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Abstract

The purpose of this paper is to establish the Donsker–Varadhan type
large deviations principle (LDP) for the two-dimensional stochastic Navier–
Stokes system. The main novelty is that the noise is assumed to be highly
degenerate in the Fourier space. The proof is carried out by using a cri-
terion for the LDP developed in [JNPS18] in a discrete-time setting and
extended in [MN18] to the continuous-time. One of the main conditions of
that criterion is the uniform Feller property for the Feynman–Kac semi-
group, which we verify by using Malliavin calculus.
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0 Introduction

In this paper, we study the large deviations principle (LDP) for the incompress-
ible Navier–Stokes (NS) system on the torus T2 = R

2/2πZ2:

∂tu− ν∆u+ 〈u,∇〉u+∇p = η(t, x), div u = 0, x ∈ T
2. (0.1)

Here u = (u1(t, x), u2(t, x)) and p = p(t, x) are the unknown velocity field and
pressure of the fluid, ν > 0 is the viscosity, and η is an external random force.
We consider this system in the usual space

H =

{

u ∈ L2(T2,R2) :

∫

T2

u(x)dx = 0, div u = 0 in T
2

}

(0.2)

endowed with the L2-scalar product 〈·, ·〉 and the corresponding norm ‖ · ‖.
Projecting the system (0.1) to the space H , we eliminate the pressure term and
obtain the evolution equation

∂tu− ν∆u +Π(〈u,∇〉u) = Πη, (0.3)

where Π is the Leray projection to H in L2(T2,R2) (see Section 6 in Chapter 1
of [Lio69]). We assume that η is a white-in-time noise of the form

η(t, x) = ∂tW (t, x), W (t, x) =
∑

l∈K

blWl(t)el(x), (0.4)

whereK ⊂ Z
2
∗ is a finite set, {bl}l∈K are non-zero real numbers, {Wl}l∈K are inde-

pendent standard Brownian motions on a filtered probability space (Ω,F , {Ft},P)
satisfying the usual conditions (see Definition 2.25 in [KS91]), and

el(x) =

{

l⊥ cos〈l, x〉 if l1 > 0 or l1 = 0, l2 > 0,

l⊥ sin〈l, x〉 if l1 < 0 or l1 = 0, l2 < 0, l = (l1, l2)

with l⊥ = (−l2, l1). In other words, K is the collection of the Fourier modes
directly perturbed by the noise. Under the above assumptions, the NS sys-
tem (0.3) defines a family of Markov processes (ut,Pu) parametrised by the
initial condition u(0) = u ∈ H . The ergodic properties of this family have been
extensively studied in the literature. It is now well known that (ut,Pu) admits
a unique and exponentially mixing stationary measure, provided that the set
K is sufficiently large. Under the condition that K contains all the determin-
ing modes, the ergodicity has been established in different settings in the pa-
pers [FM95, KS00, EMS01, KS02, BKL02]. Later, it was shown that the ergodic-
ity remains true for much smaller set K; see the papers [HM06, HM11, FGRT15]
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for the case when the noise is white-in-time and [KNS20a, KNS20b] for the case
of a general bounded noise. The reader is referred to the book [KS12] for more
references and for detailed description of different methods.

In this paper, we study the Donsker–Varadhan type LDP for the NS sys-
tem (0.3). This type of LDP has been extensively studied in the case of finite-
dimensional diffusions and Markov processes in compact spaces; see the pa-
pers [DV75], the books [FW84, DS89, DZ00], and the references therein. The
paper [Wu01] established a general criterion for Donsker–Varadhan type LDP for
Markov processes that are strong Feller and irreducible. In that paper the crite-
rion is applied to a class of stochastic damping Hamiltonian systems. There are
only few papers considering the problem of LDP for randomly forced PDEs. The
first results are obtained in [Gou07a, Gou07b] in the case of the stochastic
Burgers and NS equations with strong assumptions on the decay of the coef-
ficients {bl}. Indeed, these papers use the criterion of [Wu01], so they require
some lower bounds for {bl} in order to guarantee the strong Feller property.
These assumptions have been relaxed to the conditions bl 6= 0 for all l ∈ Z

2
∗

and
∑

l∈Z2
∗
|l||bl|

2 < +∞ in the papers [JNPS15, JNPS18], where a family of
dissipative PDEs is considered driven by a random kick-force. The proofs of
these papers are based on a study of the long-time behaviour of Feynman–Kac
semigroup and a Kifer type criterion for the LDP. Under similar non-degeneracy
conditions, the local LDP is proved in [MN18] for the stochastic damped non-
linear wave equation, and the full LDP is proved in [Ner19] for the stochastic
NS system. A controllability approach is used in [JNPS21] to prove the LDP for
the Lagrangian trajectories of the NS system. Recently, the criterion of [Wu01]
has been used in [WX18] in the case of SPDEs driven by stable type noises
and in [WXX21] in the case of non-linear monotone SPDEs with white-in-time
noise.

All the papers mentioned above establish the LDP under the assumption
that the noise is non-degenerate, i.e., perturbs directly all the Fourier modes
in the equation. The goal of the present paper is to establish the LDP in the
case of a highly degenerate noise, i.e., when only few Fourier modes are directly
perturbed. To formulate our main result, let us recall that a set K ⊂ Z

2
∗ is a

generator if any element of Z2 is a finite linear combination of elements of K
with integer coefficients. In what follows, we assume that the following condi-
tion is satisfied.

(H) The set K ⊂ Z
2
∗ in (0.4) is a finite symmetric (i.e., −K = K) generator that

contains at least two non-parallel vectors m and n such that |m| 6= |n|.

This is the condition under which the ergodicity of the NS system is established
in [HM06, HM11] in the case of a white-in-time noise and in [KNS20a] in the
case of a bounded noise. The set

K = {(1, 0), (−1, 0), (1, 1), (−1,−1)} ⊂ Z
2
∗

is an example satisfying this condition.

3



For any u ∈ H , let us define the family of occupation measures

ζt =
1

t

∫ t

0

δus
ds, t > 0 (0.5)

on the probability space (Ω,F ,Pu), where δv is the Dirac measure concentrated
at v ∈ H .

Main Theorem. Under the Condition (H), the family {ζt, t > 0} satisfies the LDP.

See Theorem 1.1 for more detailed formulation of this result. The proof
is carried out by using a criterion for the LDP developed in [JNPS18] in a
discrete-time setting and extended in [MN18] to the continuous-time. Accord-
ing to that criterion, the LDP will be established if we show that the following
five properties hold for the Feynman–Kac semigroup associated with the NS sys-
tem (0.3): growth properties, existence of eigenvector, time-continuity, uniform
irreducibility, and uniform Feller property. The first three properties are verified
in [Ner19] and they hold no matter how degenerate is the noise. The uniform irre-
ducibility property follows from the approximate controllability results obtained
in [AS05, AS06]. It is interesting to note that Condition (H) is necessary and suf-
ficient for the approximate controllability of the NS system if one uses controls
acting via the Fourier modes in K. The main technical difficulty of this paper is
related to the verification of the uniform Feller property, which we carry out by
developing the Malliavin calculus analysis of the papers [MP06, HM06, HM11].
More precisely, we derive the uniform Feller property from a gradient estimate
for the Feynman–Kac semigroup. The proof of latter contains essential differ-
ences with respect to the situations studied in [MP06, HM06, HM11] because
of the non-Markovian character of the Feynman–Kac semigroup.

This paper is organised as follows. In Section 1, we explain how the Main
Theorem is derived from the above-mentioned five properties. In Section 2,
we recall some elements of Malliavin calculus, and in Section 3, we verify the
uniform Feller property.
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Notation

In this paper, we use the following notation.

H is the space of divergence-free square-integrable vector fields on T
2 with zero

mean value (see (0.2)). It is endowed with the L2-norm ‖ · ‖.
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Hm = Hm(T2,R2)∩H , where Hm(T2,R2) is the Sobolev space of order m ≥ 1.
We endow the space Hm with the usual Sobolev norm ‖ · ‖m.

BHm(a, r) is the closed ball inHm of radius r > 0 centred at a. We write BHm(r)
when a = 0.

We consider the NS system in the vorticity formulation in the space of square
integrable zero mean functions:

H̃ =

{

w ∈ L2(T2,R) :

∫

T2

w(x)dx = 0

}

(0.6)

equipped with the L2-norm ‖ · ‖. Let H̃m = Hm(T2,R)∩ H̃ , m ≥ 1 be endowed
with the Sobolev norm denoted by ‖ · ‖m.

L∞(H) is the space of bounded Borel-measurable functions ψ : H → R with
the norm ‖ψ‖∞ = supu∈H |ψ(u)|. Cb(H) is the space of continuous functions
ψ ∈ L∞(H). C1

b (H) is the space of functions ψ ∈ Cb(H) that are continuously
Fréchet differentiable with bounded derivative.

Letw : H → [1,+∞] be a Borel-measurable function. Then Cw(H) (resp., L∞
w
(H))

is the space of continuous (resp., Borel-measurable) functions ψ : H → R such
that ‖ψ‖L∞

w
= supu∈H |ψ(u)|/w(u) < +∞.

M+(H) is the collection of non-negative finite Borel measures onH endowed with
the weak convergence topology. For any ψ ∈ L∞(H) and µ ∈ M+(H), we
write 〈ψ, µ〉 =

∫

H
ψ(u)µ(du). P(H) is the subset of probability measures, and Pw(H)

is the set of µ ∈ P(H) such that 〈w, µ〉 < +∞.

L(X,Y ) is the space of linear bounded operators between Banach spaces X
and Y endowed with the natural norm ‖ · ‖L(X,Y ).

The letter C is used to denote unessential constants that can change from line
to line.

1 Main results

1.1 LDP and multiplicative ergodicity

Recall that a mapping I : P(H) → [0,+∞] is a good rate function if its level sets

{σ ∈ P(H) : I(σ) ≤ α} , α ≥ 0

are compact. Moreover, if the effective domain of I, defined by

DI = {σ ∈ P(H) : I(σ) < +∞} ,

is not a singleton, we say that I is a non-trivial good rate function. For any γ > 0
and M > 0, we set

Λ(γ,M) :=

{

ν ∈ P(H) :

∫

H

eγ‖u‖
2

ν(du) ≤M

}

.

The following is a more detailed version of the Main Theorem formulated in the
Introduction.
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Theorem 1.1. Assume that Condition (H) is verified. Then, for any γ > 0
and M > 0, the family of random probability measures {ζt, t > 0} defined
by (0.5) satisfies the LDP uniformly w.r.t. the initial measure ν ∈ Λ(γ,M).
More precisely, there is a non-trivial good rate function I : P(H) → [0,+∞]
that does not depend on γ and M and satisfies the inequalities

lim sup
t→+∞

1

t
log sup

ν∈Λ(γ,M)

Pν {ζt ∈ F} ≤ − inf
σ∈F

I(σ),

lim inf
t→+∞

1

t
log inf

ν∈Λ(γ,M)
Pν {ζt ∈ G} ≥ − inf

σ∈G
I(σ)

for any closed set F and any open set G in P(H).

This theorem is derived from a multiplicative ergodic theorem for the NS
system. To formulate that result, let us introduce the following weight functions:

mγ(u) = exp
(

γ‖u‖2
)

, γ > 0,

wm(u) = 1 + ‖u‖2m, m ≥ 1, u ∈ H.

There is a constant γ0 = γ0(B0) > 0, where B0 =
∑

l∈K b
2
l , such that

Eumγ(ut) ≤ e−γtmγ(u) + C, (1.1)

Euwm(ut) ≤ e−2mtwm(u) + C (1.2)

for any γ ∈ (0, γ0), m ≥ 1, u ∈ H , and t ≥ 0, where C = C(m,κ,B0) > 0 is a
constant; e.g., see Proposition 2.4.9 in [KS12] and Lemma 5.3 in [Ner19] for a
proof of these inequalities.

For any V ∈ Cb(H), the Feynman–Kac semigroup associated with the Markov
family (ut,Pu) is defined by

PV
t ψ(u) = Eu

{

exp

(
∫ t

0

V (us)ds

)

ψ(ut)

}

, PV
t : Cb(H) → Cb(H);

its dual is denoted by PV ∗
t : M+(H) → M+(H). From (1.1) it follows that PV

t

maps the space Cmγ
(H) into itself for γ ∈ (0, γ0).

Theorem 1.2. Assume that Condition (H) is verified and V ∈ C1
b (H). Then

there are constants m = m(V ) ≥ 1 and γ = γ(B0) ∈ (0, γ0) such that there are
unique eigenvectors hV ∈ Cwm

(H) and µV ∈ Pmγ
(H) for the semigroups PV

t

and PV ∗
t corresponding to an eigenvalue λV > 0, i.e,

PV ∗
t µV = λtV µV , PV

t hV = λtV hV for t > 0,

and normalised by 〈hV , µV 〉 = 1. For any ψ ∈ Cmγ
(H), ν ∈ P(H), and R > 0,

the following limits hold as t→ +∞:

λ−tV PV
t ψ →〈ψ, µV 〉hV in Cb(BH(R)) ∩ L1(H,µV ),

λ−tV PV ∗
t ν →〈hV , ν〉µV in M+(H).
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Furthermore, for any M > 0 and κ ∈ (0, γ),

λ−tV Eν

{

exp

(
∫ t

0

V (us)ds

)

ψ(ut)

}

→ 〈ψ, µV 〉 〈hV , ν〉

uniformly w.r.t. ν ∈ Λ(κ,M) as t→ +∞.

This theorem improves Theorem 1.1 in [Ner19] in two directions. First,
in this theorem, the noise is very degenerate, while in [Ner19] all the Fourier
modes are assumed to be directly perturbed by the noise. Second, in the present
situation, the class of functions V is larger, since the result in [Ner19] applies
only to functions depending on finite-dimensional projection of u.

Theorem 1.2 can be viewed as an improvement of Theorem 2.1 in [HM06].
Indeed, in the case V = 0, the Feynman–Kac semigroup reduces to the Markov
semigroup with eigenvalue λV = 1, eigenvector hV = 1 (the function identically
equal to 1 on H), and the measure µV = µ is the unique stationary measure.
The above limits imply that µ is mixing.

Theorem 1.1 is derived from Theorem 1.2 by using a Kifer type criterion
in unbounded spaces. Since this derivation is literally the same as in the non-
degenerate case (see Section 1 in [Ner19]), we do not give the details. The proof
of Theorem 1.2 is discussed in the next subsection.

1.2 Proof of Theorem 1.2

The proof of Theorem 1.2 is carried out by applying a result on large-time
asymptotics of generalised Markov semigroups established in [JNPS18] in the
discrete-time setting and extended in [MN18] to the continuous-time. Here we
apply that result to the Feynman–Kac semigroup PV

t and the associated ker-
nel PVt (u,Γ) = (PV ∗

t δu)(Γ), u ∈ H , Γ ∈ B(H), where δu is the Dirac measure
concentrated at u.

By the regularising property of the NS system, the measure PVt (u, ·) is con-
centrated on the space H2 for any u ∈ H and t > 0. For any R > 0, let us
denote XR = BH2 (R), and let V ∈ Cb(H) be arbitrary. Then the following
properties hold.

Growth properties. There are numbers R0 > 0, γ ∈ (0, γ0), and m ≥ 1 such
that the following quantities are finite:

sup
t≥0

‖PV
t wm‖L∞

wm

‖PV
t 1‖R0

, sup
t≥0

‖PV
t mγ‖L∞

mγ

‖PV
t 1‖R0

, sup
t≥1

‖PV
t Φ‖L∞

mγ

‖PV
t 1‖R0

, (1.3)

where ‖ψ‖R = supu∈XR
|ψ(u)| and Φ(u) = ‖u‖2H2 .

Existence of an eigenvector. For any t > 0, there is a measure µt,V ∈ P(H)
and a number λt,V > 0 such that PV ∗

t µt,V = λt,V µt,V . Moreover, for any
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numbers κ ∈ (0, γ0) and n,m ≥ 1, we have
∫

H

(‖u‖nH2 +mκ(u))µt,V (du) < +∞,

‖PV
t wm‖XR

∫

Xc
R

wm(u)µt,V (du) → 0 as R → +∞.

Time-continuity. For any m ≥ 1, ψ ∈ Cwm
(H), and u ∈ H , the function t 7→

PV
t ψ(u), R+ → R is continuous.

Uniform irreducibility. For any ρ, r, R > 0, there are numbers l = l(ρ, r, R) > 0
and p = p(V, ρ, r) > 0 such that

PVl (u0, BH(û, r)) ≥ p (1.4)

for any u0 ∈ XR and û ∈ Xρ.

Uniform Feller property. The family of functions {‖PV
t 1‖

−1
R PV

t ψ, t ≥ 0} is uni-
formly equicontinuous 1 on XR for any V, ψ ∈ C1

b (H) and R ≥ R0.

The first three of the above properties are established 2 in Propositions 2.1
and 2.5 and Lemma 2.3 in [Ner19]. The proof of the uniform irreducibility is
given below, and the uniform Feller property is established in Section 3. Theo-
rem 1.2 is obtained by applying Theorem 7.4 in [MN18] and by literally repeating
the arguments of Section 4 in [Ner19].

Proof of uniform irreducibility. Let Pt(u0, ·) be the Markov transition kernel of
the family (ut,Pu0

). The boundedness of V implies that

PVt (u0, dv) ≥ e−t‖V ‖∞Pt(u0, dv) for t > 0, u0 ∈ H. (1.5)

According to [AS05, AS06], under Condition (H), the NS system is approxi-
mately controllable in the space H by controls taking values in the space

HK = span{el : l ∈ K}.

This implies that, for any u0, û ∈ H and r > 0, there is a function ζ ∈
C∞([0, 1];HK) such that

‖u(1, u0, ζ)− û‖ < r,

where u(t, u0, ζ) is the solution of the deterministic NS system (0.3) with the
initial condition u(0) = u0 and the (control) force η = ∂tζ. Using the fact
that the mapping (u0, ζ) 7→ u(1, u0, ζ) is continuous from H × C([0, 1];HK)
to H , the non-degeneracy of the law of the Wiener process W in C([0, 1];HK)
(i.e., the support of the law of W coincides with the entire space C([0, 1];HK)),
a simple compactness argument, and inequality (1.5), we arrive at (1.4).

1By uniform equicontinuity of {‖PV
t
1‖−1

R
PV

t
ψ, t ≥ 0} on XR we mean that for any ε > 0,

there is δ > 0 such that ‖PV
t
1‖−1

R

∣

∣PV
t
ψ(u) − PV

t
ψ(u′)

∣

∣ < ε for any u, u′ ∈ XR with ‖u −
u′‖ < δ and any t ≥ 0.

2These propositions and lemma in [Ner19] are formulated in the case when XR = B
H1 (R)

and the noise is non-degenerate. However, their proofs work in the setting of the present paper
without any change.
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2 Elements of Malliavin calculus

The uniform Feller property is proved by using Malliavin calculus analysis from
the papers [MP06, HM06, HM11]. In this section, we recall some basic defini-
tions and estimates from there. To match the framework of these papers, we
rewrite the NS system (0.3) in the vorticity formulation:

∂tw − ν∆w +B(Kw,w) =
∑

l∈K

bl|l|
2Ẇl(t)φl, (2.1)

where w = ∇ ∧ u, B(u,w) = 〈u,∇〉w, and K is the Biot–Savart operator

Kw =
∑

l∈Z2
∗

|l|−2l⊥w−lφl

with |l|2 = l21 + l22, l
⊥ = (−l2, l1), wl = 〈w, φl〉, and

φl(x) =

{

sin〈l, x〉 if l1 > 0 or l1 = 0, l2 > 0,

− cos〈l, x〉 if l1 < 0 or l1 = 0, l2 < 0, l = (l1, l2).

The operator K is continuous from Hs(T2;R) to Hs+1(T2;R2) for any s ∈ R;
it allows to recover the velocity field from the vorticity via u = Kw.

We consider Eq. (2.1) in the space H̃ of real-valued square-integrable func-
tions on T

2 with zero mean value (see (0.6)); it is endowed with the L2 norm ‖·‖.
Since the underlying probability space plays no role, without loss of generality,
we can assume that Ω is the Wiener space, W (t) = {Wl(t)}l∈K is the canoni-
cal process, and P is the Wiener measure. Furthermore, we denote by {θl}l∈K

the standard basis in R
d with d = |K|, and define a linear map Q : Rd → H̃

by Qθl = bl|l|
2φl. Let wt = Φ(t, w,W·) be the solution of Eq. (2.1) with initial

value w(0) = w ∈ H̃ . For any 0 ≤ s ≤ t and ξ ∈ H̃ , let Js,tξ be the solution of
the linearised problem:

∂tJs,tξ − ν∆Js,tξ + B̃(wt, Js,tξ) = 0, (2.2)

Js,sξ = ξ,

where B̃(w, v) = B(Kw, v) +B(Kv, w).
Recall that, for given T > 0 and v ∈ L2([0, T ];Rd), the Malliavin derivative

of wt in the direction v is defined by

Dvwt = lim
ε→0

1

ε

(

Φ(t, w0,W + ε

∫ ·

0

vds)− Φ(t, w0,W )

)

,

where the limit holds almost surely (e.g., see the book [Nua06] for finite-dimensional
setting or the papers [MP06, HM06, HM11, FGRT15] for Hilbert space case). By
the Riesz representation theorem, there is a linear operator D : L2(Ω, H̃) →
L2(Ω;L2([0, T ];Rd)⊗ H̃) such that

Dvw = 〈Dw, v〉L2([0,T ];Rd). (2.3)

9



On the other hand, we have

Dvwt = A0,tv, (2.4)

where As,t : L
2([s, t];Rd) → H̃ is the random operator defined by

As,tv =

∫ t

s

Jr,tQv(r)dr, 0 ≤ s ≤ t ≤ T, (2.5)

i.e., As,tv is the solution of the linearised problem with a source term:

∂tAs,tv − ν∆As,tv + B̃(wt,As,tv) = Qv,

As,sv = 0.

The adjoint A∗
s,t : H̃ → L2([s, t];Rd) is given by

(A∗
s,tξ)(r) = Q∗J∗

r,tξ, ξ ∈ H̃, r ∈ [s, t],

where Q∗ : H̃ → R
d is the adjoint of Q.

Let us denote by J
(2)
s,t (φ, ψ) the second derivative of wt with respect to w in

the directions of φ and ψ. It is the solution of the problem

∂tJ
(2)
s,t (φ, ψ)− ν∆J

(2)
s,t (φ, ψ) + B̃(Js,tφ, Js,tψ) + B̃(wt, J

(2)
s,t (φ, ψ)) = 0,

J (2)
s,s (φ, ψ) = 0.

The next lemma follows from Lemma 4.10 in [HM06].

Lemma 2.1. For any κ, p > 0, 0 ≤ τ < T , and w ∈ H̃, we have

Ew sup
s<t∈[τ,T ]

‖Js,t‖
p

L(H̃,H̃)
≤ C exp{κ‖w‖2}, (2.6)

Ew sup
s<t∈[τ,T ]

|||J
(2)
s,t |||

p ≤ C exp{κ‖w‖2},

where |||J
(2)
s,t ||| = sup‖φ‖,‖ψ‖≤1 ‖J

(2)
s,t (φ, ψ)‖, and C = C(κ, p, T − τ,B0) > 0 is a

constant.

For any 0 ≤ s < t, the Malliavin operator is defined by

Ms,t = As,tA
∗
s,t : H̃ → H̃.

It is a non-negative self-adjoint operator, so its regularisation Ms,t + βI is in-
vertible for any β > 0. Here I is the identity. The following lemma gathers some
estimates from Section 4.8 in [HM06] and Lemma A.6 in [FGRT15].

Lemma 2.2. There is a constant C = C(B0) > 0 such that, for any 0 ≤ s < t,
β > 0, and w ∈ H̃, we have

‖As,t‖
2
L(L2([s,t];Rd),H̃)

≤ C

∫ t

s

‖Jr,t‖
2
L(H̃,H̃)

dr, (2.7)

‖A∗
s,t(Ms,t + βI)−1/2‖L(H̃,L2([s,t];Rd)) ≤ 1, (2.8)

‖(Ms,t + βI)−1/2As,t‖L(L2([s,t];Rd),H̃) ≤ 1, (2.9)

‖(Ms,t + βI)−1/2‖L(H̃,H̃) ≤ β−1/2. (2.10)
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We shall use the notation

DrF = (DF )(r), DjF = (DF )j , Dj
rF = (DF )j(r), j = 1, . . . , d.

From the equalities (2.3)-(2.5) it follows that Di
rwt = Jr,tQθi, 0 ≤ r ≤ t. From

this and (2.2), we conclude that, for 0 ≤ s < t,

∂tD
i
rJs,tξ − ν∆Di

rJs,tξ + B̃(wt,D
i
rJs,tξ) + B̃(Jr,tQθi, Js,tξ) = 0.

Furthermore, by the variation of constants formula, we have

Di
rJs,tξ =

{

J
(2)
r,t (Qθi, Js,rξ) for r ≥ s,

J
(2)
s,t (Jr,sQθi, ξ) for r ≤ s.

This equality and Lemma 2.1 imply the following lemma. For further details,
we refer the reader to Section 4.8 in [HM06] and Lemma A.7 in [FGRT15].

Lemma 2.3. The operators Js,t, As,t, and A∗
s,t are Malliavin differentiable, and

for any κ > 0, r ∈ [s, t], p > 0, and w ∈ H̃, the following inequalities hold

Ew‖D
i
rJs,t‖

p

L(H̃,H̃)
≤ C exp{κ‖w‖2}, (2.11)

Ew‖D
i
rAs,t‖

p

L(L2([s,t];Rd),H̃)
≤ C exp{κ‖w‖2}, (2.12)

Ew‖D
i
rA

∗
s,t‖

p

L(H̃,L2([s,t];Rd))
≤ C exp{κ‖w‖2}, (2.13)

where C = C(κ, p, t− s,B0) > 0.

3 Proof of uniform Feller property

3.1 Reduction to a gradient estimate

The aim of this section is to prove the following proposition.

Proposition 3.1. Under Condition (H), for any V, ψ ∈ C1
b (H), there is a number

R0 = R0(V ) > 0 such that the family
{

‖PV
t 1‖

−1
R PV

t ψ, t ≥ 0
}

is uniformly
equicontinuous on XR for any R ≥ R0.

Proof. For any V, ψ ∈ C1
b (H), let us define functions Ṽ , ψ̃ ∈ C1

b (H̃) by Ṽ (w) =

V (Kw) and ψ̃(w) = ψ(Kw), w ∈ H̃ . The Feynman–Kac semigroup associated
with Eq. (2.1) is given by

P̃Ṽ
t ψ̃(w) = Ew

{

exp

(
∫ t

0

Ṽ (ws)ds

)

ψ̃(wt)

}

, P̃Ṽ
t : C1

b (H̃) → C1
b (H̃).

In what follows, the number R0 is chosen such that the growth properties (1.3)
hold. In the next subsection, we prove the following proposition (cf. Proposi-
tion 4.3 in [HM06]).
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Proposition 3.2. Under the conditions of Proposition 3.1, for any numbers κ > 0
and a ∈ (0, 1), there is a constant C = C(κ, a, ‖∇V ‖∞, ‖V ‖∞) > 0 such that

‖∇ξP̃
Ṽ
t ψ̃(w)‖ ≤ C exp{κ‖w‖2}‖PV

t 1‖R0

[

‖∇ψ‖∞a
t + ‖ψ‖∞

]

‖ξ‖ (3.1)

for any w, ξ ∈ H̃ and t ≥ 0. Here ∇ξ is the derivative with respect to the initial
condition in the direction ξ.

This result implies Proposition 3.1. Indeed, let us take any u1, u2 ∈ XR and
set wi = ∇ ∧ ui, i = 1, 2. Using inequality (3.1) with any κ > 0 and a ∈ (0, 1)
and an interpolation inequality, we see that

∣

∣PV
t ψ(u1)−PV

t ψ(u2)
∣

∣ =
∣

∣P̃Ṽ
t ψ̃(w1)− P̃Ṽ

t ψ̃(w2)
∣

∣

≤ C‖PV
t 1‖R0

‖w1 − w2‖

≤ C‖PV
t 1‖R0

‖u1 − u2‖1

≤ C‖PV
t 1‖R0

‖u1 − u2‖
1/2‖u1 − u2‖

1/2
2

≤ C‖PV
t 1‖R0

‖u1 − u2‖
1/2,

where C = C(R, ‖V ‖∞, ‖∇V ‖∞, ‖ψ‖∞, ‖∇ψ‖∞) > 0. This completes the proof
of Proposition 3.1.

3.2 Proof of Proposition 3.2

Let us take any ξ ∈ H̃ with ‖ξ‖ = 1, denote

Ξt = exp

(
∫ t

0

Ṽ (ws)ds

)

,

and compute the derivative of P̃Ṽ
t ψ̃(w) with respect to w in the direction ξ:

∇ξP̃
Ṽ
t ψ̃(w) = Ew

[

Ξtψ̃(wt)

∫ t

0

∇Ṽ (ws)J0,sξds+ Ξt∇ψ̃(wt)J0,tξ

]

. (3.2)

Inspired by the papers [HM06, HM11], the idea of the proof of Proposition 3.2
is to approximate the perturbation J0,tξ caused by the perturbation ξ of the
initial condition with a variation A0,tv coming from a variation of the noise by
an appropriate process v. Let us denote by ρt the residual error between J0,tξ
and A0,tv:

ρt = J0,tξ −A0,tv,

replace the term J0,tξ in (3.2) by A0,tv + ρt, and recall that A0,tv = Dvwt is
the Malliavin derivative of wt in the direction v. Then, at least formally, using
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the Malliavin chain rule (see Proposition 1.2.3 in [Nua06]), we have

∇ξP̃
Ṽ
t ψ̃(w) = Ew

[

Ξtψ̃(wt)

∫ t

0

∇Ṽ (ws)D
vwsds+ Ξt∇ψ̃(wt)D

vwt

]

+ Ew

[

Ξtψ̃(wt)

∫ t

0

∇Ṽ (ws)ρsds+ Ξt∇ψ̃(wt)ρt

]

= Ew

[

Dv
(

Ξtψ̃(wt)
)]

+ Ew

[

Ξtψ̃(wt)

∫ t

0

∇Ṽ (ws)ρsds

]

+ Ew

[

Ξt∇ψ̃(wt)ρt

]

= I1 + I2 + I3. (3.3)

The term I1 is treated using Malliavin integration by parts formula (see Lemma 1.2.1
in [Nua06]):

I1 = Ew

[

Ξtψ̃(wt)

∫ t

0

v(s)dW (s)

]

, (3.4)

where the stochastic integral
∫ t

0
v(s)dW (s) is in the Skorokhod sense. The goal

is to choose the process v in a such way that the terms Ii, i = 1, 2, 3 are
bounded by the right-hand side of inequality (3.1). We use the same choice
of v as in the papers [HM06, HM11]. More precisely, for any integer n ≥ 0,
the restriction vn,n+1 of the process v to the time interval [n, n + 1] is defined
by

vn,n+1(t) =

{

(

A∗
n,n+1/2

(

Mn,n+1/2 + βI
)−1

Jn,n+1/2ρn
)

(t), t ∈ [n, n+ 1/2],

0, t ∈ [n+ 1/2, n+ 1],

(3.5)
where we set ρ0 = ξ and β > 0 is a small parameter. This choice allows to have
an exponential decay for the moments of ρt and of the Skorokhod integral as
proved in the following lemmas. Inequality (3.1) is proved by combining these
lemmas (with an appropriate choice of parameters therein) and using a growth
property of the Feynman–Kac semigroup.

The following two lemmas are versions of Propositions 4.13 and 4.14 in [HM06].
Since their formulations differ from the original ones, we give rather detailed proofs
based on the estimates recalled in Section 2.

Lemma 3.3. For any κ > 0 and α > 0, there are constants β = β(κ, α) > 0
and C = C(κ, α) > 0 such that

E‖ρt‖
4 ≤ C exp

{

κ‖w‖2 − αt
}

for any w ∈ H̃ and t ≥ 0. (3.6)

Proof. For integer times, this result is established in Proposition 4.13 in [HM06]
(this is where Condition (H) is used). Therefore, there are β = β(κ, α) > 0
and C = C(κ, α) > 0 such that

E‖ρn‖
4 ≤ C exp{κ‖w‖2 − αn} for any w ∈ H̃ and n ≥ 0. (3.7)
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From the construction it follows that

ρt =

{

Jn,tρn −An,tvn,t, for t ∈ [n, n+ 1/2],

Jn+1/2,tρn+1/2, for t ∈ [n+ 1/2, n+ 1]

for any n ≥ 0. Using (3.5) and inequalities (2.8) and (2.10), we get

‖vn,n+1/2‖L2([n,n+1/2];Rd) ≤ β−1/2‖Jn,n+1/2ρn‖. (3.8)

Hence, for any t ∈ [n, n+ 1/2],

‖ρt‖ ≤ ‖Jn,tρn‖+ ‖An,tvn,t‖

≤ ‖Jn,tρn‖+ ‖An,t‖L(L2([n,t];Rd),H̃)‖vn,t‖L2([n,n+1/2];Rd)

≤ ‖Jn,tρn‖+ ‖An,t‖L(L2([n,t];Rd),H̃)‖vn,n+1/2‖L2([n,n+1/2];Rd)

≤ C
(

‖Jn,tρn‖+ β−1/2‖Jn,n+1/2ρn‖ sup
s∈[n,t]

‖Js,t‖L(H̃,H̃)

)

, (3.9)

where we used (2.7) and (3.8). For any t ∈ [n+ 1/2, n+ 1], it holds that

‖ρt‖ ≤ sup
s∈[n+1/2,t]

‖Js,tρn+1/2‖.

Combining this with inequalities (2.6), (3.7), (3.9), the Cauchy–Schwarz inequal-
ity, and the fact that κ > 0 and α > 0 are arbitrary, we arrive at (3.6).

Lemma 3.4. The constants β > 0 and C > 0 in Lemma 3.3 can be chosen such
that also

E

∣

∣

∣

∣

∫ t

n

v(s)dW (s)

∣

∣

∣

∣

2

≤ C exp{κ‖w‖2 − αn} (3.10)

for any n ≥ 0, t ∈ [n, n+ 1], and w ∈ H̃.

Proof. In this proof, we consider the endpoint case t = n+1; the case t ∈ [n, n+1)
is treated in a similar way. Using the generalised Itô isometry (see Section 1.3
in [Nua06]) and the fact that v(t) = 0 for t ∈ [n+1/2, n+1] (see (3.5)), we obtain

E

∣

∣

∣

∣

∫ n+1

n

v(s)dW (s)

∣

∣

∣

∣

2

= E

∫ n+1/2

n

|v(s)|2
Rdds

+ E

∫ n+1/2

n

∫ n+1/2

n

Tr(Dsv(r)Drv(s))dsdr

≤ E

∫ n+1/2

n

|v(s)|2
Rdds

+ E

∫ n+1/2

n

∫ n+1/2

n

|Drvn,n+1/2(s)|
2
Rd×Rddsdr

= L1 + L2. (3.11)
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We estimate L1 by using (2.6), (3.7), and (3.8):

E

∫ n+1/2

n

|v(s)|2
Rdds ≤ β−1

E‖Jn,n+1/2ρn‖
2

≤ Cβ−1 exp{κ‖w‖2/2}
(

E‖ρn‖
4
)1/2

≤ C exp{κ‖w‖2 − αn/2}. (3.12)

To estimate L2, we use the explicit form of Drv. Notice that, for any r ∈ [n, n+
1/2] and i = 1, . . . , d,

Di
rvn,n+1/2 = Di

r(A
∗
n,n+1/2)(Mn,n+1/2 + βI)−1Jn,n+1/2ρn

+A∗
n,n+1/2(Mn,n+1/2 + βI)−1

×
(

Di
r(An,n+1/2)A

∗
n,n+1/2 +An,n+1/2D

i
r(A

∗
n,n+1/2)

)

× (Mn,n+1/2 + βI)−1Jn,n+1/2ρn

+A∗
n,n+1/2(Mn,n+1/2 + βI)−1Di

r(Jn,n+1/2)ρn.

By inequalities (2.8)-(2.10), we have

‖Di
rvn,n+1/2‖L2([n,n+1/2];Rd) ≤ β−1‖Di

r(An,n+1/2)‖L(L2([n,n+1/2];Rd),H̃)

× ‖Jn,n+1/2ρn‖

+ 2β−1‖Di
r(A

∗
n,n+1/2)‖L(H̃,L2([n,n+1/2];Rd))

× ‖Jn,n+1/2ρn‖

+ β−1/2‖Di
r(Jn,n+1/2)ρn‖.

Inequalities (2.6), (2.11)-(2.13), and (3.7), imply that

E

∫ n+1/2

n

∫ n+1/2

n

|Drvn,n+1/2(s)|
2
Rd×Rddsdr ≤ Cβ−2 exp{κ‖w‖2/2}

(

E‖ρn‖
4
)1/2

≤ C exp{κ‖w‖2 − nα/2}. (3.13)

Combining estimates (3.11)-(3.13) and using the fact that κ > 0 and α > 0
are arbitrary, we obtain the desired result.

Finally, we will use a growth estimate for the Feynman–Kac semigroup P̃Ṽ
t .

From the first growth esimate in (1.3) for the semigroupPV
t it follows that there

are numbers R0 > 0, γ ∈ (0, γ0), and m ≥ 1 such that

P̃Ṽ
t 1(w) ≤ C wm(Kw)‖PV

t 1‖R0
for any w ∈ H̃ and t ≥ 0. (3.14)

Now we are in a position to prove Proposition 3.2.

Proof of Proposition 3.2. Replacing V by V − infv∈H V (v), without loss of gen-
erality, we can assume that V ≥ 0. Let v be the process defined by (3.5),
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let κ and α be positive numbers (to be chosen later), and let the number
β = β(κ, α) > 0 be such that inequalities (3.6) and (3.10) hold. Furthermore,
let the positive numbers R0 and m be such that inequality (3.14) holds. Then
the computations in (3.3) are rigorously justified, and we need to estimate the
terms I1, I2, and I3.

Step 1: Estimate for I1. We write the Skorokhod integral in the term I1
(see (3.4)) as follows

∫ t

0

v(s)dW (s) =

⌊t⌋
∑

n=1

∫ n

n−1

v(s)dW (s) +

∫ t

⌊t⌋

v(s)dW (s),

where ⌊t⌋ is the largest number less than or equal to t and the sum in the right-
hand side is replaced by zero if t < 1. Since v(s) is Fn-measurable for s ∈
[n−1, n], the Skorokhod integral

∫ n

n−1 v(s)dW (s) is also Fn-measurable. Hence,
using the Markov property, we obtain

I1,n = Ew

[

Ξtψ̃(wt)

∫ n

n−1

v(s)dW (s)

]

= Ew

[

Ew

(

Ξtψ̃(wt)

∫ n

n−1

v(s)dW (s)
∣

∣

∣
Fn

)]

= Ew

[

Ξn

∫ n

n−1

v(s)dW (s)Ew

(

exp

{
∫ t

n

Ṽ (ws)ds

}

ψ̃(wt)
∣

∣

∣
Fn

)]

= Ew

[

Ξn

∫ n

n−1

v(s)dW (s)
(

P̃Ṽ
t−nψ̃

)

(wn)

]

for any 1 ≤ n ≤ ⌊t⌋. Using inequalities (1.2), (3.10), (3.14), the assumption
that V ≥ 0, and the Cauchy–Schwarz inequality, we see that

I1,n ≤ C‖ψ‖∞e
‖V ‖∞n‖PV

t 1‖R0
Ew

[

wm(un)
∣

∣

∣

∫ n

n−1

v(s)dW (s)
∣

∣

∣

]

≤ C‖ψ‖∞e
‖V ‖∞n‖PV

t 1‖R0

(

Euw
2
m(un)

)1/2
(

Ew

∣

∣

∣

∫ n

n−1

v(s)dW (s)
∣

∣

∣

2
)1/2

≤ C‖ψ‖∞e
‖V ‖∞n‖PV

t 1‖R0
wm(u) exp{(κ‖w‖2 − αn)/2},

where u = Kw and us = Kws. Next, using (3.10) and V ≥ 0, we get

I1,⌊t⌋+1 = Ew

[

Ξtψ̃(wt)

∫ t

⌊t⌋

v(s)dW (s)

]

≤ ‖ψ‖∞e
‖V ‖∞t

Ew

∣

∣

∣

∣

∣

∫ t

⌊t⌋

v(s)dW (s)

∣

∣

∣

∣

∣

≤ C‖ψ‖∞e
‖V ‖∞t‖PV

t 1‖R0
exp{(κ‖w‖2 − α⌊t⌋)/2}.
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Combining the estimates for I1,n and I1,⌊t⌋+1, we arrive at

I1 ≤ C‖ψ‖∞‖PV
t 1‖R0

exp{κ‖w‖2}

⌊t⌋
∑

n=1

exp{(‖V ‖∞ − α/2)n}.

Step 2: Estimate for I2. We first write

I2 = Ew

[

∫ ⌊t⌋

0

Ξtψ̃(wt)∇Ṽ (ws)ρsds

]

+ Ew

[

∫ t

⌊t⌋

Ξtψ̃(wt)∇Ṽ (ws)ρsds

]

= I2,1 + I2,2.

Let ⌈s⌉ be the smallest integer greater than or equal to s. Then ρ(s) is F⌈s⌉-
measurable, and using the Markov property, we obtain

I2,1 = Ew

[

∫ ⌊t⌋

0

Ew

(

Ξtψ̃(wt)∇Ṽ (ws)ρs
∣

∣F⌈s⌉

)

ds

]

= Ew

[

∫ ⌊t⌋

0

Ξ⌈s⌉∇Ṽ (ws)ρs Ew

(

exp

{

∫ t

⌈s⌉

Ṽ (wr)dr

}

ψ̃(wt)
∣

∣

∣
F⌈s⌉

)

ds

]

= Ew

[

∫ ⌊t⌋

0

Ξ⌈s⌉∇Ṽ (ws)ρs

(

P̃Ṽ
t−⌈s⌉ψ̃

)

(w⌈s⌉)ds

]

.

Then inequalities (1.2), (3.6), (3.14), the assumption that V ≥ 0, and the
Cauchy–Schwarz inequality imply that

I2,1 ≤ C‖ψ‖∞‖∇V ‖∞‖PV
t 1‖R0

∫ ⌊t⌋

0

e‖V ‖∞⌈s⌉
Ew

[

wm(u⌈s⌉)‖ρs‖
]

ds

≤ C‖ψ‖∞‖∇V ‖∞‖PV
t 1‖R0

∫ ⌊t⌋

0

e‖V ‖∞⌈s⌉
(

Euw
2
m(u⌈s⌉)

)1/2 (
Ew‖ρs‖

2
)1/2

ds

≤ C‖ψ‖∞‖∇V ‖∞‖PV
t 1‖R0

wm(u) exp{κ‖w‖2/4}

×

∫ ⌊t⌋

0

exp{‖V ‖∞⌈s⌉ − αs/4}ds.

To estimate I2,2, we use (3.6) and V ≥ 0:

I2,2 ≤ ‖ψ‖∞e
‖V ‖∞t‖∇V ‖∞Ew

∫ t

⌊t⌋

‖ρs‖ds

≤ C‖ψ‖∞e
‖V ‖∞t‖∇V ‖∞‖PV

t 1‖R0
exp{(κ‖w‖2 − αt)/4}.

Thus

I2 ≤ C‖ψ‖∞‖∇V ‖∞‖PV
t 1‖R0

exp{κ‖w‖2}

×

(

exp{−αt)/4}+

∫ ⌊t⌋

0

exp{‖V ‖∞⌈s⌉ − αs/4}ds

)

.
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Step 3: Estimate for I3. By (3.6), we have

|I3| ≤ C‖∇ψ‖∞e
‖V ‖∞tE‖ρt‖ ≤ ‖∇ψ‖∞e

‖V ‖∞t exp{(κ‖w‖2 − tα)/4}.

Choosing α ≥ 4‖V ‖∞ − log a and combining the above estimates of the terms
Ii, i = 1, 2, 3 with (3.3), we complete the proof of Proposition 3.2.
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