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More than one quarter of Africa’s tree cover
is foundoutside areas previously classified as
forest

Florian Reiner 1 , Martin Brandt 1 , Xiaoye Tong1, David Skole 2,
Ankit Kariryaa 1,3, Philippe Ciais 4, Andrew Davies 5, Pierre Hiernaux 6,
Jérôme Chave7, Maurice Mugabowindekwe 1, Christian Igel 3,
Stefan Oehmcke 1,3, Fabian Gieseke3,8, Sizhuo Li 1,9, Siyu Liu1,
Sassan Saatchi10, Peter Boucher5, Jenia Singh 5, Simon Taugourdeau11,
Morgane Dendoncker 12, Xiao-Peng Song 13, Ole Mertz1,
Compton J. Tucker14 & Rasmus Fensholt1

The consistent monitoring of trees both inside and outside of forests is key to
sustainable landmanagement. Currentmonitoring systems either ignore trees
outside forests or are too expensive to be applied consistently across coun-
tries on a repeated basis. Here we use the PlanetScope nanosatellite con-
stellation, which delivers global very high-resolution daily imagery, to map
both forest and non-forest tree cover for continental Africa using images from
a single year. Our prototype map of 2019 (RMSE = 9.57%, bias = −6.9%).
demonstrates that a precise assessment of all tree-based ecosystems is pos-
sible at continental scale, and reveals that 29% of tree cover is found outside
areas previously classified as tree cover in state-of-the-art maps, such as in
croplands and grassland. Such accurate mapping of tree cover down to the
level of individual trees and consistent among countries has the potential to
redefine land use impacts in non-forest landscapes, move beyond the need for
forest definitions, and build the basis for natural climate solutions and tree-
related studies.

Forests and other tree-based ecosystems contribute to the removal of
CO2 emissions, and are thus central to climate change mitigation
strategies aiming to achieve net zero CO2 emissions targets1. Accord-
ingly, theGlasgowPact fromCOP26, towhichmore than 100 countries

are signatory, stresses the importance of halting and reversing global
deforestation by 20302. In order to achieve success, actions to halt
deforestation and forest degradation require the direct support from
high-quality monitoring systems that deliver measurement, reporting,
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and verification (MRV) of forest area and change consistently and
comparably among countries3. However, tree losses do not only occur
in dense high-carbon forests, but also in landscapes of scattered trees
that do not form closed-canopy forests. Conversely, tree gains in these
non-forest landscapes are often not perceived positively as they can
contribute to destabilizing open ecosystems4.

The United Nations Food and Agriculture Organization (FAO)
provides relatively clear definitions for forests, but regroups remaining
landscapes with trees into “other wooded land” and “other land”5.
These categories include a variety of tree-based systems, among them
savannahs and woodlands, shrub- and bushlands, trees on agricultural
land, and clustered trees in woodlots. The physical boundaries separ-
ating forest and non-forest are relatively clear in the Northern Hemi-
sphere. However, many African landscapes are drylands, where trees
outside forests are the major form of woody vegetation. Previous
studies have found that, following the FAO definition, forests cover
only 21.4% of Africa, with an additional 14.9% considered as “other
wooded land”6. The remaining 63.7% is classified as “other land”, which
also includes agricultural plantations, agroforesty, urban trees, and a
wide variety of tree complexes outside forests in agricultural lands.
These trees outside forests play a vital role in ecological stability, local
economies, livelihoods, and food security7,8.

The quantitative assessment of trees in both forested and non-
forested landscapes is crucial to reducing emissions from deforesta-
tion and forest degradation, as well as increasing sequestration
through forest restoration, agroforestry, and other restoration inter-
ventions. Quantifying trees outside forests would also enable assess-
ment of woody encroachment and the identification of areas
threatened by increasing woody cover. However, ambiguous defini-
tions, unclear MRV techniques that may differ from country to coun-
try, and scarce technical and financial resources in many developing
countries limit the reliability and credibility of current approaches3,9–11.
Moreover, defining better classes to separate large trees, with high
ecological and economic value, from shrubs would be an important
improvement over current definitions. Similarly, for closed canopies
the classification of forests by canopy height is desirable, both to
ensure that small shrubs are not mapped as tree cover, and to differ-
entiate between primary, secondary, or plantation forests. This
requires the incorporation of canopy height datasets, such as satellite,
aeroplane-, or UAV-based lidar measurements. Overall, the principal
problem remains the consistent assessment of all tree and forest
resources, across both countries and years.

Satellite data of moderate spatial resolution (10–30m) are the
prevailing data source for mapping and monitoring tree cover change
at continental-to-global scales12. However, the 10–30m resolution
does not allow the characterization of individual trees outside forests,
although there have been attempts to map pixel fractional cover with
methods suchas spectral unmixing13,14. Recent studies have shown that
very high spatial resolution (0.5m) satellite data and state-of-the-art
machine learning techniques are able to map individual trees across
large areas15,16, which is one important requirement for accurate
reporting schemes. Previousworkused images frommany commercial
satellites, resulting in a temporal mixing of data across more than a
decade16. However, the use of data from different years and dates is
problematic, not only because tree change information is obscured,
but alsobecause trees arenot consistentlymappeddue to variations in
phenology. Moreover, extending high-resolution tree mapping to
continental or global scales is limited by technical challenges in data
processing and storage. Furthermore, sub-metre imagery is prohibi-
tively expensive for most non-governmental organizations to acquire
and process data over large study areas. Finally, the lack of temporally
consistent imagery makes it difficult to monitor fine-scale tree cover
change caused by tree plantations, agroforestry, selective logging,
deforestation, or woody encroachment. Overall, it is currently difficult
to implement consistent assessments at continental scale and across

years based on sub-metre satellite data, in spite of their high value.
Therefore, a critical gap remains in the repeatedmapping of forest and
non-forest trees at high resolution in a consistent temporal window
and at a continental level.

Here, we address these limitations by using high-resolution
satellite imagery from a nano-satellite constellation, freely available
for the tropics via Norway’s International Climate and Forest Initiative
(NICFI) programme17. Our major objective is tomap all forest and non-
forest trees at continental scale across Africa, and at a precision
exceeding all previous attempts tomapwoody vegetation across large
scales. We use a machine learning approach to segment tree canopy
cover in 3m PlanetScope satellite imagery across Africa, down to the
level of individual scattered trees. We quantify the contribution of
trees outside forests to total tree cover per country, andfind that at the
continental scale, 29% of all tree cover is found outside areas classified
as forest in a current state-of-the-art map based on Sentinel-2 10m
imagery18.

Results
A very high-resolution map of African tree cover
We used 3 m resolution satellite imagery from Planet Labs Inc to
generate composites covering continental Africa in 2019. The raw
images were provided by the PlanetScope constellation of nanosa-
tellites, with 4-band scenes available globally at daily temporal
resolution19. We organized and mosaiced more than 230,000 satellite
scenes in a grid of 1 × 1° tiles. The timewindow for each tilewas inferred
from the green vegetation phenology of the area (see Methods), such
that tree leaf cover is maximized while grasses have passed their
productivity peak. The availability of daily PlanetScope imageswas key
to generating cloud-free images for a narrow time frameof a fewweeks
within a single year. In cloud-prone regions, the time window was
extended progressively up to several months (see Methods). We then
used a deep learning model trained with about 130,000 manual
training samples to segment tree crown cover for all of Africa at 1m
resolution. We only labelled trees or groups of trees that were clearly
identifiable as a woody plant with an associated shadow, which typi-
cally excludes bushes and shrubs below about 5m (see Methods). We
upsampled the images from 3 to 1m to increase the model prediction
performance bypreserving the high quality of themanually delineated
training samples (Supplementary Fig. 1). In croplands, savannahs and
low-densitywoodlands, treesweremappedas individual crowns. Semi-
dense and closed forests were mapped as closed canopies, with no
separation of individual crowns (Fig. 1).

To derive percent tree cover from the binary tree/no-treemap, we
aggregated our results into 30 × 30m grid cells. These cells were first
grouped into non-forest areas with a maximum tree cover of 10% and
25% from our map, two widely used forest definition thresholds5,20.
Then, if canopy cover exceeded 25%, we considered the cell to be a
forest, whichwe further grouped into different canopy heights using a
spaceborne LiDAR based map from a previous study21. Note that our
results are not constrained by these definitions and, given the level of
detail in the mapping, full flexibility exists for selecting thresholds and
resolutions to apply, or to use different canopy height maps22 (Sup-
plementary Fig. 2a, b).

To analyze the distribution of trees across different climatic
zones, we summed tree cover by annual rainfall23 (Fig. 2a, Supple-
mentary Fig. 2c). A previously published and widely used global tree
cover map was added for comparison purposes12. We find that, at
continental scale, the PlanetScope tree cover matches the global map
for forests and even for areas of 10–25% tree cover, especially in higher
rainfall areas, but the global map completely misses tree cover below
10%, which is the dominant form of tree cover in low rainfall areas.
Across Africa, we show that 15.8% of tree cover is located in areas with
less than 25% canopy cover, and 6.0% of the tree cover is in areas with
less than 10% canopy cover. A total of 0.16% of tree cover is in hyper-
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arid areas (0–150mm rainfall), 0.7% in arid areas (150–300mm rain-
fall), 4.3% in semi-arid areas (300–600mm), 27.5% in sub-humid areas
(600–1200mm), and 67.0% in humid areas (>1200mm). Interestingly,
a random sample of tree cover plotted against rainfall shows a
homogeneous distribution of tree cover along the rainfall gradient
without a gap at 60–80% tree cover (Fig. 2b), which is observed in the
widely usedMODIS tree cover and haspreviously been interpreted as a
sign of alternative stable ecosystem states24. The lack of such a gap in
our tree cover map thus supports the argument by Hanan et al. that
this was an artefact from the statistical processing of the MODIS tree
cover map25.

Distribution of trees outside forests
We compared the total tree cover from non-forest areas (here defined
as <25% tree cover) against the total tree cover for 45 African countries.
Even though trees in non-forest areas contribute only a minor part to
the total tree cover at continental scale (Fig. 2a, Supplementary
Fig. 2a), at national level trees outside forests constitutemore than50%
of all tree cover in nine countries (Fig. 2c), namely Botswana, Burkina
Faso, Eritrea, Libya, Mali, Namibia, Niger, Mauritania, and Sudan. This
implies that previousmoderate-resolution tree covermaps are of little
use to quantify national woody resources for these countries.

The very high resolution of our tree cover map was then used to
quantify the proportion of tree cover found across land cover classes,
by leveraging the 10m resolution WorldCover land cover map18.
Overall, across all rainfall regions, we find that 28.7% of tree cover is
found outside of land classified as ‘tree cover’ according to

WorldCover (Fig. 3a). Additionally we show that for dryland regions
(up to 1200mm rainfall), the majority of tree cover is found in areas
classified as shrublands, grasslands and deserts (‘bare/sparse’ cate-
gory), with 90.9% of tree cover found in bare/sparse land cover for
hyper-arid areas, 39.6% in grasslands and 39.0% in shrublands for arid
areas, 67.9% in shrublands for semi-arid areas, and 34.9% in shrublands
for sub-humid areas (Fig. 3a).

At continental scale, while a relatively large amount of tree cover
(~29%) is outside the ‘tree cover’ land cover class, only 1.7% of tree
cover is found in croplands. However, for local communities in African
drylands, many of the primary uses of cropland trees are food, fodder,
shade, and fuel-wood, or their role in agroforestry systems8. Such
cropland trees are usually widely spaced and can be individualized in
our tree cover map. This lends itself to the analysis of the number,
density, crown size, and distribution of trees on croplands. We
assumed that all segmented objects on croplands are individual tree
crowns, with a correction applied where objects with crown size
>200m2 are assumed to be tree clusters and considered as multiple
trees of 200m2.We found a total number of about 433million trees on
African croplands, with a mean tree density of 2.55 (±5.81) trees per
hectare.

Dividing Africa into northern, western, eastern, central, and
southern Africa (Supplementary Fig. 5a), we find that western Africa
has the highest mean density of cropland trees across most of the
rainfall gradient, although this pattern is not replicated in the mean
tree cover (Fig. 3b, c). This suggests large numbers of smaller trees on
western African croplands, especially in the rainfall regions of

Fig. 1 | Mapped tree cover across areas of different tree densities. a Percentage
tree cover, at 1 kmspatial resolution;b–h examples of predicted tree cover overlaid
on Google Maps satellite imagery (Imagery © 2022 CNES / Airbus, Landsat /
Copernicus, Maxar Technologies, Map data ©2022), in: b a village in Senegal;

c agricultural fields in Burkina Faso; d an urban environment in Khartoum, Sudan;
e Miombo woodlands in Angola; f deforestation in the Democratic Republic of
Congo (DRC); g Eucalyptus plantations in South Africa; h terrace farming in Zim-
babwe. The ocean basemaps in a are from www.naturalearth.com.
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300–1200mm. As annual rainfall increases, there are different rainfall
thresholds for each region at which cropland tree density suddenly
rises, at about 250mm for western Africa, 500mm for eastern Africa,
and 700mm for central and southern Africa. A possible explanation
may lie in the greater use for agroforestry of drought resistant Sahelian
trees in western Africa, compared to eastern and southern Africa.

Comparison with FAO statistics and canopy height maps
We compared our numbers of area cover with the FAO statistics
reported by each country. Here we group our results following the
FAOdefinitions of “forest” and “otherwooded land”, where “forest” is
defined as areas >0.5 ha, with tree height above 5m and a canopy
cover of more than 10%; and “other wooded land” is defined as areas
>0.5 ha, with tree height above 5m and a canopy cover of 5–10%, or a
combined cover of trees and shrubs above 10% (Fig. 3d, e). The
category “other land with tree cover”was not considered because no
statistics exist for most of the countries. Forest areas matched rela-
tivelywell with our results formost countries: at continental scale, we
map 7,519,197 km² as forest and the FAO reports 6,374,249 km2 for
the year 2019. Interestingly, our results tend to map more areas as
forest compared to the FAO statistics, which could be a result of
different definitions of “forest”. For example, FAO “forest” includes
forestry plantations but not tree crop plantations, but both are
included in our map when mature. We map markedly fewer areas as
“other wooded land” than reported by the FAO (1,830,553 km² as
compared to 4,438,199 km2), likely because bushes and small shrubs
are not included in our map.

When comparing our tree cover statistics with those of the FAO, it
is thus important to consider the tree height at which our method
starts to map trees, as the FAO also includes shorter shrubland with a
cover >10% in “other wooded land”. Here, we compared our results
with canopy height models (CHM) from airborne LiDAR and UAV ste-
reo photogrammetry from Senegal, DRC and Mozambique, and show
that we typically do not map bushes, small shrubs and trees below
5–6m (Fig. 4, Supplementary Fig. 6). Furthermore, a comparison with
178,750 isolated trees derived from sub-metre resolution optical ima-
gery from the Sahel16 shows that isolated tree crowns above 30m²
were reliably mapped (less than 20% missed), while 44.2% of the
crowns below this threshold were omitted (Supplementary Fig. 7).
Therefore, our maps may be used to redefine the category of “other
wooded land” by separating single scattered trees in areas of low tree
cover from shrubs and bushes.

Discussion
This study reports on a comprehensive, systematic, very high-
resolution accounting of all tree-systems, not only forests, for a sin-
gle year across Africa. This achievementmarks amilestone towards the
monitoring of woody resources, and has profound implications for
biomass monitoring, conservation biology, landscape ecology, and
sustainable forestry, among others26. In particular, this approach
brings together several important considerations relevant to MRV
tools needed to mobilize actions for natural climate solutions (NCS).
An accurate assessment of tree cover at metric resolution for both
forests and non-forest areas over large areas at a high temporal

Fig. 2 |Distributionof tree cover by rainfall andpercent cover. aTotal tree cover
area by rainfall. Tree cover is classified into forest at different heights21, and into two
groups of trees outside forest (TOF) with canopy cover <10% and 10–25%, respec-
tively. A current state-of-the-art global map is added for comparison12. This figure
highlights the regions below 1200mm rainfall and the full map is shown in Sup-
plementary Fig. 2a. b Tree cover vs. rainfall at 100m resolution using a random
sample of 10 million grids, with hue as the forest height21, and isolines overlaid for

MODIS tree cover49 from 100 000 samples at 250m, with isoline units as relative
probability per rainfall and cover grid cell. c Contribution of trees outside forests
(TOF) to total tree cover at country scale. We group trees in 30 × 30m grids and
define a cell as non-forest if the canopy cover is below 25%, and as forest, if it
exceeded 25%. Tree cover is subsequently accumulated for each country. The
ocean basemaps are from www.naturalearth.com.
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frequency has the potential to redefine our knowledge of land use
impacts on tree cover change, carbon stocks, emissions, and removals.
Ultimately, if tree cover is reported from the aggregation of data at
single tree level, this level of accuracy and precision would allow the
variable “tree cover” to be used in policy-making as an instrument for
improved and transparent management of tree resources.

The inclusion of non-forest trees also highlights the challenge of a
clear separation between forest and non-forest trees. Applying the
FAOdefinition (<10% cover for 0.5 ha) onourmap, the number of trees
outside forests is low (5.2% of the total cover). This is however because
most of the trees we find would qualify as “forest” according to this
definition. If comparing with a previous state-of-the-art map based on
10-m Sentinel-2 data18, we find that 29% of tree cover is found outside
the areas previously classified as tree cover. A continentally consistent
high resolution tree cover product is thus an important step to com-
paring and harmonizing the different forest definitions used across
countries and institutions.

As part of this study, tools were developed to automate the pro-
cess of generating uniformmosaics of PlanetScope scenes for any grid
tile globally, and for predicting tree cover for a specific year or date
range. Given that PlanetScope imagery is available every day for the
whole world, these processingmethods lay the groundwork for global
tree cover mapping at annual scale and very high spatial resolution.
While this would require further annotation data to cover new eco-
systems, the labelling effort is expected to be lower due to the variety

of ecosystems already trained for the Africa model. Additionally, the
free availability of NICFI PlanetScope data for the tropics makes this
methodology feasible for developing countries at national level.

Looking ahead, the same method could potentially be used as an
important component of a global tree cover monitoring programme.
Such a frameworkwould dramatically enhance our capability to detect
and map tree cover change at a high temporal frequency, extending
existing deforestation monitoring systems to the point where the
removal of single trees and thickets is tracked. With increased spatial
resolution and fidelity of canopies and individual tree crowns, it also
increases the ability to measure changes within forests, especially
forest degradation, which, for some regions, is becoming as important
in terms of area and carbon as deforestation27. The ability to include
the full range of tree cover densities lays a foundation for a globally
harmonized approach to monitoring ongoing ecosystem restoration
projects, such as those prioritized under the “UN decade of ecosystem
restoration”, among others. In addition to the current international
efforts to reduce deforestation and forest degradation28,29, this
extended monitoring capability would provide critical support to
sustainable land management, community-based forest and natural
resources management, and national forest inventory and assessment
programmes. Furthermore, tree monitoring could also be applied to
open ecosystems30, where increases in tree cover through woody
encroachment31 or mishandled afforestation programmes32 can be
detrimental to ecosystem functioning and biodiversity33. Identifying

Fig. 3 | Tree cover by forest type and land cover. a Distribution of mapped tree
cover by land cover type and precipitation zone, with land cover classes from the
Worldcover product18. See Supplementary Table 1 for mean tree cover by land
cover. b Distribution of non-forest trees on African croplands, showing mean tree
cover and c mean tree density on croplands. The right-side y-axis is the total

cropland area, and the shaded background of the lines represent the 95% con-
fidence interval. See Supplementary Fig. 3 for grasslands. d Reported tree cover
compared to FAO statistics for ‘Forest’, defined as areas with >10% tree cover and
e ‘other wooded land’ defined as areas with 5–10% tree cover, or >10% cover of
trees, bushes, and shrubs. For more countries see Supplementary Fig. 4.
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and monitoring increasing tree cover in such ecosystems could alert
managers and policy makers to potential biome shifts that could be
detrimental for biodiversity and pastoralists.

Currently, one caveat in scaling up thismethod to a global scale is
the vast quantity of high quality manually delineated training labels
that would be required to ensure consistent predictions across the
numerous anddiverse local vegetation types globally. Alternativeways
to produce reliable training data are an ongoing topic of research34,
and it is likely that the automatic integration of auxiliary very high-
resolution data such as UAV imagery or LiDAR will play an increasingly
important role in creating training data. Furthermore, the map pro-
vided here is a prototype and there are several limitations in the use of
PlanetScope data that require future research. First, the detection of
small, isolated treeswith crown sizes below30m2 is challenging,which

hinders the applicability of our approach tomonitoring newly planted
trees, natural regeneration, and bushes. Second, only isolated trees
can be reliably identified as individuals. We also need to explore the
feasibility of splitting closed-canopy predictions into single trees,
which would improve the estimation of carbon stocks by enabling the
useof allometricmodelsbasedon single tree crowns16,35. Third, current
tree height information is not available at a high spatial resolution, so
the applied separation of forest types is based on the relatively coarse
GEDI LiDAR data. Moreover, while comparisons with LiDAR data
showed that we can roughly state that trees and shrubs above 5m are
detected, this number should not be considered as a hard threshold
butmore as anorientation. It cannot always be guaranteed that bushes
and smaller shrubs are not partiallymapped, and also there is no strict
guarantee that all trees above 5m are captured. Future versions of this

Fig. 4 | Validation of tree segmentation results with canopy height models.
a Airborne LiDAR canopy height models for three scenes in Karingani Game
Reserve, Mozambique. b Corresponding binary tree cover predictions from Pla-
netScope map. c–e Scatter plot between PlanetScope tree cover and CHM tree
cover if a minimum tree height of 5–6m is used for the CHM data (see

Supplementary Fig. 6a for different height thresholds); for c 59 sample plots in
Senegal, ranging from 2–15 ha size (5m height threshold), d 400 random plots in
Mozambique, each 50ha size (6m height threshold), e 400 random plots in DRC,
each 50ha size (6m height threshold).
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map may extend the use of LiDAR data to training the model, leaving
less uncertainty regarding the definition of the mapped trees. Fourth,
from the original spatial resolution of the images, it is not possible to
detect gaps between dense tree crowns and forest canopies, leading to
overestimations in some forests and shrublands. This effect is aggra-
vated by understory that fills gaps between larger trees, for example in
woodlands. Fifth, PlanetScope images are not available before 2015.
The possibility of using our data to calibrate Landsat time series to
assess changes over longer times needs to be explored.

Tree cover maps generated from current nanosatellites do not
have the level of precision of sensors that record images at sub-metre
resolution, so there is a trade-off between precision and cost, scal-
ability, and repeatability, although ongoing improvements to the
current product will reducemany of the above-mentioned limitations.
Our prototype maps represent a combination of continental scale and
single tree precision that sets the stage for a new era of global tree
cover mapping that has the potential to overcome forest definition
ambiguity. Consequently, this study provides a more robust and
complete evaluation of tree cover, bringing in the full Agriculture,
Forestry, and Other Land Use (AFoLU) domain of landscapes. It also
enables landscape-oriented approaches to climate change mitigation
while also supporting adaptation that integrates livelihoods. Third, it
provides monitoring for forest landscape restoration and ecosystem
degradation, but is not limited to forests, and, fourth, it underpins
sustainable land management and land degradation assessments.
Ultimately, our work provides an opportunity to integrate and serve
the critical needs of many major conventions, including the UNFCCC,
UNCBD, and UNCCD36–38, all of which are challenged by a diversity of
national forest definitions which, at least in terms of CO2 emission and
sequestration accounting, will become less problematic if the focus is
on individual trees.

Methods
Overview
We created custom mosaics of very high resolution satellite imagery
covering the African continent in 2019, with imagery dates selected for
optimal visibility of tree crowns. We then used deep learning techni-
ques to train a model that can segment tree crown cover in the ima-
gery, and applied this model to the entire dataset to produce a
continental scale map of tree cover. The full processing workflow is
shown in Supplementary Fig. 8.

Satellite images
We used high-resolution satellite images from the PlanetScope con-
stellation of nanosatellites, with all data obtained from Planet Labs
through a research license. The images consist of 4-bandmultispectral
scenes at 3m resolution, with atmospherically corrected surface
reflectance values for the Blue, Red, Green, and Near-infra-red bands,
and were available via the Planet API with the PSScene analytic_sr
product bundle39. For the continental study area, we downloaded
about 230,000 individual PlanetScope scenes from 2019, covering a
total area of 24,222,164 km2.

Mosaic generation
To organize the large data volumes, we divided the study area
into a grid of 1 × 1 degree tiles and generated a custom mosaic of
PlanetScope scenes for each tile. The creation of custom mosaics
instead of available Planet basemap imagery was pivotal, as the
provided basemaps are designed to maximize visualization by
combining scenes from many different days, which limits the
consistent detection of tree crowns, especially in drylands with
strong seasonal vegetation differences. Instead, we developed an
automated algorithm to download and mosaic Planet scenes
based on the local phenological conditions of each grid tile. For

best visibility of tree cover, a date range was selected where both
evergreen and deciduous trees were in full foliage, but interfering
signal from tall grassy vegetation was minimized, such as at the
beginning of the dry season. We used the MODIS/Terra phenol-
ogy product40 to determine the local mean days for senescence,
mid-greendown, and dormancy thresholds. We also included an
indicator if the majority of the tile was dominated by deciduous
or evergreen vegetation; this information was derived from the
Copernicus Dynamic Land Cover map41. The date range of inclu-
ded scenes for a given mosaic tile was then taken as senescence
to mid-greendown for deciduous tiles, and mid-greendown to
dormancy for non-deciduous tiles (Supplementary Fig. 9c). This
ensured that the trees in deciduous areas had not yet started leaf
shedding, and that grass interference in evergreen areas was
minimized. After filtering by date range, we then used a dynamic
scene-placing algorithm to select scenes and partial scenes until
the entire mosaic tile was filled. The criteria used to select scenes
include the date and instrument type, as well as metadata prop-
erties on quality such as the amount of clouds, haze, shadow,
‘clear confidence’, and a general quality indicator. For tiles where
there were not enough scenes due to frequent cloud cover, the
date range was automatically progressively extended forwards
and backwards in time until a coverage threshold of 99% was
achieved. We did not perform any temporal merging of the 3m
PlanetScope scenes to create composite images, because small
differences in view angle and orthorectification of subsequent
acquisitions introduce significant noise at the scale of small trees.

The selected scenes per tile were clipped to their partial foot-
prints, downloaded inparallel, reprojected toWGS84, andmerged into
a mosaic. To reduce the sharp edges between scenes, a histogram
matching algorithm was then applied using Landsat reference
images42, with the reference images chosen from the same date range
as the mosaic grid cell. This procedure matched the varied individual
scene surface reflectances to the consistent histogram distribution of
the much larger Landsat scenes, resulting in a uniform final mosaic
(Supplementary Fig. 9a, b). The software tools developed for the
mosaic generation process were fully automated, such that with a
single input of a study area analysis ready custom mosaics can be
generated anywhere in the world.

Mapping canopy cover with deep learning
We used a custom deep learning framework developed in Python to
segment the tree crown cover in PlanetScope images. This framework
is anextensionof theUNet architecturedescribed inBrandt et al.16. The
UNet is a convolutional neural network (CNN) architecture originally
developed formedical segmentation tasks, but hasproven to be highly
suited for tree crown segmentation16,35,43,44. We used an adapted UNet
model with batch normalization and self-attention, and themodel was
trained with a batch size of 8 and a patch size of 512 × 512. To enhance
the training data, image augmentation was performed with multiple
transformations including flipping, cropping, affine transformations,
and linear contrast enhancement. The loss function used during
training was an adapted version of the focal Tversky loss45,46, which is
designed to handle imbalanced classes and allows careful tuning
between omission and commission.

The UNet model was trained using more than 130,000
manually labelled training samples from two persons, including
both individual trees and merged canopy clusters. A tree was only
labelled if it could be clearly identified as a woody plant with an
associated shadow in Google Earth or Bing maps, if this was not
the case, the area was excluded from the training process. The
labelling process was done in two iterations: the first round used
random areas covering different ecosystems (such as croplands,
savannas, shrublands, woodlands, forest) over all Africa, as seen
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in Supplementary Fig. 5b. We then trained a model and predicted
tree cover over the continent. Subsequently, we conducted a
visual inspection and thereafter a second round of labelling in
areas where the model did not perform well. The final samples
were distributed across 21 countries, covering various forest
types, rainfall conditions, and local ecosystems throughout wes-
tern, eastern, and southern Africa (Supplementary Fig. 5b). One
change from the previously published framework16 was to incor-
porate a dynamic resampling functionality into the deep learning
pipeline, to allow for on-the-fly in-memory upsampling of the
source imagery from 3m to 1 m during both training and pre-
diction. The reason for upsampling the PlanetScope images was
to improve the prediction quality by preserving the high fidelity
of the manual training data. The training labels were polygons
with many vertices at sub-pixel resolution, and this detail would
be lost when rasterizing them to 3m. By rasterizing the labels to
1 m, and training with upsampled 1 m data, the model can instead
use contextual clues such as shadows to produce sub-pixel pre-
dictions at 1 m. We found a large difference between predicting at
3 m and predicting on the upsampled 1 m images, with the 1 m
images resulting in significantly more small trees detected, and
finer detail on large crowns (Supplementary Fig. 1).

Due to the large amount of training data and the many different
situations across the continental study area, it was found that the
model would sometimes confuse different types of vegetation, which
appeared the same at the local patch level. For example, a small patch
of uniformly dense Eucalyptus plantation in South Africa may look
nearly the same in infra-red as a patch of dense cropland in Senegal,
thus degrading the model by training with opposing labels. This pro-
blem was solved by training two separate models, one focusing on
forest areas, and one specializing on non-forest trees. It was found that
for the forestmodel the upsampling stepwas not necessary, as there is
less additional benefit of predicting at 1m vs 3m, compared to the
advantage of increased context from a larger effective patch area at
3m. Thus the final architecture is an ensemble prediction of the forest
model at 3m, and the non-forest model at 1m.

Evaluation of tree cover results with LiDAR data
To evaluate the accuracy of the model’s predictions of tree cover, we
compared our binary tree covermapwith canopy heightmaps (CHMs)
derived from aerial LiDAR and stereo UAV imagery. We did not use
manual labels because these are not independent and are impacted by
the choice of thepersondoing the labelling. The LiDAR andUAV stereo
photography data cover different landscape types, such as savannah,
shrubland, woodland, rainforest, and cropland, and were available for
sample sites in Senegal (3 cm and 70 cm resolution; 4.6 km2 area), DRC
(1 × 1m; 79.6 km2 area), andMozambique (1 × 1m; 68.5 km2 area). Using
the resulting CHM images, we sampled 400 random plots of 50ha
each forDRCandMozambique andused the 59 sampleplots of 2–15 ha
from Senegal. We then compared the percent tree cover per plot with
PlanetScope tree cover over the same area. Because the CHM data are
based on tree height, a certain minimum height had to be chosen as a
cutoff to define a tree crown, in order to compare to tree cover at the
plot level. We used different LiDAR minimum height thresholds ran-
ging from 3m to 7m.While there were country-specific variations, the
best correlation with the CHM was found with a 5–6m threshold,
indicating that the PlanetScope tree cover maps trees above approxi-
mately 5-6m (Supplementary Fig. 6a). Using a 6m threshold, we then
obtained an R2 = 0.81 and RMSE = 16.2% for Senegal, R2 = 0.62 and
RMSE = 5.2% for Mozambique, and R2 = 0.93 and RMSE = 10.0% for
DRC. The overall RMSE across all countries was 9.19% for a height
threshold of 6m, and 9.57% with a threshold of 5m.

To determine the bias of our tree cover relative to the LiDAR data,
we calculated the bias in tree cover both at plot level and overall across
all plots. Here we use the relative biases, or systematic relative error,

which are defined as:

biasplot =
1
N

XN

i= 1

ðYobs � YpredÞ
Yobs

× 100 ð1Þ

biastotal =

PN
i= 1ðYobs � YpredÞPN

i = 1 Yobs

× 100 ð2Þ

For a LiDAR height threshold of 5mwe obtain a plot bias of 1.29%
(overestimation) and total bias of −6.90% (underestimation). The dif-
ference in plot vs total bias suggests that areas with high cover such as
in DRC are underpredicted, contributing to a negative total bias, while
across all plots the bias is slightly positive. Supplementary Fig. 6b
shows the biases for varying height thresholds from 3m to 7m, with
the lowest biases corresponding to a height of 5–6m.

Evaluation of single tree prediction results compared to sub-
metre imagery
In forest or dense thickets, the PlanetScope tree cover did not split the
canopy into individual crowns, but for scattered trees the crowns were
mapped as individuals. However, compared to satellite sensors with
sub-meter resolution, the 3m sensor resolution of PlanetScope ima-
gery excluded the ability to detect very small isolated trees <10m²
crown size, and lowered prediction accuracy for smaller crown sizes
<30m². To determine the number of isolated trees thus missed, we
compared our results to the predictions on 50cmWorldView imagery
performed in a previous study16.

However, Brandt et al. used images frommany different years and
phenological periods, which were not uniformly orthorectified, caus-
ing considerable challenges in directly comparing the two maps. To
limit the effect of these differences, we selected 50 cm sample scenes
from their dataset that were from later than 2015, in a similarmonth as
the PlanetScope mosaic, and where automatic image alignment was
successful. Furthermore, we restricted the scenes to croplands, as the
PlanetScope model does not map trees as individuals if tree cover is
dense. We then compared the number of 50 cm mapped trees that
were detected by the PlanetScope model, where a 50 cm tree is con-
sidered successfully detected when it overlaps with any PlanetScope
tree, to account for occasional clustering of trees in the PlanetScope
model (Supplementary Fig. 7). Note that Supplementary Fig. 7a shows
a ‘best-case’ scenario of an area in Nigeria, where the Planet imagery is
clear and there is minimal shift. It can be concluded that detections
become reliable at 30m² crown size or larger, for smaller crown sizes,
about half of the trees are missed by our model.

Environmental data and auxiliary datasets
Weused land cover data fromboth the ESAWorldCover 2020 product
at 10m18 and the Global Land Cover and Land Use Change product at
30m47 to mask out water bodies at prediction time. The WorldCover
map was also used to mask croplands for the analysis of trees on
croplands.

We used historical rainfall data from the Climate Hazards Group
Infra-red Precipitation with Station (CHIRPS) product to generate a
reference rainfall map23. We averaged the annual rainfall data from
1982 to 2018 and bilinearly interpolated to 100m for analysis with
tree cover.

We further used tree cover from Hansen et al.12, where the tree
cover for 2019 was produced by starting with the tree cover in 2000
and adding the available annual forest gain up to 2013, then sub-
tracting annual forest losses up to 2019.

Finally, we used forest canopy height data from both Lang et al.21

at 10m and Potapov et al.22 at 30m to group our tree cover into height
classes (Fig. 2a, b, Supplementary Fig. 2a).
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We did not merge the two products, but performed our analysis
against both to highlight the effect of different canopy heightmaps on
the resulting classes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Planetscope imagerywas partly fromadepartmental research license
and partly from Norway’s International Climate and Forest Initiative
(NICFI) satellite data Level 2 programme. NICFI Planetscope imagery
in tropical areas is available for non-commercial purposes from Pla-
net Labs at https://www.planet.com/nicfi/. However, we did not use
the basemaps provided in the frame of the NICFI programme but
generatedour ownmosaics from the rawdata. Thederived tree cover
maps produced in this study have been deposited in the Zenodo
database and are available at https://doi.org/10.5281/zenodo.
776446048. Note that the maps are under active development and
improved versions will be released in the future. The ESAWorldCover
product18 used for the land cover analyses is available for download
at https://doi.org/10.5281/zenodo.5571936. The global canopy height
data from Lang et al.21 are available for download at https://share.
phys.ethz.ch/~pf/nlangdata/ETH_GlobalCanopyHeight_10m_2020_
version1/. The global canopy height data from Potapov et al.22 are
available for download at https://glad.umd.edu/dataset/gedi. The
global tree cover data fromHansen et al.12 are available for download
at https://storage.googleapis.com/earthenginepartners-hansen/
GFC-2021-v1.9/download.html.

Code availability
The code for the tree detection framework based on U-Net is publicly
available at https://doi.org/10.5281/zenodo.3978185. Support and
more information are available from A.K. (ak@di.ku.dk or ankit.-
ky@gmail.com) or F.R. (flr@ign.ku.dk). Code for preparation of ima-
gery from PlanetScope raw scenes has been deposited in the Zenodo
database and is available at https://doi.org/10.5281/zenodo.7764360.
Support and more information are available from F.R. (flr@ign.ku.dk).
The python libraries used in the image preparation and prediction
pipelines are publicly available and include GDAL v3.1.2, rasterio v1.2,
tensorflow v2.5, geopandas v0.9, and the Planet python API v1.4.7.
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