumed that, if a trial initiated ≥ 12 years ago and its results had not been published or no additional studies were ongoing, this trial program had been discontinued.

The following filters were used for the search in https://www.clinicaltrialsregister.eu: 1) select trial status: completed/ongoing/restarted; 2) age range: children and adolescents; 3) select trial phase: phase two/phase three/phase four; and 4) select date range: 2010–01–01 (with the same reasoning for the cut-off date as mentioned for clinicaltrials.gov).

2. Methods

2.1. Search strategy

We searched https://clinicaltrials.gov/and https://www.clinicaltrialsregister.eu/ from 01/01/2010–08/23/2022 using search terms related to the mental health conditions of interest for this review (see below). The search was conducted independently by two investigators (KMG and SC). The time frame is similar to the one considered in a recent similar review on phase 2/3 RCTs of psychopharmacological agents in adults (Correll, 2023). We also conducted an additional systematic targeted search in PubMed to check if identified RCTs for which results were not available in the clinical trials platforms had been published. The following filters were used for the search in clinicaltrials.gov:

- study type: intervention studies (Clinical Trials); 2) recruitment: not yet recruiting/recruiting/enrolling by invitation/active, not recruiting/terminated/completed/unknown status; 3) age group: “Child” (birth-17); 4) phase: phase 2/phase 3 or 4; 5) study start: from 01/01/2010, which, as in the systematic review by Correll et al. (2023) in adults, was deemed adequate to reflect recent developments in the field. We assumed that, if a trial initiated ≥ 12 years ago and its results had not been published or no additional studies were ongoing, this trial program had been discontinued.

The following filters were used for the search in https://www.clinicaltrialsregister.eu: 1) select trial status: completed/ongoing/restarted; 2) age range: children and adolescents; 3) select trial phase: phase two/phase three/phase four; and 4) select date range: 2010–01–01 (with the same reasoning for the cut-off date as mentioned for clinicaltrials.gov).

2.2. Inclusion and exclusion criteria

We included ongoing or completed phase 2 or 3 RCTs, regardless of their level of blinding, assessing pharmacologic agents, dietary supplements or probiotics that had to the best of our knowledge no regulatory approval in the US, Europe (through EMA licensing procedures, not those approved by individual countries through national licensing procedures) or Asia as of 08/23/2022, for mental health conditions in children or adolescents (all participants aged 18 years or less). We also included phase 4 RCTs of agents approved in psychiatry or other areas of medicine but targeting a currently unapproved mental health indication or an age range different from the one in the approval label in children/adolescents.

We focused on RCTs targeting the following mental health conditions (in alphabetical order): ADHD, Anxiety Disorders, ASD, Bipolar Disorder, Conduct Disorder, Oppositional Defiant Disorder, Disruptive Mood Dysregulation Disorder/Intermittent Explosive Disorder, Depressive Disorder (including Major Depressive Disorder), Eating Disorders, Intellectual Developmental Disorder (Intellec
tual and Developmental Disability, IDD), OCD, PTSD (the inclusion of this disorder was post hoc in relation to the protocol), Schizophrenia, and Tourette’s Syndrome, accepting any diagnostic definition reported by the study investigators.

We excluded the following interventions: brain stimulation, digital app-based, and psychosocial interventions, except when they were combined with novel pharmacological/dietary treatments. We also excluded any trial program that was listed in the clinical trials registries as having been discontinued or stopped, and RCTs of agents that were abandoned and are not being pursued further based on information in the public domain.

2.3. Classification of the mechanisms of action of the tested agents

To classify the possible mechanisms of action of the tested agents, we referred whenever possible to the Neuroscience based Nomenclature (NbN) website (https://nbn2r.com/). A version of the NbN is available for medications used in child and adolescent psychiatry, NbN C&A (https://nbnca.com/) (Cortese et al., 2022).

2.4. Assessment of study characteristics

We aimed to present the academic-sponsored versus the industry-funded RCTs, and, with reference to the results of the systematic review of recent/ongoing RCTs of psychotropics in adults by Correll et al. (2023), a comparison between findings in child/adolescent and adults mental disorders, respectively.

2.5. Evaluation of promising compounds

After summarizing the search results, we highlighted those agents and mechanisms of action in each disease category that were considered to be most promising based on the current level of evidence with regard to i) positive phase 2 and/or phase 3 or 4 clinical trials indicating superiori
ty vs. placebo/other control; ii) magnitude of the observed effect, with reference to the benchmarks suggested by Cohen (Cohen, 1988): 0.2: small; 0.5: medium; 0.8: large ESs; iii) demonstration of minimum requirements for safety/tolerability, in terms of lack of severe adverse events as defined by the Food and Drug Administration (FDA), i.e., those: resulting in death, or life threatening, or requiring inpatient hospitalisation or causing prolongation of existing hospitalisation, or resulting in persistent or significant disability/incapacity, or contributing to a congenital anomaly/birth defect, or requiring intervention to prevent permanent impairment or damage; and iv) consistency of findings within a clinical trials program, i.e., positive results across all the RCTs testing the medication.
3. Results

We identified 234 RCTs (Supplemental Table 1). For around 29% of these RCTs (n = 69) results for primary efficacy endpoints with statistical analyses were reported; in the rest (71%, n = 165), results with powered statistical analysis of significance were not available (of these: ongoing trials: 46%, completed trials: 40%, unknown status: 7%, terminated: 4%, not yet recruiting: 3%).

RCTs with positive results on at least one primary outcome (n = 26), and those with negative results on every primary outcome (n = 43) are reported in Tables 1–4, grouped by disorder (in alphabetical order). When available, Tables 1–4 report also data on tolerability, in terms of percentage of participants who dropped out due to adverse events or those who experienced adverse events defined as serious by the study authors, in line with the above-mentioned FDA classification.

Fig. 1 shows the number of positive and negative RCTs for each disorder. Fig. 2 reports a bar graph depicting the number of trials for each condition, indicating the portion of academic sponsored versus industry-funded trials. Mechanisms of action of the compounds assessed in at least five RCTs, by conditions and overall, are reported in Fig. 3. A comparison of the number of adult versus child trials by condition is reported in Fig. 4.

The following sections provide a summary of the efficacy and, when available, tolerability results, from the retrieved RCTs, grouped by disorder, in alphabetical order. Availability of trial results refer to the last full check of the databases (08/23/2022).

3.1. Attention-deficit/hyperactivity disorder (ADHD)

Thirty-nine RCTs were included. Overall, 50% of these RCTs were funded by drug companies, and 50% were sponsored by universities/hospitals. When limiting to RCTs of pharmacological agents, 71% and 29% were funded by drug companies and sponsored universities/hospitals, respectively. Fourteen mechanisms of action were assessed, including 25 compounds. Mechanisms of action of the pharmacological agents assessed in RCTs in ADHD included the following:

1. Inhibition of dopamine and noradrenergic transport and increase in vesicular dopamine release (lisdexamfetamine dimesylate, n = 1; which is approved by the FDA and other regulatory bodies for ≥6-year-olds but the retained RCT tested it in 4–5-year-olds)
2. Inhibition of dopamine and noradrenergic transport (methylphenidate immediate release, n = 2; FDA-approved for children aged ≥6 years old, but tested in one RCT in children aged 3–5 years old and in another RCT to augment Brief Early Intervention + Parent Training + Adolescent CBT; Aptensio extended release (XR) methylphenidate, n = 1; similarly, tested in one RCT in children aged 4–6 years old)
3. Alpha2-noradrenergic receptor agonism (AR08, n = 1)
4. Serotonin, norepinephrine, and dopamine reuptake inhibition (dextroamphetamine, n = 3; centanafadine, n = 2)
5. NMDA-type glutamate receptor antagonism (amantadine, n = 1)
6. Glutamate receptor agonism (fasoracetam, n = 1; note: tested in children/adolescents with ADHD with and without genetic mutation of the metabotropic glutamate receptor)
7. Histaminergic, muscarinic, and serotonergic receptor antagonism (cyproheptadine, n = 1)
8. Glycine transporter I inhibition (GlyT-M, n = 1)
9. Melatonin receptor agonism (melatonin, n = 2; note: for ADHD-related sleep problems and ADHD core symptoms)
10. Acceleration of the metabolic degradation of ethanol and prevents adenosine triphosphate (ATP) inactivation (metadoxine extended-release ER, n = 1)
11. Inhibition of G protein-coupled inwardly-rectifying potassium channels: tipepidine hibenzate (n = 1)
12. Dopaminergic (1/2) receptor antagonism (molindone, n = 3; note: tested for comorbid aggression)
13. We also found a RCT (n = 1) of an agent [Proscepta (MMH-MAP)] tested in Russia for which we could not find any specific information on the mechanism of action.

Other RCTs tested the following: probiotics (n = 3), carnitine, coenzyme Q, as an antioxidant, added to atomoxetine (n = 1), omega-3 fatty acids (n = 3), pyrrolobenzodiazepine (n = 1), superba krill oil (n = 1), tocotrienols (n = 1), vitamin A (n = 1), ginkgo extract (n = 2), and various micronutrients (n = 2).

Available results show the following pharmacological agents were significantly better than placebo/control in terms of improvement of ADHD core symptom severity: dextroamphetamine 4 mg (in one RCT - NCT024280088 (n = 112 on dextroamphetamine 2 mg/day, n = 115 on dextroamphetamine 4 mg/day, n = 116 on placebo) with a mean ES of 0.48 (95% CI not reported) whereas for another RCT - NCT02734693 (n = 20 on dextroamphetamine 6 mg/d; n = 56 on dextroamphetamine 4 mg/d; n = 56 on placebo) results only indicated superiority but ES was not reported) and 2 mg in one RCT (NCT03231800, n = 47 on dextroamphetamine 2 mg/day; n = 47 on placebo) but not in another one (NCT02428008) – of note, the development program of dextroamphetamine for ADHD was halted by the manufacturer in 2020; lisdexamfetamine dimesylate for 4–5-year-olds (5, 10, 20, 30 mg: n = 40, 37, 39 and 39, respectively; placebo: n = 4; ES: 0.43 (95% CI not reported).

As for tolerability, in one study of dextroamphetamine (NCT02428008) discontinuation rates due to adverse events were higher in the dextroamphetamine 4 mg/day arm (12.2%) compared with the 2 mg/day arm (6.3%) and placebo (1.7%). There were no serious adverse events or clinically meaningful changes in blood pressure or heart rate with dextroamphetamine and lisdexamfetamine was generally well tolerated.

Furthermore, one study showed that coenzyme Q was effective when added to atomoxetine (decreasing total ADHD symptom severity on the Conners parent-rating scale by about 34%, vs. 18% in the atomoxetine only group, ES not reported). Finally, in another RCT, treatment with micronutrients improved one of the primary outcomes (the clinical Global Impression Scale-CGI, ES not reported) but not the other primary outcome as labelled by the authors (parents’ rating of ADHD symptoms).

Two (out of three) RCTs of fasoracetam showed no significant effects on the primary outcome (results were not available, yet in the third RCT). Likewise, omega-3 fatty acids were not superior to placebo in the only RCT that reported results.

Results with statistical analyses from the RCTs of the other agents were not available.

3.2. Anxiety disorders

Seven RCTs were retained. Altogether, 29% were funded by drug companies and 71% were sponsored by universities/hospitals. One RCT focused on generalized anxiety disorder exclusively, the others recruited participants with a variety of anxiety disorders (mainly generalized, social and/or separation anxiety disorder). Two mechanisms of action were assessed, including 4 compounds. Mechanisms of action of the compounds assessed in RCTs in anxiety disorders include:

1. Selective serotonin reuptake inhibition (escitalopram, n = 3; sertraline, n = 1; fluoxetine, n = 1; and another RCT comparing fluoxetine, sertraline, or escitalopram to Cognitive Behavioral Therapy (CBT))
2. Norepinephrine (alpha-2) receptor agonism (guanfacine extended release [XR], n = 1)

The RCT of guanfacine XR showed no significant differences in the scores of the exploratory efficacy measures (Pediatric Anxiety Rating Scale [PARS] and Screen for Child Anxiety Related Emotional Disorders [SCARED]) although at endpoint, more participants assigned to...
Table 1
Retrieved RCTs with positive or negative findings for attention-deficit/hyperactivity disorder and anxiety disorders.

<table>
<thead>
<tr>
<th>Compound/Dose</th>
<th>Mechanism of Action</th>
<th>Total n of active arms</th>
<th>Control</th>
<th>Total n subjects</th>
<th>Age range</th>
<th>Trial Duration</th>
<th>Funding/Manufacturer</th>
<th>Phase</th>
<th>NCT/EUDRACT number</th>
<th>Country</th>
<th>Start date</th>
<th>Descriptive Results (primary outcome)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADHD</td>
<td>Coenzyme Q + Atomoxetine, does not specified</td>
<td>2</td>
<td>Placebo + Coenzyme Q</td>
<td>40</td>
<td>2-18</td>
<td>6 months</td>
<td>Sherief Abd-Elsalam, Tanta University</td>
<td>3</td>
<td>NCT04216186</td>
<td>Egypt</td>
<td>November 2018</td>
<td>Superior</td>
<td>Efficacy: CPRS-48 total score improvement in 34% with atomoxetine + CoQ vs. in 18% with atomoxetine + placebo Results in: doi: 10.2174/1871527320666211124093345</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Coenzyme antioxidant + norepinephrine reuptake inhibitor</td>
<td>2</td>
<td>Placebo + Coenzyme Q</td>
<td>40</td>
<td>2-18</td>
<td>6 months</td>
<td>Sherief Abd-Elsalam, Tanta University</td>
<td>3</td>
<td>NCT04216186</td>
<td>Egypt</td>
<td>November 2018</td>
<td>Superior</td>
<td>Efficacy: CPRS-48 total score improvement in 34% with atomoxetine + CoQ vs. in 18% with atomoxetine + placebo Results in: doi: 10.2174/1871527320666211124093345</td>
</tr>
<tr>
<td>Dasotraline (SEP-225289) 2 mg/day; 4 mg/day</td>
<td>Serotonin-norepinephrine-dopamine reuptake inhibitor (SNDRI)</td>
<td>2</td>
<td>Placebo</td>
<td>330</td>
<td>6-12</td>
<td>42</td>
<td>Sunovion</td>
<td>2-3</td>
<td>NCT02428088</td>
<td>USA</td>
<td>April 2015</td>
<td>Superior (4 mg)</td>
<td>Efficacy: Change from baseline in ADHD-RS-IV at week 6: ES (4 mg/d vs. placebo): 0.84 ES (2 mg/d vs. placebo): 0.03 Tolerability: 6.3%, 12.2% and 1.7% participants discontinued due to treatment-emergent AE in the dasotraline 2 mg/day, dasotraline 4 mg/day and placebo arm, respectively Results reported in doi: 10.1089/cap.2018.0083</td>
</tr>
<tr>
<td>Dasotraline 2 mg/day</td>
<td></td>
<td>2</td>
<td>Placebo</td>
<td>95</td>
<td>6-12</td>
<td>15</td>
<td>Sunovion</td>
<td>3</td>
<td>NCT03231800</td>
<td>USA</td>
<td>July 2017</td>
<td>Superior</td>
<td>Efficacy: SKAMP-score at day 15: ES: 1.04 Tolerability: 0 serious AE in both arms</td>
</tr>
<tr>
<td>Dasotraline 4 and 6 mg/day</td>
<td></td>
<td>1</td>
<td>Placebo</td>
<td>132</td>
<td>6-12</td>
<td>15</td>
<td>Sunovion</td>
<td>3</td>
<td>NCT02734693</td>
<td>USA</td>
<td>April 2016</td>
<td>Superior (4 mg/day)</td>
<td>Efficacy: SKAMP-score at day 15: 4 mg/d vs. Placebo p < 0.001 - ES not reported. 6 mg/(\pi)-arm discontinued. Tolerability: 0 serious AE in both dasotraline arms; 1 serious AE (1.7%) in placebo arm In children and adolescents with ADHD and without mGluR mutations Tolerability: 1 (2.94%) and 0 serious AE in fasoracetam and placebo arm, respectively</td>
</tr>
<tr>
<td>Fasoracetam (AEVI-001)</td>
<td>Glutamate receptor agonist</td>
<td>1</td>
<td>Placebo</td>
<td>69</td>
<td>6-17</td>
<td>42</td>
<td>Aevi Genomic Medicine, LLC, a Cerecor company</td>
<td>2</td>
<td>NCT03265119</td>
<td>Part A</td>
<td>USA</td>
<td>August 2017</td>
<td>No effect</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lindexamfetamine dimesylate (SPD489) 5,10,20,30 mg/day</td>
<td>Inhibits dopamine and NE transporters; increases vesicular dopamine release</td>
<td>1</td>
<td>Placebo</td>
<td>199</td>
<td>4-5</td>
<td>42</td>
<td>Shire Takeda</td>
<td>3</td>
<td>NCT03260205</td>
<td>USA</td>
<td>September 2017</td>
<td>Superior</td>
<td>FDA approved in ≥ 6 year-old. This RCT recruited in 4-5 year-old Efficacy: Improvement in ADHD-RS-IV at week 6: ES: 0.43 Tolerability: 0 serious AE in either arm Investigational product is Broad Spectrum Micronutrients; a 36-ingredient blend of vitamins, minerals, amino acids, and antioxidants. Efficacy: CGI-I response in 54% of the</td>
</tr>
<tr>
<td>Micronutrient capsules, dose not specified</td>
<td>Unknown</td>
<td>1</td>
<td>Placebo</td>
<td>135</td>
<td>6-12</td>
<td>112</td>
<td>Oregon Health and Science University</td>
<td>31-1</td>
<td>NCT03252522</td>
<td>USA-Canada</td>
<td>April 2018</td>
<td>Superior on one of the two primary outcomes (continued on next page)</td>
<td></td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>Compound/Dose</th>
<th>Mechanism of Action</th>
<th>Total n of active arms</th>
<th>Control</th>
<th>Total n of subjects</th>
<th>Age range</th>
<th>Trial Duration</th>
<th>Funding/Manufacturer</th>
<th>Phase</th>
<th>NCT/EUDRACT number</th>
<th>Country</th>
<th>Start date</th>
<th>Descriptive Results (primary outcome)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omega-3 Fatty Acids; DHA Richoil 250 mg pearl (DMF srl) twice daily</td>
<td>Alters arachidonic acid metabolism and oxidative reactions</td>
<td>1</td>
<td>Placebo</td>
<td>50</td>
<td>6–14</td>
<td>6 months</td>
<td>IRCCS Eugenio Medea/DMF srl (Dietetic Metabolic Food)</td>
<td>3</td>
<td>NCT01796262</td>
<td>Italy</td>
<td>June 2012</td>
<td>Not superior</td>
<td>Efficacy: Change in ADHD-RS-IV after 6 months: ES = 0.09. Tolerability: No serious AEs in either arms. Results available at: doi: 10.1007/s00787-018-1223-z</td>
</tr>
</tbody>
</table>

ANXIETY DISORDERS

| Guanfacine, 1–6 mg/d | Second generation alpha-2 agonist | 1 | Placebo | 83 | 6–17 | 84 | Shire | 2 | NCT01470469 | USA | January 2012 | Not superior | For generalized, social and/or separation anxiety disorder. Efficacy: No difference in PARS, SCARED, or CGI-I-scores at week 12. ES not reported. Tolerability: In the guanfacine arm, 8 (12.9%) individuals discontinued due to AE (not specified how many in the placebo arm). No serious AEs in either arms. Results in doi: 10.1089/cap.2016.0132 |

Legend: ADHD-RS-IV=ADHD Rating Scale-IV; AE=Adverse event; CGI-I=Clinical Global Impression-Improvement; ES=Effect size; FDA=US Food and Drug Administration; mGluR=Metabotroic glutamate receptor; PARS=Pediatric Anxiety Rating Scale; RCT=Randomized Controlled Trial; SCARED=Screen for Child Anxiety Related Emotional Disorders; SKAMP=Swanson, Kotkin, Agler, M-Flynn, Pelham Rating Scale.
Table 2
Retrieved RCTs with positive or negative findings for autism spectrum disorder.

<table>
<thead>
<tr>
<th>Compound/Dose</th>
<th>Mechanism of Action</th>
<th>Total of active arms</th>
<th>Control</th>
<th>Total n subjects</th>
<th>Age range</th>
<th>Trial Duration</th>
<th>Funding/ Manufacturer</th>
<th>Phase</th>
<th>NCT/EUDRACT number</th>
<th>Country</th>
<th>Start date</th>
<th>Descriptive Results (primary outcome)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bumetanide (S95008), 0.5 mg BID</td>
<td>Decreases the reabsorption of sodium by the kidneys</td>
<td>1</td>
<td>Placebo</td>
<td>211</td>
<td>2-6</td>
<td>6 months</td>
<td>Institut de Recherches Internationales Servier</td>
<td>3</td>
<td>NCT03715153; 2017-004420-30</td>
<td>Multiple</td>
<td>October 2018</td>
<td>Not superior</td>
<td>Efficacy: Childhood Autism Rating Scale, Second Edition (CARS2) total raw score from baseline to 6 months. P-value for group difference p = 0.62. Tolerability: serious AE in 6.54% and 2.88% of participants in bumetanide and placebo arms, respectively</td>
</tr>
<tr>
<td>Bumetanide 0.5 mg/ml, dose not specified</td>
<td></td>
<td>2</td>
<td>Placebo</td>
<td>92</td>
<td>7-15</td>
<td>91</td>
<td>Brain Center Rudolf Magnus, University Medical Center Utrecht</td>
<td>2</td>
<td>2014-001560-35</td>
<td>Netherlands</td>
<td>Not superior</td>
<td>Efficacy: Bumetanide not superior to placebo on the Social Responsiveness Scale (SRS) at 91 days (mean difference -3.16, 95% CI = -9.68 to 3.37, p = 0.338). Tolerability: 2 (4.2%) and 1 (2.2%) patients in the bumetanide and placebo arm, respectively</td>
<td></td>
</tr>
<tr>
<td>Bumetanide 0.5, 1.0 or 2.0 mg BID, or 0.02, 0.04 or 0.08 mg/kg BID if bodyweight < 25 kg.</td>
<td></td>
<td>3</td>
<td>Placebo</td>
<td>91</td>
<td>2-18</td>
<td>6 months</td>
<td>Neurochlore</td>
<td>2</td>
<td>2013-003259-39</td>
<td>France</td>
<td>January 2014</td>
<td>Not superior</td>
<td>Efficacy: Bumetanide not superior to placebo on change in CARS from baseline to Day 90 (ES not reported, group difference p = 0.69). Tolerability: 1 (5%), 1 (4.35%), 2 (9.09%), and 0 serious AE in the bumetanide low, medium, high dose and placebo arms, respectively</td>
</tr>
<tr>
<td>Bumetanide 1 mg/ day</td>
<td></td>
<td>1</td>
<td>Placebo</td>
<td>60</td>
<td>3-10</td>
<td>90</td>
<td>University Hospital, Brest</td>
<td>3</td>
<td>NCT01078714</td>
<td>France</td>
<td>March 2010</td>
<td>Superior</td>
<td>Efficacy: Bumetanide superior, compared to placebo, on change in Child Autism Rating Scale score from day 0 to day 90 (No ES reported, group difference p < 0.0044). Tolerability: 2 (6.6%) patients on bumetanide and 2 (6.6%) on placebo had serious AE. Reported in: doi: 10.1038/tp.2012.124</td>
</tr>
<tr>
<td>D-cycloserine, 50 mg/day</td>
<td>GABA transaminase</td>
<td>1</td>
<td>Placebo</td>
<td>68</td>
<td>5-11</td>
<td>154</td>
<td>Indiana University/United States</td>
<td>3</td>
<td>NCT01086475</td>
<td>USA</td>
<td>March 2010</td>
<td>Not superior at wk 11, but</td>
<td>Efficacy: No change from baseline to week 11 in Social Responsiveness Scale (SRS)</td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>Compound/Dose</th>
<th>Mechanism of Action</th>
<th>Total n of active arms</th>
<th>Total n of subjects</th>
<th>Age range</th>
<th>Trial Duration</th>
<th>Funding/Manufacturer</th>
<th>Phase</th>
<th>NCT/ EUDRACT number</th>
<th>Country</th>
<th>Start date</th>
<th>Results (primary outcome)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>inhibitor and antibiotic</td>
<td>Department of Defense</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>superior at wk 22</td>
<td>compared to placebo (No ES reported, p = 0.45). At wk 22, the difference between groups was significant on the SRS (p = 0.042). Tolerability: 0 and 1 (3%) serious AE in the D-cycloserine and placebo group, respectively. Data reported in DOI: 10.1186/s13229-015-0062-8 and DOI: 10.1186/s13229-017-0116-1.</td>
</tr>
<tr>
<td>Everolimus, 5-10 ng/ml</td>
<td>Kinase inhibitor</td>
<td>1</td>
<td>60</td>
<td>4–15</td>
<td>12 months</td>
<td>Erasmus Medical Center/Utrecht University</td>
<td>2/3</td>
<td>NCT01730209</td>
<td>NL</td>
<td>November 2012</td>
<td>Not superior</td>
<td>Patients with autism, tuberous sclerosis complex and IQ < 80. Efficacy: No benefit on cognitive ability measured by IQ at 12 months (treatment effect −5.6 IQ points, 95%CI: −12.3 to 1.0. Tolerability: 2 (13.3%) patients on everolimus and 2 (11.7%) on placebo discontinued due to AEs. Results reported in doi: 10.1212/WNL.0000000000007749.</td>
</tr>
<tr>
<td>Folinic acid (Folinoral), 10 mg/day</td>
<td>Counteracts the effects of folic acid antagonists and enhance the effects of fluoropyrimidines</td>
<td>1</td>
<td>Placebo</td>
<td>40</td>
<td>3–10</td>
<td>Central Hospital, Nancy, France</td>
<td>2</td>
<td>NCT02551380</td>
<td>France</td>
<td>October 2015</td>
<td>Superior</td>
<td>Efficacy: Greater change in ADOS global score at 12 weeks with folic acid, than with placebo (−2.78 vs. −0.4 points, P = 0.020). Tolerability: no serious AE reported Results in: doi: 10.1016/j.biochi.2020.04.019.</td>
</tr>
<tr>
<td>Guanfacine XR (Intuniv), up to 4 mg/day</td>
<td>Second-generation alpha-2 agonist</td>
<td>1</td>
<td>Placebo</td>
<td>62</td>
<td>5–14</td>
<td>Yale University</td>
<td>4</td>
<td>NCT01238575</td>
<td>USA</td>
<td>Dec 2011</td>
<td>Superior to placebo</td>
<td>Efficacy: superior on the parent-rated Hyperactivity subscale of the Aberrant Behavior Checklist (ABC) at week 8 (ES = 1.4; p < 0.001). Tolerability: 1 (3.3%) and 0 serious AE in the guanfacine and placebo arm, respectively. Results in doi: 10.1089/cap.2006.16.589.</td>
</tr>
<tr>
<td>Compound/Dose</td>
<td>Mechanism of Action</td>
<td>Total n of active arms</td>
<td>Control</td>
<td>Total n subjects</td>
<td>Age range</td>
<td>Trial Duration</td>
<td>Funding/Manufacturer</td>
<td>Phase</td>
<td>NCT/ EUDRACT number</td>
<td>Country</td>
<td>Start date</td>
<td>Descriptive Results (primary outcome)</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>------------------------</td>
<td>---------</td>
<td>------------------</td>
<td>-----------</td>
<td>----------------</td>
<td>----------------------</td>
<td>-------</td>
<td>---------------------</td>
<td>---------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Lurasidone 20 and 60 mg/day daily</td>
<td>Dopamine D2, 5-HT2A, 5-HT7, alpha1C- and alpha2C-adrenoceptor antagonist</td>
<td>2</td>
<td>Placebo</td>
<td>150</td>
<td>6–17</td>
<td>42</td>
<td>Sunovion</td>
<td>3</td>
<td>NCT01911442</td>
<td>USA</td>
<td>August 2013</td>
<td>Not superior Efficacy: Not significant change in Aberrant Behavior Checklist (ABC) Irritability Subscale Score at Week 6 with 60 mg/d (p = 0.36) or 20 mg/d (p = 0.55), compared to placebo. Tolerability: 3 (6.1%), 2 (3.9%) and 0 serious AE in the low dose lurasidone, high dose lurasidone, and placebo arms, respectively Results in doi: 10.1007/s10803-015-2628-x</td>
</tr>
<tr>
<td>Melatonin (NPC-15), 1 mg or 4 mg at bedtime</td>
<td>MT1 and MT2 receptor agonist, 5-HT2C receptor antagonist</td>
<td>2</td>
<td>Placebo</td>
<td>196</td>
<td>6–15</td>
<td>70</td>
<td>Nobelpharma</td>
<td>1–3</td>
<td>NCT02757066</td>
<td>Japan</td>
<td>June 2016</td>
<td>Superior at dose of 4 mg. No results available for 1 mg arm. Efficacy: Significant shortening of sleep onset latency by electronic sleep diary at week 2 with 4 mg/d, compared to placebo (No ES reported, p < 0.0001). Tolerability: all treatment-emergent AE were mild Results in doi: 10.1186/s12888-020-02847-9</td>
</tr>
<tr>
<td>Memantine, full dose vs reduced dose. Full dose: 3–15 mg/day dependent on bodyweight. Reduced dose: 3–6 mg/day</td>
<td>Glutamate receptor antagonist</td>
<td>2</td>
<td>Placebo</td>
<td>479</td>
<td>6–12</td>
<td>84</td>
<td>Forest Laboratories</td>
<td>2</td>
<td>NCT01592747; 2012-001568-31</td>
<td>USA</td>
<td>September 2012</td>
<td>Not superior Efficacy: No significant difference in (A) Change in Developmental Neuropsychological Assessment (NEPSY) Apraxia and Repetition of Nonense Words Subtests from baseline to weeks 12 and 24, and (B) change in Expressive Vocabulary Test (EVT) from baseline to weeks 12 and 24 (continued on next page)</td>
</tr>
<tr>
<td>Memantine from 3 mg to 12 mg/day</td>
<td></td>
<td>1</td>
<td>Placebo</td>
<td>23</td>
<td>6–12</td>
<td>168</td>
<td>Icahn School of Medicine at Mount Sinai</td>
<td>Rush University Medical Center</td>
<td>Nationwide Children's Hospital</td>
<td>2</td>
<td>NCT01372449</td>
<td>USA</td>
</tr>
</tbody>
</table>
Table 2 (continued)

<table>
<thead>
<tr>
<th>Compound/Dose</th>
<th>Mechanism of Action</th>
<th>Total n of active arms</th>
<th>Control Total n of subjects</th>
<th>Age range</th>
<th>Trial Duration</th>
<th>Funding/Manufacturer</th>
<th>Phase</th>
<th>NCT/ EUDRACT number</th>
<th>Country</th>
<th>Start date</th>
<th>Descriptive Results (primary outcome)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metformin, 250 mg once daily- 850 mg twice daily</td>
<td>Inhibits mitochondrial respiratory chain; activates AMP-activated protein kinase</td>
<td>1</td>
<td>Placebo 60</td>
<td>6-17</td>
<td>112</td>
<td>Massachusetts General Hospital</td>
<td>Vanderbilt University, University of Pittsburgh, Nationwide Children’s Hospital, Ohio State University</td>
<td>3</td>
<td>NCT01825798</td>
<td>USA-Canada</td>
<td>April 2013</td>
<td>Superior to placebo</td>
</tr>
<tr>
<td>Methylcobalamin (Methyl B12) 75 µg/Kg subcutaneously injected once every 3 days</td>
<td>Enhances myelin production</td>
<td>1</td>
<td>Placebo 57</td>
<td>3-7</td>
<td>56</td>
<td>University of California, San Francisco</td>
<td>1-3</td>
<td>NCT01039792</td>
<td>USA</td>
<td>January 2010</td>
<td>Superior to placebo</td>
<td>Efficacy: 1 (3.1%) serious AE with placebo Results in doi: 10.1001/jamapsychiatry.2016.1232</td>
</tr>
<tr>
<td>Mirtazapine, up to 15 mg/week</td>
<td>Antagonist of alpha 2 A, alpha 2B, and alpha 2 C adrenergic receptors, serotonergic 5-HT 2a and 2 C receptors, and histamine H1 receptors</td>
<td>1</td>
<td>Placebo 30</td>
<td>5-17</td>
<td>70</td>
<td>Massachusetts General Hospital, Autism Speaks</td>
<td>3</td>
<td>NCT01302964</td>
<td>USA</td>
<td>August 2010</td>
<td>Not superior</td>
<td>Efficacy: Non-significant decreases in (A) Mean 10-Week Change in Pediatric Anxiety Rating Scale 5-item Total Score (ES=−0.64, p = 0.63), and (B) Proportion of Participants who responded to treatment at 10 Weeks According to the Improvement Item of the Clinical Global Impression-Scale (Response Defined as CGI-I=1 or CGI-I=2 (47% vs. 29%), Tolerability: no serious AE in either arms. Results in doi: 10.1038/s41386-022-01295-4</td>
</tr>
<tr>
<td>Omega-3 fatty acids (Nutra Sea HP), 1.5 g of EPA + DHA daily</td>
<td>Alters arachidonic acid metabolism and oxidative reactions</td>
<td>1</td>
<td>Placebo 38</td>
<td>2-5</td>
<td>168</td>
<td>Holland Blooreview Kids Rehabilitation Hospital, The Hospital for Sick Children</td>
<td>2</td>
<td>NCT01248728</td>
<td>Canada</td>
<td>November 2010</td>
<td>No effect</td>
<td>Efficacy: There was no significant difference between groups on the 0- to 24-week change in Pervasive Developmental Disorders Behavioral Inventory (continued on next page)</td>
</tr>
<tr>
<td>Compound/Dose</td>
<td>Mechanism of Action</td>
<td>Total n of active arms</td>
<td>Control</td>
<td>Total n of subjects</td>
<td>Age range</td>
<td>Trial Duration</td>
<td>Funding/Manufacturer</td>
<td>Phase</td>
<td>NCT/ EUDRACT number</td>
<td>Country</td>
<td>Start date</td>
<td>Descriptive Results (primary outcome)</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>---------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>---------</td>
<td>------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Omega 3 fatty acids (Coromega), 1.3 g (1.1 g of DHA + EPA)</td>
<td></td>
<td>1</td>
<td>Placebo</td>
<td>57</td>
<td>5-8</td>
<td>42</td>
<td>Hugo W. Moser Research Institute at Kennedy Krieger, Inc.</td>
<td>2</td>
<td>NCT01694667</td>
<td>USA</td>
<td>September 2012</td>
<td>Not superior</td>
</tr>
<tr>
<td>Omega 3-6 fatty acids, 50 mg/kg, 100 mg/kg, or 150 mg/kg of gamma-linoleic acid (GLA) + eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA)</td>
<td></td>
<td>3</td>
<td>Placebo</td>
<td>72</td>
<td>2-6</td>
<td>90</td>
<td>National Center for Complementary and Integrative Health (NCCIH)</td>
<td>2</td>
<td>NCT03550209</td>
<td>USA</td>
<td>June 2018</td>
<td>N/A</td>
</tr>
<tr>
<td>Oxytocin, 8-80 IU/day</td>
<td>Hormonal activity</td>
<td>1</td>
<td>Placebo</td>
<td>290</td>
<td>3-17</td>
<td>168</td>
<td>Institute of Child Health and Human Development (NICHD)/Duke University</td>
<td>2</td>
<td>NCT01944046</td>
<td>USA</td>
<td>August 2014</td>
<td>Not superior</td>
</tr>
</tbody>
</table>
Table 2 (continued)

<table>
<thead>
<tr>
<th>Compound/Dose</th>
<th>Mechanism of Action</th>
<th>Total n of active arms</th>
<th>Control Total n of subjects</th>
<th>Age range</th>
<th>Trial Duration</th>
<th>Funding/ Manufacturer</th>
<th>Phase</th>
<th>NCT/EUDRACT number</th>
<th>Country</th>
<th>Start date</th>
<th>Descriptive Results (primary outcome)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxytocin 24IU BID (3 × 0.1 ml [4IU])</td>
<td></td>
<td>1</td>
<td>Placebo 54</td>
<td>6–12</td>
<td>28</td>
<td>Stanford University</td>
<td>2</td>
<td>NCT01624194</td>
<td>USA</td>
<td>June 2012</td>
<td>Superior</td>
<td>Primary endpoint: Change From Baseline in Parent Rated Social Responsiveness Scale (SRS) Scores from baseline to week 4 (No ES reported, p = 0.028). Tolerability: no serious adverse events in either arm. Results in doi: 10.1073/pnas.1705521114</td>
</tr>
<tr>
<td>Oxytocin (Syntocinon) 12 IU BID intranasally.</td>
<td></td>
<td>1</td>
<td>Placebo 80</td>
<td>8–12</td>
<td>56</td>
<td>University Hospital Leuven / KU Leuven</td>
<td>31–1</td>
<td>2018–000769–35</td>
<td>Belgium</td>
<td></td>
<td>Not superior</td>
<td>Efficacy: No significant change in parent-reported social responsivess (No ES reported, p = 0.63). Tolerability: serious AE in 0% and 10% of participants in oxytocin and placebo arms.</td>
</tr>
<tr>
<td>Sertraline 2.5 or 5 mg/day</td>
<td>SSRI</td>
<td>1</td>
<td>Placebo 58</td>
<td>24–72 (Months)</td>
<td>6 months</td>
<td>Health Resources and Services Administration (HRSA) / University of California, Davis</td>
<td>2</td>
<td>NCT02385799</td>
<td>USA</td>
<td>April 2015</td>
<td>Not superior</td>
<td>Efficacy: No significant (A) Change in Mullen Scales of Early Learning - Expressive Language Raw Score from baseline six-month visit (p = 0.55), and (B) Change in Mullen Scales of Early Learning - Combined Age Equivalent Score from baseline visit to six-month visit (p = 0.30). No ES reported. Tolerability: serious AE in 3.13% and 0% of participants in sertraline and placebo arms. Results in doi: 10.3389/fpsyt.2019.00810</td>
</tr>
<tr>
<td>Simvastatin, 0.5–1 mg/kg/day, maximum dose 30 mg/day.</td>
<td>HMG-CoA reductase inhibitor</td>
<td>1</td>
<td>Placebo 34</td>
<td>5–8</td>
<td>112</td>
<td>Central Manchester University Hospitals NHS Foundation Trust</td>
<td>2</td>
<td>2012–005742–38</td>
<td>UK</td>
<td></td>
<td>Well tolerated but study not powered to test effectiveness</td>
<td>Autism in young children with neurofibromatosis type 1. Efficacy: Study not powered to test effectiveness. Tolerability: No serious AE leading to discontinuation either arm. Results in: doi:10.1186/s12329-018-0190-z</td>
</tr>
</tbody>
</table>
| Sulforaphane, dose by bodyweight (30–50 lb 45 µmol/day, 50–70 lb 60 µmol/day, 70–90 lb 90 µmol/day. | Antioxidant activity | 1 | Placebo 60 | 3–12 | 252 | University of Massachusetts, Worcester, Congressionally Directed Medical Research Programs, Johns Hopkins | 31–1 | NCT02561481 | USA | December 2015 | Not superior | Efficacy: Change in Ohio Autism Clinical Impressions Scale - Improvement (OACIS-I) Average Score from baseline to weeks 7, 15, 22, 30 and 36 (ES–0.21, 0.10, 0.00, -0.14, and 0.26, (continued on next page)
Table 2 (continued)

<table>
<thead>
<tr>
<th>Compound/Dose</th>
<th>Mechanism of Action</th>
<th>Total n of active arms</th>
<th>Control</th>
<th>Total n subjects</th>
<th>Age range</th>
<th>Trial Duration</th>
<th>Funding/Manufacturer</th>
<th>Phase</th>
<th>NCT/EUDRACT number</th>
<th>Country</th>
<th>Start date</th>
<th>Descriptive Results (primary outcome)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>90–110 lb 105 µmol/day, 110–130 lb 120 µmol/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hopkins University</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suramin, 20 mg/kg IV single dose</td>
<td>Antimalarial</td>
<td>1</td>
<td>Placebo</td>
<td>10</td>
<td>4–17</td>
<td>42</td>
<td>University of California, San Diego</td>
<td>1</td>
<td>2</td>
<td>NCT02508259</td>
<td>USA</td>
<td>May 2015</td>
<td>Superior on one of the two primary outcomes</td>
</tr>
</tbody>
</table>
Table 3
Retrieved RCTs with positive or negative findings for bipolar disorder, depressive disorders and eating disorders.

<table>
<thead>
<tr>
<th>Compound/Dose</th>
<th>Mechanism of Action</th>
<th>Total n of active arms</th>
<th>Control</th>
<th>Total n subjects</th>
<th>Age range</th>
<th>Trial Duration</th>
<th>Funding/Manufacturer</th>
<th>Phase</th>
<th>NCT/ EUDRACT number</th>
<th>Country</th>
<th>Start date</th>
<th>Descriptive Results (primary outcome)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIPOLAR DISORDER</td>
<td>Inositol 80 mg/kg and Omega-3 Fatty Acids (975 mg eicosapentaenoic acid and 675 mg docosahexaenoic acid)</td>
<td>3</td>
<td>3 Active comparator arms; Omega-3 + Placebo, Inositol + Placebo and Omega-3 + Inositol.</td>
<td>69</td>
<td>5–12</td>
<td>84</td>
<td>Massachusetts General Hospital</td>
<td>4</td>
<td>NCT01396486</td>
<td>USA</td>
<td>February 2012</td>
<td>Superior</td>
<td>In participants with a DSM-IV diagnosis of a bipolar spectrum disorder (type I, II, or Not Otherwise Specified (NOS). Efficacy: Subjects randomized to the omega-3 fatty acids plus inositol arm had the largest score decrease at 12 weeks in the Young Mania Rating Scale (p < .05) and the Children’s Depression Rating Scale (p < .05). Tolerability: 1 (5.0%), 1 (5.26%) and 0 serious AE in the omega-3/placebo, placebo/inositol, and omega-3/inositol arm, respectively. Result available in: doi: 10.4088/JCP.14m09267</td>
</tr>
</tbody>
</table>
| **Lithium, variable dose** | Inhibition of inositol monophosphatase, adenyl-cyclase, GMP, glycogen synthase kinase 3, increasing activity of serotonin and acetylcholine; modulator of intracellular signalling cascade | 1 | Placebo | 81 | 7–17 | Not specified, minimum 17 months. | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) | 1–3 | NCT01166425 | USA | June 2010 | Superior | In participants with manic or mixed episodes of bipolar I disorder FDA approved for adolescents aged 12–17; here: 7–17 years. Efficacy: Change from baseline to 8 weeks in the Young Mania Rating Scale (YMRS) score, based on last-observation-carried-forward analysis was significantly larger in the lithium group (5.51 [95% confidence interval: 0.51–10.50]) after adjustment for baseline YMRS score, age group, weight group, gender, and study site (p = 0.03). Tolerability: No participants discontinued due to AE. Results in doi: 10.1542/ (continued on next page)
<table>
<thead>
<tr>
<th>Compound/Dose</th>
<th>Mechanism of Action</th>
<th>Total n of active arms</th>
<th>Control</th>
<th>Total n subjects</th>
<th>Age range</th>
<th>Trial Duration</th>
<th>Funding/Manufacturer</th>
<th>Phase</th>
<th>NCT/ EUDRACT number</th>
<th>Country</th>
<th>Start date</th>
<th>Descriptive Results (primary outcome)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPRESSIVE DISORDERS</td>
<td></td>
</tr>
<tr>
<td>Agomelatine, 10 and 25 mg/day</td>
<td>Agonist at melatonin receptors and an antagonist at serotonin-2 C (5-HT2C) receptors</td>
<td>3</td>
<td>Placebo</td>
<td>484</td>
<td>7-18</td>
<td>84</td>
<td>Institut de Recherche International Servier</td>
<td>3</td>
<td>2015-002181-23</td>
<td>Multiple</td>
<td>February 2016</td>
<td>10 mg/day: Not superior 25 mg/day: superior</td>
<td>Additional active arm: fluoxetine 10-20 mg/day. Efficacy: 25 mg/day agomelatine resulted in an improvement versus placebo (n = 101) in CDRS-R raw score of 4.22 (95% CI 0.63-7.82; p = 0.040) at 12 weeks, with a similar effect for fluoxetine, establishing assay sensitivity. The overall effect was confirmed in adolescents but not in children. Tolerability: Serious treatment-emergent AE in 6 (5.8%) patients on 10 mg agomelatine, 3 (3.1%) on 25 mg agomelatine, and 7 (0.7%) fluoxetine. Results also in DOI: 10.1089/cap.2017.0099</td>
</tr>
<tr>
<td>Desvenlafaxine sustained release (DVS SR), 25, 35, or 50 mg/day</td>
<td>Serotoninergic and norepinephrinergic reuptake inhibitor</td>
<td>1</td>
<td>Placebo</td>
<td>363</td>
<td>7-17</td>
<td>56</td>
<td>Pfizer</td>
<td>3</td>
<td>NCT01371734; 2008-001875-32</td>
<td>Multiple</td>
<td>August 2011</td>
<td>Not superior</td>
<td>Tolerability: 2 (1.6%) patients in the desvenlafaxine 25 mg arm reported serious AE. Results available also in doi: 10.1089/cap.2017.0099 Additional active arm: fluoxetine Tolerability: serious AE in 1.79% and 0% of participants in fluoxetine and placebo arms, respectively.</td>
</tr>
<tr>
<td>Desvenlafaxine sustained release (DVS SR), 25, 35, or 50 mg/day</td>
<td>Serotoninergic and norepinephrinergic reuptake inhibitor</td>
<td>2</td>
<td>Placebo</td>
<td>340</td>
<td>7-17</td>
<td>56</td>
<td>Pfizer</td>
<td>3</td>
<td>NCT01372150</td>
<td>Multiple</td>
<td>November 2011</td>
<td>Not superior</td>
<td></td>
</tr>
<tr>
<td>Duloxetine, dose not specified</td>
<td>Serotoninergic and norepinephrinergic reuptake inhibitor</td>
<td>1</td>
<td>Placebo</td>
<td>149</td>
<td>9-17</td>
<td>42</td>
<td>Shionogi</td>
<td>3</td>
<td>NCT03315793</td>
<td>Japan</td>
<td>December 2017</td>
<td>Not superior</td>
<td>Tolerability: no serious AE in either arm.</td>
</tr>
</tbody>
</table>
Table 3 (continued)

<table>
<thead>
<tr>
<th>Compound/Dose</th>
<th>Mechanism of Action</th>
<th>Total of active arms</th>
<th>Control</th>
<th>Total n subjects</th>
<th>Age range</th>
<th>Trial Duration</th>
<th>Funding/Manufacturer</th>
<th>Phase</th>
<th>NCT/EUDRACT number</th>
<th>Country</th>
<th>Start date</th>
<th>Descriptive Results (primary outcome)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levomilnacipran, 10, 20, and 40 mg/day</td>
<td>Norepinephrinergic and serotoninergic reuptake inhibitor</td>
<td>2</td>
<td>Placebo</td>
<td>501</td>
<td>7-17</td>
<td>56</td>
<td>Allergan</td>
<td>3</td>
<td>NCT03569475</td>
<td>USA</td>
<td>July 2018</td>
<td>Not superior</td>
<td>Tolerability: no serious AE in either arm. Results also in doi: 10.1176/appi.ajp.2020.20010018</td>
</tr>
<tr>
<td>Levomilnacipran, 40 mg/day</td>
<td></td>
<td>2</td>
<td>Placebo</td>
<td>552</td>
<td>12-17</td>
<td>56</td>
<td>Forest Laboratories</td>
<td>3</td>
<td>NCT02431806</td>
<td>USA</td>
<td>June 2015</td>
<td>Not superior</td>
<td>Tolerability: Serious treatment-emergent AE in 1 (0.60%) of patients on levomilnacipran and 1 (0.63%) patients on placebo. Additional active arm: fluoxetine.</td>
</tr>
<tr>
<td>Vilazodone, 5, 10, 20 mg/day</td>
<td>Serotoninergic modulator</td>
<td>2</td>
<td>Placebo</td>
<td>473</td>
<td>7-17</td>
<td>56</td>
<td>Forest Laboratories</td>
<td>3</td>
<td>NCT02372799</td>
<td>USA-Canada</td>
<td>February 2015</td>
<td>Not superior</td>
<td>Tolerability: Serious treatment-emergent AE in 6 (6.19%) of patients on fluoxetine, 0 patients on vilazodone, and 1 (0.54%) of patients on placebo. Additional active arm: fluoxetine.</td>
</tr>
<tr>
<td>Vilazodone, 15 and 30 mg/day</td>
<td></td>
<td>2</td>
<td>Placebo</td>
<td>529</td>
<td>12-17</td>
<td>56</td>
<td>Forest Laboratories</td>
<td>3</td>
<td>NCT01878292</td>
<td>USA</td>
<td>July 2013</td>
<td>Not superior</td>
<td>Tolerability: Serious treatment-emergent AE in 3 (1.67%) of patients on vilazodone 30 mg/day, 2 (1.14%) patients on vilazodone 15 mg/day, and 1 (0.58%) of midazolam (MADRS score: midazolam, mean=24.13, SD=12.08, 95% CI=18.21, 30.04; ketamine, mean=15.44, SD=10.07, 95% CI=10.51, 20.37; mean difference=−8.69, SD=15.08, 95% CI=−16.72, −0.65, df=15; effect size=−0.78). Tolerability: no serious AE in either arm. Results also in doi: 10.1176/appi.ajp.2020.20010018 (continued on next page)</td>
</tr>
</tbody>
</table>
Table 3 (continued)

<table>
<thead>
<tr>
<th>Compound/Dose</th>
<th>Mechanism of Action</th>
<th>Total of active arms</th>
<th>Control</th>
<th>Total n subjects</th>
<th>Age range</th>
<th>Trial Duration</th>
<th>Funding/Manufacturer</th>
<th>Phase</th>
<th>NCT/EUDRACT number</th>
<th>Country</th>
<th>Start date</th>
<th>Descriptive Results (primary outcome)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vortioxetine, 10 and 20 mg/day</td>
<td>Serotoninergic modulator</td>
<td>3</td>
<td>Placebo</td>
<td>683</td>
<td>7–11</td>
<td>84</td>
<td>H. Lundbeck A/S, Takeda</td>
<td>3</td>
<td>NCT02709655; 2008-005353-38</td>
<td>Multiple</td>
<td>May 2016</td>
<td>Not superior</td>
<td>Results in doi: 10.1007/s40272-018-0290-4 Additional active arm: fluoxetine 20 mg/day. Tolerability: Serious treatment-emergent AE in 1 (0.66%) of patients on vortioxetine 10 mg/day, 2 (1.31%) patients on vortioxetine 20 mg/day, 1 (1.20%) on fluoxetine 20 mg/day, and 3 (1.96%) of patients on placebo.</td>
</tr>
<tr>
<td>Vortioxetine, 10 and 20 mg/day</td>
<td></td>
<td>3</td>
<td>Placebo</td>
<td>784</td>
<td>12–17</td>
<td>56</td>
<td>H. Lundbeck A/S, Takeda</td>
<td>3</td>
<td>NCT02709746; 2008-005354-20</td>
<td>Multiple</td>
<td>February 2016</td>
<td>Not superior</td>
<td>Results in doi: 10.1016/j.jaamc.2022.01.004 Additional active arm: fluoxetine 20 mg/day. Tolerability: Serious treatment-emergent AE in 4 (2.72%) of patients on vortioxetine 10 mg/day, 7 (4.35%) patients on vortioxetine 20 mg/day, 3 (1.96%) on fluoxetine 20 mg/day, and 1 (0.65%) of patients on placebo.</td>
</tr>
<tr>
<td>EATING DISORDERDS</td>
<td></td>
</tr>
<tr>
<td>Somatropin, 0.05 mg/kg/day</td>
<td>Growth hormone</td>
<td>1</td>
<td>Placebo</td>
<td>15</td>
<td>8–16,9</td>
<td>2 years</td>
<td>Robert Debré Hospital, Paris</td>
<td>2–3</td>
<td>NCT01626833; 2010-018560-16</td>
<td>France</td>
<td>March 2013</td>
<td>Superior (greater increase in height than placebo group)</td>
<td>In anorexia nervosa. Efficacy: Increase in height at 6 months $p = 0.045$ (ES not reported). Tolerability: No participants discontinued due to AE. Results in DOI: 10.1210/clinem/dgab203</td>
</tr>
</tbody>
</table>
Table 4
Retrieved RCTs with positive or negative findings for intellectual and developmental disability, obsessive-compulsive disorder, schizophrenia, Tourette’s syndrome, and PTSD.

<table>
<thead>
<tr>
<th>Drug/Dose</th>
<th>Mechanism of Action</th>
<th>Total n of active arms</th>
<th>Control Total n subjects</th>
<th>Age range</th>
<th>Trial Duration</th>
<th>Funding/Manufacturer</th>
<th>Phase</th>
<th>NCT/ EUDRACT number</th>
<th>Country</th>
<th>Start date</th>
<th>Descriptive Results (primary outcome)</th>
<th>Comments</th>
</tr>
</thead>
</table>
| **INTELLECTUAL and DEVELOPMENTAL DISABILITY**
| AFQ056, 25, 50 or 100 mg BID | mGluR5 negative modulator | 3 | Placebo 139 | 12-17 | 84 | Novartis Pharmaceuticals | 2 | NCT01357239; 2010-022638-96 | Multiple | May 2011 | Not superior In patients with Fragile X syndrome. Efficacy: Results available, but no calculation of statistical significance. Tolerability: (adolescent group): 1 (3.2%) participant in the mavoglurant group and 1(2.3%) in the placebo group experienced serious AE. Results in doi: 10.1126/scitranslmed.aab4109 | | |
| Cannabidiol (ZYN002) transdermal gel, 250 mg/day if bodyweight < 35 kg, otherwise 500 mg/day | Binds to CB1 and CB2 receptors of the endocannabinoid system; activates 5-HT1A serotonergic and TRPV1–2 vanilloid receptors | 1 | Placebo 212 | 3–17 | 84 | Zynex Pharmaceuticals, Inc. | 1–3 | NCT03614663 | Multiple | June 2018 | Not superior for the full analysis subset, but superior for the ad hoc analysis subset. In patients with Fragile X syndrome. Efficacy: Change at week 12 in the Aberrant Behavior Checklist-Community Fragile X Factor Structure (ABC-C FXS) Social Avoidance Subscale – Ad Hoc Analysis, p = 0.02. Significance was not demonstrated in the other primary endpoint, Aberrant Behavior Checklist-Community Fragile X Factor Structure (ABC-C FXS) Social Avoidance Subscale - Full Analysis Set. Tolerability: no serious AE in either arm. | |
| Carbetocin, FE 992097 (LV-101), 3.2 or 9.6 mg three times a day intranasally. | Long-acting synthetic oxytocin analogue | 2 | Placebo 130 | 7–18 | 56 | Levo Therapeutics, Inc. | 3 | NCT03649477 | Multiple | November 2018 | Superior at 3.2 mg TDS for hyperphagia endpoint only. 9.6 mg TDS not superior for either endpoint. In patients with Prader-Willi syndrome. Efficacy: Change in Hyperphagia Questionnaire for Clinical Trials (HQ-CT) at eight weeks demonstrated significance for Carbetocin 3.2 mg TDS, p = 0.0162, Mean difference = –3.136 (2-sided 95% CI 5.685 to −0.586). Significance not demonstrated for the higher dose or for the other primary endpoint (Children’s Yale-Brown Obsessive-Compulsive Scale (CY-BOCS) from baseline at 8 weeks). Tolerability: no serious AE across arms. | |
| Carbetocin, FE 992097, dose not specified | | 1 | Placebo 38 | 10–18 | 15 | Ferring Pharmaceuticals | 2 | NCT01968187 | USA | January 2014 | Superior | In patients with Prader-Willi syndrome. Efficacy: Change in total hyperphagia score at day 15. (continued on next page) | |

(continued on next page)
<table>
<thead>
<tr>
<th>Drug/Dose</th>
<th>Mechanism of Action</th>
<th>Total n of active arms</th>
<th>Control</th>
<th>Total n subjects</th>
<th>Age range</th>
<th>Trial Duration</th>
<th>Funding/Manufacturer</th>
<th>Phase</th>
<th>NCT/EUDRACT number</th>
<th>Country</th>
<th>Start date</th>
<th>Descriptive Results (primary outcome)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dextromethorphan, 5 mg/kg.day</td>
<td>NMDA receptor antagonist</td>
<td>1</td>
<td>Placebo</td>
<td>57</td>
<td>1–10</td>
<td>3 months</td>
<td>Hugo W. Moser Research Institute at Kennedy Krieger, Inc.</td>
<td>2</td>
<td>NCT01520363</td>
<td>USA</td>
<td>March 2012</td>
<td>Not superior</td>
<td>In patients with Rett syndrome who are MECP2 mutation positive. Tolerability: no serious AE across arms. Results in doi: 10.1172/jci.insight.98333</td>
</tr>
<tr>
<td>Everolimus, 5–10 ng/ml</td>
<td>Kinase inhibitor</td>
<td>1</td>
<td>Placebo</td>
<td>60</td>
<td>4–15</td>
<td>12 months</td>
<td>Erasmus Medical Center</td>
<td>Utrecht University</td>
<td>2</td>
<td>NCT01730209</td>
<td>Netherlands</td>
<td>November 2012</td>
<td>Not superior</td>
</tr>
<tr>
<td>Ganaxolone (GNX, also known as GNX OS), 3–12 mg/kg, maximum 1500 mg/day.</td>
<td>Positive allosteric GABA-A modulation</td>
<td>2</td>
<td>Placebo, crossover trial.</td>
<td>59</td>
<td>6–17</td>
<td>98</td>
<td>Marinus Pharmaceuticals</td>
<td>2</td>
<td>NCT01725152; 2014–000251–89</td>
<td>Multiple</td>
<td>November 2012</td>
<td>Not superior</td>
<td>In patients with Fragile X syndrome for the treatment of anxiety and attention. Primary endpoint: improvement in Clinical Global Impression (CGI-I). Tolerability: no serious AE were reported. Results available in doi: 10.1186/s11689-017-9207-8</td>
</tr>
<tr>
<td>Idursulfase, 10 mg/month intrathecally</td>
<td>Iduronate-2-sulfatase enzyme replacement</td>
<td>1</td>
<td>Standard of care (weekly IV Elaprase)</td>
<td>52</td>
<td>up to 18</td>
<td>364</td>
<td>Shire, Takeda</td>
<td>1–3</td>
<td>NCT02055118</td>
<td>Multiple</td>
<td>March 2014</td>
<td>Not superior</td>
<td>In patients with Hunter Syndrome and early cognitive impairment. Tolerability: serious E in 12 (36.36%) n active treatment and 2 (13.3%) on control treatment. Results available in DOI: 10.1016/j.jmgme.2022.07.017 and DOI: 10.1016/j.jmgme.2022.07.016</td>
</tr>
</tbody>
</table>
| Lovastatin, 10–40 mg/day | HMG-CoA reductase inhibitor | 1 | Placebo | 30 | 10–17 | 140 | University of California, Davis | 4 | NCT02642653 | USA | January 2016 | Not superior | In patients with Fragile X syndrome. Primary endpoints are expressive language sample composite scores in the home at baseline and 20 weeks. Both arms also received the behavioural treatment, Parent Implemented Language Intervention (PILI). Unclear whether statistical analysis performed, but publication states there was no difference between arms. Tolerability: 2 (12.5%) on active treatment discontinued due to AE. (continued on next page)
Table 4 (continued)

<table>
<thead>
<tr>
<th>Drug/Dose</th>
<th>Mechanism of Action</th>
<th>Total n of active arms</th>
<th>Control</th>
<th>Total n subjects</th>
<th>Age range</th>
<th>Trial Duration</th>
<th>Funding/Manufacturer</th>
<th>Phase</th>
<th>NCT/EUDRACT number</th>
<th>Country</th>
<th>Start date</th>
<th>Descriptive Results (primary outcome)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxytocin (Syntocinon) 16 IU/day intranasally</td>
<td>Hormonal activity</td>
<td>1</td>
<td>Placebo</td>
<td>23</td>
<td>5–18</td>
<td>56</td>
<td>Montefiore Medical Center</td>
<td>2</td>
<td>NCT02629991</td>
<td>USA</td>
<td>October 2015</td>
<td>Superior for Hyperphagia Questionnaire (HQ)- Drive Factor Score. No superiority for other primary endpoints.</td>
<td>In patients with Prader-Willi syndrome. Four primary endpoints, 1. Hyperphagia Questionnaire (HQ)- Total Score, 2. Hyperphagia Questionnaire (HQ)- Behavior Factor Score, 3. Hyperphagia Questionnaire (HQ)- Drive Factor Score, 4. Hyperphagia Questionnaire (HQ)- Severity Factor Score. Efficacy demonstrated only for HQ-Drive Factor Score, p = 0.027. Tolerability: No serious AE in either group. Results also in doi: 10.1186/s11689-020-09315-4.</td>
</tr>
<tr>
<td>Oxytocin (Syntocinon) 4 IU/day intranasally</td>
<td></td>
<td>1</td>
<td>Placebo</td>
<td>15</td>
<td>1 Week to 6 Months</td>
<td>5</td>
<td>University of Florida</td>
<td>3–1</td>
<td>NCT03245762</td>
<td>USA</td>
<td>August 2017</td>
<td>Not superior</td>
<td>In patients with Prader-Willi syndrome. Primary endpoint is Suck and Swallow Competency in Infants/Children With PWS Who Are in Nutritional Phase 1a. Tolerability: No serious AE in either group.</td>
</tr>
<tr>
<td>Thyroxine 25 mcg/day + Folinic acid 5 mg/day</td>
<td>Hormone</td>
<td>3</td>
<td>Three comparator arms: 1. Placebo, 2. Thyroxine + Placebo, 3. Folinic acid + Placebo.</td>
<td>175</td>
<td>6–18 (Months)</td>
<td>12 months</td>
<td>Institut Jerome Lejeune</td>
<td>3</td>
<td>NCT01576705</td>
<td>France</td>
<td>April 2012</td>
<td>Not superior</td>
<td>In patients with Down Syndrome. Efficacy: Primary outcome is Griffiths Mental Development Scale score at 12 months: Difference (Thyroxine + folic acid vs. placebo) 1.24; p = 0.38. Tolerability: 1 (2.33%) serious AE in the thyroxin–folic acid arm, none in the other arms. Results available in doi: 10.1038/s41436-019-0597-8.</td>
</tr>
<tr>
<td>OBSSESSIVE COMPULSIVE DISORDER</td>
<td></td>
</tr>
<tr>
<td>D-Cycloserine, dose not specified GABA transaminase inhibitor and antibiotic</td>
<td></td>
<td>2</td>
<td>Placebo</td>
<td>142</td>
<td>7–17</td>
<td>70</td>
<td>University of South Florida</td>
<td>3</td>
<td>NCT01411774</td>
<td>USA</td>
<td>June 2011</td>
<td>Not superior</td>
<td>Additional active arm: CBTD -Cycloserine to Augment CBT. Efficacy: ES 0.31–0.47 Tolerability: no (serious) AE Results also in 10.1016/j.biopsych.2010.07.015. Approved for use in 8 years and older, trial recruits from age 6–18. Efficacy: Change in CY-YBOCS at week 10: Mean difference – 4.5; p = 0.044 Tolerability: 1 (6.67%) participant with serious AE in the second phase, placebo/fluvoxamine arm,</td>
</tr>
<tr>
<td>Fluvoxamine 25–150 mg/day SSRI</td>
<td></td>
<td>1</td>
<td>Placebo</td>
<td>38</td>
<td>6–18</td>
<td>70</td>
<td>AbbVie</td>
<td>3</td>
<td>NCT01933919</td>
<td>Japan</td>
<td>August 2013</td>
<td>Superior</td>
<td>(continued on next page)</td>
</tr>
</tbody>
</table>

S. Cortese et al.
<table>
<thead>
<tr>
<th>Drug/Dose</th>
<th>Mechanism of Action</th>
<th>Total n of active arms</th>
<th>Control</th>
<th>Total n subjects</th>
<th>Age range</th>
<th>Trial Duration</th>
<th>Funding/Manufacturer</th>
<th>Phase</th>
<th>NCT/EUDRACT number</th>
<th>Country</th>
<th>Start date</th>
<th>Descriptive Results (primary outcome)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamunex Intravenous Immunoglobulin, 2.0 gm/kg</td>
<td>Immunoglobulin</td>
<td>1</td>
<td>Placebo</td>
<td>48</td>
<td>4-13</td>
<td>42</td>
<td>National Institute of Mental Health (NIMH)</td>
<td>3</td>
<td>NCT01281969</td>
<td>USA</td>
<td>January 2011</td>
<td>Not superior</td>
<td>Efficacy: Change in CY-BOCS at week 6: Mean difference = 1.97; p = 0.044 Tolerability: no serious AE in either arm Result also in DOI: 10.1016/j.jaac.2016.06.017 Tolerability: no serious AE in other arms</td>
</tr>
<tr>
<td>N-acetylcysteine, 900 mg up to 3 times/day</td>
<td>Prodrug to L-cysteine; increases the concentration of glutathione. Prevention of glutamate overactivity, oxidative stress and neuronal damage</td>
<td>1</td>
<td>Placebo</td>
<td>11</td>
<td>8-17</td>
<td>84</td>
<td>Yale University</td>
<td>2</td>
<td>NCT01172275</td>
<td>USA</td>
<td>July 2012</td>
<td>Statistical analysis not reported</td>
<td></td>
</tr>
<tr>
<td>PTSD</td>
<td>Sertraline</td>
<td>SSRI</td>
<td>2</td>
<td>Placebo</td>
<td>6-17</td>
<td>10</td>
<td>Pfizer</td>
<td>3</td>
<td>2014-004162-17</td>
<td>USA</td>
<td>March 2015</td>
<td></td>
<td>Primary efficacy outcome: UCLA PTSD-I scores: Not significant (p = 0.212)</td>
</tr>
<tr>
<td>SCHIZOPHRENIA</td>
<td>Aripiprazole, 2.5 or 5 mg BID</td>
<td>Dopaminergic, serotonergic, and norepinephrinergic antagonist</td>
<td>2</td>
<td>Placebo</td>
<td>306</td>
<td>12-17</td>
<td>56 days</td>
<td>Merck Sharp & Dohme Corp</td>
<td>3</td>
<td>NCT01192554; 2009-017971-10</td>
<td>Not specified</td>
<td>September 2010</td>
<td>Not superior</td>
</tr>
<tr>
<td>TOURETTE’S SYNDROME</td>
<td>AZD5213, 0.5 or 2 mg, frequency not specified</td>
<td>Selective H3R antagonist/inverse agonist</td>
<td>2</td>
<td>Placebo</td>
<td>29</td>
<td>12-17</td>
<td>6 months</td>
<td>AstraZeneca</td>
<td>2</td>
<td>NCT01904773</td>
<td>USA</td>
<td>August 2013</td>
<td>Superior at 2 mg dose, not superior at 0.5 mg dose.</td>
</tr>
<tr>
<td>Deutetrabenazine (TEV-50717), 36 or 48 mg/day</td>
<td>Reversible VMAT2 inhibitor</td>
<td>2</td>
<td>Placebo</td>
<td>158</td>
<td>6-16</td>
<td>63</td>
<td>Teva Branded Pharmaceutical Products R&D, Inc.</td>
<td>3</td>
<td>NCT03571256; 2017-002976-24</td>
<td>Multiple</td>
<td>May 2018</td>
<td>Not superior</td>
<td>Efficacy: Change in YGTSS-TTS at week 8 vs. placebo 36 mg/d: ES 0.14 48 mg/d: ES – 0.11</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 4 (continued)

<table>
<thead>
<tr>
<th>Drug/Dose</th>
<th>Mechanism of Action</th>
<th>Total n of active arms</th>
<th>Control</th>
<th>Total n subjects</th>
<th>Age range</th>
<th>Trial Duration</th>
<th>Funding/Manufacturer</th>
<th>Phase</th>
<th>NCT/ EUDRACT number</th>
<th>Country</th>
<th>Start date</th>
<th>Descriptive Results (primary outcome)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutetrabenazine (TEV-50717), up to 48 mg/day</td>
<td>1</td>
<td>Placebo</td>
<td>119</td>
<td>6–16</td>
<td>98</td>
<td>Teva Branded Pharmaceutical Products R&D, Inc.</td>
<td>1–3</td>
<td>NCT03452943; 2016-000622-19</td>
<td>Multiple</td>
<td>February 2018</td>
<td>Not superior</td>
<td>Tolerability: 1 (1.92%), 0 and 0 participants in the TEV50717 high-dose, low-dose, and placebo, respectively, had serious AE Results in doi: 10.1001/amanetworkopen.2021.29397 Efficacy: Change in YGTSS-TTS at week 12 vs. placebo 48 mg/d: ES = 0.07 Tolerability: no serious AE in either arm Results in doi: 10.1001/amanetworkopen.2021.29397</td>
<td></td>
</tr>
<tr>
<td>Ecopipam (SCH 39166, also known as PSYRX101), dose not specified</td>
<td>1</td>
<td>Placebo</td>
<td>40</td>
<td>7–17</td>
<td>30</td>
<td>Psyadon Pharma</td>
<td>2</td>
<td>NCT02102698</td>
<td>USA</td>
<td>March 2014</td>
<td>Superior</td>
<td>Tolerability: no serious AE in either arm Results available in doi: 10.1002/mds.27457</td>
<td></td>
</tr>
<tr>
<td>Valbenazine (Ingrezza, also called NBI-98854) 20–60 mg/day if bodyweight < 50 kg, 40–80 mg/day if bodyweight ≥ 50 kg</td>
<td>1</td>
<td>Placebo</td>
<td>127</td>
<td>6–17</td>
<td>84</td>
<td>Neurocrine Biosciences</td>
<td>2</td>
<td>NCT03325010</td>
<td>Multiple</td>
<td>October 2017</td>
<td>Not superior</td>
<td>Efficacy: Change in YGTSS-TTS at week 12 vs. placebo: Mean difference – 2.1; p = 0.18 Tolerability: 1 (1.61%) and 0 participants with serious AE in the placebo and valbenazine arm, respectively</td>
<td></td>
</tr>
<tr>
<td>Valbenazine (Ingrezza, also called NBI-98854) at one of two doses (not further specified)</td>
<td>2</td>
<td>Placebo</td>
<td>98</td>
<td>6–17</td>
<td>42</td>
<td>Neurocrine Biosciences</td>
<td>2</td>
<td>NCT02679079</td>
<td>USA</td>
<td>March 2016</td>
<td>Not superior</td>
<td>Efficacy: Change in YGTSS-TTS at week 6 vs. placebo: Low dose: Mean difference – 0.3; p = 0.89 High dose: Mean difference 1.5; p = 0.47 Tolerability: 1 (3.13%), 0 and 0 participants with serious AE in the placebo, NBI 98854 low-dose, and high dose arm, respectively</td>
<td></td>
</tr>
</tbody>
</table>

Legend: AE=Adverse event; CY-BOCS=Children’s Yale-Brown Obsessive Compulsive Scale; D=Dopamine; ES=Effect size (e.g. Cohen’s d); H=Histamine; VMAT2 =Vesicular monoamine transporter-2; YGTSS-TTS=Yale Global Tic Severity Scale-Total Tic Score. PTSD: post traumatic stress disorder
3.3. Autism spectrum disorder (ASD)

We found 84 RCTs. About 86% were sponsored by universities/hospitals/NIMH, and the rest (14%) were funded by drug companies. Among RCTs of pharmaceutical agents (n = 70), 81% and 19% were sponsored by university/hospitals and pharmaceutical companies, respectively. Thirty-one mechanisms of action were assessed, including 41 compounds. Mechanisms of action of the compounds assessed in RCTs in autism-spectrum disorders included:

1. Serotonin and norepinephrine reuptake inhibition: amitriptyline (n = 1)
2. Selective serotonin reuptake inhibition: sertraline (n = 2)
3. Histaminergic, noradrenergic, and serotoninergic receptor antagonism: mirtazapine (n = 1)
4. Dopaminergic, noradrenergic and serotoninergic receptor antagonism (lurasidone, n = 1; risperidone, n = 1 - although risperidone is approved by several regulatory bodies for irritability in ASD, here it was tested for ASD defining symptoms)
5. Dopaminergic partial agonism and serotoninergic antagonism: cariprazine (n = 1)
6. Dopaminergic receptor partial agonism: brexpiprazole (n = 1)
7. Dopaminergic and serotoninergic receptor antagonism: olanzapine (which has also muscarinic action) (precision olfactory delivery, n = 1)
8. Selective GABA-B receptor agonism: arbaclofen (n = 2)
9. Partial agonist at the glycine NMDA co-agonist site and antibiotic: D-cycloserine (n = 1)
10. Norepinephrine (alpha-2) receptor agonism: guanfacine XR (n = 1)
11. Glutamate receptor antagonism: memantine (n = 5)
12. Acetylcholinesterase inhibition: donepezil (n = 1), given with choline supplements
13. Inhibition of the reabsorption of chloride and sodium by the kidneys and in the brain: bumetanide (n = 9)
14. Cannabinoid receptor agonism, binding to CB1 and CB2 receptors of the endocannabinoid system: cannabidiol (n = 5)
15. Activation of the receptors V1a, V1b, and V2: vasopressin (n = 2)
16. Oxytocin receptor agonism: oxytocin (n = 9)
17. Neuroactive microbial metabolite (NMMs) removal: AB-2004 (n = 1)
18. Enhancement of protein digestion: CM-AT (n = 1)
19. Kinase inhibition: everolimus (n = 1)
20. Mediation of the effects of growth hormone: Insulin-like growth factor (IGF) – 1 (n = 1)
21. Combination of an NMDA receptor antagonist and agonism of 2-adrenergic receptors: ketamine plus dexametomidine (n = 1)
22. Inhibition of inositol monophosphatase, adenyl-cyclase, GMP, glycogen synthase kinase 3, increasing activity of serotonin and acetycholine; modulation of intracellular signalling cascade (lithium carbonate, n = 1)
23. Inhibition of the mitochondrial respiratory chain; activation of the AMP-activated protein kinase (metformin, n = 1)
24. Glutathione enhancement (N-acetylcysteine, n = 2)
25. Serotonergic (2a) receptor inverse agonism and antagonism (pimavanserin, n = 1)
26. Hormonal activity (growth hormone, n = 1)
27. Melatonin receptor agonism (melatonin, n = 4; of note, an ER formulation of melatonin is approved in some European countries for sleep disorders associated with ASD or ADHD)
28. TTX-sensitive sodium channel inhibition (riluzole, n = 1)
29. Enzyme modulation - 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA reductase inhibition (simvastatin, n = 1)
30. P2 and ryanodine receptor antagonism (suramin, n = 1)
31. Glycogen synthase kinase 3 inhibition (tideglusib, n = 1)

Other RCTs tested probiotics (n = 1), ferrous sulfate (n = 1), folinic acid (n = 5), methyleneabalin (n = 1), microbiota transfer therapy (n = 1), omega-3 fatty acids (n = 6), essential oils (n = 1), sulforaphane (n = 1), vitamin B6 (n = 1), vitamin D3 (n = 1), and mix of diet compounds (n = 2).

Regarding compounds for which results were available, in one RCT (NCT01078714), bumetanide was superior to placebo for the primary outcome [Childhood Autism Rating Scale (CARS) (p = 0.004)]. Of note, in another RCT (2013–003259–39), bumetanide was superior to placebo in the secondary outcomes (Social Responsiveness Scale - SRS, CGI-I p = 0.0043, ES not reported) but not in the primary outcome (CARS). Similarly, in another RCT (2014–001560–35), bumetanide was not
superior to placebo in the primary outcome (SRS). Finally, another RCT of bumetanide was terminated as the 6-month efficacy analysis on the primary outcome (CARS-2 scores) showed no separation from placebo. D-cycloserine was not superior to placebo at the first endpoint (11 weeks) in the primary outcome (SRS) but it separated significantly from placebo at the 22-week analysis (p = 0.048) on the SRS. Suramin was significantly better than placebo in one of the two primary outcomes (Autism Diagnostic Observation Schedule; p = 0.0027 - ES not reported) but not on the other primary outcome (expressive language).

In one RCT (NCT01372449), memantine was not superior to placebo in the primary outcome (adaptive behavior, measured with the Vineland Adaptive Behavior scale). In a withdrawal RCT, memantine did not significantly separate from placebo in any outcome, including the primary one: Proportion of Patients Meeting the Criterion for Loss of Therapeutic Response. Oxytocin was not superior to placebo in two RCTs (NCT01944046 and 2018–000769–35) in any of the outcomes. In another RCT (NCT01624194), oxytocin was superior to placebo on the Total SRS score (primary outcome; p = 0.027) and was well tolerated. In terms of non-core symptoms of ASD, in one RCT, guanfacine XR was found better than placebo for the symptom “hyperactivity” in ASD, measured with the Aberrant Behavior Checklist Hyperactivity Subscale (rather than a formal diagnosis of ADHD for which it is approved).

Four other compounds were found not significantly different from placebo on any outcome: sertraline on expressive language scores, adaptive behavior, anxiety sensory processing, and CGI-I; everolimus on IQ, autistic symptoms, motor skills, sleep, behavioral/emotional problems and quality of life; mirtazapine on anxiety; and lurasidone on irritability. Metformin was tested for the management of overweight/obesity induced by dopamine and serotonin-dopamine antagonist medications in young people with ASD and was superior to placebo (p = 0.003). Melatonin was superior to placebo for sleep onset latency in one RCT (p < 0.0001 in the double-blind treatment phase).

Among the non-pharmaceutical agents, folic acid (for ASD core symptoms) and methylcobalamin (on the CGI-I), were superior to placebo in single RCTs. Omega-3 fatty acids (2 RCTs with reported results) and sulforaphane (1 RCT) were not superior to placebo.

3.4. Bipolar disorder

We found six RCTs, four (67%) sponsored by hospitals/university and two (33%) funded by pharmaceutical companies. Five RCTs included pharmaceutical agents, assessing 6 modes of action, and including 6 compounds. Mechanisms of action of the compounds assessed in RCTs in bipolar disorder included:

1. Glutamate channel blockade (carbamazepine, n = 1)
2. Dopaminergic partial agonism and serotonergic antagonism (cariprazine, n = 1)
3. Inhibition of inositol monophosphatase, adenyl-cyclase, guanosine monophosphate (GMP), glycogen synthase kinase 3, increasing activity of serotonin and acetylcholine; modulator of intracellular signalling cascade (lithium, n = 1; note: lithium has FDA regulatory approval for adolescents aged 12–17 years; here it was tested in children aged 7–17 years)
4. Glutamate receptor antagonism (memantine, n = 1)
5. Dopaminergic and serotonergic antagonism (perospirone, n = 1) given with lithium

Another RCT tested inositol plus omega-3 free fatty acids. All RCTs, except that for perospirone + lithium, were focused on treating manic/mixed symptoms. Results were reported for the RCT of lithium (n = 53), which was superior to placebo (n = 28) on the Young Mania Rating Scale, ES: 0.53 (0.06–0.99) and generally well tolerated, and for the pilot RCT of inositol plus omega-3 fatty acids, which was superior to inositol plus placebo or omega-3 fatty acids plus placebo (ES not reported) and well tolerated.

3.5. Conduct disorder/oppositional defiant disorder/disruptive mood dysregulation disorder/intermittent explosive disorder

We found five RCTs, all sponsored by universities/hospitals. Four modes of action were assessed, including four compounds. Mechanisms
of action of the compounds assessed in RCTs in these disorders included:

1. Dopaminergic, norepinephrinergic, and serotoninergic antagonism (risperidone, n = 2; note: risperidone is approved in isolated European countries but not across Europe through European Medicine Agency (EMA) approval or in the US for conduct disorder)
2. Oxytocin receptor agonism (oxytocin, n = 1)
3. Norepinephrinergic (alpha-2) receptor agonism (guanfacine XR, n = 1)

Another RCT tested omega-3 fatty acids.

Results were not available from any of these RCTs.

3.6. Depressive disorders

Nineteen RCTs, including one testing a diet compound, were retained. Overall, about 68% of the RCTs (72% of those testing pharmacological compounds) were funded by drug companies, and 32% sponsored by universities/hospitals. Six modes of action were assessed, including 10 compounds. Mechanisms of action of the compounds assessed in RCTs in depressive disorders include:

1. Serotoninergic and norepinephrinergic reuptake inhibition (desvenlavoxine, n = 2; duloxetine, n = 1; levomilnacipran, n = 2)
2. Norepinephrine and dopamine reuptake inhibition (bupropion, n = 1)
3. Serotoninergic receptor modulation (vilazodone, n = 2; vortioxetine, n = 4)
4. Glutamate receptor antagonism (esketamine, n = 1; ketamine, n = 4)
5. Melatonin receptor agonism and serotoninergic (2 C) receptor antagonism (agomelatine, n = 1)

Another RCT tested omega-3 fatty acids.

In one proof-of-concept cross-over RCT (n = 17 participants, 16 of which received both treatments) (NCT02579928, Dwyer et al., 2021), a single ketamine infusion significantly reduced depressive symptoms after 24 h compared to midazolam (ES: 0.78, 95% CI not reported), measured on the Montgomery-Asberg Depression Rating Scale (MADRS) (primary outcome) and improvements remained 14 days after treatment, but no significant differences were found on the Children’s Depression Rating Scale—Revised at days 1 and 24. Of note, unblinding for ketamine was 100%. Although ketamine was associated with transient, self-limited dissociative symptoms, there were no serious adverse events. It should be noted that the study was not powered to detect rare events.

Agomelatine 25 mg (but not 10 mg/day) was statistically superior to placebo (ES: 0.29, 95% CI not reported) and comparable to fluoxetine (ES: 0.26 95% CI not reported) in the whole group of children and adolescents. Findings were similar in the adolescent subgroup (ES: agomelatine: 0.36; fluoxetine: 0.27, 95% CI not reported) but not in children; however it should be noted that the study was underpowered in children. Overall, agomelatine was well tolerated.

Non-significant findings were reported regarding the primary outcome CDRS-R total scores for desvenlafaxine (n = 2), duloxetine (n = 1), levomilnacipran (n = 2), vilazodone (n = 2) and vortioxetine (n = 2) (only CDRS-R reported).

3.7. Eating disorders

Four RCTs were retained, all sponsored by universities/hospitals. Four mechanisms of action were assessed, including 4 different compounds. Mechanisms of action of the compounds assessed in RCTs in eating disorders included:

1. Dopaminergic and serotoninergic partial agonism and antagonism (aripiprazole, n = 1)
2. Partial agonist at the glycine NMDA co-agonist site and antibiotic (D-cycloserine, n = 1)
3. Steroid hormone (megestrol acetate, n = 1)
4. Hormonal activity (somatropin, n = 1)

All these RCTs recruited participants with anorexia nervosa, except for the RCT testing D-cycloserine that focused on feeding disorders. The proof-of-concept RCT on somatropin showed that the percentage of patients with a height velocity > 5 cm/year during the study period was greater in the active compared to the placebo group (100% vs. 50%, p = 0.05). Results were not available for the other RCTs.

3.8. Intellectual and developmental disability (IDD)

The vast majority of identified trials (49/41) in this section pertain to genetic syndromes associated with IDD, even though the presence of IDD was not always documented in the retrieved RCTs. Nonetheless, we have reported RCTs as they may provide interesting etiopathophysiology-based interventions.

Forty-one RCTs, including 4 RCTs of dietary supplements, were found, 60% of which were sponsored by university/hospitals/public bodies and 40% by drug companies (55% and 45%, respectively for pharmacological compounds).

Eighteen modes of action were assessed, including 28 compounds. Mechanisms of action of the compounds assessed in RCTs in intellectual and developmental disability included:

1. Glutamate receptor antagonism (RO4917523, n = 1; ketamine, n = 1)
2. Glutamate receptor negative allosteric modulation (AFQ056, n = 2)
3. GABA receptor agonism (arbaclofen, n = 1; ganaxolone, n = 1)
4. Norepinephrine transport inhibition (atomoxetine, n = 2)
5. Inverse agonist/negative allosteric modulation of α₁ subunit-containing GABA (basmisani, n = 1)
6. Sigma-1 receptor agonism (blarcamesine, n = 1)
7. Cannabinoid receptor agonism (cannabidiol, n = 4)
8. Oxytocin receptor agonism (carbetocin [synthetic oxytocin analogue], n = 2)
9. Neurotrophic peptide (cerebrolysin, n = 1)
10. Enzyme modulation (recombinant iduronate 2-sulfatase [IDS] enzyme, n = 1; HMG-CoA reductase inhibitor: lovastatine, n = 1; phosphodiesterase-4D inhibitor, n = 1; mTOR inhibitor: everolimus, n = 2)
11. Enzyme replacement therapy (idursulfase, n = 1)
12. NMDA and sigma-1 receptor antagonism (dextromethorphan, n = 1)
13. Increasing pyruvate dehydrogenase complex (dichloroacetate, n = 1)
14. Antioxidant (EPI-743, n = 1)
15. Inhibition of mitochondrial respiratory chain (metformin, n = 1)
16. Hormonal activity (oxytocin, n = 5; thyroxine, n = 1, larigitid [glycagon-like peptide 1-receptor agonism], n = 1; recombinant human IGF-1, n = 1; somatropin, n = 1)
17. Selective serotonin reuptake inhibition (sertraline, n = 1)

Of note, we found a RCT on an analogue of the neuropeptide (1–3) IGF-1 (trofinetide), which was approved by the FDA for Rett syndrome during the revision process of the present article (March 2023), so that we did not include this RCT in the count of retrieved RCTs.

Additionally, 3 RCTs tested combination vitamin C and E therapy and one trial investigated coenzyme Q10 therapy.

Fourteen RCTs focused on IDD in fragile X syndrome, 10 on participants with Prader-Willi syndrome, 6 on Rett syndrome, 3 on Down...
syndrome, 2 on tuberous sclerosis complex, and 1 each on Dup15q syndrome, pyruvate dehydrogenase complex deficiency, neuropathic or non-neuropathic mucopolysaccharidosis Type II, and Hunter syndrome. Two trials recruited patients with intellectual and developmental disability, testing the effect of investigational products on ADHD symptoms or serious behavioural problems.

Carbetocin was well tolerated and significantly better than placebo in two RCTs (ES not reported) to decrease hyperphagia scores in children/adolescents measured via the Hyperphagia for Prader-Willi Syndrome Questionnaire. In another RCT, oxytocin (Syntocinon) was superior to placebo for hyperphagia scores on the Hyperphagia Questionnaire (HQ) - Total Factor Score but not on the other primary outcomes (HQ- Behavior Factor Score, HQ- Drive Factor Score, and HQ- Severity Factor Score). However, in another RCT, oxytocin was not superior to placebo for hyperphagia in Prader-Willi syndrome. Negative results concerning the primary outcomes were found in RCTs of everolimus (in one RCT, without available results for the other RCT) for individuals with tuberous sclerosis, AFQ056, cannabidiol (1 RCT; results not available for 3 other RCTs), lovastatin, and ganaxolone in fragile X syndrome, dextromethorphan in Rett syndrome, idursulfase in Hunter syndrome, and thyroxine in Down syndrome.

3.9. Obsessive compulsive disorder (OCD)

Nine RCTs were found, all but one (88.8%) sponsored by universities/hospitals. Seven modes of action were assessed, including 8 compounds. All identified pharmacological compounds and focused on the following mechanisms of action:

1. Dopaminergic partial agonism (aripiprazole, n = 1)
2. Selective serotonin reuptake inhibition (fluvoxamine, n = 1; note: fluvoxamine has FDA approval in children 8 years old or older; here, participants were 6–17 years)
3. NMDA receptor agonism (D-cycloserine, n = 2)
4. Enzyme modulation (naproxen sodium, n = 1; celecoxib, n = 1; note: non-selective and selective cyclooxygenase [COX] inhibition)
5. Immunomodulation (gamanex [immunoglobulin], n = 1)
6. Glutathione enhancement (N-acetylcysteine, n = 1)
7. Antibiotic (azithromycin, n = 1)

The RCT on fluvoxamine was positive (significant difference between fluvoxamine and placebo on the Japanese version of the Children’s-Yale Obsessive-Compulsive Scale (CY-BOCS), p = 0.044, ES not reported). In one RCT (NCT01411774), D-cycloserine was not superior to placebo on the CGI-S (secondary outcome; results not reported for the primary outcome: CY-BOCS). In another RCT recruiting participants with Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal infections (PANDAS) and OCD, the difference in the mean decrease in the CY-BOCS score was not significant between the intravenous immunoglobulin Gamunex and the placebo group. Results for the other RCTs were not reported.

3.10. Post traumatic stress disorder (PTSD)

We found three RCTs: one, testing sertraline (SSRI) funded by a drug company and two, assessing propranolol (beta-blocker) combined with memory consolidation and reactivation, respectively, sponsored by universities/hospitals. The only RCT with reported results, the one on sertraline, failed to find any significant effect of sertraline vs placebo.

3.11. Schizophrenia

Five RCTs were identified, recruiting exclusively individuals aged 17 or younger and testing pharmacological compounds. Of these trials, 60% were funded by drug companies and 40% were sponsored by universities/hospitals. Five modes of action were assessed, including 5 compounds. Mechanisms of action of the compounds assessed in RCTs in schizophrenia included:

1. Dopaminergic, norepinephrinergic, and serotoninergic antagonism (asenapine, n = 1)
2. Dopaminergic and serotoninergic partial agonism (cariprazine, n = 1)
3. COX-2 inhibition (celecoxib, n = 1)
4. D-Amino acid oxidase (DDAO) inhibition (sodium benzoate, n = 1; note: increasing levels of the NMDA co-agonist D-serine)
5. Glutathione enhancement (N-acetylcysteine, n = 1)

Asenapine failed to separate from placebo on the Positive and Negative Syndrome Scale (PANSS) Total score (primary outcome), as well as on the subscales of the PANSS and CGI-S (with significant improvement in the CGI-S score observed in the 5 mg b.i.d. group). Results from the other RCTs were not available.

3.12. Tourette’s syndrome

We retained 12 RCTs, including 1 RCT on a Chinese medicine formula. About 67% (73% when limiting to RCTs of pharmacological agents) were funded by drug companies, the rest were sponsored by universities/hospitals. Six modes of action were assessed, including 7 compounds. Mechanisms of action of the compounds assessed in RCTs in Tourette’s syndrome included:

1. Vesicular monoamine transporter-2 inhibition (deutetrabenazine, n = 3; valbenzine, n = 2)
2. Dopaminergic receptor antagonism (ecopipam, n = 2; note: selective dopamine D1 receptor antagonist)
3. Norepinephrinergic receptor agonism (guanfacine XR, n = 1)
4. Histaminergic (3) receptor antagonism (AZD5213, n = 1)
5. Cannabinoid receptor agonism (tetrahydrocannabinol + cannabidiol, n = 1)
6. Glutathione enhancement (N-acetylcysteine, n = 1)

Positive RCTs with superiority compared to placebo on the primary outcome Yale Global Tic Severity Scale included the one RCT on AZD5213, which was superior to placebo at 2 mg but not 0.5 mg dose (ES, as well as statistical analysis on side effects, not reported), and one of the two RCTs on ecopipam (ES not reported; results not available for the second RCT). Ecopipam was overall well tolerated. Negative RCTs included those on deutetrabenazine (2 out of 3 RCTs, results not reported for the third trial) and both RCTs of valbenzine.

4. Discussion

This is, to our knowledge, the first systematic review of phase 2–4 RCTs of compounds across mental health conditions in children and adolescents. About 11% (n = 26) of the retrieved RCTs (n = 234) had positive findings on ≥ 1 primary outcome. The only two compounds with evidence of significant effects that were replicated in ≥ 1 additional RCT without any negative RCTs were dastotreline for ADHD – which program was halted by the manufacturer in 2020 - and carbetocin for hyperphagia in Prader-Willi syndrome.

The number of retrieved RCTs was unevenly spread across the childhood mental disorders. The bulk of the retrieved RCTs (n = 84, 36%) were for ASD, which is likely accounted for by concerns regarding the lack of approved medications for the defining symptoms of this increasingly more recognised and highly impairing condition (Solmi et al., 2022a). A relatively large number of RCTs (n = 41, 18%) was also found for children with a variety of genetic syndromes associated with IDD and the retrieved RCTs focused on associated mental/physical impairments (e.g., hyperphagia in Prader-Willi syndrome), rather than cognitive or functional abilities per se. Of note, in some RCTs, it was not
clearly reported if IQ was tested. Another relatively large number of RCTs (n = 40, 17%) was retrieved for ADHD, reflecting the need not only for novel agents, ideally without abuse potential, but also for the approval of licensed agents in pre-schoolers with ADHD, given the increasing attention to this subgroup of children with ADHD (Halperin and Marks, 2019) (Cortese, 2022). By contrast, a limited number of RCTs were found for other conditions in need of additional pharmacological options, such as anxiety disorders, eating disorders, externalizing/disruptive behavior disorders, mood disorders, OCD, and Tourette’s syndrome, and data from the majority of the RCTs retrieved for schizophrenia were not available.

The positive findings of the RCTs included in this review should be considered alongside the effect size (ES) and tolerability of the tested compound, and the availability and efficacy of other agents for any specific disorder. Regarding ADHD, given the high effect size of stimulants (in the order of 0.9–1.0) (Cortese, 2020) the moderate effect size reported for dasotraline (0.48), which is comparable to that of atomoxetine (Schwartz and Correll, 2014) and alpha-2 agonists clonidine and guanfacine (Nutt et al., 2014), would position this compound, as a possible second- or third-line pharmacological option. Nevertheless, another non-stimulant option could be still valuable for those patients (around 15% in RCTs and probably more in daily clinical practice) where comorbidities such as IDD or ASD may decrease the response rate (Cortese et al., 2021) and/or those who cannot tolerate available medications. Of note, while high dose dasotraline (4 mg/day) was less well tolerated than placebo, at a low dose (2 mg/day), dasotraline did not separate from placebo in terms of tolerability. Further, no serious adverse events were reported in the dasotraline RCTs. However, as mentioned above, the development program for dasotraline was halted by its manufacturer in 2020.

Regarding ASD, while positive individual RCTs focused mainly on associated symptoms and impairment, the search for agents targeting defining symptoms that are supported by replicated evidence continues to be elusive (Barak and Feng, 2016). Since ASD begins very early in life (Solmi et al., 2022b), abnormal biological processes may occur in a time-bound fashion during potentially developmentally vulnerable times that may require specific mechanistic interventions at certain developmental phases (Green et al., 2010).

Regarding depression, positive findings for agomelatine and, partially, for ketamine are promising and welcome, considering the limited range of approved options in children and adolescents (fluoxetine, for youth aged 8–17 years, and escitalopram for those aged 12–17) and the fact that only about 40% of youth have been found to respond to cognitive behavioral therapy (CBT) (March et al., 2004). However, independent replications of the positive findings for agomelatine are required. Regarding ketamine, it should be noted that no significant differences were reported on an additional (i.e., other than the one used as primary outcome) depression scales. Moreover, ketamine was associated with transient, self-limited dissociative symptoms, which calls for further assessment of its safety.

Likewise, the positive findings for AZD5213 and ecopipam in relation to Tourette’s syndrome require replication, alongside a better understanding of the specific effect sizes and tolerability. These currently missing data are especially relevant in comparison to alpha-2 agonists, given that the two most common currently used options in clinical care, alpha-2 agonists and D2 antagonists/partial agonists, have been considered to have similar effect sizes for tic severity reduction, but alpha-2 agonists have better tolerability (Whittington et al., 2016), even though a recent network meta-analysis showed superiority of antipsychotic over alpha-2 agonists in terms of efficacy (Farhat et al., 2023). Similarly, for bipolar disorder, more evidence is needed for inositol + omega-3 fatty acids, in particular data on their effect size and tolerability of lithium in preadolescents.

The lack of positive findings for the core symptoms of other disorders reflects several factors including the clinical challenges in conducting RCTs in children and adolescents, possible placebo effects (Huneke et al., 2022), and the theoretical possibility that some disorders might not be treatable with medications.

Indeed, probably the main conceptual/methodological weakness of the body of research retrieved via our search is the fact that the agent was tested as a “one-size-fits-all” treatment. An exception to this was represented by RCTs in children with IDD, the majority of which included children with IDD within the framework of a genetic syndrome. In these RCTs, the physiological consequences provided the rationale to test specific compounds thought to address the specific pathophysiology of the syndrome. In a few cases only, e.g., in a RCT of the glutamate receptor agonist fasoracetam in children with ADHD with and without mGluR mutations, a stratification of the sample based on neurobiological features was implemented. Therefore, we highlight the potential value of the approach proposed by the Research Domain Criteria framework (Sanislow, 2020), as an opportunity for stratification - including cognitive stratification - of patients to be recruited in RCTs. An additional advantage of this approach rests in the evidence it can provide for transnosographic outcomes (such as irritability/aggressiveness) that are arguably highly relevant in child and adolescent mental health.

More research into diagnostic and predictive biomarkers is needed, as these are currently missing in a well-replicated fashion for mental disorders with onset during childhood and adolescence (Cortese et al., 2023).

The limited number of RCTs for schizophrenia, with no positive findings, could seem disappointing. However, first, several dopamine antagonists/partial agonists are already approved and available for adolescents with schizophrenia (Pagsberg et al., 2017). Moreover, we excluded a number of RCTs where adolescents were recruited alongside adults, following more recent guidance by the FDA that considers the option of extrapolation of more limited adolescent data embedded within a larger adult trial program under certain circumstances (FDA, accessed 2023). Of note, we limited our focus to schizophrenia, rather than other psychoses, as their heterogeneous nature would hamper the consistency of findings across RCTs.

Several reasons may explain why relatively few RCTs targeted certain mental health conditions in children and adolescents compared to programmes in adults (Correll, 2023) and only isolated trial programmes and agents yielded positive results. First, at least for conditions that also occur in adults, the drug development pathway tests novel compounds and mechanisms of action in adult populations first. Thus, only agents that were successful/reached regulatory approval in adults are generally tested in children and/or adolescents. Second, mental health conditions in children and adolescents may be developmentally sensitive (Welsh et al., 2020). This creates the possibility that interventions provided outside a specific neurobiological window may not be efficacious (Diaz-Caneja et al., 2021). Third, due to age or neurobiological impairments that encompass language and communication as well as cognitive skills, young individuals with (certain) mental disorders may have difficulties recognizing, describing, and expressing the targeted psychopathology. Here, information from multiple informants may be helpful but also complicates the assessment process (Kraemer et al., 2005). Fourth, while rising placebo effects have plagued all of psychiatry (Correll, 2022), this problem may be enhanced in paediatric psychiatry (Correll, 2022), this problem may be exaggerated in paediatric mental health RCTs, even more so in children than in adolescents (Parellada et al., 2012; Siafis et al., 2020) (Faraone et al., 2022).

Our study also informs research governance and reporting practices in the field. We found that 28% of the included RCTs were completed, but their results were not reported. While it is plausible that the spread of the COVID-19 pandemic impacted on the reporting of RCTs, we also found some RCTs for which results were labelled as “not available” in clinicaltrials.gov had indeed been published in articles in peer-reviewed journals. Therefore, we urge authors to promptly update the RCT record in clinicaltrials.gov. Additionally, for some RCTs, mean and standard deviation values for each arm were reported, but not the results of statistical significance tests. Importantly, in the majority of studies, only p values - which are dependent on sample size - were reported, rather than
standardized effect size, and their 95% confidence intervals. We would urge for more consistent reporting of ES in this field as this would facilitate comparison across RCTs of studied or already available treatment options. This would be more clinically meaningful than solely reporting p-values. Finally, discontinuation of clinical trial programmes and abandonment of compounds should be publicly communicated, alongside the rationale for this.

Our study should be considered in light of some limitations. First, we limited the search from 2010, so we might have missed relevant RCTs registered before this date. However, we deemed a 12-year period as appropriate to retrieve novel agents potentially available for regulatory approval and of interest in day-to-day clinical practice. Second, we may have included agents in this review whose further development has been discontinued by the sponsor without making this decision public. Third, we excluded RCTs recruiting both children/adolescents (until the age of 17) and adults, as separate results for children and adolescents are usually not reported in https://clinicaltrials.gov/ or https://www.clinicaltrialsregister.eu/. Fourth, while we covered a broad range of mental health conditions, our selection did not address all conditions that practitioners could be faced with. More specifically, substance use disorder and enuresis were beyond the scope of this review, the former occurring in an age range overlapping with adulthood and the latter being dealt with more frequently by paediatricians than child and adolescent psychiatrists. Fifth, we included RCTs in which investigated agents were combined with psychotherapeutic or other non-pharmacological interventions, where possible synergistic effects between pharmacological and non-pharmacological interventions cannot be ruled out. However, the combination of pharmacotherapy with psychosocial interventions is guideline-consistent for many, if not most, conditions (e.g. depression (NICE, 2019a), ADHD (NICE, 2019b), and schizophrenia (NICE, 2013)). Sixth, to be comprehensive and provide information about potentially promising agents, we included information on agents sponsored and studied by universities and hospitals, that may not be subjected to the lengthy and costly trial requirements for regulatory approval and, thus, may not achieve marketing authorisation for clinical use. Seventh, we limited the search to two databases (https://clinicaltrials.gov/ and https://www.clinicaltrialsregister.eu/) as we could not include every national database. Eighth, we endeavoured to identify RCTs funded and not funded by drug companies, but where the listed sponsor was a public body this does not automatically equate with a drug company not being involved. Finally, for a sizeable proportion of RCTs, results of statistical analyses on tolerability were not available so we could report only the % of participants in each study arm that experienced serious adverse events or who discontinued the trial due to adverse events.

Despite these limitations, we believe that this review will inform researchers and funders of future priorities and opportunities in the field, and practitioners, patients and their families of possible future treatment options. Alongside drug manufacturers, we hope these findings will be informative also for public funders, fostering their collaborations with academia and research institutes in the field. We also hope there will be additional, well designed RCTs in anxiety, bipolar disorder, disruptive behavior disorders, eating disorders and schizophrenia, for which the number of RCTs is still limited. In this respect, regulatory efforts to promote extrapolation, i.e., the use of relevant information in adults as a basis for the further development of a medicinal product in children or adolescents, are welcome. Indeed, extrapolation has the potential not only to inform better studies in children and adolescents, but also to avoid unnecessary ones. Whilst this review has focused on RCTs, we deem it essential for funders to also support large scale pharmacovigilance studies with the potential to reduce risk of harm. While such studies will likely be expensive, they should be a priority for research funders, given the relevance and impact of their findings.

Conflict of interest

S Cortese declares honoraria and reimbursement for travel and accommodation expenses for lectures from the following non-profit associations: Association for Child and Adolescent Central Health (ACAMH), Canadian ADHD Alliance Resource (CADDRA), British Association of Pharmacology (BAP), and from Healthcare Convention for educational activity on ADHD. M Højlund has been a consultant to or has received honoraria from the Lundbeck Foundation, H. Lundbeck, and Otsuka. C Arango has been a consultant to or has received honoraria or grants from Acadia, Angelini, Biogen, Boehringer, Gedeon Richter, Janssen Cilag, Lundbeck, Medscape, Menarini, Minerva, Otsuka, Pfizer, Roche, Sage, Servier, Shire, Schering Plough, Sumitomo Dainippon Pharma, Sunovion and Takeda. I Baeza has received honoraria and travel support from Angelini, Otsuka-Lundbeck and Janssen. T Banaschewski served in an advisory or consultancy role for eye level, Infectopharm, Lundbeck, Medice, Neurim Pharmaceuticals, Oberberg GmbH, Roche, and Takeda. He received conference support or speaker’s fee by Janssen, Medice and Takeda. He received royalties from Hofregie, Krka, Medicus, CIP Medien, Oxford University Press; the present work is unrelated to these relationships. JK Buitelaar has been a consultant to or member of advisory board of and/or speaker for Takeda, Medice, Angelini, Janssen, Boehringer-Ingelheim and Servier. He is not an employee of any of these companies, and not a stock shareholder of any of these companies. He has no other financial or material support, including expert testimony, patents, royalties. D Coghill served in an advisory or consultancy role for Medice, Novartis, Servier, and Shire/Takeda. He received conference support or speaker’s fee from Medice, Servier, and Shire/Takeda. He received royalties from Cambridge University Press and Oxford University Press; He is not an employee of any of these companies, and not a stock shareholder of any of these companies and the present work is unrelated to these relationships. D Cohen has been a consultant or has received honoraria from Janssen/J&J and Otsuka; he served on a Data Safety Monitoring Board for Lundbeck. CU Correll has been a consultant and/or advisor to or has received honoraria from: AbbVie, Acadia, Alkermes, Allergan, Angelini, Aristo, Boehringer-Ingelheim, Cardio Diagnostics, Cerevel, CNX Therapeutics, Compass Pathways, Darnitsa, Gedeon Richter, Hilma, Holmusk, Intracellular Therapies, Janssen/J&J, Karuna, LB Pharma, Lundbeck, MedAvante-ProPhase, MedInCell, Merck, Mindpax, Mitsubishi Tanabe Pharma, Mylan, Neurocrine, Newron, Noven, Otsuka, Pharmabrain, PPD Biotech, Recordati, Relmada, Reviva, Rovi, Seqirus, SK Life Science, Sunovion, Sun Pharma, Supernus, Takeda, Teva, and Viatris. He provided expert testimony for Janssen and Otsuka. He served on a Data Safety Monitoring Board for Lundbeck, Relmada, Reviva, Rovi, Supernus, and Teva. He has received grant support from Janssen and Takeda. He received royalties from UpToDate and is also a stock option holder of Cardio Diagnostics, Mindpax, LB Pharma and Quantic. E Grunblatt received grant support from MEDICE Arzneimittel Pütter GmbH & Co KG. C Moreno has received honoraria as a consultant and/or advisor and/or for lectures from Angelini, Esteve, Exeltis, Janssen, Lundbeck, Neuraxpharm, Neluvetion, Otsuka, Pfizer, Servier and Sunovion outside the submitted work. M Parellada has been a consultant to or has received honoraria or grants from Angelini, Janssen Cilag, Exeltis, Lundbeck, Otsuka, Pfizer, Roche, Sage, Servier. A. M. Persico has been a consultant to and/or speaker for and has received honoraria from Servier, Sanofi, and Healtx Limited. In the last 3 years, D. Purper-Ouakil reports honoraria/non-financial support from Medice and Shire/Takeda, non-financial support from HAC Pharma and has worked as an unpaid scientific coordinator for Mensia, all outside the submitted work. In the last 2 years, B Vitiello was a paid consultant for Medice, Menarini, Angelini, and Alkermes Pharmaceuticals. ICKW reports research funding outside the submitted work from Amsgen, Bristol Myers Squibb, Pfizer, Janssen, Bayer, GSK, Novartis, Takeda, the Hong Kong Research Grants Council, the Hong Kong Health and Medical Research Fund, the Hong Kong Innovation and Technology Commission, the NIHR, the European Commission, and the Australian National.
Health and Medical Research Council, and has also received expert testimony payment from the Hong Kong Court of Final Appeal in the previous 3 years and consultancy fee from IQVIA and World Health Organization. In the last 3 years, V Roessner received no honoraria from pharmaceutical companies. He received royalties from Hogrefe, Oxford University Press; the present work is unrelated to these relationships. The other authors have no conflicts of interest to declare.

Data Availability

Data will be made available on request.

Acknowledgments

This paper is dedicated to the memory of our beloved colleague and friend Professor Alessandro Zuddas, who suddenly passed away in July 2022.

C Arango has received funding from the Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III (ISICII), co-financed by the European Union, ERDF Funds from the European Commission, “A way of making Europe”, financed by the European Union - NextGenerationEU (PMP21/00051), P119/01924, CIBERSAM, Madrid Regional Government (B2017/BMD-3740 AGES-CM-2), European Union Structural Funds, European Union Seventh Framework Program, European Union H2020 Program under the Innovative Medicines Initiative 2 Joint Undertaking: Project PRISM-2 (Grant agreement No. 101034377), Project AIMS-2-TRIALS (Grant agreement No 777394), Horizon Europe, the National Institute of Mental Health of the National Institutes of Health under Award Number U101MH124639-01 (Project ProNET) and Award Number 5P50MH115846-03 (project FEP-CUSAUS), Fundación Familia Alonso, and Fundación Alicia Koplowitz.

J Baesa has received grants from the Spanish Ministry of Health, Instituto de Salud Carlos III supported by ERDF Funds from the European Commission (P118/0242/P121/0391) “A way of making Europe”, Plan Nacional sobre Drogas and Fundación Alicia Koplowitz.

J Buitelaar has been supported by the EU-AIMS (European Autism Interventions) and AIMS-2-TRIALS programmes which receive support from Innovative Medicines Initiative Joint Undertaking Grant No. 115300 and 777394, the resources of which are composed of financial contributions from the European Union’s FP7 and Horizon 2020 Programmes, and from the European Federation of Pharmaceutical Industries and Associations (EFPIA) companies’ in-kind contributions, and AUTISM SPEAKS, Autistica and SFAR; and by the Horizon 2020 supported programmes PRIME (Grant No. 847877) and CANDY (Grant No. 847818).

J Castro-Fornieles has received funding from the Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III (ISICII), co-financed by the European Union, CIBERSAM, European Union Structural Funds, European Union Seventh Framework Program, European Union H2020 Program under the Innovative Medicines Initiative 2 Joint Undertaking: Project PRISM-2 (Grant agreement No 777394), PERIS and SGR program from de Cata- lonia Government, Fundacio Marató de TV3 and Fundación Alicia Koplowitz.

C Moreno has received funding from the Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III (ISICII), CIBER – Consorcio Centro de Investigación Biomédica en Red – CB/07/09/0023, co-financed by the European Union and ERDF Funds from the European Commission, “A way of making Europe”, financed by the European Union - NextGenerationEU (PMP21/00051, P121/01929), Madrid Regional Government (B2017/BMD-3740 AGES-CM-2), European Union Structural Funds, EU Seventh Framework Program, H2020 Program under the Innovative Medicines Initiative 2 Joint Undertaking: Project c4c (Grant agreement No. 777389), and Horizon Europe (Project FAMILY, Grant agreement: No 101057529: Project Psych-STRATA, Grant agreement: No 101057544), National Institute of Mental Health of the National Institutes of Health, Fundación Familia Alonso, and Fundación Alicia Koplowitz.

P Nagy has been a consultant to and/or speaker for Medice, Servier, and Egis Pharmaceuticals for work that is unrelated to the present paper.

M Parelada has received funding from the Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III (ISICII), CIBER - Consorcio Centro de Investigación Biomédica en Red - (CB/07/09/0023), co-financed by the European Union and ERDF Funds from the European Commission, “A way of making Europe”, financed by the European Union - NextGenerationEU (PMP21/00051), Madrid Regional Government (B2017/BMD-3740 AGES-CM-2), European Union Structural Funds, EU Seventh Framework Program, H2020 Program under the Innovative Medicines Initiative 2 Joint Undertaking: Project AIMS-2-TRIALS (Grant agreement No 777394), and Horizon Europe, National Institute of Mental Health of the National Institutes of Health, Fundación Familia Alonso, and Fundación Alicia Koplowitz.

D Purper-Ouakil reports non-financial support from HAC Pharma and Lundbeck, honoraria and non-financial support from Medice in the last 3 years. She also collaborated in FP7 and Horizon 2020 projects and a Horizon 2020 SME project sponsored by Mensia without financial interests. She has received several national public grants (DGOS-PHRC-N and equivalent).

AM Persico’s work is funded by the Italian Ministry of Health, the Fondazione di Modena & UNIMORE (Mission-oriented), and the Italian Autism Foundation.

V Roessner has received funding from the Federal Ministry of Education and Research (01GL1741C), the Innovation Fund of the Federal Joint Committee (01NVF17046, 01SVF19027), the German Research Foundation (RO 3876/11-1, RO 3876/11-2, TE 280(18-1), FR 2069/8-1), MSEA Pharma, and Takeda (IR-DEU-002258).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.neubiorev.2023.105149.

References

