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Sequential Counterfactual Risk Minimization

Houssam Zenati 1 2 Eustache Diemert 1 Matthieu Martin 1 Julien Mairal 2 Pierre Gaillard 2

Abstract
Counterfactual Risk Minimization (CRM) is a
framework for dealing with the logged bandit
feedback problem, where the goal is to improve
a logging policy using offline data. In this paper,
we explore the case where it is possible to deploy
learned policies multiple times and acquire new
data. We extend the CRM principle and its the-
ory to this scenario, which we call ”Sequential
Counterfactual Risk Minimization (SCRM).” We
introduce a novel counterfactual estimator and
identify conditions that can improve the perfor-
mance of CRM in terms of excess risk and regret
rates, by using an analysis similar to restart strate-
gies in accelerated optimization methods. We also
provide an empirical evaluation of our method in
both discrete and continuous action settings, and
demonstrate the benefits of multiple deployments
of CRM.

1. Introduction
Counterfactual reasoning in the logged bandit problem has
become a common task for practitioners in a wide range of
applications such as recommender systems (Swaminathan
& Joachims, 2015a), ad placements (Bottou et al., 2013) or
precision medicine (Kallus & Zhou, 2018). Such a task typ-
ically consists in learning an optimal decision policy from
logged contextual features and partial feedbacks induced
by predictions from a logging policy. To do so, the logged
data is originally obtained from a randomized data collec-
tion experiment. However, the success of counterfactual
risk minimization is highly dependent on the quality of the
logging policy and its ability to sample meaningful actions.

Counterfactual reasoning can be challenging due to large
variance issues associated with counterfactual estimators
(Swaminathan & Joachims, 2015b). Additionally, as pointed
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out by Bottou et al. (2013), confidence intervals obtained
from counterfactual estimates may not be sufficiently ac-
curate to select a final policy from offline data (Dai et al.,
2020). This can occur when the logging policy does not
sufficiently explore the action space. To address this, one
option is to simply collect additional data from the same
logging system to increase the sample size. However, it may
be more efficient to use already collected data to design a
better data collection experiment through a sequential de-
sign approach (Bottou et al., 2013, see Section 6.4). It is
thus appealing to consider successive policy deployments
when possible.

We tackle this sequential design problem and are interested
in multiple deployments of the CRM setup of Swaminathan
& Joachims (2015a), which we call sequential counterfac-
tual risk minimization (SCRM). SCRM performs a sequence
of data collection experiments by determining at each round
a policy using data samples collected during previous ex-
periments. The obtained policy is then deployed for the
next round to collect additional samples. Such a sequential
decision making system thus entails designing an adaptive
learning strategy that minimizes the excess risk and expected
regret of the learner. In contrast to the conservative learn-
ing strategy in CRM, the exploration induced by sequential
deployments of enhanced logging policies should allow for
improved excess risk and regret guarantees. Yet, obtaining
such guarantees is nontrivial and we address it in this work.

In order to accomplish this, we first propose a new coun-
terfactual estimator that controls the variance and analyze
its convergence guarantees. Specifically, we obtain an im-
proved dependence on the variance of importance weights
between the optimal and logging policy. Second, leveraging
this estimator and a weak assumption on the concentration
of this variance term, we show how the error bound sequen-
tially concentrates through CRM rollouts. This allows us
to improve the excess risk bounds convergence rate as well
as the regret rate. Our analysis employs methods similar to
restart strategies in acceleration methods (Nesterov, 2012)
and optimization for strongly convex functions (Boyd &
Vandenberghe, 2004). We also conduct numerical experi-
ments to demonstrate the effectiveness of our method in both
discrete and continuous action settings, and how it improves
upon CRM and other existing methods in the literature.
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2. Related Work
Counterfactual learning from logged feedback (Bottou et al.,
2013) uses only past interactions to learn a policy with-
out interacting with the environment. Counterfactual risk
minimization methods (Swaminathan & Joachims, 2015a;b)
propose learning formulations using a variance penalization
as in (Maurer & Pontil, 2009) to find policies with minimal
variance. Even so, counterfactual methods remain prone to
large variance issues (Dudı́k et al., 2014). These problems
may arise when the logging policy under-explores the ac-
tion space, making it difficult to use importance sampling
tehcniques (Owen, 2013) that are key to counterfactual rea-
soning. While one could collect additional data to counter
this problem, our method focuses on sequential deployments
(Bottou et al., 2013, see Section 6.4) to collect data obtained
from adaptive policies to explore the action space. Note also
that the original motivation is related but different from the
support deficiency problem (Sachdeva et al., 2020) where
the support of the logging policy does not cover the support
of the optimal policy.

Another related literature to our framework is batch bandit
methods. Originally introduced by Perchet et al. (2015) and
then extended by Gao et al. (2019) in the multi-arm setting,
batch bandit agent take decisions and only observe feedback
in batches. This therefore differs from the classic bandit set-
ting (Auer et al., 2002; Audibert et al., 2007) where rewards
are observed after each action taken by an agent. Exten-
sions to the contextual case have been proposed by Han
et al. and could easily be kernelized (Valko et al., 2013).
The sequential counterfactual risk minimization problem
is thus closely related to this setting. However, major dif-
ferences can be noted. First, SCRM does not leverage any
problem structure as in stochastic contextual bandits (Li
et al., 2010) by assuming a linear reward function (Chu
et al., 2011; Goldenshluger & Zeevi, 2013; Han et al.) nor
uses regression oracles as (Foster & Rakhlin, 2020; Simchi-
Levi & Xu, 2020). Second, deterministic decision rules
taken by bandit agents (Lattimore & Szepesvari, 2019) do
not allow for counterfactual reasoning or causal inference
(Peters et al., 2017), unlike our framework which performs
sequential randomized data collection. Third, unlike gra-
dient based methods used in counterfactual methods with
parametric policies, batch bandit methods use zero-order
methods to learn from data and necessitate approximations
to be scalable (Calandriello et al., 2020; Zenati et al., 2022).

The sequential designs that we use are adaptive data collec-
tion experiments, which have been studied by Bakshy et al.
(2018); Kasy & Sautmann (2021). Closely related to our
method is policy learning from adaptive data that has been
studied by Zhan et al. (2021) and Bibaut et al. (2021) in the
online setting. In contrast, we consider a batch setting and
our analysis achieve fast rates in more general conditions.

Zhan et al. (2021) use a doubly robust estimator and provide
regret guarantees but assume a deterministic lower bound
on the propensity score to control the variance. Instead,
our novel counterfactual estimator does not require such an
assumption. Bibaut et al. (2021) propose a novel maximal
inequality and derive thereof fast rate regret guarantees un-
der an additional margin condition that can only hold for
finite action sets. Our work instead uses a different assump-
tion on the expected risk, which is similar to Hölderian error
bounds in acceleration methods (d’Aspremont et al., 2021)
that are known to be satisfied for a broad class of subanalytic
functions (Bolte et al., 2007).

In the reinforcement learning literature (Sutton & Barto,
1998), off-policy methods (Harutyunyan et al., 2016; Munos
et al., 2016) evaluate and learn a policy using actions sam-
pled from a behavior (logging) policy, which is therefore
closely related to our setting. Among methods that have
shown to be empirically successful are the PPO (Schulman
et al., 2017) and TRPO (Schulman et al., 2015) algorithms
which learn policies using a Kullback-Leibler distributional
constraint to ensure robust learning, which can be compared
to our learning strategy that improves the logging policy at
each round. However reinforcement learning models transi-
tions in the states (contexts) induced by the agent’s actions
while bandit problems like ours assume that actions do not
influence the context distribution. This enables to design al-
gorithms that exploit the problem structure, have theoretical
guarantees and can achieve better performance in practice.

Finally, our method is related to acceleration methods
(d’Aspremont et al., 2021) where current iterates are used
as new initial points in the optimization of strongly convex
functions (Boyd & Vandenberghe, 2004). While different
schemes use fixed (Powell, 1977) or adaptive (Nocedal &
Wright, 2006; Becker et al., 2011; Nesterov, 2012; Bolte
et al., 2007; Gaillard & Wintenberger, 2018) strategies, our
method differs in that it does not consider the same original
setting, does not require the same assumptions nor provides
the same guarantees. Eventually, while current models are
also used as new starting points, additional data is effec-
tively collected in our setting unlike those previous works
that do not assume partial feedbacks as in our case.

3. Sequential Counterfactual Risk
Minimization

In this section, we introduce the (CRM) framework and
motivate the use of sequential designs for (SCRM).

Notations For random variables x ∼ PX , a ∼
πθ(·|x) and y ∼ PY(·|x, a), we write the expectation
Ex,θ,y[·] = Ex∼PX ,a∼πθ(·|x),y∼PY(·|x,a)[·] and do the
same for the variance Varx,θ,y. Moreover, ≲ denotes ap-
proximate inequalities up to universal multiplicative terms.
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3.1. Background

In the counterfactual risk minimization (CRM) problem, we
are given n logged observations (xi, ai, yi)i=1,...,n where
contexts xi ∈ X are sampled from a stochastic environment
distribution xi ∼ PX , actions ai ∼ πθ0(·|xi) are drawn
from a logging policy πθ0 with a model θ0 in a parameter
space Θ. The losses are drawn from a conditional distri-
bution yi ∼ PY(·|xi, ai). We note π0,i = πθ0(ai|xi) the
associated propensities and assume them to be known. We
will assume that the policies in πθ, θ ∈ Θ admit densities
so that the propensities will denote the density function of
the logging policy on the actions given the contexts. The
expected risk of a model θ is defined as:

L(θ) = Ex,θ,y [y] . (1)

Counterfactual reasoning uses the logged data sampled from
the logging policy associated to θ0 to estimate the risk of
any model θ ∈ Θ with importance sampling:

L(θ) = Ex,θ0,y

[
y
πθ(a|x)
πθ0(a|x)

]
, (2)

under the common support assumption (the support of πθ

support is included in the support of πθ0 ). The goal in CRM
is to find a model θ ∈ Θ with minimal risk by minimizing

θ̂ ∈ argmin
θ∈Θ

L0(θ), (3)

where L0(θ) = L̂0(θ)+λ

√
V̂0(θ)
n uses the sample variance

penalization principle (Maurer & Pontil, 2009) on samples
from θ0 with counterfactual estimates of the expected risk
L̂0, an empirical variance V̂0 and λ > 0. Specifically, in
the (CRM) framework, multiple estimators are derived from
the IPS method (Horvitz & Thompson, 1952) that uses the
following clipped importance sampling estimator of the
risk of a model θ by Bottou et al. (2013); Swaminathan &
Joachims (2015a):

L̂IS
0 (θ) =

1

n

n∑
i=1

yi min

(
πθ(ai|xi)

πi
, α

)
, (4)

where α is a clipping parameter. Writing
χi(θ) = yi min(πθ(ai|xi)

π0,i
, α) and χ̄(θ) = 1

n

∑n
i=1 χi(θ)

the empirical variance estimator becomes:

V̂ IS
0 (θ) =

1

n− 1

n∑
i=1

(χi(θ)− χ̄(θ))2. (5)

Other estimators aim at controlling the variance of the es-
timator with self-normalized estimators (Swaminathan &
Joachims, 2015b) or with direct methods (Dudik et al., 2011;
Dudı́k et al., 2014) in doubly robust estimators. Even so,
the performance of counterfactual learning is harmed when

the logging policy under-explores the action space (Owen,
2013). Likewise, counterfactual estimates obtained from a
first round of randomized data collection may not suffice
(Bottou et al., 2013) to select a model θ̂. In those cases, it
could be natural to consider collecting additional samples.
While it is possible to use the same logging model θ0 to do
so, we will present a framework for designing an improved
sequential data collection strategy, following the intuition
of sequential designs of Bottou et al. (2013).

3.2. Sequential Designs

In this section we present a design of data collections
that sequentially learn a policy from logged data in or-
der to deploy it and learn from the newly collected data.
Specifically, we assume that at a round m ∈ {1, . . .M}, a
model θm ∈ Θ is deployed and a set sm of nm observa-
tions sm = (xm,i, am,i, ym,i, πm,i)i=1,...,nm

is collected
thereof, with propensities πm,i = πθm(am,i|xm,i) to learn
a new model θm+1 and reiterate. In this work, we assume
that the loss y is bounded in [−1, 0] as in (Swaminathan &
Joachims, 2015a) (note however that this assumption could
be relaxed to bounded losses) and follows a fixed distribu-
tion PY . Next, we will introduce useful definitions.
Definition 3.1 (Excess Risk and Expected Regret). Given
an optimal model θ∗ ∈ argminθ∈Θ L(θ), we write for
each rollout m the excess risk:

∆m = L(θm)− L(θ∗), (6)

and define the expected regret as:

Rn =

M∑
m=0

∆mnm+1. (7)

The objective is now to find a sequence of models
{θm}m=1...M that have an excess risk and an expected
regret Rn that improve upon CRM guarantees. To do
so, we define a sequence of minimization problems for
m ∈ {1, . . .M}:

θ̂m+1 ∈ argmin
θ∈Θ

Lm(θ), (8)

where Lm is an objective function that we define in Sec-
tion 4.2. Note that in the setting we consider, samples are
i.i.d inside a rollout m but dependencies exist between differ-
ent sets of observations. From a causal inference perspective
(Peters et al., 2017), this does not incur an additional bias
because of the successive conditioning on past observations.
We provide detailed explanations in Appendix A.1 on this
matter. Note also that the main intuition and motivation of
our work is to shed light on how learning intermediate mod-
els θm to adaptively collect data can improve upon sampling
from the same logging system by using the same total sam-
ple size n =

∑m
i=0 nm. To illustrate the learning benefits

of SCRM we now provide a simple example.
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Algorithm 1 Sequential Counterfactual Risk Minimization
Input: Logged observations (x0,i, a0,i, y0,i, π0,i)i=1,...,n0 ,

parameter λ > 0
for m = 1 to M do

Build Lm from observations sm using Eq. (11)
Learn θm+1 using Eq. (8)
Deploy the model θm+1 and collect observations
sm+1 = (xm+1,i, am+1,i, ym+1,i, πm+1,i)i=1,...,nm+1

end

Example 3.1 (Gaussian policies with quadratic loss). Let
us consider Gaussian parametrized policies πθ = N (θ, σ2)
and a loss lt(a) = (a−yt)

2−1 where yt ∼ N (θ∗, σ2). We
illustrate in Figure 1 the evolution of the losses of learned
models θm through 15 rollouts with either i) Batch CRM
learning on aggregation of data, being generated by the
unique initial logging policy θ0 or ii) Sequential CRM learn-
ing with models θ0, . . . , θm−1 deployed adaptively, with
data being generated by the last learned model θm−1 for
the batch m. We see that the models learned with SCRM
take larger optimization steps than the ones with CRM.

We summarize our (SCRM) framework in Algorithm 1 with
the different blocks exposed previously. We provide an ad-
ditional graphical illustration of SCRM compared to CRM
in Appendix A.1. In the next section we will define counter-
factual estimators from the observations sm at each round
and define a learning strategy Lm.

4. Variance-Dependent Convergence
Guarantees

In this part we aim at providing convergence guarantees
of counterfactual learning. We show how we can obtain a
dependency of the excess risk on the variance of importance
weights between the logging model and the optimal model.

4.1. Implicit exploration and controlled variance

We first introduce a new counterfactual estimator. For this,
we will require a common support assumption as in impor-
tance sampling methods (Owen, 2013). We will assume
that the policies πθ for θ ∈ Θ have all the same support.
We then consider the following estimator of the risk of a
model θ:

L̂IPS-IX
m (θ) =

1

nm

nm∑
i=1

πθ,i

πm,i + απθ,i
ym,i, (9)

where πθ,i = πθ(am,i|xm,i) and α is like a clipping
parameter which ensures that the modified propensi-
ties πm,i + απθ(am,i|xm,i) are lower bounded. Noting
ζi(θ) =

( πθ,i

πm,i+απθ,i
− 1
)
ym,i, ζ̄(θ) = 1

nm

∑nm

i=1 ζi(θ)

we can write the empirical variance estimator as:

V̂ IPS-IX
m (θ) =

1

nm − 1

nm∑
i=1

(ζi(θ)− ζ̄(θ))2. (10)

Here, the empirical variance uses a control variate
since it uses the expression of ζi(θ) above instead of
ym,i

πθ,i

πm,i+απθ,i
. This allows to improve the dependency

on the variance in the excess risk provided in Proposition
4.2. Note also that our estimator resembles the implicit
exploration estimator in the EXP3-IX algorithm (Lattimore
& Szepesvari, 2019), as our motivation is to improve the
control of the variance.

4.2. Learning strategy

Next, we aim in this part to provide a learning objective
strategy Lm, as referred to in Eq. (8). Our approach, like the
(CRM) framework, uses the sample variance penalization
principle (Maurer & Pontil, 2009) to learn models that have
low expected risk with high probability. To do so, we first
provide an assumption to be used in our generalization error
bound.
Assumption 4.1 (Bounded importance weights). For any
models θ, θ′ ∈ Θ and any (x, a) ∈ X × A, we assume
πθ(a|x)/πθ′(a|x) ≤W , for some W > 0.

This assumption has been made in previous works (Kallus
& Zhou, 2018; Zenati et al., 2020) and is reasonable when
we consider a bounded parameter space Θ. Next, we state
an error bound for our estimator.
Proposition 4.1 (Generalization Error Bound). Let L̂IPS-IX

m

and V̂ IPS-IX
m be the empirical estimators defined respectively

in Eq. (9) and Eq. (10). Let θ ∈ Θ, δ ∈ (0, 1), and nm ≥ 2.
Then, under Ass. 4.1, for λm =

√
18(Cm(Θ) + log(2/δ)),

with probability at least 1− δ:

L(θ) ≤ L̂IPS-IX
m (θ) + λm

√
V̂ IPS-IX
m (θ)

nm
+

2λ2
mW

nm
+ δm,

where Cm(Θ) is a metric entropy complexity measure de-
fined in App. B.1 and δm =

√
log(2/δ)/(2nm).

This Proposition is proved in Appendix B.2 and essentially
uses empirical bounds (Maurer & Pontil, 2009). By mini-
mizing the latter high-probability upper bound, we can find
models θ with guarantees of minimizing the expected risk.
Therefore, at each round, we minimize the following loss:

Lm(θ) = L̂IPS-IX
m (θ) + λm

√
V̂ IPS-IX
m (θ)

nm
, (11)

where λm > 0 is a positive parameter. Unlike deterministic
decision rules used for example in UCB-based algorithms
(Lattimore & Szepesvari, 2019), the exploration is naturally
guaranteed by the stochasticity of the policies we use.
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Figure 1: Comparison of CRM and SCRM on a simple setting described in Example 3.1. The models learned through
CRM using re-deployments of θ0 (left) reach θ∗ slower than SCRM (center) that uses intermediate deployments θ1, . . . , θM
indicated with ’x’ markers and rollout numbers. The comparison of the evolution of averaged losses (right) over 10 random
runs also shows SCRM converges faster. Here θ∗ = 1, σ = 0.3 and we take M = 15 total rollouts with batches m of size
nm = 100× 2m. The parameter λ is set to its theoretical value.

4.3. Excess risk upper bound

Eventually, we establish an upper bound on the excess risk
of the IPS-IX estimator for counterfactual risk minimization
using the learning strategy that we just defined. For this, we
require an assumption on the complexity measure.

Assumption 4.2. We assume that the set Θ is compact and
that there exists d > 0 such that Cm(Θ) ≤ d log(nm).

This assumption states that the complexity grows logarithmi-
cally with the sample size. It holds for parametric policies so
long as the propensities are lower bounded, which is verified
using our estimator. We now state our variance-dependent
excess risk bound.

Proposition 4.2 (Excess Risk Bound). Let nm ≥ 1 and
θm ∈ Θ. Let sm be a set of nm samples collected with pol-
icy πθm . Then, under Assumptions 4.1 and 4.2, a minimizer
θm+1 of Eq. (11) on the samples sm satisfies the excess risk
upper-bound: w.p. 1− δ

∆m+1 = L(θm+1)− L(θ∗)

≲

√
ν2m

d log nm−log δ
nm

+
W 2 +W (d log nm−log δ)

nm
,

where ν2m = Varx,θm

(
πθ∗(a|x)
πθm(a|x)

)
.

The proof is postponed to Appendix B.2. The modified
propensities in IPS-IX as well as the control variate used in
the variance estimator allow us to improve the dependency
in ν2m, compared to ν2m+1 obtained in previous work (Zenati
et al., 2020). This turns out to be a crucial point to use these
error bounds sequentially as in acceleration methods since
νm → 0 if θm → θ∗, as explained in the next section.

5. SCRM Analysis
In this section we provide the main theoretical result of this
work on the excess risk and regret analysis of SCRM. We
start by stating an assumption that is common in acceleration
methods (d’Aspremont et al., 2021) with restart strategies
(Becker et al., 2011; Nesterov, 2012) that we will require to
achieve the benefits of sequential designs.

Assumption 5.1 (Hölderian Error Bound). We assume that
there exist γ > 0 and β > 0 such that for any θ ∈ Θ, there
exists θ∗ ∈ argminθ∈Θ L(θ) such that

γVarx,θ

(
πθ∗(x|a)
πθ(x|a)

)
≤ (L(θ)− L(θ∗))

β
.

Typically, in acceleration methods, Hölderian error bounds
(Bolte et al., 2007) are of the form:

γd(θ, S∗
Θ) ≤ (L(θ)− L(θ∗))

β

for some γ, β > 0 and where d(θ, S∗
Θ) is some distance

to the optimal set (S∗
Θ = argminθ∈Θ L(θ)). This bound

is akin to a local version of strong convexity (β = 1) or
a bounded parameter space (β = 0) if d is the Euclidean
distance. When β ∈ [0, 1], this has also been referred to
as the Łojasiewicz assumption introduced in (Łojasiewicz,
1963; 1993). Notably, it has been used in online learning
(Gaillard & Wintenberger, 2018) to obtain fast rates with
restart strategies. This assumption holds for instance for
Example 3.1 with β = 1 (see App C.1). We also discuss
this assumption for distributions in the exponential family
in Appendix C.2 notably for distributions that have been
used practice (Swaminathan & Joachims, 2015b; Kallus &
Zhou, 2018; Zenati et al., 2020). Next we state our main
result that is the acceleration of the excess risk convergence
rate and the regret upper bound of SCRM.
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Proposition 5.1. Let n0, n ≥ 2 and θ∗ ∈ argminθ L(θ).
Let nm = n02

m for m = 0, . . . ,M =
⌊
log2(1 + n

n0
)
⌋
.

Then, under Assumptions 4.1, 4.2 and 5.1 with β > 0, the
SCRM procedure (Alg. 1) satisfies the excess risk upper-
bound

∆M = L(θM )− L(θ∗) ≤ O
(
n− 1

2−β log n
)
.

Moreover, the expected regret is bounded as follows:

Rn =

M∑
m=0

∆mnm+1 ≤ O
(
n

1−β
2−β log(n)2

)
.

The proof of our result is detailed in Appendix B.3.

Discussion This result illustrates that an excess risk of
order O

( log(n)
n

)
may be obtained when β = 1 (which is

implied by a local version of strong convexity assumption
in acceleration methods). When β = 0, which merely ac-
counts that the variance of importance weights are bounded,
we simply recover the original rate of CRM of order
O(log(n)/

√
n). The SCRM procedures thus improves the

excess risk rate whenever β > 0. It is worth to emphasize
that the knowledge of β is not needed by Alg. 1. We also
note that our assumption seems related to the Bernstein
condition (Bartlett & Mendelson, 2006, see Def 2.6), and
(van Erven et al., 2015, see Def 5.1) that bounds a variance
term by an excess risk term to the power. In empirical risk
minimization, this implies the same excess risk rate and
regret rate (van Erven & Koolen, 2016), which are exactly
the same rates as ours (up to logs).

6. Empirical Evaluation
In this section we perform numerical experiments to validate
our method in practical settings. We present the experimen-
tal setup as well as experiments comparing SCRM to related
approaches and internal details of the method.

6.1. Experimental setup

As our method is able to handle both discrete and continu-
ous actions we experiment in both settings. We now provide
a brief description of the setups, with extensive details avail-
able in Appendix D.2. 1

Continuous actions We perform evaluation on synthetic
problems pertaining to personalized pricing problems from
(Demirer et al., 2019) (Pricing) and advertising from
(Zenati et al., 2020) (Advertising). We consider Gaussian

1All the code to reproduce the empirical results is
available at: https://github.com/criteo-research/
sequential-conterfactual-risk-minimization

policies πθ(·|x) = N (µθ(x), σ
2) with linear contextual

parametrization µθ(x) = θ⊤x and fixed variance σ2 that
corresponds to the exploration budget allowed in the original
randomized experiment. The features are up to 10 dimen-
sions and the actions are one-dimensional. We keep the
original logging baselines from the settings and compare
results to a skyline supervised model trained on the whole
training data with full information.

Discrete actions We adapt the setup of (Swaminathan &
Joachims, 2015a) that transforms a multilabel classification
task into a contextual bandit problem with discrete, combina-
torial action space. We keep the original modeling (akin to
CRF) with categorical policies πθ(a|x) ∝ exp(θ⊤(x

⊗
a)).

The baseline (resp. skyline) is a supervised, full information
model with identical parameter space than CRM methods
trained on 5% (resp. 100%) of the training data. We consider
the class of probabilistic policies that satisfy Assumption
5.1 by predicting actions in an Epsilon Greedy fashion (Sut-
ton & Barto, 1998)): πε

θ(a, x) = (1 − ε)πθ(a, x) + ε/|A|
where ε = .1. Real-world datasets include Scene, Yeast and
TMC2007 with feature space up to 30,438 dimensions and
action space up to 222. To account for this combinatorial
action space we allow a model θm to be learned using data
from all past rollouts {sl}l<m for better sample efficiency
and therefore adjust variance estimation in Appendix A.2 to
take into account sequential dependencies.

6.2. SCRM compared to CRM and related methods

We first compare SCRM to CRM and existing methods in
the literature.

Comparison between SCRM and CRM First, we pro-
vide insights on the performance that SCRM can achieve
compared to classical CRM with increasing sample sizes.
The key difference between CRM/SCRM is that for each
sample size nm CRM learns from samples generated by
the logging model sCRM

m ← θ0 (see Alg. 2) whilst SCRM
learns from samples generated by a series of optimized mod-
els sSCRM

m ← θm (see Alg. 1). For each sample size we
select a posteriori the best λ for both methods based on
test set loss value. We report in Figure 2 over M = 10
rollouts the mean test loss depending on sample size up to
210, with standard deviation estimated over 10 random runs.
We observe that SCRM converges very fast, often within
the first rollouts. Conversely, CRM needs more samples and
the variance is higher. We conclude that there is a striking
benefit to use a sequential design in order to achieve near
optimal loss with much fewer samples and better confidence
compared to CRM. Complementary results on other datasets
are available in Appendix E.1.

Moreover, to further illustrate this benefit of efficient learn-
ing we also report in Table 1 the sample size needed to
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Figure 2: Test loss as a function of sample size on Scene, Yeast, TMC2007, Advertising, (from left to right). SCRM (in
orange) converges faster and with less variance than CRM (in blue).

Percentage p 0.7 0.8 0.9
CRM 100× 210 100× 216 > 100× 222

SCRM (ours) 100× 28 100× 29 100× 211

Table 1: Needed sample size to achieve test loss L(θ) ≤ p∗
L(θ∗) on the setting in Example 3.1 over the average of 10
random runs. SCRM needs way less data to converge to
near optimal solution. λ is set to its theoretical value.

Pricing Advertising Yeast TMC2007
λ′ −5.353± .178 −.716± .020 .294± .026 .146± .012

λ̂ −5.575± .036 −.726± .001 .299± .039 .164± .021

Table 2: Test loss after 10 rollouts when choosing λ by a
posteriori selection (λ′) or with proposed heuristic (λ̂). Our
heuristic is competitive with the a posteriori selection of a
fixed λ′.

attain near optimal performance when θ∗ is known as in
Example 3.1, where we also observe that SCRM reaches
optimal performances faster than CRM. This corroborates
the benefits of improved excess risk rates for SCRM.

Hyper-parameter selection for SCRM In our experi-
ments, hyperparameter selection consists in choosing a
value for λ. We describe a simple heuristic and evaluate its
performance on different datasets. We propose to select λ̂m

by estimating the non-penalized CRM loss (eq. 3) using of-
fline cross-validation on past data st<m. We report in Table
2 the test loss obtained when choosing a fixed λ a posteriori
(λ′) or with this heuristic (λ̂). We observe that loss confi-
dence intervals for both methods intersect for all discrete
datasets, except on TMC2007 where the degradation shows
only at the 3rd digit. On continuous datasets, the heuristic
actually improves upon the fixed a posteriori selection. We
conclude that this heuristic is usable in practice.

Comparison with other methods In this paragraph we
compare our SCRM to related methods to explore practical
implications of existing methods in our setting. We first
consider batch bandits methods and implement the stochas-
tic sequential batch pure exploitation (SBPE) algorithm in
(Han et al.) and a batch version of kernel UCB (Valko et al.,

2013) algorithm (BKUCB) with an optimized library (see
implementations details in Appendix D.3). We also exper-
iment with off-policy RL methods PPO (Schulman et al.,
2017) and TRPO (Schulman et al., 2015) from the Stable-
Baselines library (Raffin et al., 2021) (see Appendix D.3).
Indeed, such methods model more general state transitions
based on past actions, but they could be used in our set-
ting. To fairly compare all methods (in particular those for
which no heuristic existing for hyper-parameter selection)
we report the mean and standard deviation over 10 random
runs of the best test loss a posteriori over hyperparameter
grids of the same size. First, we observe that SCRM beats
CRM on all datasets, illustrating the benefit of the sequential
design. Second, on discrete tasks (where we the combinato-
rial action space is large) we observe that SCRM achieves
nearly the best test loss in all tasks, while RL methods have
difficulties maintaining good performances. Third, batch
bandits algorithms can achieve good performances in prac-
tice because of their deterministic decision rules. However,
they involve an O(n3) matrix inversion and therefore did
not finish (DNF) in 24h (per single run) on a 46 CPU / 500G
RAM machine in most of our settings with large sample size
n, which make them unpractical for large scale experiments.
We conclude that SCRM is an effective learning paradigm
and that it scales successfully on a variety of settings.

6.3. Details on SCRM

Next, we provide additional empirical evaluations of details
of our method.

Evaluation of IPS-IX To understand the bias-variance
trade-off that IPS-IX can achieve in practice compared to
other counterfactual estimators we consider a policy eval-
uation experiment. The task we consider uses sinusoidal
losses y(a) = cos(a) and evaluated policies are shifted
Gaussians {πi = N (i ∗ π/4, 1)}i=0,4, with π0 being the
logging policy. Evaluated policies with large shifts with
π0 therefore simulate the setting where the logging policy
under-explores the action space. The estimators we consider
include IPS, SNIPS (Swaminathan & Joachims, 2015b),
clipped IPS (eq. 4) with heuristic from (Bottou et al., 2013)
and IPS-IX (eq. 9) with α = 1/n. All methods therefore use
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Pricing Advertising Scene Yeast TMC2007
n/|A|/dim(X )| 105/∞/10 105/∞/2 2.103/26/295 2.103/214/104 3.104/222/3.104

Baseline −3.414± .162 −.431± .120 .353± .009 .478± .014 .511± .003

SBPE DNF DNF .179± .001 .302± .003 DNF
BKUCB DNF DNF .236± .014 .303± .004 DNF
TRPO -5.750± .020 −.670± .030 .376± .001 .434± .001 .396± .001
PPO −5.274± .200 −.637± .015 .206± .001 .463± .001 .263± .001

CRM −5.325± .068 −.594± .100 .233± .031 .362± .044 .158± .034
SCRM (ours) −5.575± .036 -.726± .020 .219± .009 .294± .026 .146± .012

Skyline −5.830± .020 −.739± .002 .179± .002 .312± .003 .142± .001

Table 3: Test loss ± stddev of different methods after 10 rollouts. SCRM achieves optimal or near optimal performance in
all datasets. Batch bandit methods did not finish (DNF) on large scale settings, and RL methods perform overall poorly on
discrete settings with large action space.

their respective heuristics to set hyperparameters. We report
in Figure 3 the bias and variance of estimators for each shift
µ0 − µ = i ∗ π/4 for i = 0, . . . , 4. We observe that IPS-
IX shows an empirical bias comparable to IPS, lower than
SNIPS and clipped IPS while maintaining a lower variance.
Moreover its variance is only slightly higher than clipped
IPS which introduced a large bias. We conclude that besides
being a key component of our analysis IPS-IX also controls
the variance with a better trade-off in practice. More details
are available in Appendix E.2.
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Figure 3: Comparison of counterfactual estimators on policy
evaluation. Bias (left), Variance (right). IPS-IX shows a low
bias and compares favorably to IPS and SNIPS in terms of
variance.

When is SCRM useful is a natural question of interest
when choosing the method to be used on a given logged
bandit feedback problem. Intuitively one can imagine that
SCRM will be most useful when the logging policy under-
explores the action space, for example when the distance (in
parameter space) between the logging and optimal parame-
ters is large. To study this question we proceed to the follow-
ing experiment on the setup of Example 3.1 with Gaussian
distributionsN (θ, σ) and fixed loss variance σ∗ = Vary(y).
We vary the distance δ0 = ∥θ∗ − θ0∥ between the optimal

10 1 100 101 102

| * 0|

100

101

102

103

Lo
ss

SCRM
CRM

Figure 4: Best final loss when varying δ0 = ∥θ∗ − θ0∥.
SCRM achieves better losses especially for larger δ0.

model θ∗ and the logging model θ0. Since the ideal explo-
ration level may be task dependent we choose a posteriori
the best σ on a grid, for both CRM and SCRM. We report
in Figure 4 the best final loss for both CRM and SCRM
for a range of values of δ0. We observe in particular that
SCRM achieves better final losses for larger distances δ0
than CRM. With the same number of rollouts M , SCRM
can extend the exploration to further areas while CRM fails
for any exploration level in those cases, which advocates for
using sequential deployments.

7. Discussions
In this work, we have proposed a method to extend the CRM
perspective for designing sequential data collection experi-
ments. We have introduced a novel counterfactual estimator
to improve variance control in excess risk bounds. Under a
weak error bound assumption, we have sequentially applied
these excess risk guarantees to achieve faster rates similarly
to acceleration methods. Our method also improves upon
CRM in practice and is particularly well-suited for this set-
ting compared to existing methods in the literature. It is
worth noting that, in order to avoid introducing dependen-
cies in the excess risk bounds we analyzed, the theoretical
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algorithm we have studied uses geometric sample sizes to
discard previous samples. However, using all past samples
has been found to be also effective in practice and develop-
ing guarantees for this case would be an interesting area for
future research. Additionally, similar to online settings that
involve an exploration-exploitation tradeoff, investigating
the use of optimism in the face of uncertainty (OFUL) prin-
ciple in SCRM would also be a promising avenue for future
work.
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This appendix is organized as follows: in Appendix A, we provide additional explanations on counterfactual methods
related to our approach. In Appendix B, we detail our analysis of our counterfactual estimator as well as the general SCRM
procedure, as given in Alg. 1. Next, in Appendix D we present all the details of the empirical evaluation and eventually in
Appendix E we provide all additional empirical results that were omitted from the main paper due to space limitation.

A. Additional details on counterfactual estimators
A.1. Unconfoundedness in sequential designs

In these explanations, we recall that the distributions of contexts as well as the distribution of losses are fixed. In other words,
the latter do not vary from one batch to another. In the counterfactual risk minimization framework (CRM) (Swaminathan &
Joachims, 2015a), the causal graph (using the conventions in (Peters et al., 2017)) can be represented as shown in Figure 5.

A YX θ

model treatmentcontext outcome

Figure 5: Causal Graph in a randomized data collection experiment. A denotes action (or treatment), X context, Y is the
loss (or outcome). The causal influence of the contexts on actions is done through the model θ.

In the sequential counterfactual risk minimization (SCRM) framework, if we unfold the causal graph, the following
representation can be given in Figure 6.

At Yt

Yt+1

Xt

Xt+1

θt

θt+1 At+1

model treatmentcontext outcome

Figure 6: Causal Graph in a sequential randomized data collection experiment. A denotes action (or treatment), X context,
Y is the loss (or outcome). The contextual treatments are taken through the models θt.

Therefore, it is clear that in general, θt ⊥̸⊥ θt+1. However, from d-separation and faithfullness (Peters et al., 2017), we have
for t′ < t:

θt ⊥⊥ θt′ |θt−1.

Therefore, given that all the dependencies are observed and that we can condition on the direct parents of a given model θt,
sequential randomized data collection are possible. We eventually provide in Figure 7 an illustration of SCRM and CRM.
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Figure 7: Graphical illustration of SCRM setup (left) and CRM (right), learned with same amount of data after each batch
m. The training data are displayed with color block and the policy used to sample actions in these block are either adaptive
(SCRM) or using the loggind model θ0 (CRM).
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A.2. Multiple Importance Sampling Estimators

Note that in order to avoid introducing dependencies in the excess risk bounds we analyzed, the theoretical algorithm we
have studied uses geometric sample sizes to discard previous samples. However, using all past samples is effective in
practice and developing guarantees for this case would be an interesting area for future research. We present in this section a
estimators using aggregation of all previous information. In particular, we can use Multiple Importance Sampling (MIS)
(Owen, 2013) over all previous samples. Consider in particular a partition of unity with m > 1 weight functions ωt(a) > 0
which satisfies

∑m
t=0 ωt,m(a) = 1 for all a and m ∈ {0, . . .M}. The MIS estimator writes:

L̂MIS
m (θ) =

m∑
t=0

1

nt

nt∑
i=1

ωt,m(at,i)yt,iw
θ
t,i, wθ

t,i =
πθ(at,i|xt,i)

πt,i
. (12)

In multiple importance sampling we usually assume that the behavior distributions are independent. In our case, when we
optimize θt based on the models θt−1, . . . , θ0, we break this assumption. However, as we will see, we can still have the
unbiasedness property and derive an estimator for the variance of the estimator.

Proposition A.1 (Unbiasedness). The MIS estimator (12) is unbiased when the loss y is fixed (its distribution PY(·|x, a)
does not depend on time rollout m).

Proof. Let m ∈ {1, . . .M}. We recall that at all rounds t < m, models θt ∈ Θ were deployed and sets st of nt observations
st = (xt,i, at,i, lt,i, πt,i)i=1,...,nt

were collected thereof, with propensities πt,i = πθt(at,i|xt,i) to learn the next model
θt+1. To prove the unbiasedness we use the tower rule on the expectation and condition on previous observations s1, . . . st−1:

E[L̂MIS
m (θ)] =

m∑
t=0

1

nt

nt∑
i=1

Ex,θm,y

[
ωt(a)yw

θ
t

]
=

m∑
t=0

Ex,θm,y

[
ωt(a)yw

θ
t

]
=

m∑
t=0

Es1...st−1

[
Ex,θm,y

[
ωt(a)yw

θ
t | s1 . . . st−1

]]
=

m∑
t=0

Es1...st−1 [Ex,θ,y [ωt(a)y | s1 . . . st−1]]

=

m∑
t=0

Ex,θ,y [ωt(a)y]

= Ex,θ,y

[(
m∑
t=0

ωt(a)

)
y

]
= Ex,θ,y [y]

= L(θ),

where the second last line is true only when the distribution of y does not change over time roll-outs m.

Among the proposals for functions ωt(a), the most ’naive’ and natural heuristic is to choose

ωt(a) =
nt∑m
l=1 nl

, (13)

which gives the naive concatenation of all IPS estimators

L̂n-MIS
m (θ) =

1

n

m∑
t=0

nt∑
i=1

yt,i
πθ(at,i|xt,i)

πθt(at,i|xt,i)
, (14)

where n =
∑m

t=0 nt.

13
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With the previous definition of the empirical mean estimator, we can now derive an empirical variance estimator, starting
with the naive multi importance sampling estimator. We write the random variable rm = (πθ/πθm)y. We note that for
inside a batch m each realization of rmi = (πθ(am,i|xm,i)/πm,i)ym,i and rmj are independent. But the realizations of the
random variables rm and rm

′
are dependent. Writing n =

∑m
t=0 nt

Var

[
1

n

m∑
t=0

nm∑
i=1

rmi

]
=

m∑
t=0

Var

[
1

n

nm∑
i=1

rmi

]
+ 2

∑
1≤p<q≤m

Cov

 1

n

np∑
i=1

rpi ,
1

n

nq∑
j=1

rqj


=

1

n2

m∑
t=0

Var

[
nm∑
i=1

rm

]
+ 2

1

n2

∑
1≤p<q≤m

np∑
i=1

nq∑
j=1

Cov [rp, rq]

=
1

n2

 m∑
t=0

Var

[
nm∑
i=1

rm

]
+ 2

∑
1≤p<q≤m

npnqCov [r
p, rq]

 ,

where the second last equality is obtained with the bilinearity of the covariance. Given the latter expression of the variance,
we propose the following estimator and with a linear sampling where all np = nq for p, q ∈ {1, . . . ,M}:

V̂ n-MIPS
m (θ) =

1

n2

 m∑
t=0

V̂ (rt) + 2
∑

1≤p<q≤m

npnq

(
1

np

np∑
k=1

(
rpk − r̄p

)(
rqk − r̄q

)) , (15)

where V̂ (rm) = 1
nm(nm−1)

∑nm

i=1

(
rmi − r̄m

)2
and r̄m = 1

nm

∑nm

j=1 r
m
j .

Note also that for other functions ωt(a), the most studied one is the balance heuristic with ωt ∝ ntπθt(a), that is:

ωBH
t (a) =

ntπθt(a)∑m
l=1 nlπθl(a)

. (16)

The latter heuristic has been studied for its low variance (Owen, 2013) but these properties have been studied under an
i.i.d assumption that is broken in our adaptive data collection strategy. Eventually, note that controlling the variance of this
estimator with an implicit exploration estimator as we do in the i.i.d case would make a an interesting research direction.

B. Analysis details
In this section, we provide the details of our analysis by starting with essential definitions, then our proofs of variance
dependent excess risk bounds and finally our regret analysis.

B.1. Definitions

Cm(Θ) is a complexity measure that will be upper-bounded by the metric entropy in sup-norm at level ε = 1/nm of the
following function set,

Fm,Θ :=

{
fθ : (x, a, y) ∈ X ×A× Y 7→ 1

W
+

1

W
y

(
πθ(a|x)

πθm(a|x) + απθ(a|x)
− 1

)
for θ ∈ Θ

}
. (17)

The latter corresponds to clipped prediction errors of policies πθ normalized into [0, 1]. More precisely, to define rigorously
Cm(Θ), we denote for any nm ≥ 1 and ε > 0, the complexity of a class F by

H∞(ε,F , n) = sup
(xi,ai,yi)∈(X×A×Y)n

H(ε,F
(
{xi, ai, yi}

)
, ∥ · ∥∞) , (18)

whereF
(
{xi, ai, yi}

)
=
{(

f(x1, a1, y1), . . . , f(xn, an, yn)
)
, f ∈ F

}
⊆ Rn and the numberH(ε,A, ∥·∥∞) is the smallest

cardinality |A0| of a set A0 ⊆ A such that A is contained in the finite union of ε-balls centered at points in A0 in the metric
induced by ∥ · ∥∞). Then, Cm(Θ) is defined by

Cm(Θ) = logH∞(1/nm,Fm,Θ, 2nm) . (19)

14
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B.2. Variance-dependent excess risk bounds

We will denote by Em[·] = E[·|s0, . . . sm] the conditional expectation given the set of observation samples sm =
(xm,i, am,i, ym,i, πm,i)i=1,...,nm

up to the rollout m. Here, we recall that xm,i ∼ PX , am,i ∼ πθm(·|xm,i), ym,i ∼
PY(·|xm,i, am,i), and πm,i = πθm(am,i|xm,i). Furthermore, throughout the document, Ex,θm,y

[
·
]

(resp. Varx,θm,y

[
·])

denotes the expectation (resp. variance) in (x, a, y) where x ∼ PX , a ∼ πθm(·|x), and y ∼ PY(·|x, a).
Proposition 4.1 (Generalization Error Bound). Let L̂IPS-IX

m and V̂ IPS-IX
m be the empirical estimators defined respectively in

Eq. (9) and Eq. (10). Let δ ∈ (0, 1), θ ∈ Θ, and nm ≥ 2 the number of samples associated to the logged dataset at round
m. Then, with probability at least 1− δ,

L(θ) ≤ L̂IPS-IX
m (θ) + λ

√
V̂ IPS-IX
m (θ)

nm
+

2λ2W

nm
+

√
log(2/δ)

2nm
, (20)

where λ =
√
18(Cm(Θ) + log(2/δ)).

Proof. Let δ ∈ (0, 1) and θ ∈ Θ. Since all functions in Fm,Θ defined in Eq. (17) take values in [0, 1], we can apply the
concentration bound of Maurer & Pontil (2009, Theorem 6) to the set Fm,Θ. This yields, with probability at least 1− δ/2,

Ex,θm,y[fθ(x, a, y)]−
1

nm

nm∑
i=1

fθ(xm,i, am,i, ym,i) ≤

√
18V̂nm

(fθ)(Cm(Θ) + log(2/δ))

nm
+

15(Cm(Θ) + log(1/δ))

(nm − 1)
,

(21)
where

V̂nm
(fθ) =

1

nm − 1

nm∑
i=1

(
fθ(xm,i, am,i, ym,i)−

1

nm

nm∑
j=1

fθ(xm,j , am,j , ym,j)
)2

is an estimation of the sample variance. Let α > 0 and define the following biased estimator of the excess risk:

Lα
m(θ) = Ex,θm,y

[
y

(
πθ(a|x)

πθm(a|x) + απθ(a|x)
− 1

)]
∀θ ∈ Θ. (22)

We recall that Ex,θm,y

[
·
]

denotes the expectation in (x, a, y) where x ∼ PX , a ∼ πθm(·|x), and y ∼ PY(·|x, a). By
construction of fθ (see Eq. (17)),

Ex,θm,y[fθ(x, a, y)] =
1

W
+

1

W
Lα
m(θ)

1

nm

nm∑
i=1

fθ(xm,i, am,i, ym,i) =
1

W
+

1

W
L̂IPS-IX
m (θ)− 1

Wnm

nm∑
i=1

ym,i

V̂nm(fθ) =
1

W 2
V̂ IPS-IX
m (θ) ,

where L̂IPS-IX
m and V̂ IPS-IX

m are defined respectively in Eq. (9) and Eq. (10). Thus, multiplying (21) by W , substituting the
above terms, and using λ =

√
18(Cm(Θ) + log(2/δ)), yields

Lα
m(θ)− L̂IPS-IX

m (θ) +
1

nm

nm∑
i=1

ym,i ≤ λ

√
V̂ IPS-IX
m (θ)

nm
+

15λ2W

18(nm − 1)
, (23)

with probability 1− δ/2. Now, let us decompose

Lα
m(θ) = Ex,θm,y

[
y

(
πθ(a|x)

πθm(a|x) + απθ(a|x)
− 1

)]
= Ex,θm,y

[
y

πθ(a|x)
πθm(a|x) + απθ(a|x)

]
− L(θm).

But, since the losses y are bounded in [−1, 0] almost surely,

Ex,θm,y

[
y

πθ(a|x)
πθm(a|x) + απθ(a|x)

]
≥ Ex,θm,y

[
y
πθ(a|x)
πθm(a|x)

]
= L(θ),

15
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which, substituted into the previous equation, entails,

Lα
m(θ) ≥ L(θ)− L(θm). (24)

Lower-bounding the left-hand side of (26), we thus get w.p 1− δ/2,

L(θ)− L̂IPS-IX
m (θ) ≤ λ

√
V̂ IPS-IX
m (θ)

nm
+

15λ2W

18(nm − 1)
+ L(θm)− 1

nm

nm∑
i=1

ym,i.

Using Em−1[ym,i] = L(θm) and applying Hoeffding’s inequality, this further yields w.p. 1− δ

L(θ) ≤ L̂IPS-IX
m (θ) + λ

√
V̂ IPS-IX
m (θ)

nm
+

15λ2W

18(nm − 1)
+

√
log(2/δ)

2nm
. (25)

Eventually, note that (nm − 1)−1 ≤ (2/nm) since nm ≥ 2. Thus,

L(θ) ≤ L̂IPS-IX
m (θ) + λ

√
V̂ IPS-IX
m (θ)

nm
+

2λ2W

nm
+

√
log(2/δ)

2nm
, (26)

which concludes the proof.

Proposition 4.2 (Conservative Excess Risk). Let m ≥ 0 and θm ∈ Θ. Let sm = (xm,i, am,i, ym,i, πm,i)1≤i≤nm be a set of
samples collected with am,i ∼ πθm(·|xm,i). Then, under Assumptions 4.1 and 4.2, the solution θm+1 of Problem (8) with
the IPS-IX estimator in Eq. (11) on the samples sm satisfies the excess risk upper-bound

∆m+1 = L(θm+1)− L(θ∗) ≲

√
d log(nm) + log(1/δ)

nm
ν2m +

W 2 +W (d log(nm) + log(1/δ))

nm
, (27)

where ν2m = Varx,θm

(
πθ∗(a|x)
πθm(a|x)

)
.

Proof. We consider the notations of the proof of Proposition 4.1. Fix θ∗ ∈ Θ. Applying, Theorem 15 of (Maurer & Pontil,
2009)2 to the function set Fm,Θ defined in (17), we get with probability 1− δ

Ex,θm,y[fθm+1
(x, a, y)]− Ex,θm,y[fθ∗(x, a, y)]

≤

√
32Varx,θm,y

[
fθ∗(x, a, y)

](
Cm(Θ) + log 30

δ

)
nm

+
22
(
Cm(Θ) + log 30

δ

)
nm − 1

.

This can be written as:
∆∗

m ≤ U∗
m, (28)

with the following definitions:

∆∗
m = Ex,θm,y[fθm+1

(x, a, y)]− Ex,θm,y[fθ∗(x, a, y)]

U∗
m =

√
32Varx,θm,y

[
fθ∗(x, a, y)

](
Cm(Θ) + log 30

δ

)
nm

+
22
(
Cm(Θ) + log 30

δ

)
nm − 1

. (29)

2Note that in their notation, logMn(π) equals Cm(Θ) + log(10), X is the dataset {(xi, ai, yi)}1≤i≤n where
(xi, ai, yi)

i.i.d.∼ PX × πθm(·|x)× PY(·|a, x), and P (·, µ) is the expectation with respect to one test sample Ex,θm,y[ · ].
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Step: Lower bounding ∆∗
m Using the definition of fθ(x, a, y) in (17) and that of Lα

m in Eq. (22), we have

Ex,θm,y[fθm+1(x, a, y)] =
1

W
+

1

W
Lα
m(θm+1).

Thus, ∆∗
m can be re-written as

∆∗
m =

1

W
(Lα

m(θm+1)− Lα
m(θ∗)) ,

which we now lower-bound. To do so, we begin by upper-bounding Lα
m(θ∗). It can be expressed as

Lα
m(θ∗) = Ex,θm,y

[
y

πθ∗(a|x)
πθm(a|x) + απθ∗(a|x)

]
− L(θm). (30)

To shorten notation, from now on and throughout this proof, we write πθ instead of πθ(a|x), omitting the dependence on a
and x. Using the inequality (1 + x)−1 ≥ 1− x for x ≥ 0, we have

Ex,θm,y

[
y

πθ∗

πθm + απθ∗

]
= Ex,θm,y

[
y
πθ∗

πθm

1

1 + α πθ∗
πθm

]
(31)

≤ Ex,θm,y

[
y
πθ∗

πθm

]
− αEx,θm,y

[
y

(
πθ∗

πθm

)2
]

= L(θ∗)− αEx,θm,y

[
y

(
πθ∗

πθm

)2
]

≤ L(θ∗) + αW 2 , (32)

where the last inequality is by Assumption 4.1 and because y ∈ [−1, 0]. Together with (30), we get

Lα
m(θ∗) ≤ L(θ∗) + αW 2 − L(θm).

We recall that L(θm+1)− L(θm) ≤ Lα
m(θm+1) by Eq.(24). Therefore,

1

W
(L(θm+1)− L(θ∗)− αW 2) ≤ 1

W
(Lα

m(θm+1)− Lα
m(θ∗)) ,

which finally gives
1

W
(L(θm+1)− L(θ∗)− αW 2) ≤ ∆∗

m. (33)

Step: Upper bound U∗
m By definition of fθ(x, a, y) in (17), we have

Varx,θm,y

[
fθ∗(x, a, y)

]
=

1

W 2
Varx,θm,y

[
y

(
πθ∗

πθm + απθ∗
− 1

)]
≤ 1

W 2
Ex,θm,y

[
y2
(

πθ∗

πθm + απθ∗
− 1

)2
]
≤ 1

W 2
Ex,θm

[(
πθ∗

πθm + απθ∗
− 1

)2
]
.

Then, using the inequality (x+ y)2 ≤ 2x2 + 2y2, for x, y ∈ R, this may be upper-bounded as

Varx,θm,y

[
fθ∗(x, a, y)

]
≤ 2

W 2
Ex,θm

[(
πθ∗

πθm + απθ∗
− Ex,θm

[
πθ∗

πθm + απθ∗

])2
]
+

2

W 2

(
Ex,θm

[
πθ∗

πθm + απθ∗

]
− 1

)2

. (34)

On the one hand, the first term of the right-hand side may be upper-bounded as

Ex,θm

[(
πθ∗

πθm + απθ∗
− Ex,θm

[
πθ∗

πθm + απθ∗

])2
]
= Varx,θm

[
πθ∗

πθm + απθ∗

]
≤ ν2m,

17
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where ν2m = Varx,θm

[
πθ∗
πθm

]
. On the other hand, for the second term, we use the same factorization as in Eq. (31) to get

−αEx,θm

[(
πθ∗

πθm

)2
]
≤ Ex,θm

[
πθ∗

πθm + απθ∗

]
− 1 ≤ 0 ,

which yields the upper-bound(
Ex,θm

[
πθ∗

πθm + απθ∗

]
− 1

)2

≤ α2 Ex,θm

[(
πθ∗

πθm

)2
]
≤ α2W 2.

Therefore, substituting the last two upper-bounds into (34) entails

Varx,θm,y

[
fθ∗(x, a, y)

]
≤ 2

W 2

(
ν2m + α2W 2

)
.

Then, replacing this upper-bound into the definition of U∗
m in (29) and using Assumption 4.2 to upper bound the terms in

Cm(Θ) ≤ d log(nm), we obtain the following upper-bound

U∗
m ≤

1

W

√
64(ν2m + α2W )

(
d log(nm) + log 30

δ

)
nm

+
22
(
d log(nm) + log 30

δ

)
nm − 1

≤ 1

W

√
64(ν2m + α2W )

(
d log(nm) + log 30

δ

)
nm

+
44
(
d log(nm) + log 30

δ

)
nm

, (35)

where the last inequality is because nm ≥ 2.

Step: excess risk upper bound Setting α = 1
nm

and using the two previous bounds (33) and (35) respectively on ∆∗
m

and on U∗
m into (28), we get

L(θm+1)− L(θ∗) ≤

√
64
(
d log(nm) + log 30

δ

)
nm

(
ν2m +

1

n2
m

W 2
)
+W

44
(
d log(nm) + log 30

δ

)
nm

+
1

nm
W 2. (36)

Using that
√
a+ b ≤

√
a+
√
b, we have that√

64
(
d log(nm) + log 30

δ

)
nm

(
ν2m +

1

n2
m

W 2
)
≤

√
64
(
d log(nm) + log 30

δ

)
nm

ν2m +
W

nm

√
64
(
d log(nm) + log 30

δ

)
nm

.

Then, since nm ≥ 2 and δ < 1, we have d log(nm) + log(30/δ) ≥ log(2) + log(30) ≥ 4, which yields

1

nm

√
64
(
d log(nm) + log 30

δ

)
nm

≤

√
32
(
d log(nm) + log 30

δ

)
nm

≤
√
8
(
d log(nm) + log 30

δ

)
nm

.

Substituting the last two inequalities into (36) finally entails

L(θm+1)− L(θ∗) ≤ 8

√
d log(nm) + log 30

δ

nm
ν2m + 47W

d log(nm) + log 30
δ

nm
+

W 2

nm
, (37)

which concludes the proof.

B.3. Regret analysis

Proposition 5.1 (Regret upper-bound). Let n0, n ≥ 2 and θ∗ ∈ argminθ L(θ). Let nm = n02
m for m = 0, . . . ,M =⌊

log2(1+
n
n0

)
⌋
. Then, under Assumptions 4.1, 4.2 and 5.1, the SCRM procedure (Alg. 1) satisfies the excess risk upper-bound

L(θM )− L(θ∗) ≤ O
(
n− 1

2−β log n
)
.
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Moreover, the expected regret is upper-bounded as follows:

Rn = E

[ M∑
m=0

nm+1

(
L(θm)− L(θ∗)

)]
≤ O

(
n

1−β
2−β log(n)2

)
.

Proof. First, note that for nm = n02
m and M =

⌊
log2(1 +

n
n0

)
⌋
, we have

∑M−1
m=0 nm = n0(2

M − 1) ≤ n. Hence, Alg. 1
has collected at most n samples to design the estimator θM . For m ≥ 0, we recall ∆m = L(θm)− L(θ∗) and use Eq. (37)
to write

∆m+1 ≤ 8

√
d log(nm) + log 30

δ

nm
ν2m + 47W

d log(nm) + log 30
δ

nm
+

W 2

nm

≤ 8

√
d log(n) + log 30

δ

nm
ν2m + 47W

d log(n) + log 30
δ

nm
+

W 2

nm

= C

√
ν2m
nm

+
B

nm
, (38)

where C = 8
√
d log(n) + log 30

δ and B = W 2 + 47W (d log(n) + log 30
δ ) are independent of m.

Step: Obtaining a recurrence relation for ∆m+1 By Assumption 5.1, there exist γ > 0 and β ∈ [0, 1] such that

ν2m = Varx,θm

(
πθ∗

πθm

)
≤ 1

γ

(
L(θm)− L(θ∗)

)β
=

∆β
m

γ
.

Replacing ν2m in Eq. (38) thus entails

∆m+1 ≤ C

√
1

γ

∆β
m

nm
+

B

nm

≤ C2−
m
2

√
n0

γ
∆β

m +B2−mn0 ← nm = n02
m

= C

√
n0

γ
2−

m
2 ∆β/2

m +B2−mn0 . (39)

Step: Solving the recurrence relation for ∆m We then insure by induction that ∆m satisfies

∆m ≤ c02
−m
2−β , (40)

for some c0 > 0 that will be specified by the analysis.

Base step Since losses take values in [−1, 0], ∆0 = L(θ0)− L(θ∗) ≤ 1. Equation (40) is thus satisfied for m = 0 as soon
as c0 ≥ 1.

Induction step Let m ≥ 0. We assume that ∆m ≤ c02
−m
2−β and prove Equation (40) for ∆m+1. Using Eq. (39), we have

∆m+1 ≤ C

√
n0

γ
2−

m
2 ∆β/2

m +B2−mn0

≤ C

√
n0

γ
2−

m
2 c0

β/22−
mβ

β(2−β) +B2−mn0 ← by induction

≤ max
{
2C

√
n0

γ
c0

β
2 2−

m
2 − m

2−β , 2B2−mn0

}
. (41)
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Now, we show that both terms inside the maximum can be upper-bounded by c02
−(m+1)/(2−β) as soon as c0 is large enough.

On the one hand, if c0 ≥ 4Bn0, we have

2B2−mn0 ≤ c02
−(m+1) ≤ c02

−m+1
2−β .

On the other hand, if c0 ≥ (4C2n0/γ)
1/(2−β), we also have

2C

√
n0

γ
c0

β
2 2−

m
2 − m

2−β ≤ 2C

√
n0

γ
c0

β
2 2−

m+1
2−β ≤ c02

−m+1
2−β .

Combining the above two upper-bounds with (41) concludes the induction step under the condition

c0 ≥ max

{
1,
(4C2n0

γ

) 1
2−β

, 4Bn0

}
.

Step: conclusion Finally, setting the above value for c0 we proved that for all m ≥ 0, we have

∆m ≤ max

{
1,
(4C2n0

γ

) 1
2−β

, 4Bn0

}
2−

m
2−β

≤
(
1 +

(4C2n0

γ

) 1
2−β

+ 4Bn0

)
2−

m
2−β

=

(
1 +

(
256(d log n+ log 30

δ )n0

γ

) 1
2−β

+W 2n0 + 47Wn0

(
d log n+ log

30

δ

))
2−

m
2−β , (42)

where the last equality is by substituting the values of B and C from (38). For the final step M = ⌊log2( n
n0

+ 1)⌋, this
yields

∆M ≤
(
1 +

(
256(d log n+ log 30

δ )n0

γ

) 1
2−β

+W 2n0 + 47Wn0

(
d log n+ log

30

δ

))
2−

M
2−β

≤ 2

(
1 +

(
256(d log n+ log 30

δ )n0

γ

) 1
2−β

+W 2n0 + 47Wn0

(
d log n+ log

30

δ

))
×
(n0

n

) 1
2−β

= O
(
n− 1

2−β log n
)
.

This concludes the first part of the proof.

Regret upper-bound To upper bound the cumulative regret, using nm+1 = n02
m+1, we write

Rn =

M∑
m=0

∆mnm+1

(42)
≤ D

M∑
m=0

2−
m

2−β nm+1 = 2Dn0

M∑
m=0

2

(
1−β
2−β

)
m ,

where

D = 1 +

(
256(d log n+ log 30

δ )n0

γ

) 1
2−β

+W 2n0 + 47Wn0

(
d log n+ log

30

δ

)
.

Then, computing the sum for M = ⌊log2( n
n0

+ 1)⌋, we have

Rn ≤ 2Dn0

M∑
m=0

2

(
1−β
2−β

)
m ≤ 2Dn0(M + 1)2

(
1−β
2−β

)
M ≤ 2Dn0

(
1 + log2

( n

n0
+ 1
))
×
(
1 +

n

n0

) 1−β
2−β

.

Using that D = O(log n), we finally obtain

Rn ≤ O
(
n

1−β
2−β log(n)2

)
.
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C. Additional discussions on the Hölderian Bound Assumption 5.1
In this appendix, we discuss Assumption 5.1 on different particular examples.

C.1. Verification of the assumption on a toy example with Gaussian families

We consider the setting of Example 3.1. In the latter, the policies are Gaussian of the form πθ = N (θ, σ2) and the loss is
defined by lt(a) = (a− yt)

2 − 1 where yt ∼ N (θ∗, σ2). There is no loss in generality in assuming σ2 = 1. Then, we can
compute

L(θ)− L(θ∗) = (θ − θ∗)2 and Varθ

[
πθ∗(a)

πθ(a)

]
= exp

(
(θ∗ − θ)2

)
− 1 .

We recall that we are interested in verifying the existence of γ > 0 and β > 0 for which Assumption 5.1 holds, that is in this
case for any θ ∈ Θ:

γVarθ

[
πθ∗(a)

πθ(a)

]
≤
(
L(θ)− L(θ∗)

)β
, (43)

which may be re-written here as
γ
(
exp

(
(θ∗ − θ)2

)
− 1
)
≤ (θ − θ∗)2β .

The latter is satisfied for any β ≤ 1 as soon as Θ is a bounded interval. Note that the constant γ may decrease exponentially
fast as the diameter of Θ increases. To illustrate, the existence of such couples (β, γ), we plot in Fig. 8 different values of
the following ratio

R(θ, β) =

Varθ

[
πθ∗(a)

πθ(a)

]
(
L(θ)− L(θ∗)

)β =
exp

(
(θ∗ − θ)2

)
− 1(

∥θ − θ∗∥2
)β . (44)

The value of γ can be found for different values of β in Fig. 8 by taking 1
γ = maxθ R(θ, β). Higher values of β induce
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Figure 8: Ratio R defined in (44) with different values of β.

faster rates and lower values of γ induce worst constant terms in the excess risk and regret bounds. Eventually, note that
SCRM does not need those parameters to run and those two parameters γ, β are automatically calibrated by SCRM to find
the best trade-off.

C.2. Discussion of Assumption 5.1 for Exponential Families

In this section, we consider a more realistic example in which policies belong to an exponential family. That is, we assume
that the policies are parameterized by a parameter η ∈ Rq and can be written in the form:

∀a ∈ A, πη(a) = eη·t(a)−A(η)h(a),

for some known function h : A → R+ and sufficient statistic t : A → Rq. Here, A(η) is a normalization constant, so
that eA(η) =

∫
a
eη·t(a)h(a) da. We provide in Example C.1 a concrete example considered by (Swaminathan & Joachims,
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2015a; Faury et al., 2020). To ease the notation, we removed here the dependency on contexts, but the generalization to
contextual policies can be made similarly. The importance weight ratio may be written as,

πη(a)

πηm
(a)

= e(η−ηm)t(a)−(A(η)−A(ηm)). (45)

To verify Assumption 5.1, we need to upper bound their variance, which we shall write as,

Vara∼πηm

[
πη(a)

πηm
(a)

]
= e2(A(ηm)−A(η))Vara∼πηm

[
e(η−ηm)t(a)

]
.

Now, computing the moment generating function (MGF) of the statistic t(a) ∈ Rq

Mt(s) = E
[
es·t(a)

]
=

∫
a

es·t(a)eηm·t(a)−A(ηm)h(a) da = e−A(ηm)

∫
a

e(ηm+s)·t(a)eηm·t(a)h(a) da = eA(ηm+s)−A(ηm),

the variance term may be written as

Vara∼πηm

[
e(η−ηm)t(a)

]
= Mt(2(η − ηm))−M2

t (η − ηm) = eA(2η−ηm)−A(ηm) − e2(A(η)−A(ηm)) .

This eventually leads us to

Vara∼πηm

[
πη(a)

πηm(a)

]
= eA(2η−ηm)+A(ηm)−2A(η) − 1. (46)

We now discuss two cases that are used for discrete actions (Swaminathan & Joachims, 2015a) and continuous actions
(Kallus & Zhou, 2018; Zenati et al., 2020).

Bounded sufficient statistic Supposing that there exists an upper bound A such that ∥t(a)∥ ≤ A, Cauchy-Schwartz
inequality states that |(η − ηm) · t(a)| ≤ ∥η − ηm∥A, which entails

Vara∼πηm

[
πη(a)

πηm
(a)

]
= eA(2η−ηm)+A(ηm)−2A(η) − 1

=

∫
a
e(2η−ηm)·t(a)h(a) da

∫
a
eηm·t(a)h(a) da(∫

a
eη·t(a)h(a) da

)2 − 1

=

∫
a
e(η−ηm)·t(a)eη·t(a)h(a) da

∫
a
e(ηm−η)·t(a)eη·t(a)h(a) da(∫

a
eη·t(a)h(a) da

)2 − 1

≤ e∥η−ηm∥A − 1 .

Assuming that the parameter space is compact, i.e, maxη,η′ ∥η − η′∥ ≤ D, there exists a constant C that depends on A and
D such that, this may be further upper-bounded as

Vara∼πηm

[
πη(a)

πηm(a)

]
≤ C∥η − ηm∥ .

Therefore, Assumption 5.1 is implied by

γC∥η − ηm∥2 ≤ (L(θ)− L(θ∗))2β .

The latter is implied by a local version of strong convexity for β = 1/2 (d’Aspremont et al., 2021), and holds with
γ = C−1D−2 for β = 0.

Example C.1. For discrete actions A = {a1, . . . , aK}, we consider, as in (Swaminathan & Joachims, 2015a) and (Faury
et al., 2020), policies where given a context x, probabilities pi(x) of sampling an action ai are given by

pi(x) =
exp(θ⊤ϕ(x, ai))∑K
j=1 exp(θ

⊤ϕ(x, aj))
. (47)
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The function ϕ is typically a feature map associated to a kernel in a RKHS. In this case, the natural parameter η and the
sufficient statistic t(a) may be written as

η =


log( p1

pK
)

...
log(pK−1

pK
)

0

 t(a) =

1{a = a1}
...

1{a = aK}

 . (48)

Lognormal and Normal distributions For normal N (µ, σ2) and lognormal Lognormal(µ, σ2) distributions with fixed
variance σ2 as considered by (Kallus & Zhou, 2018; Zenati et al., 2020), the normalizing constant writes A(η) = η2

2 , and
we then obtain that:

A(2η − ηm) +A(ηm)− 2A(η) = (η − ηm)2 ,

which gives:

Vara∼πηm

[
πη(a)

πηm(a)

]
= e∥η−ηm∥2

− 1 .

In that case, it is again possible for a bounded parameter space to linearize e∥η−ηm∥2 − 1 ≲ ∥η − ηm∥2, consider losses that
verify: for all η, there exists an optimal η∗ such that

γ∥ηm − η∗∥2 ≤
(
L(ηm)− L(η∗)

)β
. (49)

Again, this holds generally for β = 0 and for locally strongly convex losses for β = 1.

D. Experiment details
D.1. Code

All the code to reproduce figures and tables is available in the following repository: https://github.com/
criteo-research/sequential-conterfactual-risk-minimization.

D.2. Empirical settings details

Pricing The pricing application in (Demirer et al., 2019) considers a ”personalized pricing” setting where given contexts
x, prices p (which are the actions) need to be predicted to maximize the revenue:

r(x, p) = p(a(x)− b(x)p+ ε)

where ε ∼ N (0, 1) and d = a(x) + b(x)p+ ε is akin to an unknown context-specifidemand function. The data generating
process uses contexts x ∈ [1, 2]k for k > 1 a positive integer. Only l < k dimensions however affect the demand, that is
if we write x̄ = 1

l (z1, . . . , zl). The price p is generated from a Gaussian logging policy p ∼ N (x̄, 1) centered in x̄. We
consider in our example the quadratic functionnal a(x) = 2x2 and b(x) = 0.6x as in the original paper.

Advertising The advertising simulation in (Zenati et al., 2020) consists in predicting the potential p ∈]0,+∞[ of a user
that may be compared to their a priori responsiveness to a treatment. The potential is caused by an unobserved random
group variable g in G (groups of ”high” or ”low” potential users in their responsiveness) that influences context x of users.
The goal is then to find a policy π(a|x) that maximizes reward by adapting to an unobserved potential. The potentials are
normally distributed conditionally on the group index, p|g ∼ N (µg, σ

2
g) where σg = 0.5 and µg = 1 or 3 for two groups.

The observed reward −y is then a function of the action a and the context x through the associated potential px of the user
x. The reward function mimics reward over the offline continuous bidding dataset in (Zenati et al., 2020) with the form:

rl(px, a) =

{ a
px

if a < px
1
2 (px − a) + 1 else

r(px, a) = max(rl(px, a),−0.1)
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The logging policy is a lognormal distribution as it is common in advertising applications (Bottou et al., 2013). In
particular, as in (Zenati et al., 2020), πθ0 = Lognormal(µ, σ2) where the mean exp(µ + σ2/2) = 2 and the variance
(exp(σ2)− 1) exp(2µ+ σ2) = 1.

Yeast, Scene, TMC2007 We follow (Swaminathan & Joachims, 2015a). We now recall briefly the setup. The problem is a
binary multilabel classification with |A| = 2K potential labels. All models are parametrized by πθ(a|x) ∝ exp(θ⊤(x

⊗
a)).

The baseline (resp. skyline) is a supervised, full information model with identical parameter space than CRM methods
trained on 5% (resp. 100%) of the training data. Our main modification it to consider the class of probabilistic policies
that satisfy Assumption 5.1 by predicting actions in an Epsilon Greedy fashion (Sutton & Barto, 1998)): πε

θ(a, x) =
(1− ε)πθ(a, x) + ε/|A| where ε = .1. The loss is the Hamming loss (number of incorrectly assigned labels - both false
positives and false negatives in the action vector):

L(θ) =
1

nK

n∑
i=1

K∑
j=1

1[yj
i=aj

i ]
(50)

where yji (resp. aji ) is the j-th component of the label vector (resp. action vector) of line i. A uniform policy will thus
evaluate at a loss of .5.

D.3. Implementation details

Counterfactual methods In this paragraph we start by detailing the non adaptive counterfactual risk minimization that we
compare to in this work.

Algorithm 2 Counterfactual Risk Minimization
Input: Logged observations (x0,i, a0,i, y0,i, π0,i)i=1,...,n0 , parameter λ > 0
for m = 1 to M do

Build Lm from observations sm using Eq. (11)
Learn θ using Eq. (8)
Re-deploy the logging model θ0 and collect observations sm+1 = (xm+1,i, am+1,i, lm+1,i, πm+1,i)i=1,...,nm+1

end

We also provide the grid of hyperparameters for the λ evaluated in CRM and SCRM methods λ ∈ [1e− 5, 1e− 4, 1e−
3, 1e− 2, 1e− 1].

Batch Bandits Let k : (X × A) × (X × A) → R be a bounded positive definite Kernel associated to a RKHS H,
ϕ : X×A → H is the feature map such that k(s, s′) = ⟨ϕ(s), ϕ(s′)⟩ for any s, s′ ∈ X×A. Context-actions pairs are written
as sm,i := (xm,i, am,i) ∈ X×A and Sm := {s1,0, . . . , snm,m} denoting the history of all context-actions pairs seen up until
the end of batch m. Km is the kernel matrix of all context-actions seen until the end of the batch m ≥ 1. Eventually, KS(s

′)
is the kernel column vector [k(s1, s′), . . . , k(sl, s′)]⊤ of size |S| = l. Ym = [−y0,1, · · · − y0,n0 , · · · − ym,1, · · · − ym,nm ]
denotes the vector of concatenated rewards observed up until the end of the batch m.

At a batch m, a context xm,i is sampled for i ∈ {1, nm}, and then to sample an action a, the following decision rule is
applied:

a ∈ argmax
a∈A

q̂m,i,a. (51)

In batch Kernel UCB, q̂m,i,a is defined as

q̂m,i,a = m̂m,i,a + βmσ̂m,i,a, (52)

where

µ̂m,i,a = KSt−1

(
(xm,i, a)

)⊤
K−1

m−1Ym−1

σ̂2
m,i,a =

1

λ
k
(
(xm,i, a), (xm,i, a)

)
− 1

λ
KSm−1

(
(xm,i, a)

)⊤
K−1

m−1KSm−1

(
(xm,i, a)

)
,
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and βm is a theoretical parameter that is set to βm = 1√
m

in practical heuristics (Lattimore & Szepesvari, 2019). In SBPE
(Han et al.), q̂m,i,a is defined directly as

q̂m,i,a = KSt−1

(
(xm,i, a)

)⊤
K−1

m−1Ym−1. (53)

Algorithm 3 Batch bandit - SBPE (Han et al.) and Kernel UCB (Valko et al., 2013)
Input: Logged observations (x0,i, a0,i, y0,i, π0,i)i=1,...,n0

, λ regularization and exploration parameters, k the kernel function
initialization
Kλ = [k(s0,i, s0,j)]1≤i,j≤n0 + λI, Y0 = [−y0,i]1≤i≤n0

for m = 1 to M do
for i = 1 to nm do

Observe context xi,m

Choose ai,m ← argmaxa∈A q̂m,i,a using Eq. (53) or (52)

end
Observe losses yi,m for all i in past batch {1, . . . , nm}
Update Ym ← [−y0,1, · · · − y0,n0 , · · · − ym,1, · · · − ym,nm ]
Update the translated gram matrix Kλ ← [k(si,p, sj,p)]1≤i,j≤np,1≤p≤m + λI

end

SBPE (Han et al.) uses a linear modelling, therefore we used a linear kernel. For the Kernel UCB (Valko et al., 2013)
method, we used Gaussian and Polynomial kernels in our experiments. Note also that no regularization parameter λ is used
in SBPE so we set λ = 0 in our experiments, and for K-UCB we chose λ in the grid [1e0, 1e1, 1e2].

Note in particular that we adapted the batch bandit baselines to the CRM setting by benefiting the initialization with the
logged dataset to set the gram matrix Kλ as well as the reward vector Y0 with information from the logging data. This
modification changes the original methods which take random actions at initializations.

Eventually, the baselines were carefully optimized using the Jax library (https://github.com/google/jax) to
allow for just in time compilations of algebraic blocks in both methods and to maximize their scaling capacity.

RL baselines In order to compare our method to the two known off-policy online RL algorithm PPO (Schulman et al.,
2017) and TRPO (Schulman et al., 2015), we do the following:

1. we use the stable_baselines3(Raffin et al., 2021) library for the implementation. When necessary we call
multiple times the model PPO or TRPO, to have buffer size of geometrical increase.

2. we initialize the ActorCriticPolicy with a simpler MLP model having only one layer with output dimension of
1, (with argument net_arch= [1], that is mathematically the same modelling as in CRM and SCRM baselines).

3. At the initial step only and to enable a fair comparison with counterfactual methods using a logging dataset, we pretrain
the RL policies to imitate the actions sampled from the logging policy: we process by multiple step of the Adam
optimizer, minimizing a loss being the sum of 2 terms:

• a MSE term between the sampled action of the ActorCriticPolicy for the contexts in the n0 instances, and
the actions sampled by the logging policy.

• the ENTROPY term guaranteeing to keep a minimum of exploration in order to initialize the RL algorithm
(−
∑

pi log(pi))

4. we combine the 2 last terms with a linear combinaison with hyperparameters being tuned a posteriori, i.e. LOSS =
MSE + λ ENTROPY with the hyperparam λ ∈ {.5, 1, 2, 5, 10}
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E. Additional empirical results
E.1. SCRM compared to CRM

We provide here the additional plot in the Pricing setting.
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Figure 9: Test loss as a function of sample size on Pricing, Advertising (from left to right).

E.2. Evaluation of IPS-IX

We provide here the plots for the whole setting considered in policy evaluation with IPS-IX.
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Figure 10: Comparison of IPS estimators on a Cosine reward and series of shifted Gaussian policies. Setup (left), Bias
(middle left), Variance (middle right), Average IPS weight (right). IPS-IX shows a low bias and compares favorably to IPS
and SNIPS in terms of variance.

E.3. Exploration/Exploitation tradeoff

In this part we give the details used for the experiment described in Section 6.3. We consider again Example 3.1 with the
Gaussian parametrized policies πθ = N (θ, σ2) and a loss lt(a) = (a − yt)

2 − 1 where yt ∼ N (θ∗, σ∗2) with σ∗ = 0.3.
Recall that πθ0 = N (θ0, σ). We consider a grid of σ ∈ [0.1, 0.3, 1, 3] and consider θ∗ = 1. Our experiment aims at
illustrating the influence of sequential exploration that is an important detail of the SCRM and CRM principles.
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