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A B S T R A C T   

Introduction: Artificial Intelligence-based Medical Devices (AI-based MDs) are experiencing exponential growth in 
healthcare. This study aimed to investigate whether current studies assessing AI contain the information required 
for health technology assessment (HTA) by HTA bodies. 
Methods: We conducted a systematic literature review based on the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses methodology to extract articles published between 2016 and 2021 related to the 
assessment of AI-based MDs. Data extraction focused on study characteristics, technology, algorithms, com-
parators, and results. AI quality assessment and HTA scores were calculated to evaluate whether the items 
present in the included studies were concordant with the HTA requirements. We performed a linear regression 
for the HTA and AI scores with the explanatory variables of the impact factor, publication date, and medical 
specialty. We conducted a univariate analysis of the HTA score and a multivariate analysis of the AI score with an 
alpha risk of 5 %. 
Results: Of 5578 retrieved records, 56 were included. The mean AI quality assessment score was 67 %; 32 % of 
articles had an AI quality score ≥ 70 %, 50 % had a score between 50 % and 70 %, and 18 % had a score under 
50 %. The highest quality scores were observed for the study design (82 %) and optimisation (69 %) categories, 
whereas the scores were lowest in the clinical practice category (23 %). The mean HTA score was 52 % for all 
seven domains. 100 % of the studies assessed clinical effectiveness, whereas only 9 % evaluated safety, and 20 % 
evaluated economic issues. There was a statistically significant relationship between the impact factor and the 
HTA and AI scores (both p = 0.046). 
Discussion: Clinical studies on AI-based MDs have limitations and often lack adapted, robust, and complete ev-
idence. High-quality datasets are also required because the output data can only be trusted if the inputs are 
reliable. The existing assessment frameworks are not specifically designed to assess AI-based MDs. From the 
perspective of regulatory authorities, we suggest that these frameworks should be adapted to assess the inter-
pretability, explainability, cybersecurity, and safety of ongoing updates. From the perspective of HTA agencies, 
we highlight that transparency, professional and patient acceptance, ethical issues, and organizational changes 
are required for the implementation of these devices. Economic assessments of AI should rely on a robust 
methodology (business impact or health economic models) to provide decision-makers with more reliable 
evidence. 

Abbreviations: AI, Artificial intelligence; AI-based MD, Artificial intelligence-based medical device; AUC, Area under the curve; MD, Medical device; ML, Machine 
learning; SaMD, Software as a Medical Device; ITFoC, Information Technology: The Future of Cancer; Bfarm, Bundesinstitut Fur Arzneimittel und Medizinprodukte 
German Ministry of Health; CADTH, Canadian Agency for Drugs and Technologies in Health; FDA,, Food and Drug administration; HAS, Haute Autorité de Santé; 
NHS, National Health Service; NICE, National Institute for Health & Care Excellence; NIPH, Norwegian Institute of Public Health; INAHTA, International Network of 
Agencies for Health Technology Assessment; EUnetHTA, European network for Health Technology Assessment Joint Action. 
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Conclusion: Currently, AI studies are insufficient to cover HTA prerequisites. HTA processes also need to be 
adapted because they do not consider the important specificities of AI-based MDs. Specific HTA workflows and 
accurate assessment tools should be designed to standardise evaluations, generate reliable evidence, and create 
confidence.   

1. Introduction 

The development of artificial intelligence (AI) in healthcare is 
growing exponentially. In the past 15 years, the number of articles 
dealing with medical AI has increased >60-fold, from 203 in 2005 to 
12,563 in 2020 [1]. The implementation of AI in daily practice and its 
evaluation are currently of great interest to patients, healthcare pro-
fessionals, and policymakers [2]. AI algorithms are particularly relevant 
in diagnostic, prognostic, and precision medicine, either in combination 
with medical devices (MDs) or as MDs by themselves. The term “AI- 
based MDs” denotes the use of computer technology to perform human 
tasks with or without health technologies. The Food and Drug Admin-
istration (FDA) classifies AI-based MDs as “Software as a Medical De-
vice” (SaMD) when they are intended to treat, diagnose, cure, mitigate, 
or prevent disease or other conditions [3]. These AI-based MDs assist 
humans in completing tasks, but do not completely replace them 
because they are supervised by healthcare professionals. 

However, no international consensus has been reached regarding the 
assessment of such health technologies. Specific reporting guidelines 
focusing on AI articles, particularly on methodological issues, have 
recently been suggested [4–10]. A high proportion of overlap can be 
identified in the aforementioned guidelines, highlighting the relative 
importance of some criteria; however, there is also an absence of 
consensus. However, such a consensus is essential for regulatory au-
thorities and health technology assessment (HTA) agencies that face 
multiple challenges when assessing these AI technologies. On the one 
hand, regulatory authorities provide market authorization and certifi-
cation to ensure that AI-based medical devices conform to legal re-
quirements. By contrast, health technology assessment (HTA) agencies 
make recommendations for AI-based medical devices that can be 
financed or reimbursed by the healthcare system [11]. 

These AI-based MDs complexities make it difficult for healthcare 
professionals and patients to trust them. Similarly, HTA bodies need to 
be cautious about the ethical and regulatory implications of AI that 
could be considered barriers to the deployment of these technologies 
[11,12]. Because AI-based MDs differ from other health technologies, 
Dzobo et al. recommended regulating AI with specific legislation [13]. 
Uncertainties related to AI decision strategies and outcomes increase the 
difficulty of regulating these technologies [14]. Regulatory authorities, 
HTA bodies, and health policymakers are facing new challenges related 
to the new level of complexity in evaluating and delivering approval of 
AI-based MDs [2]; issues for the assessment of these devices relate to 
data generation, real-world usage, and undeveloped regulatory pro-
cesses [15]. As highlighted by several authors, there is a growing need 
for specific health technology assessments of AI-based technologies. 
[2,16–18] However, these articles did not suggest a methodology to 
assess the quality of studies on AI-based MDs to evaluate the possibility 
to manage an HTA process. Therefore, in the present study, we propose a 
standardised methodological assessment method adapted for AI-based 
MDs intended to undergo HTA. 

Therefore, from the payer’s perspective, it has been suggested that a 
specific HTA process for AI should be designed, consisting of a multi-
disciplinary process that summarises data collected using a systematic, 
unbiased, transparent, and robust methodology [19,20]. Usually, HTA 
core models combine several items, including health problems and 
current use of the technology, description and technical characteristics 
of the technology, safety and clinical assessment, economic evaluation, 
and ethical, organizational, social, and legal aspects [20]. Although the 
aforementioned reporting guidelines represent an important first step in 

assessing the quality of the development of AI-based MDs and guaran-
teeing reliable AI tools, they are insufficient for designing robust and 
validated studies involving AI-based MDs in an HTA context [17]. 
Therefore, some regulatory and HTA bodies share strategies and rec-
ommendations on this topic. For example, the FDA has recently pub-
lished an “Artificial Intelligence and Machine Learning (AI/ML) 
Software as a Medical Device Action Plan” [3,21–23]. The French Haute 
Autorité de Santé (HTA) agency suggested a list of 42 items divided into 
four categories to describe the technical characteristics of AI-based MDs 
[24]. In the United Kingdom, the National Institute for Health and Care 
Excellence (NICE) has proposed a guide for good practices in digital and 
data-driven health technologies, including AI [25]. Finally, the South 
Korean Ministry of Food and Drug Safety proposed guidelines to eval-
uate the clinical efficacy of MDs using AI [25]. 

Nevertheless, although European and American HTA bodies share 
approval decisions for AI-based MDs [26–28], specific studies presented 
to regulatory agencies are not systematically and publicly available. 
Therefore, we could not easily analyse successful methodologies that led 
to market access (e.g. CE marking in Europe and FDA approval in the 
USA). Therefore, it would be interesting to analyse whether the infor-
mation in publicly available published studies corresponds to general 
HTA items related to MDs and specific items concerning AI. Whether the 
available studies meet the expectations and needs of current guidelines 
for HTA agencies is of particular interest. 

The present study aimed to investigate, through a systematic litera-
ture review, whether the available guidelines apply to clinical studies of 
AI-based MDs and whether these generate sufficient and reliable evi-
dence for the HTA process. The scope of this study was restricted to AI 
that could be assessed as MD, that is, in diagnosis, prognosis, screening, 
prevention, or treatment. 

2. Materials and methods 

2.1. Methods for searching for and selecting articles 

Our review addresses the following questions: What are the study 
designs of current clinical studies on AI-based MDs, and are these studies 
of sufficient quality to support the relevant HTA processes?(2)(3) 

To address this, we created a three-step study protocol (see Supple-
mentary File 1) following three steps (Fig. 1).  

(1) Part 1: a systematic literature review to identify articles assessing 
AI-based MDs  

(2) Part 2: Identification of the critical criteria for the quality and 
HTA assessment of AI-based MDs  

(3) Part 3: Evaluation of quality and HTA scores to assess whether 
studies generated reliable evidence for the HTA process. 

2.2. Part 1: Study identification and search strategy 

Comprehensive research was performed following the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (see PRISMA 
checklist in Supplementary File 1) reporting checklist [29] using search 
terms presented in the study protocol (Table 1). The databases used were 
PubMed (ncbi.nlm.nih.gov), Embase (Embase.com), the Cochrane Li-
brary (cochrane.org/fr/evidence), and HTA agency websites. This 
research was limited to the English and French languages. As Mesko 
et al. showed that the number of clinical studies has greatly increased 
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since 2016 [1], we retrieved studies published in the five years from 1 
January 2016 to 31 December 2021. We did not find any AI-based MD 
assessments conducted by a health technology assessment agency before 
2016. The first published HTA agency evaluation of an AI-based MD was 
in April 2018 for the evaluation of IDx-DR by the FDA, and as we wanted 
to evaluate the studies which could be analysed by HTA agencies, we 
consequently considered the time required for the development of these 
technologies (around two years), which corresponds to 2016, with an 
increasing publication number of AI articles published. 

Additional sources were retrieved manually from the HTA body 
websites (Bfarm, CADTH, FDA, HAS, NHS, NICE, NIPH, INAHTA, and 
EUnetHTA) and gray literature. 

2.2.1. Inclusion and exclusion criteria 
Articles satisfying the following inclusion criteria were selected: 

original research articles published in peer-reviewed journals, and as-
sessments of AI-based MDs. All types of clinical assessment studies were 
eligible for inclusion, including clinical evaluations or validations, 
external validations, economic evaluations, feasibility studies, ran-
domized clinical trials, retrospective or prospective studies, and single- 
centre or multicentre studies. 

Editorials, letters, comments, newspaper articles, and posters were 
excluded. Articles related to AI development methods (instead of as-
sessments) were excluded, as were articles that presented animal ex-
periments. Patients who failed to meet at least one of the eligibility 
criteria were excluded. 

2.2.2. Study selection 
The studies of interest were selected by four reviewers (LF, JDS, PN, 

and TM). After removing duplicates, four reviewers independently 
screened the abstracts to select eligible studies. Full-text reports were 
analysed for eligibility by the four reviewers. A fifth reviewer (NM) 
resolved the possible discrepancies highlighted during the selection 
process if a consensus was not reached. Third-party adjudication for 
dispute resolution was used for data extraction. An extraction database 
was used to list the selected studies that met the inclusion criteria and 

ensure that all eligible studies were included. 

2.2.3. Data extraction 
The following items were extracted from the articles selected by four 

analysts (LF, JDS, PN, and TM).  

• General characteristics of the studies (authors, country, publication 
date, journal, study objectives, and assessment methodology)  

• Characteristics of the AI technology (type, algorithm purpose)  
• Dataset: Target population, categories (training, validation, test, 

data augmentation), quality and quantity  
• Algorithm performance and validation 

Fig. 1. Overall methodology and objectives of the article from the systematic literature review to the studies analysed for an HTA process.  

Table 1 
Search strategy and MeSH terms used for our systematic literature review.  

Search strategy 

((Artificial intelligence[Title/Abstract]) OR (Machine learning[Title/Abstract]) OR 
(Artificial neural network[Title/Abstract]) OR (Support vector machine[Title/ 
Abstract]) OR (SVM[Title/Abstract]) OR (CNN[Title/Abstract]) OR (RNN[Title/ 
Abstract]) OR (LSTM[Title/Abstract]) OR (ResNet[Title/Abstract]) OR (DenseNet 
[Title/Abstract]) OR (Unet[Title/Abstract]) OR (DNN[Title/Abstract]) OR (Neural 
network*[Title/Abstract]) OR (Convolutional network*[Title/Abstract]) OR (Deep 
learn*[Title/Abstract])) 

AND ((“Technology Assessment, Biomedical”[MeSH] OR “clinical evaluation”[All 
Fields] OR “Program Evaluation/methods”[MeSH] OR “Research Design”[MeSH] 
OR “Biomedical Research/methods”[MeSH] OR “Biomedical Research/ 
standards”[MeSH] OR “Clinical Competence”[Mesh] OR “Decision Making”[MeSH] 
OR “Device Approval”[All Fields] OR “Diagnostic Test Approval”[MeSH] OR 
“Health Policy”[Mesh] OR “global health”[MeSH Terms] OR “Medical Device 
Legislation”[Mesh] OR “Ethics, Medical”[Mesh] OR “United States Food and Drug 
Administration”[Mesh] OR “Checklist”[Title/Abstract]) 

OR (“Biomedical Research/economics”[MeSH] OR “Evidence-Based Medicine/ 
economics”[MeSH] OR “Costs and Cost Analysis”[MeSH] OR “Artificial 
Intelligence/economics”[MAJR] OR “Cost Savings”[Mesh] OR “Health Care 
Costs”[Mesh] OR “Economics” [MeSH]) OR (methodology[All Fields] AND 
“Humans”[Mesh] AND “Research Design”[Mesh]) OR (“Reproducibility of 
Results”[MeSH] AND (“clinical evaluation”[Title/Abstract] OR “Program 
Evaluation/methods”[MeSH]))) 

AND (English [Language] OR French [Language]) 
Filters: from 2016 to 2021  

L. Farah et al.                                                                                                                                                                                                                                   
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• Reproducibility, code availability, explainability of the algorithm 
• Evidence generation:1) outcomes (technological, clinical, econom-

ical, and side effects); 2) comparators/gold standards  
• Ethical, legal, or social concerns 

2.3. Part 2: Requirements of HTA bodies 

We used the HTA Core Model® published by the European network 
for Health Technology Assessment (EUnetHTA) as a reference [30]. The 
HTA Core Model® is a methodological framework that assesses health 
technologies using a standardised method through nine domains: (1) 
health problems and current use of the technology, (2) description and 
technical characteristics of the technology, (3) safety, (4) clinical 
effectiveness, (5) costs and economic evaluation, (6) ethical analysis, (7) 
organizational aspects, (8) patients and social aspects, and (9) legal 
aspects. 

Because of the uncertainty related to AI decision strategies and 
outcomes, data issues, and undeveloped regulatory processes, HTA 
agencies are facing various challenges to evaluate technologies and 
deliver approval [13–15]. The regulation of AI with specific legislation is 
needed. Therefore, we assessed articles not only for the HTA criteria but 
also for specific criteria described in the Part 3 to assess AI quality. 

Regarding the HTA Core Model®, we searched each article for items 
in seven out of nine HTA Core Model domains (1 to 7), awarding 1 point 
if the item was present and 0 if not. As the items in domains 8 and 9 were 
outside the scope of our review, we did not search for these items, and 
they were not included in the scoring. The process for rating was double 
rating by LF and PN, and the mean score for each article was calculated. 

2.4. Part 3: Quality assessment of the selected studies as compared to the 
HTA assessment 

To assess the relationship between the quality and exhaustibility of 
the selected AI-based MD studies (Part 1) and the requirements of the 
HTA evaluation process (Part 2), we created two score tables, one for the 
AI quality assessment (Table 2) and one for the HTA domain evaluation 
(Table 3). 

For AI quality assessment, we selected seven guidelines and check-
lists that could be used to assess AI studies. The results of the seven 
guidelines and checklists are summarised in the study protocol available 
in Supplementary file 1. Several criteria such as performance, data, 
assessment in clinical practice, reproducibility, and design were high-
lighted in each guideline. We noted that the MI-CLAIM checklist is the 
most complete, reliable, and general checklist that includes all the 
required criteria for AI assessment in healthcare [8]. Therefore, we used 
the MI-CLAIM checklist, which is a checklist of items suggesting a 
minimum set of data to enable assessment of clinical impact, build ho-
mogeneous levels of transparency, and assess the design process of AI- 
based MD clinical studies [8], to assess the articles in our study. 

Each article was assessed using 21 items adapted from the MI-CLAIM 
checklist (Table 2). The items were grouped into six categories: study 
design (Category 1), data and optimisation (Categories 2 and 3), model 
performance (Category 4), model examination and assessment in clin-
ical practice (Category 5), and reproducibility (Category 6). To adapt the 
checklist to our analysis needs, in categories 2 and 3, we listed items for 
which we were looking for quality technical and/or clinical data”. In 
category 4, we added the two metrics summarised in item 15 (clinical 
and economic indicators) in addition to the technical evaluation criteria 

Table 2 
List of the AI criteria selected after analysis of the guidelines and adapted from items of the MI-CLAIM [8] checklist used for the AI quality assessment score table.   

Study design (category 1) 

1 The clinical problem in which the model will be employed is clearly detailed in the paper. 
2 The research question is clearly stated. 
3 The characteristics of the cohorts (training and test sets) are detailed in the text. (0.5 point for training information / 0.5 point for test information). 
4 The cohorts (training and test sets) are shown to be representative of real-world clinical settings. 
5 The state-of-the-art solution used as a baseline for comparison has been identified and detailed. 
6 Is there a comparator in the study? 
7 If yes, is the comparator considered as a gold standard?    

Data and optimization (categories 2, 3) 

8 The origin of the data is described, and the original format is detailed in the paper. 
9 Data (technical and clinical) quality before it is applied to the proposed model is described. 
10 The independence between training and test sets has been mentioned in the paper. 
11 Data quantity is detailed and justified. 
12 Targeted population is defined. 
13 Is the input data type mentioned (structured or unstructured)?    

Model performance (category 4) 

14 The primary metric selected to evaluate algorithm performance (e.g.: Area Under the Curve AUC, F-score, etc.) has been clearly stated (even in a previous study). 
15 Summary of clinical and/or economic Key performance indicators (KPIs): The primary metric selected to evaluate the clinical and/or economic benefit is described. 
16 The performance comparison between baseline and proposed model is presented with the appropriate statistical significance.    

Model examination/ assessment in clinical practice (category 5) 

17 Explainability: Are the outputs of the algorithm clinically intelligible? Is the algorithm explainable? 
18 Has use of the algorithm been shown to fit into and/or complement current clinical workflows? 
19 Does the study answer the question about the possible patient harm or side effects (ex: does this cause a delay in diagnosis?) that could be caused by the algorithm? 
20 Does use of the algorithm raise ethical, legal, or social concerns?    

Reproducibility (category 6) 

21 Total score of (1) Reproducibility/ generalizability in clinical practice and (2) Code source / code availability or not mentioned in the study.  

L. Farah et al.                                                                                                                                                                                                                                   



Artificial Intelligence In Medicine 140 (2023) 102547

5

Table 3 
Score attributed to articles for each HTA domain (excluding domains 8 and 9). 

Author

(1) Health
problem and
current use of
technology

(2) Descrip�on
and technical

characteris�cs of
technology

(3) Safety (4) Clinical
effec�veness

(5) Costs
and

economic
evalua�on

(6)
Ethical
aspect

(7)
Organizat
ional

aspects

Score of
comple�on of
HTA domains

Schreier, J. et al 1 1 1 1 0 0 1 71%

Ladefoged, C.N. et al 1 1 0 1 1 0 1 71%

Im, H.et al 1 1 0 1 1 0 1 71%

Ohta, Y. et al 1 1 1 1 0 0 1 71%

Tseng, A. et al 1 1 0 1 1 0 1 71%

Schwendicke, F. et al 1 1 0 1 1 0 1 71%

Nathan R. H. et al 1 1 0 1 1 0 1 71%

R. H. H. M. Philipsen et al 1 1 0 1 1 0 1 71%

Tufail, V Kapetanakis, et al 1 1 0 1 1 0 1 71%

Risa M. Wolf, et al 1 1 0 1 1 0 1 71%

Faes, L. 1 1 0 1 1 0 0 57%

Kemnitz, J. et al 1 1 1 1 0 0 0 57%

Zou, F. W. et al 1 1 0 1 0 0 1 57%

Mergen, V. et al 1 1 0 1 1 0 0 57%

Yang, S. et al 1 1 0 1 0 0 1 57%

Kanagasingam, Yogesan et
al 1 1 0 1 0 0 1 57%

Bö�cher, Benjamin et al 1 1 0 1 1 0 0 57%

Stuckey, Thomas D et al 1 1 1 1 0 0 0 57%

Yuwei Liu et al 1 1 0 1 0 0 1 57%

Grzybowski, A. et al 1 1 0 1 0 0 1 57%

Medina, R. et al 1 1 1 1 0 0 0 57%

Jefferies, J.L. et al 1 1 0 1 0 0 1 57%

Yeh, Eric et al 1 1 0 1 0 0 1 57%

McLouth, J. et al 1 1 0 1 0 0 1 57%

Joo, B. et al 1 1 0 1 0 0 1 57%

Wei, Ying�ng et al 1 1 0 1 0 0 1 57%

Yang, W. H. et al 1 1 0 1 0 0 0 43%

Zabel, W. Jeffrey et al 1 1 0 1 0 0 0 43%

Kim, J.H. et al 1 1 0 1 0 0 0 43%

Ahn, Sang Hee et al 1 1 0 1 0 0 0 43%

Chen, C. et al 1 1 0 1 0 0 0 43%

Liu, Z. et al 1 1 0 1 0 0 0 43%

Dembrower, K. et al 1 1 0 1 0 0 0 43%

Benjamins, J.W. et al 1 1 0 1 0 0 0 43%

Brunenberg, E.J.L. et al 1 1 0 1 0 0 0 43%

Krause, Jonathan et al 1 1 0 1 0 0 0 43%

Ihlen, E.A.F. et al 1 1 0 1 0 0 0 43%

Sun, Chao et al 1 1 0 1 0 0 0 43%

Wu, Yijun et al 1 1 0 1 0 0 0 43%
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(item 14). In Category 6 (reproducibility), we combined the two criteria 
of code generalisability and availability into one criterion (Item 21). 

Each category includes several items and questions presented in the 
study protocol (Table 2). For each selected study, each item was rated as 
0 if the item was absent from the article, 0.5 points if the item was 
partially completed, or 1 if the criterion was fully completed. 

2.5. Statistical analysis 

We conducted a linear regression with the overall HTA score, 
explanatory variable impact factor, and AI score (i.e. the overall MI- 
CLAIM score). Journal impact factors were retrieved from each jour-
nal in 2021. We also performed linear regression with the AI (MI- 
CLAIM) score, explanatory variables’ impact factors, and HTA scores. 
Statistical analysis was performed using R software (version 4.1.1; 2020) 
- R Foundation for Statistical Computing, Vienna, Austria. Following the 
statistical healthcare standards mentioned by several authors [31,32], 
we used 95 % confidence intervals, an alpha risk inferior to 5 %, and a p- 
value <5 %. 

As highlighted in the literature, several authors showed the impact 
factor (IF) as a reasonable indicator of quality. Therefore, we analysed 
the correlation between IF and quality scores of the articles [33–36]. 

We performed linear regression with the outcome HTA Score, 
explanatory variable Impact Factor and AI Score (MI-CLAIM). We per-
formed linear regression with the AI Score outcome, explanatory vari-
ables’ impact factors, and HTA scores. 

For linear regression, the candidate adjustment variables were 
introduced into the Least Absolute Shrinkage and Selection Operation 
(LASSO) penalized regression model [37]. To select the variables, we 
used a LASSO-type model between the variable to be explained and the 
explanatory variables. The penalty coefficient (λ lambda) was chosen so 
that it provided an estimation error of less than one standard deviation 
of the minimum error obtained by cross-validation 10 times, while being 
as parsimonious as possible. We used the largest value of λ for which the 
cross-validation error is within 1 standard error of the minimum cross- 

validation error. If using this parameter, the number of nonzero co-
efficients was less than the maximum number of covariates, this 
parameter was maintained. Otherwise, we chose the highest value of λ 
which provides several coefficients equal to the maximum number of 
covariates. No variable had a coefficient different from 0 with this 
lambda λ coefficient. 

As the numbers compared were small, a non-parametric test was 
carried out using the Kruskal-Wallis test for AI and HTA scores and 
impact factors. Fisher’s exact test with an alpha risk of 5 % was con-
ducted for medical specialty variables. 

We conducted a univariate analysis of the HTA score with an alpha 
risk of 5 % by adjusting for the impact factor and HTA score. We con-
ducted a multivariate analysis of the AI score with an alpha risk of 5 % 
by adjusting for the impact factor and HTA score. 

As the numbers compared were small, a non-parametric test was 
performed using the Kruskal-Wallis test for AI and HTA scores, publi-
cation date, and impact factor. Fisher’s exact test with an alpha risk of 5 
% was used for the medical specialty variable. There were no missing 
data in this dataset. 

3. Results 

3.1. Selection 

The study selection retrieved 5578 records in total (see PRISMA 
Flowchart in Fig. 2) with 1035 duplicates, 4543 screened in title- 
abstract, 4450 excluded in title-abstract, 37 excluded in full text, and 
56 finally included in the review [38–93]. The main reason for the 
exclusion was the focus on the development rather than the assessment 
of AI-based MDs. 

All results and data extracted from the 56 articles are summarised in 
Supplementary file 2. Of the 56 articles, 71 % (n = 40) of the selected 
studies were published after 2020. The authors’ country affiliations 
were distributed across Europe (43 %, n = 24), Asia (28.5 %, n = 16), 
North America (25 %, n = 14), and Australia (3.5 %, n = 2). >50 % of 

Connolly, P. et al 1 1 0 1 0 0 0 43%

Mar�ns Jarnalo, C. O. et al 1 1 0 1 0 0 0 43%

Xie, Yuchen et al 1 1 0 1 0 0 0 43%

Perkuhn, Michael et al 1 1 0 1 0 0 0 43%

Choi, Min Seo et al 1 1 0 1 0 0 0 43%

Brenton, Lisa et al 1 1 0 1 0 0 0 43%

Mehralivand, Sherif et al 1 1 0 1 0 0 0 43%

Winkel, D.J. et al 1 1 0 1 0 0 0 43%

Pennig, Lenhard et al 1 1 0 1 0 0 0 43%

Rudie, J.D. et al 1 1 0 1 0 0 0 43%

Potash, Eric et al 1 1 0 1 0 0 0 43%

Balidis, M. et al 1 1 0 1 0 0 0 43%

Cikes, Maja et al 1 1 0 1 0 0 0 43%

A�a, Zachi I et al 1 1 0 1 0 0 0 43%

Cesare�, Manuela et al 1 1 0 1 0 0 0 43%

Shah, Payal et al 1 1 0 1 0 0 0 43%

Zech, John R et al 1 1 0 1 0 0 0 43%

Legend: score 1 if the criterion is described in the study; score 0 if the criterion is not described. 
In dark green: studies scored > 70 % for the seven HTA domains 
In light green: studies scored between 50 % and 70 % for the seven HTA domains 
In yellow: studies scored < 50 % for the seven HTA domains 
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the studies focused on radiology and imaging. Regarding study design, 
89 % (n = 50) were retrospective studies, whereas only 11 % (n = 6) 
were prospective studies. Only two studies were randomized clinical 
trials [75,85]. Of the selected studies, 18 % (n = 10) were multicentre. 

3.2. Results of the AI quality assessment 

The use of the MI-CLAIM checklist to assess the studies’ AI quality 
resulted in a mean score of 67 %. Of the 56 articles, 32 % (n = 18) were 

rated as having an AI quality score over or equal to 70 %, 50 % (n = 28) 
had a score between 50 % and 70 %, and 18 % (n = 10) had a score 
below 50 %. The study design category scored the highest (82 %). The 
data/optimization and model performance categories were completed in 
69 % and 66 % of the cases, respectively, whereas the model examina-
tion/assessment in clinical practice and reproducibility categories had 
the lowest scores (Fig. 3). Detailed results are presented in Supple-
mentary File 3. 

5,551 Records identified from:
PubMed (n =2,356)
Embase (n = 3,182)
Cochrane Library (n = 13)

Records removed before 
screening:

Duplicate records removed 
(n = 1008)

Records screened
(n = 4,543)

Records excluded
(n = 4,450)

Reports sought for retrieval
(n = 93)

Reports not retrieved
(n = 4,357)

Reports assessed for eligibility
(n = 93) 37 Reports excluded:

Guidelines (n = 21)
Development of AI 
technologies (n = 16)

Records identified from:
HTA agency websites (n = 27)

Reports assessed for eligibility
(n = 0)

Studies included in review
(n = 56)

Identification of studies via databases Identification of studies via other methods

noitacifitnedI
Sc

re
en

in
g

In
cl

ud
ed

Reports sought for retrieval
(n = 0)

Reports not retrieved
(n = 27)

Fig. 2. PRISMA flow chart for study selection process.  

Fig. 3. Qualitative assessment of articles based on the criteria of the guidelines reviewed in Part 1 and adapted from the MI-CLAIM checklist 
Legend: Percentages show proportion of articles completing each category. 
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3.3. Results of the HTA domain evaluation 

For the HTA Core Model® items, the mean score was 48 % for all 
seven domains. We found that 18 % of the studies scored >70 % for the 
seven HTA domains, 29 % of studies obtained a scored between 50 % 
and 70 %, and 53 % scored <50 % (Table 3). 

Three HTA domains (health problems/current use, description of 
technology, and clinical effectiveness) were systematically described; 
however, only 9 % (n = 5) of the articles evaluated the safety of the 
device. Economic aspects were discussed by only 20 % (n = 11) of the 
articles, and no article mentioned the analysis of the ethical criteria 
related to the assessment of AI-based MDs (Fig. 4). 

3.4. Univariate analysis 

The mean AI (MI-CLAIM) score and medical specialty did not 
significantly differ according to the HTA score (respectively p = 0.19, p 
= 0.475) (Table 4). In contrast, the average rank of the impact factors 
differed significantly according to the HTA score (p = 0.046). On the one 
side, the AI score and medical specialty were not modified by the HTA 
score even if it was a low or a high score. On the other hand, the journal 
impact factor seemed to influence the HTA score assessment. 

3.5. Multivariate analysis 

As shown in the univariate analysis, there was a statistically signif-
icant relationship between the AI (MI-CLAIM) score and impact factors. 
When the impact factor increased by one unit (for instance, from 6 to 7), 
the average AI score increased by 0.00490 (p ≤0.01 (Supplementary File 
4). There was no statistically significant difference in the AI score based 
on the HTA Score (p = 0.19). 

4. Discussion 

To the best of our knowledge, the present work is the first to perform 
a literature review of published AI-based MD assessment studies and 
compare the items present in these studies to specific HTA criteria 

related to AI-based MDs to assess whether study quality corresponds 
with HTA requirements. We observed that, in general, studies related to 
AI-based MDs do not sufficiently fulfil HTA criteria, with widely het-
erogeneous completion rates of the included HTA Core Model® items 
and a mean completion rate of 52 %. Despite the promise of AI-based 
MDs in improving clinical and economic outcomes, the assessment of 
the actual value of AI technologies in real-world clinical practice re-
mains an important challenge. 

The main question related to the assessment of AI in healthcare is, 
“which unmet need is the AI-based MD going to solve?” [94]. All studies 
in our review responded to this question. However, the clinical evalu-
ation of AI-based MD and its methodology should be highly reliable, 
consistent, and sufficiently robust to handle situations such as missing or 
false data. Our results suggest that clinical studies on AI-based MDs have 
several limitations, including a lack of adapted, robust, transparent, and 
complete evidence. 

Our results appear to be consistent with the literature in terms of the 
analysis of studies from the perspective of regulatory authorities and the 
HTA body. For instance, in the USA, Wu et al. assessed AI devices 
approved by the FDA between 2015 and 2020 [95] and concluded that 
most evaluations were retrospective studies, as was also observed in our 
present study, in which almost 80 % of the studies were retrospective. 
Although 80 of the 124 AI-based MDs approved in both the USA and 
Europe were first approved in Europe according to Muehlematter et al., 
the authors highlighted the difficulties of studying CE-marked MDs in 
Europe (unlike in the USA, there is no publicly available register of 
approved MDs because of the confidentiality of information delivered to 
HTA agencies and the decentralised pathway of CE marking) [29]. 
Therefore, one of the strengths of our article is that we propose both 
quantitative assessment tools for and qualitative analysis of the evidence 
available in AI-based MD studies. 

4.1. Assessment of the quality of datasets required for the HTA process 

To guarantee a robust methodology for the evaluation of AI, studies 
must include a justification of the sample size and an assessment of data 
quality to ensure the replicability of results [96]. In our review, >70 % 

Fig. 4. Proportion of articles completing each of the HTA Core Model® selected domains 
Legend: Percentages show proportion of articles completing each category. 
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of the articles did not justify their sample size. Navarro et al. highlighted 
the poor methodological quality of most studies on machine learning 
prediction models, revealing a high risk of bias related to small study 
sizes, inappropriate handling of missing data, and failure to deal with 
overfitting [97]. High-quality datasets are required because the output 
data can only be trusted if the inputs are reliable. Although almost all the 
selected studies in the present review described the origin of the dataset, 
more than one-third did not describe the technical and clinical data 
quality assessment applied to their dataset before its use within the 
proposed AI model. Several AI applications in the reported studies are 
not exploitable in clinical practice because they are trained with com-
plete datasets, but may not be transposable to the real-world”, where 
data can be of poor quality or incomplete [2]. However, the results of an 
algorithm trained on large datasets do not imply that they are 
generalisable. 

In addition, the code for the AI algorithm was available in only a few 
studies. Similarly, in the USA, Amann et al. highlighted in 2020 that, 
because of intellectual property issues, less information is available on 
the methodologies for FDA-approved AI models than on those for open- 
source solutions [98]. FDA-approved AI technologies also use smaller 
datasets because public datasets are available only to academic and non- 
commercial entities [98]. According to Reston et al., universal test sets 
are required to compare regulatory bodies across AI-based MD manu-
facturers [99]. The absence of universal test sets could lead to bias in the 
test sets, patient populations, or even in the way data were acquired. 

4.2. Recommendations for adapting HTA criteria to AI-based MDs 

Although international reporting guidelines for AI technologies have 
been developed (SPIRIT-AI [4], CONSORT-AI [5], STARD-AI [6], CLAIM 
[7], MI-CLAIM [8], PROBAST-ML [9]), there remains a lack of consensus 
regarding the assessment and evaluation of AI-based MDs. 

4.2.1. Recommendations for regulatory authorities 
In Europe, the introduction of the Medical Device Regulation (EU 

2017/745 or MDR) has highlighted the need for more in-depth clinical 
data to prove safety and performance claims, including tighter equiva-
lency standards. 

Consequently, we suggest the following recommendations from the 
perspective of regulatory authorities, such as the US FDA or European 
notified bodies:  

- Requirements for quality management systems and post-market 
surveillance systems should be reinforced [100]. This is particu-
larly true for AI-based MDs that require regular audits, ongoing 
monitoring, and reporting systems to evaluate the safety, quality, 
transparency, and ethical factors of AI-based services [101].  

- The FDA also addressed the need for iterative modifications by 
publishing a discussion paper in 2019 proposing a regulatory 
framework for AI applications that can adapt to ongoing changes 

with new good machine learning practices, focusing on transparency 
and continued analytical and clinical validity [23].  

- Among the challenges posed by AI, transparency, interpretability, 
and explainability are important, because they can influence trust in 
these technologies [102]. During the assessment process, these 
criteria should be considered to improve the trust of patients and 
healthcare professionals in AI. However, in the present work, a ma-
jority of the assessed studies did not describe how the AI algorithm 
works. The concept of explainability, which allows for an under-
standing of why the AI technology came up with a conclusion, is 
highly important for AI-based MDs [16,23]. 

4.2.2. Recommendations for HTA agencies 
A consensus on the specific HTA criteria required to evaluate AI is 

required by HTA agencies that face multiple challenges when assessing 
these technologies [2,103–105]. Our systematic review highlights that 
specific HTA workflows and assessment tools should be used to stan-
dardise the evaluation of AI-based MDs. Therefore, we propose the 
following recommendations: 

- During the HTA process of AI-based MDs, the criteria of trans-
parency, interpretability, explainability, ethics, human-AI interac-
tion, and organizational impact should be considered, in addition to 
the usual HTA criteria for health technologies (such as effectiveness 
and safety). 

- Economic assessments of AI should rely on a more robust method-
ology, such as business impact models or specific health economic 
models, to provide stakeholders in healthcare decision-making with 
more reliable evidence.  

- The quality of data management (collection, storage, privacy, and 
governance) should be considered as a criterion of AI-based MDs 
quality in the HTA evaluation process of AI-based MDs, but also for 
post-market surveillance, especially for evolutive algorithms. 

The existing HTA frameworks are not specifically designed to assess 
AI-based MDs; however, a core HTA can be used as the basis for pro-
ducing specific HTA reports. Our review suggests that existing HTA 
frameworks must be adjusted to appropriately assess AIMDs by 
including interpretability [106], explainability [102], cybersecurity 
[83], the clinical safety of algorithm updates, interoperability 
[107,108], professional and patient acceptance, and ethical and legal 
issues [109]. However, accurate criteria for assessing AI-based MDs in 
the HTA evaluation process are still lacking. For example, considering 
the organizational impact domain, as AI could lead to a redistribution of 
work among healthcare professionals, the assessment of AI should 
include the organizational changes required for its implementation in 
routine practice. Alami et al. highlighted the importance of studying 
organizational impact and readiness to integrate AI into healthcare de-
livery. [110] The organizational impacts could be related to a shorter 
delay in diagnosis, allowing physicians to introduce earlier treatment. It 

Table 4 
Univariate analysis of the distribution of the HTA score related to the AI score, impact factor and medical specialty.  

HTA Score  HTA Score 0.43  
(n = 30) 

HTA Score 0.57 (n =
16) 

HTA Score 0.71 (n =
10) 

n p Test 

AI Score - MI-CLAIM, median 
[Q25–75]  

0.600 [0.500; 
0.700] 

0.625 [0.550; 0.700] 0.650 [0.612; 0.756]  56 0.17 Kruskal- 
Wallis 

Impact Factor, mean (standard 
deviation)  

5.98 (9.61) 3.68 (1.71) 7.55 (6.62)  56 0.046* Kruskal- 
Wallis 

Medical specialty, n Radiology 13 (43 %) 5 (31 %) 4 (40 %)  22 0.47 Fisher  
Other 7 (23 %) 7 (44 %) 1 (10 %)  15 – –  
Ophthalmology - 
diabetes 

4 (13 %) 2 (12 %) 2 (20 %)  8 – –  

Cardiovascular 3 (10 %) 0 (0 %) 2 (20 %)  5 – –  
Oncology 1 (3.3 %) 2 (12 %) 1 (10 %)  4 – –  
Uro-Nephrology 2 (6.7 %) 0 (0 %) 0 (0 %)  2 – – 

Legend: * = significative results (p < 0.05). 
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is also related to the need for training new stakeholders who could 
follow the alerts generated by AI-based MD in the long-term follow-up of 
chronic diseases such as diabetes. At this stage, more studies are needed 
to address the lack of research on organizational issues raised by the 
integration of AI into clinical routines. [110]. However, our review 
highlighted that organizational impact was assessed in only 38 % of the 
studies (n = 22). In addition, AI is often seen as a potential way to reduce 
costs, rather than as a tool that requires additional resources to ensure 
proper functioning. However, this aspect was not properly assessed in 
the reviewed articles because only 21 % (n = 12) of the articles 
addressed this point. 

4.3. Recommendations on AI-based MDs study design 

Given that several criteria were largely unreported in the reviewed 
articles, future studies should address and monitor these issues. These 
criteria should be included as secondary endpoints in the study design. 
The aim was to standardise the HTA pathway and peer-reviewed journal 
process. 

Regarding the HTA criteria, « safety » should be systematically 
assessed during the initial clinical study, even if the AI-based medical 
device appears to have a limited impact on the healthcare pathway. In 
addition, economic and organizational impact evaluations should be 
conducted. Ethical criteria must also be integrated into early evaluation 
studies to improve physicians’ confidence in AI-based technologies 
[111,112]. Concerning the AI criteria, the “model assessment in clinical 
practice” and the “reproducibility” in other clinical environments 
should be assessed and clearly stated in the clinical studies to ensure a 
transparent and exhaustive evaluation process. The clear identification 
of these criteria as secondary endpoints in studies could also be high-
lighted during the review process of academic journals to meet higher- 
quality standards [113]. 

4.4. Limitations 

Finally, our study has some limitations. We only included studies in 
English and French, which may have been regarded as biased. We 
limited our research to AI algorithms that were assessed as MDs or that 
could potentially be considered an MD without confirmation of MD 
status. In addition, the scores calculated for the quality assessment of the 
studies were based on items adapted from the MI-CLAIM checklist and 
HTA Core Model. As we did not find any specific HTA criteria or alter-
native HTA processes that could be used to evaluate AI-based MDs, we 
adapted a list of items to address the questions posed in our review. The 
criteria of the HTA Core Model are not completely suitable for the 
evaluation of clinical studies; this is particularly true for items in do-
mains 8 and 9, which is why we excluded them, but also for items in 
domain 6 (ethics). Because HTA submissions are not usually mentioned 
in the objectives of the studies, this could be a limitation in the selection 
process of the systematic review. Another limitation of this study is the 
lack of access to studies assessed by HTA agencies, except for the article 
related to AI-based MD for diabetic retinopathy assessed by the FDA. 
Some authors have highlighted the importance of being cautious about 
journal impact factors because a correlation between IF and quality 
scores is not always found. [114] 

5. Conclusion 

This study focuses on the information that studies on AI-based MDs 
should contain to meet the expectations of HTA agencies and healthcare 
stakeholders. We found that AI studies are currently insufficient to meet 
all HTA expectations (safety, organizational impact, cost, and economic 
evaluation). Nevertheless, HTA evaluation criteria also need to be 
adapted, as they do not consider the important specificities of AI-based 
MDs [2,17–19] such as (1) the quality of clinical datasets on which the 
performance of the device relies and which are still of poor quality and 

not standardised, (2) interpretability and explainability [115], which 
drive user acceptability, (3) interoperability, and (4) reproducibility. 
Specific HTA workflows and accurate assessment tools should be 
designed to standardise the evaluation of AI-based MDs. Such im-
provements can shape value-based healthcare for AI by generating 
reliable evidence and creating confidence in health technologies. 
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[1] Meskó B, Görög M. A short guide for medical professionals in the era of artificial 
intelligence. Npj Digit Med 2020;3:126. https://doi.org/10.1038/s41746-020- 
00333-z. 

[2] Alami H, Lehoux P, Auclair Y, de Guise M, Gagnon M-P, Shaw J, et al. Artificial 
intelligence and health technology assessment: anticipating a new level of 
complexity. J Med Internet Res 2020;22:e17707. https://doi.org/10.2196/ 
17707. 

[3] Harvey HB, Gowda V. How the FDA regulates AI. Acad Radiol 2020;27:58–61. 
https://doi.org/10.1016/j.acra.2019.09.017. 

[4] Cruz Rivera S, Liu X, Chan A-W, Denniston AK, Calvert MJ, SPIRIT-AI, 
Group CONSORT-AIWorking, et al. Guidelines for clinical trial protocols for 
interventions involving artificial intelligence: the SPIRIT-AI extension. Nat Med 
2020;26:1351–63. https://doi.org/10.1038/s41591-020-1037-7. 

[5] Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK. SPIRIT-AI and 
CONSORT-AI Working Group. Reporting guidelines for clinical trial reports for 
interventions involving artificial intelligence: the CONSORT-AI extension. Nat 
Med 2020;26:1364–74. https://doi.org/10.1038/s41591-020-1034-x. 

[6] Sounderajah V, Ashrafian H, Golub RM, Shetty S, De Fauw J, Hooft L, et al. 
Developing a reporting guideline for artificial intelligence-centred diagnostic test 
accuracy studies: the STARD-AI protocol. BMJ Open 2021;11:e047709. https:// 
doi.org/10.1136/bmjopen-2020-047709. 

[7] Mongan J, Moy L, Kahn CE. Checklist for artificial intelligence in medical 
imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell 2020;2: 
e200029. https://doi.org/10.1148/ryai.2020200029. 

[8] Norgeot B, Quer G, Beaulieu-Jones BK, Torkamani A, Dias R, Gianfrancesco M, 
et al. Minimum information about clinical artificial intelligence modeling: the MI- 
CLAIM checklist. Nat Med 2020;26:1320–4. https://doi.org/10.1038/s41591- 
020-1041-y. 

[9] Collins GS, Dhiman P, Andaur Navarro CL, Ma J, Hooft L, Reitsma JB, et al. 
Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias 
tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based 
on artificial intelligence. BMJ Open 2021;11:e048008. https://doi.org/10.1136/ 
bmjopen-2020-048008. 

[10] Tsopra R, Fernandez X, Luchinat C, Alberghina L, Lehrach H, Vanoni M, et al. 
A framework for validating AI in precision medicine: considerations from the 
european ITFoC consortium. BMC Med Inform Decis Mak 2021;21:274. https:// 
doi.org/10.1186/s12911-021-01634-3. 

[11] Ofori-Asenso R, Hallgreen CE, De Bruin ML. Improving interactions between 
health technology assessment bodies and regulatory agencies: a systematic review 
and cross-sectional survey on processes, progress, outcomes, and challenges. 
Front Med 2020:7. 

[12] Bærøe K, Miyata-Sturm A, Henden E. How to achieve trustworthy artificial 
intelligence for health. Bull World Health Organ 2020;98:257–62. https://doi. 
org/10.2471/BLT.19.237289. 

[13] Vayena E, Blasimme A, Cohen IG. Machine learning in medicine: addressing 
ethical challenges. PLoS Med 2018;15:e1002689. https://doi.org/10.1371/ 
journal.pmed.1002689. 

[14] Dzobo K, Adotey S, Thomford NE, Dzobo W. Integrating artificial and human 
intelligence: a partnership for responsible innovation in biomedical engineering 
and medicine. OMICS J Integr Biol 2020;24:247–63. https://doi.org/10.1089/ 
omi.2019.0038. 

[15] Zawati M, Lang M. What’s in the Box?: uncertain accountability of machine 
learning applications in healthcare. Am J Bioeth 2020;20:37–40. https://doi.org/ 
10.1080/15265161.2020.1820105. 

L. Farah et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.artmed.2023.102547
https://doi.org/10.1016/j.artmed.2023.102547
https://doi.org/10.1038/s41746-020-00333-z
https://doi.org/10.1038/s41746-020-00333-z
https://doi.org/10.2196/17707
https://doi.org/10.2196/17707
https://doi.org/10.1016/j.acra.2019.09.017
https://doi.org/10.1038/s41591-020-1037-7
https://doi.org/10.1038/s41591-020-1034-x
https://doi.org/10.1136/bmjopen-2020-047709
https://doi.org/10.1136/bmjopen-2020-047709
https://doi.org/10.1148/ryai.2020200029
https://doi.org/10.1038/s41591-020-1041-y
https://doi.org/10.1038/s41591-020-1041-y
https://doi.org/10.1136/bmjopen-2020-048008
https://doi.org/10.1136/bmjopen-2020-048008
https://doi.org/10.1186/s12911-021-01634-3
https://doi.org/10.1186/s12911-021-01634-3
http://refhub.elsevier.com/S0933-3657(23)00061-1/rf202304200038322407
http://refhub.elsevier.com/S0933-3657(23)00061-1/rf202304200038322407
http://refhub.elsevier.com/S0933-3657(23)00061-1/rf202304200038322407
http://refhub.elsevier.com/S0933-3657(23)00061-1/rf202304200038322407
https://doi.org/10.2471/BLT.19.237289
https://doi.org/10.2471/BLT.19.237289
https://doi.org/10.1371/journal.pmed.1002689
https://doi.org/10.1371/journal.pmed.1002689
https://doi.org/10.1089/omi.2019.0038
https://doi.org/10.1089/omi.2019.0038
https://doi.org/10.1080/15265161.2020.1820105
https://doi.org/10.1080/15265161.2020.1820105


Artificial Intelligence In Medicine 140 (2023) 102547

11

[16] Gerke S, Babic B, Evgeniou T, Cohen IG. The need for a system view to regulate 
artificial intelligence/machine learning-based software as medical device. Npj 
Digit Med 2020;:3. https://doi.org/10.1038/s41746-020-0262-2. 

[17] Hendrix N, Veenstra DL, Cheng M, Anderson NC, Verguet S. Assessing the 
economic value of clinical artificial intelligence: challenges and opportunities. 
Value Health J Int Soc Pharmacoeconomics Outcomes Res 2022;25:331–9. 
https://doi.org/10.1016/j.jval.2021.08.015. 

[18] Bélisle-Pipon J-C, Couture V, Roy M-C, Ganache I, Goetghebeur M, Cohen IG. 
What makes artificial intelligence exceptional in health technology assessment? 
FrontArtif Intell 2021:4. 

[19] Unsworth H, Wolfram V, Dillon B, Salmon M, Greaves F, Liu X, et al. Building an 
evidence standards framework for artificial intelligence-enabled digital health 
technologies. Lancet Digit Health 2022;4:e216–7. https://doi.org/10.1016/ 
S2589-7500(22)00030-9. 
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Santé n.d. https://www.has-sante.fr/jcms/p_3318028/fr/grille-descriptive-des- 
fonctionnalites-des-dispositifs-medicaux-embarquant-un-systeme-avec- 
apprentissage-automatique-intelligence-artificielle (accessed November 11, 
2022). 

[26] Regulations|Medical Devices|Our Works|Minisry of Food and Drug Safety n.d. 
https://www.mfds.go.kr/eng/brd/m_40/view.do? 
seq=72623&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_ 
2=0&multi_itm_seq=0&company_cd=&company_nm=&page=1 (accessed 
October 20, 2021). 
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