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A Temporal Configuration Logic for Dynamic Reconfigurable
Systems
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Configuration logics have been proposed for the specification of architectural styles of component-based

systems. We use such a logic for the specification and verification of architectural properties of dynamic

reconfigurable systems. In particular, we introduce the Temporal Configuration Logic (TCL), a linear time

temporal logic built from atomic formulas characterizing system configurations and temporal modalities. We

study an effective model-checking procedure based on SMT techniques for a non-trivial fragment of TCL

which has been implemented in a prototype runtime verification tool. We provide preliminary experimental

results illustrating the capabilities of the tool on two non-trivial benchmark systems.

CCS Concepts: • Software and its engineering → Architecture description languages; Formal software
verification; Software architectures; • Theory of computation → Modal and temporal logics;

Additional Key Words and Phrases: configuration logic, reconfigurable systems, runtime verification

1 INTRODUCTION
Dynamic reconfigurable systems (DR-systems) are emerging as dynamism and reconfiguration

are essential in many application areas demanding adaptation of system behavior to a changing

environment, as well as self-organization to satisfy changing goals and needs. These systems are

built from instances of predefined component types. As usual, each component type is specified by

its behavior and its interface that defines how it can be composed with other components. The

main characteristic of DR-systems is that they involve a changing number of component instances

that are dynamically coordinated so that their collective behavior satisfies given global properties.

Modeling and verifying such systems involves specific difficulties that are not experienced with

static systems involving a fixed number of components and interactions.

DR-systems differ from static systems in that their dynamics cannot be captured as a sequence

of global component states. As a rule, knowing a state snapshot of component instances does not

allow deciding how the system can evolve. Additional information is needed about the connectivity

of the components in the dynamically changing structure. Of course, one can observe that if the

internal behavior of each component is adequately modified we can encode information about its

position in the system structure. This is in fact possible to some extent, e.g., by adding to each

component attributes that are updated with the names of the components directly connected to it.

But this approach has its limits. No component has a global view of the system structure neither

can easily infer structural parameters that determine system behavior, e.g., the total number of

component instances.

Besides these considerations, there is a compelling argument against this idea of component mod-

ification. When we are reusing components to build systems, we want that they are “architecture-

agnostic”. That is, the way they are composed is uniquely defined by their interface without any
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modification of their internal behavior. Component instances belong to predefined component

types and must offer the corresponding basic functionality without any restriction about their

context of use. This implies in particular that coordination of components is exogenous: only the

“glue” between components fully determines the way they interact.

The above remarks suggest that to capture the dynamic behavior of DR-systems, component

state should be adequately enriched with information about system structure. This leads to the

concept of configuration which is a tuple (𝑈 ,𝛾, 𝜎) where 𝑈 is the set of component instances,

𝜎 is a state, i.e. a valuation of the component variables, and 𝛾 is a set of interactions between

the components of𝑈 . So, a configuration in addition to the component state, defines the system

architecture (𝑈 ,𝛾) at a moment of its evolution. Any DR-system can be considered as a transition

system on configurations.

We study the Temporal Configuration Logic (TCL) for the specification and validation of proper-

ties of DR-systems. This is a linear time temporal logic built from atomic formulas characterizing

configurations using temporal modalities. The main difference with ordinary temporal logic is

that its models are sets of component state sequences while the models of TCL are sequences of

configurations (𝑈 ,𝛾, 𝜎). Thus TCL allows specification of properties of DR-systems as temporal

logic does for static systems.

We use formulas of a Configuration Logic (CL) inspired from [17] as atomic formulas of TCL. CL is

a second-order logic with component variables and component set variables. Atomic formulas of CL

are either component state predicates or connectors. The latter are predicates modeling interactions

as 𝑛-ary relations between component instances. For example, K(𝑥1, ..., 𝑥𝑛) is a connector modeling

𝑛-ary interactions of type K between component instances 𝑥1, ..., 𝑥𝑛 . The formulas of CL are built

from atomic formulas with the usual logical connectives and an associative and commutative

coalescing operator + used to build architectures.

The paper is organized as follows. In section 2 we introduce our underlying model of dynamic

reconfigurable systems. In section 3 we introduce the configuration logic CL. We provide first

the propositional fragment, without quantifiers, then, the complete setting where quantifiers are

allowed. In section 4 we provide methods for checking the validity of CL on configurations using

SMT-checking techniques. In section 5 we introduce the temporal configuration logic TCL and

we present the method for runtime verification. We present experimental results in Section 6. We

discuss related work in Section 7 and conclude in Section 8.

2 DYNAMIC RECONFIGURABLE SYSTEMS
We consider dynamic reconfigurable systems consisting of a variable number of component in-

stances that are dynamically coordinated so that their collective behavior satisfies given properties.

As an illustrative example, consider a Master/Slave system consisting of instances of masters𝑚𝑖

and slaves 𝑠 𝑗 . Masters interact in an ring structure: the output of𝑚𝑖 is connected to the input of𝑚𝑖+1
where +1 is interpreted modulo the size of the ring. Furthermore, each master𝑚𝑖 can interact with

disjoint sets of slave instances 𝑠 𝑗 ’s (see Figure 1). We assume that the system evolves dynamically

to meet the following two requirements:

Load balancing: If in a configuration the number of slaves associated with master𝑚𝑖 exceeds at

least by 2 the number of slaves of its successor in the ring and𝑚𝑖 has a slave 𝑠 𝑗 that is not busy,

then 𝑠 𝑗 is assigned to the successor.

Reconfigurable fault-tolerance: The system components, masters or slaves, are equipped with

self-detection and recovery mechanisms. When a component fails, it disconnects without disturb-

ing the system operation. If the size of the ring is greater than 2, a master can fail and the ring

connectivity is preserved after it disconnects; furthermore, when it fails all its slaves are assigned
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to its successor in the ring. A slave failure is detected by the corresponding master as absence

of response to its requests. When a component, master or slave, recovers it is dynamically and

seamlessly integrated in the system.

For the considered example, masters interact depending on their current position in the ring as

their neighborhood may change dynamically due to master failure or recovery. Slave assignment

to masters depends on load balancing criteria. Furthermore, if a component fails, it remains discon-

nected until it recovers. These remarks show that knowing the internal state of each component

does not suffice to determine if an evolution rule is applicable. For instance, we need to know the

size of the ring, the set of active components or the set of the slaves assigned to a master.
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Fig. 1. Master/Slave System Architecture

In previous work we have studied the problem of component-based modeling of DR-systems

and proposed an expressive modeling framework implemented by the DR-BIP language [2, 6].

This language allows building DR systems from instances of architecture-agnostic component

types. Coordination between components is exogenous and their behavior ignores the way they

are integrated. We have shown that modeling DR-systems requires languages encompassing the

following three key features:

Parametric transition systemmodel where parameters are used to represent the interconnecting

structure of component instances. As a rule, two categories of parameters are needed, respectively,

parameters denoting instances of components and parameters denoting sets of instances of

components. Component parameters are used to express relations between particular component

instances, e.g., connection between two masters 𝑥1, 𝑥2 in the ring. Component set parameters

are used to represent relations between arbitrarily many instances, e.g., a set parameter 𝑋 to

represent the set of all active masters in the ring, set parameters 𝑌𝑖 to represent the set of slaves

connected to master 𝑥𝑖 , etc. Both categories of parameters are necessary to describe system

behavior. A valuation of the parameters occurring in a system model and a state function 𝜎

determine a configuration and the subsequent system behavior.

Multiparty interactions between components which are atomic state changes of a non-empty

set of component instances resulting in the synchronous exchange of data between the involved

components. In the considered example, there will be interactions between two consecutive

masters in the ring and also between a master and its slaves as depicted in Figure 1. Interactions

are parameterized by component and component set parameters. The latter are necessary to

define groups of interacting components, e.g., the group of slaves related to a given master.
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Reconfiguration operations which consist in creating/deleting component instances and updating

their connections in the structure. These operations boil down to modifying parameters. For

instance, the failure of a master 𝑥 results in removing 𝑥 from 𝑋 which represents the set of

masters connected in the ring; the application of the load balancing rule results in removing

a non-busy slave 𝑦 from the set 𝑌1 of slaves connected to 𝑥1 and adding 𝑦 to the set 𝑌2 of the

successor 𝑥2 of 𝑥1.

3 CONFIGURATION LOGIC CL
Configuration logic allows the specification of system configurations characterizing the way system

components interact. It can be used for the description of architecture properties usually called

architecture styles [12] which are sets of architectures sharing common characteristics. For instance,

Master/Slave architectures share a common property characterizing the configurations consisting

of sets of Master and Slave instances where each slave interacts with a single master. Similarly, we

can talk about Ring, Pipe and Filter or Client/Server architecture styles.

There exists a rich literature on architecture style specification following two different directions.

One originates in [9, 18], and studies the use of graph grammars and their transformations. The

key idea is that the different configurations are obtained by application of rewriting rules. The

other direction is declarative based on relational logic. It is represented by works using Alloy [11]

(e.g. ACME [12], Darwin [8]), or OCL [23]. The presented configuration logic has some similarity

with these works. Nonetheless, it relies on a minimal set of notions, and emphasizes on conceptual

clarity. It adopts a strict separation between component computation and coordination structure

by using connectors which are abstract 𝑛-ary connectivity predicates. It is more expressive then

existing logical formalisms that are often limited to binary connection predicates, and make use of

variants of first-order logic.

Configuration logic formulas characterize sets of configurations (𝑈 ,𝛾, 𝜎) consisting of a set of
components instances 𝑈 with their states 𝜎 and the set of connectors 𝛾 for their coordination.

Atomic formulas are naturally state predicates and connector predicates with an arbitrary number

of arguments that can be either component instances or sets of component instances. In addition to

the logical connectors that have the usual set-theoretic interpretation on configurations, the logic

is equipped with a coalescing operator +that allows grouping connectors in the same configuration.

This combination of the coalescing operator with logical connectives confers configuration logic

enhanced expressiveness and elegance in property specification.

3.1 Notations
Let C denote a finite set of component types (names). For every component type 𝐶 , let Q𝐶 denote

the set of its states. We denote by Q the set of all component type states, that is, Q △
= ∪𝐶∈CQ𝐶 .

For every component type 𝐶 , letU𝐶
denote the set of instances (names) of type 𝐶 . These sets

are assumed pairwise disjoint, that is,U𝐶 ∩U𝐶′
= ∅ whenever 𝐶 ≠ 𝐶′

. Let denote byU the set

of all instances, that is,U △
= ∪𝐶∈CU𝐶

. For an instance 𝑢 ofU we denote by type(𝑢) its type, that
is, the unique component type 𝐶 such that 𝑢 ∈ U𝐶

. We extend the notation to sets of instances,

namely for every𝑈 ⊆ U we denote by type(𝑈 ) the set of component types occurring in 𝑈 , that is,

type(𝑈 ) △
= {type(𝑢) | 𝑢 ∈ 𝑈 }.

For a subset of instances 𝑈 ⊆ U, we denote by Q𝑈 the set of states of 𝑈 , that is, the set of

mappings {𝜎 : 𝑈 → Q | ∀𝑢 ∈ 𝑈 . 𝜎 (𝑢) ∈ Qtype (𝑢 ) } that correctly associate instances to states of

their corresponding type.

Example 3.1. For the Master/Slave example, the set C contains two component types, namely

Master and Slave. Their sets of states are denoted by respectively QMaster
, QSlave

. The setUMaster
of
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instances of typeMaster is {𝑚1,𝑚2, ...}. The setUSlave
of instances of type Slave is {𝑠1, 𝑠2, ...}. For the

set of instances depicted in Figure 1, a state 𝜎 is a mapping 𝜎 : {𝑚1, ...𝑚5, 𝑠1, ...𝑠9} → QMaster∪QSlave

such that 𝜎 (𝑚𝑖 ) ∈ QMaster
, 𝜎 (𝑠 𝑗 ) ∈ QSlave

.

Let K denote a finite set of connector types (names). Every connector type 𝐾 has a signature

denoted as sign(𝐾) which is a sequence 𝐶𝑖1 ...𝐶𝑖𝑛2
𝐶 𝑗

1 ...2𝐶 𝑗𝑚 where𝑚,𝑛 ≥ 0 and 𝐶𝑖𝑘 , 𝐶 𝑗ℓ are com-

ponent types. Connector types have instances, that is, interactions relating tuples of component

instances and/or set of component instances, compatible with their signature. For a connector type

𝐾 with signature sign(𝐾) = (𝐶𝑖𝑘 )𝑘=1,𝑛 (2𝐶 𝑗ℓ )ℓ=1,𝑚 its set of interactions denoted as Γ𝐾 is the set of

terms of the form: {
𝐾 (𝑢𝑖1 , · · ·𝑢𝑖𝑛 ,𝑈 𝑗1 , · · ·𝑈 𝑗𝑚 ) |

∀𝑘 ∈ [1, 𝑛] . 𝑢𝑖𝑘 ∈ U𝐶𝑖𝑘 , ∀ℓ ∈ [1,𝑚] . 𝑈 𝑗ℓ ⊆ U𝐶 𝑗ℓ

𝑢𝑖1 , · · ·𝑢𝑖𝑛 pairwise distinct

{𝑢𝑖1 , · · ·𝑢𝑖𝑛 },𝑈 𝑗1 , · · ·𝑈 𝑗𝑚 pairwise disjoint

}
Moreover, we denote by Γ the set of all interactions for all connector types, that is, Γ

△
= ∪𝐾∈KΓ

𝐾
.

For a subset of instances 𝑈 ⊆ U we denote by Γ|𝑈 the restriction of Γ to 𝑈 , that is, the set of

interactions connecting only instances from𝑈 .

Example 3.2. For the Master/Slave example, the set K contains two connector types, namely

InOut and Link. InOut is used to connect two instances of type Master, that is, the signature

sign(InOut) is Master Master. Link is used to connect an instance of type Master to an instance

of type Slave, that is, the signature sign(Link) is Master Slave. The system depicted in Figure 1

contains interactions of both types, namely five of type InOut of the form InOut(𝑚𝑖 ,𝑚𝑖+1) and
nine of type Link of the form Link(𝑚𝑖 , 𝑠 𝑗 ).

Let P denote a finite set of state predicates (names). Every predicate 𝑃 has a signature denoted

as sign(𝑃), of the same form as defined earlier for connector types. Predicates are interpreted on

tuples of component states and/or sets of component states compatible with their signature. For a

predicate 𝑃 with signature sign(𝑃) = (𝐶𝑖𝑘 )𝑘=1,𝑛 (2𝐶 𝑗ℓ )ℓ=1,𝑚 its domain of interpretation denoted as

domain(𝑃) is the Cartesian product

∏𝑛
𝑘
Q𝐶𝑖𝑘 ×∏𝑚

ℓ=1 2
Q𝐶𝑗ℓ

. For a predicate 𝑃 , we denote by [[𝑃]] its
interpretation on the domain, that is, a boolean function [[𝑃]] : domain(𝑃) → B. We tacitly assume

True, False belong to P with the usual meaning.

Example 3.3. For the Master/Slave example, we consider two predicates, namely running and

fail. The signature sign(running) isMaster, that means, this predicate is interpreted over the states

of the component type Master i.e., [[running]] : QMaster → B and shall define the “running” status

depending on these states. Similarly, the signature sign(fail) is Slave, that is, this predicate is used
to determine the “fail” status depending on the states of the component type Slave.

3.2 Propositional Configuration Logic
The propositional configuration logic has the following syntax:

𝜙 ::= 𝑃 (𝑢1, · · ·𝑢𝑛𝑃 ,𝑈1, · · ·𝑈𝑚𝑃 )
| 𝐾 (𝑢′

1
, · · ·𝑢′𝑛𝐾 ,𝑈

′
1
, · · ·𝑈 ′

𝑚𝐾
) | noK

| 𝜙 + 𝜙 | 𝜙 ∨ 𝜙 | ¬𝜙

where 𝑃 ∈ P denotes a state predicate, 𝐾 ∈ K denotes a connector type, 𝑢𝑖 , 𝑢
′
𝑖 ∈ U denote compo-

nent instances belonging to the universe U of instances,𝑈𝑖 ,𝑈
′
𝑖 ⊆ U denote sets of component in-

stances.We tacitly restrict to formulas which are correctly typed, that is, where the (sets of) instances
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used as arguments for state predicates and connector types are matching the expected signature,

formally, iff sign(𝑃) = (type(𝑢𝑖 ))𝑖=1,𝑛𝑃 (2type (𝑈𝑖 ) )𝑖=1,𝑚𝑃 , sign(𝐾) = (type(𝑢′𝑖 ))𝑖=1,𝑛𝐾 (2type (𝑈
′
𝑖 ) )𝑖=1,𝑚𝐾 .

We define boolean operators in the usual way, 𝜙1 ∧ 𝜙2
△
= ¬(¬𝜙1 ∨ ¬𝜙2), 𝜙1 ⇒ 𝜙2

△
= ¬𝜙1 ∨ 𝜙2,

𝜙1 ≡ 𝜙2
△
= (𝜙1 ⇒ 𝜙2) ∧ (𝜙2 ⇒ 𝜙1).

We denote by instances(𝜙) the set of instances occurring explicitly in a propositional config-

uration formula 𝜙 as parameters of state predicates and/or connector types. The semantics of

propositional configuration logic is defined on configurations that is, triples of the form (𝑈 ,𝛾, 𝜎)
where (i) 𝑈 ⊆ U is a set of instances, (ii) 𝛾 ⊆ Γ|𝑈 is a set of interactions defined on 𝑈 and (iii)

𝜎 ∈ Q𝑈 is a state of 𝑈 . For a propositional formula 𝜙 its semantics is restricted to configurations

(𝑈 ,𝛾, 𝜎) where instances(𝜙) ⊆ 𝑈 , that is, where all support instances are effectively defined in the

configuration.

(𝑈 ,𝛾, 𝜎) |= 𝑃 (𝑢1, · · ·𝑢𝑛𝑃 ,𝑈1, · · ·𝑈𝑚𝑃 )
iff [[𝑃]] (𝜎 (𝑢1), · · ·𝜎 (𝑢𝑛𝑃 ), 𝜎 (𝑈1), · · ·𝜎 (𝑈𝑚𝑃 ))

(𝑈 ,𝛾, 𝜎) |= 𝐾 (𝑢′
1
, · · ·𝑢′𝑛𝐾 ,𝑈

′
1
, · · ·𝑈 ′

𝑚𝐾
)

iff 𝛾 = {𝐾 (𝑢′
1
, · · ·𝑢′𝑛𝐾 ,𝑈

′
1
, · · ·𝑈 ′

𝑚𝐾
)}

(𝑈 ,𝛾, 𝜎) |= noK iff 𝛾 = ∅
(𝑈 ,𝛾, 𝜎) |= 𝜙1 + 𝜙2 iff ∃𝛾1∃𝛾2. 𝛾 = 𝛾1 ∪ 𝛾2,

(𝑈 ,𝛾1, 𝜎) |= 𝜙1, (𝑈 ,𝛾2, 𝜎) |= 𝜙2
(𝑈 ,𝛾, 𝜎) |= 𝜙1 ∨ 𝜙2 iff (𝑈 ,𝛾, 𝜎) |= 𝜙1 or (𝑈 ,𝛾, 𝜎) |= 𝜙2
(𝑈 ,𝛾, 𝜎) |= ¬𝜙 iff (𝑈 ,𝛾, 𝜎) ̸|= 𝜙

Intuitively, predicate atoms 𝑃 (𝑢1, · · ·𝑢𝑛𝑃 ,𝑈1, · · ·𝑈𝑚𝑃 )) are evaluated on the state 𝜎 of corresponding

instances 𝑢1, · · · 𝑢𝑛𝑃 , 𝑈1, · · · 𝑈𝑚𝑃 . By abuse of notation, we consider the state 𝜎 (𝑈 𝑗 ) of a set of
component instances𝑈 𝑗 to be defined as 𝜎 (𝑈 𝑗 )

△
= {𝜎 (𝑢) | 𝑢 ∈ 𝑈 𝑗 }, for all𝑈 𝑗 . Connector atoms of the

form 𝐾 (𝑢′
1
, · · ·𝑢′𝑛𝐾 ,𝑈

′
1
, · · ·𝑈 ′

𝑚𝐾
) hold iff the set of interactions 𝛾 contains precisely the interaction

𝐾 (𝑢′
1
, · · ·𝑢′𝑛𝐾 ,𝑈

′
1
, · · ·𝑈 ′

𝑚𝐾
). The atom noK holds if the set of interactions 𝛾 is empty. The formula

𝜙1 + 𝜙2 holds for configurations whose architecture (𝑈 ,𝛾) is obtained by coalescing architectures
(𝑈 ,𝛾1) and (𝑈 ,𝛾2) satisfied respectively by the formulas 𝜙1, 𝜙2. The meaning of the boolean

connectives is the usual one.

Example 3.4. The formula Link(𝑚1, 𝑠1) + Link(𝑚1, 𝑠2) denotes the architecture where the master

𝑚1 can interact with two slaves 𝑠1 and 𝑠2. Thus in propositional CL we can specify all the Mas-

ter/Slave architectures consisting of two masters𝑚1,𝑚2 and two slaves 𝑠1, 𝑠2 as the disjunction of

the architectures where each slave has a unique master:

(Link(𝑚1, 𝑠1) + Link(𝑚1, 𝑠2)) ∨ (Link(𝑚1, 𝑠1) + Link(𝑚2, 𝑠2))∨
(Link(𝑚1, 𝑠2) + Link(𝑚2, 𝑠1)) ∨ (Link(𝑚2, 𝑠1) + Link(𝑚2, 𝑠2))

The following lemma provides few elementary identities directly derived from the proposed CL

semantics. In particular, they point out how atoms of the 𝐾 (...) and 𝑃 (...) can be composed as well

as some natural distributivity laws involving logic operators. These are similar to identities proved

for the propositional configuration logic defined in [17]. Nonetheless, the underlying models and

semantics of the two logics are different.

Lemma 3.5. The following identities hold

(i) 𝐾1 ((𝑢𝑖 )𝑖 , (𝑈 𝑗 ) 𝑗 ) ∧ 𝐾2 ((𝑣𝑖 )𝑖 , (𝑉𝑗 ) 𝑗 ) ≡ False

whenever 𝐾1 ≠ 𝐾2 or ((𝑢𝑖 )𝑖 , (𝑈 𝑗 ) 𝑗 ) ≠ ((𝑣𝑖 )𝑖 , (𝑉𝑗 ) 𝑗 )
(ii) 𝑃1 (...) ∧ 𝜙1 + 𝑃2 (...) ∧ 𝜙2 ≡ 𝑃1 (...) ∧ 𝑃2 (...) ∧ (𝜙1 + 𝜙2)
(iii) 𝜙 + (𝜙1 ∨ 𝜙2) ≡ (𝜙 + 𝜙1) ∨ (𝜙 + 𝜙2)
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Proof. (i) an atom of the form 𝐾 (...) holds iff 𝛾 contains exactly the corresponding interaction,

therefore, a conjunction holds if the two atoms are identical and fails otherwise (ii) as predicate

atoms depend only on 𝜎 , they are independent of coalescing and can be factorized (iii) follows the

distributivity of conjunction (in the semantics of +) over the disjunction □

Example 3.6. As + is distributive with respect to ∨, the formula

(Link(𝑚1, 𝑠1) ∨ Link(𝑚2, 𝑠1)) + (Link(𝑚1, 𝑠2) ∨ Link(𝑚2, 𝑠2))

is equivalent to the formula given in Example 3.4. The formula simply models the architectures

obtained by coalescing architectures where each slave is connected to either of the two masters.

We define the closure ∼ operator by taking ∼𝜙
△
= 𝜙 + True. Intuitively, ∼𝜙 denotes architectures

obtained by extending architectures modeled by 𝜙 with any number of interactions. For example,

the formula ∼Link(𝑚1, 𝑠2) specifies architectures containing at least the interaction Link between

𝑚1 and 𝑠2. The following identities established for propositional configuration logic of [17] hold

also for propositional CL.

Lemma 3.7. The following identities hold

(i) ∼∼𝜙 ≡ ∼𝜙 (iii) ∼(𝜙1 ∨ 𝜙2) ≡ ∼𝜙1 ∨ ∼𝜙2
(ii) 𝜙 ⇒ ∼𝜙 (iv) ∼𝜙1 + ∼𝜙2 ≡ ∼(𝜙1 + 𝜙2) ≡ ∼𝜙1 ∧ ∼𝜙2

Proof. (i) immediate as the idempotence True + True ≡ True holds (ii) using the definition of +,

knowing that True holds for any architecture (iii) direct consequence of point (iii) in Lemma 3.5

(iv) using associativity and commutativity of + and the idempotence of True for the first equality;

using associativity of conjunction (as used in the definition of +) and the idempotence of True for

the second equality. □

Note that the closure operator proves to be particularly useful for specifications which are the

conjunction of characteristic properties each one expressed by a formula. For the Master/Slave

example of Fig. 1, the formula

∑
5

𝑖=1 OutIn(𝑚𝑖 ,𝑚𝑖+1) strictly characterizes the connectivity between

masters in the ring. However, if it is involved in a conjunction with formulas expressing another

connectivity property, e.g., that masters are connected to slaves, the resulting formula will be false.

To characterize exactly the Master/Slave architecture the coalescing of this formula should be

taken with the formulas specifying the connectors Link(𝑚𝑖 , 𝑠 𝑗 ). An alternative solution leading

to conjunctive specifications, would be to specify the ring by the formula ∼
∑

5

𝑖=1 OutIn(𝑚𝑖 ,𝑚𝑖+1)
equivalent to

∧
5

𝑖=1
∼OutIn(𝑚𝑖 ,𝑚𝑖+1) which characterizes configurations containing the connectors

of the ring but does not exclude other configurations. This formula can be used in a conjunction

with other formulas involving closure operators.

Besides its usefulness for expressing conjunctively configuration properties, the subset of CL

involving only closure formulas proves to be tractable for verification using SMT techniques.

This Closure Configuration Logic (CL) fragment introduced later in section 4 represents a trade-off

between expressive power and complexity of verification. In this logic the coalescing operator can

be replaced by conjunction thanks to Lemma 3.7 (iv).
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3.3 Second-Order Configuration Logic
CL extends its propositional version with component variables and component set variables. The

second-order configuration logic has the following syntax:

Φ ::= 𝑃 (𝑧1, · · · 𝑧𝑛𝑃 , 𝑍1, · · ·𝑍𝑚𝑃 )
| 𝐾 (𝑧′

1
, · · · 𝑧′𝑛𝐾 , 𝑍

′
1
, · · ·𝑍 ′

𝑚𝐾
) | noK

| 𝑧′′
1
= 𝑧′′

2
| 𝑧′′

3
∈ 𝑍 ′′

3

| Φ + Φ | Φ ∨ Φ | ¬Φ
| ∃𝑥 : 𝐶. Φ(𝑥) | ∃𝑋 : 2

𝐶 .Φ(𝑋 )

where 𝑃 ∈ P denotes a state predicate,𝐾 ∈ K denotes a connector type,𝐶 ∈ C denotes a component

type. Lower case 𝑧𝑖 , 𝑧
′
𝑖 , 𝑧

′′
𝑖 denote component instances (that is, first-order constants) and/or first

order variables 𝑥 ranging over instances. Similarly, upper case 𝑍𝑖 , 𝑍
′
𝑖 , 𝑍

′′
𝑖 denote sets of components

instances (that is, second-order constants) and/or second-order variables 𝑋 ranging over sets of

instances. All variables 𝑥 , 𝑋 occur only in the scope of existential quantifiers and are typed. We

denote by type(𝑥), type(𝑋 ) their type, that is, a component type from C. As previously, we tacitly
restrict to formulas which are correctly typed, that is, where variables and/or constant (sets of)

instances used as arguments for state predicates and connector types are matching to the expected

signature.

All the additional operators defined for the propositional case are naturally lifted for the second-

order case. Moreover, we define first-order and second-order universal quantifiers as usual ∀𝑥 :

𝐶. Φ(𝑥) △
= ¬∃𝑥 : 𝐶. ¬Φ(𝑥), ∀𝑋 : 2

𝐶 . Φ(𝑋 ) △
= ¬∃𝑥 : 2

𝐶 . ¬Φ(𝑋 ). Furthermore, for every component

type 𝐶 , we define inclusion ⊆𝐶 and equality =𝐶 on sets of instances by taking 𝑍1 ⊆𝐶 𝑍2

△
= ∀𝑥 :

𝐶.(𝑥 ∈ 𝑍1 ⇒ 𝑥 ∈ 𝑍2), 𝑍1 =𝐶 𝑍2

△
= 𝑍1 ⊆𝐶 𝑍2 ∧ 𝑍2 ⊆𝐶 𝑍1.

As for the propositional case, we denote by instances(Φ) the set of instances occurring explicitly

in Φ, as parameters of state predicates and/or connector types. We denote by freevars(Φ) the set of
free variables occurring in Φ.

Let X be a set of typed variables, partitioned into respectively first-order X (1)
and second-order

X (2)
variables. For a given set of instances 𝑈 , the set of valid interpretations of X on𝑈 is denoted

as𝑈 X
and defined as the set of functions

{
𝜄 : X → 𝑈 ∪ 2

𝑈 ∀𝑥 ∈ X (1) . 𝜄 (𝑥) ∈ Utype (𝑥 ) ∩𝑈
∀𝑋 ∈ X (2) . 𝜄 (𝑋 ) ⊆ Utype (𝑋 ) ∩𝑈

}

Interpretation 𝜄 is naturally extended to constants by letting 𝜄 (𝑢) △
= 𝑢 for all 𝑢 ∈ U, 𝜄 (𝑈 ) △

= 𝑈 , for

all𝑈 ⊆ U.

The semantics of a second-order formula Φ is defined on configurations (𝑈 ,𝛾, 𝜎) with respect to

an interpretation 𝜄 of freevars(Φ) on𝑈 . As for the propositional case, we tacitly restrict semantics to

configurations (𝑈 ,𝛾, 𝜎) where instances(Φ) ⊆ 𝑈 , that is, where all support instances are effectively
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defined.

(𝑈 ,𝛾, 𝜎) |=𝜄 𝑃 (𝑧1, · · · 𝑧𝑛𝑃 , 𝑍1, · · ·𝑍𝑚𝑃 )
iff [[𝑃]] (𝜎 (𝜄 (𝑧1)), · · ·𝜎 (𝜄 (𝑧𝑛𝑃 )), 𝜎 (𝜄 (𝑍1)), · · ·𝜎 (𝜄 (𝑍𝑚𝑃 )))

(𝑈 ,𝛾, 𝜎) |=𝜄 𝐾 (𝑧′1, · · · 𝑧′𝑛𝐾 , 𝑍
′
1
, · · ·𝑍 ′

𝑚𝐾
)

iff 𝛾 = {𝐾 (𝜄 (𝑧′
1
), · · · 𝜄 (𝑧′𝑛𝐾 ), 𝜄 (𝑍

′
1
), · · · 𝜄 (𝑍 ′

𝑚𝐾
)}

(𝑈 ,𝛾, 𝜎) |=𝜄 noK iff 𝛾 = ∅
(𝑈 ,𝛾, 𝜎) |=𝜄 𝑧′′1 = 𝑧′′

2
iff 𝜄 (𝑧′′

1
) = 𝜄 (𝑧′′

2
)

(𝑈 ,𝛾, 𝜎) |=𝜄 𝑧′′3 ∈ 𝑍 ′′
3

iff 𝜄 (𝑧′′
3
) ∈ 𝜄 (𝑍 ′′

3
)

(𝑈 ,𝛾, 𝜎) |=𝜄 Φ1 + Φ2 iff ∃𝛾1∃𝛾2. 𝛾 = 𝛾1 ∪ 𝛾2,
(𝑈 ,𝛾1, 𝜎) |=𝜄 Φ1, (𝑈 ,𝛾2, 𝜎) |=𝜄 Φ2

(𝑈 ,𝛾, 𝜎) |=𝜄 Φ1 ∨ Φ2 iff (𝑈 ,𝛾, 𝜎) |=𝜄 Φ1 or (𝑈 ,𝛾, 𝜎) |=𝜄 Φ2

(𝑈 ,𝛾, 𝜎) |=𝜄 ¬Φ iff (𝑈 ,𝛾, 𝜎) ̸|=𝜄 Φ
(𝑈 ,𝛾, 𝜎) |=𝜄 ∃𝑥 : 𝐶. Φ iff (𝑈 ,𝛾, 𝜎) |=𝜄∪{𝑥 ↦→𝑢0 } Φ

for some 𝑢0 ∈ U𝐶 ∩𝑈
(𝑈 ,𝛾, 𝜎) |=𝜄 ∃𝑋 : 2

𝐶 . Φ iff (𝑈 ,𝛾, 𝜎) |=𝜄∪{𝑋 ↦→𝑈0 } Φ
for some𝑈0 ⊆ U𝐶 ∩𝑈

The evaluation of predicate and connector atoms is the same as in propositional CL, after taking

into account the interpretation of formula variables defined by 𝜄. The meaning of equality and

membership test is the usual one. Similarly, the meaning of + is lifted from propositional CL, and the

meaning of all boolean connectives is the usual one. Finally, quantifiers are interpreted according

to the domain𝑈 of instances, by choosing an appropriate instance (respectively set of instances) of

corresponding type.

Example 3.8. Using CL we can express configuration properties independent of the identity of

components. For example, for any slave 𝑦 that has not failed, there exists a master 𝑥 such that 𝑥

and 𝑦 can interact via connector Link:

∀𝑦 : Slave. ¬fail(𝑦) ⇒ ∃𝑥 : Master. ∼Link(𝑥,𝑦)
Moreover, the second-order extension allows us to express complex structural properties such as,

for example, all instances of type Master are interconnected into a single ring using the OutIn

connectors. This property is obtained actually as the conjunction of two simpler properties, namely:

(i) every instance of typeMaster interacts with precisely one other instance through theOutIn

connector type:

∀𝑥 : Master. ∃𝑥 ′ : Master. ∼OutIn(𝑥, 𝑥 ′)∧
∀𝑥 ′′ : Master. (𝑥 ′′ ≠ 𝑥 ′ ⇒ ¬∼OutIn(𝑥, 𝑥 ′′))

(ii) all instances of type Master are connected, that is, for any non-empty strict subset 𝑋 of

Master instances there exists an interaction between an instance within 𝑋 and an instance

outside 𝑋 :

∀𝑋 : 2
Master. (∃𝑥, 𝑥 ′ : Master. 𝑥 ∈ 𝑋 ∧ 𝑥 ′ ∉ 𝑋 ) ⇒

(∃𝑥, 𝑥 ′ : Master. 𝑥 ∈ 𝑋 ∧ 𝑥 ′ ∉ 𝑋 ∧ ∼OutIn(𝑥, 𝑥 ′))

4 VERIFICATION OF CL PROPERTIES
In this section we provide an effective method for checking the validity of a CL formula Φ on finite

configurations (𝑈 ,𝛾, 𝜎). The method is based on the equivalent encoding of the validity question

“(𝑈 ,𝛾, 𝜎) |=∅ Φ” as the satisfiability question of an instantiated formula, expressed in a decidable

target logic, and solvable by existing off-the-shelf SMT solvers. The target logic includes at least

the theory of finite length bitvectors, for encoding architectural properties evaluated on (𝑈 ,𝛾), as
well as any additional theories needed to evaluate state predicates on 𝜎 .
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The method is actually restricted to the Closure Configuration Logic (CL) fragment, namely,

where (i) all connector atoms 𝐾 (· · · ) occur under the immediate scope of the ∼ operator and (ii)

only logical connectives are used. Under this restriction, the instantiated formula is obtained by a

structural translation of Φ augmented with some additional clauses for encoding architecture and

state information about (𝑈 ,𝛾, 𝜎). Without this restriction, a more general encoding following the

structure of the validity question “(𝑈 ,𝛾, 𝜎) |=∅ Φ” would be needed.

In this section, we first present the principle of encoding instances and sets of instances using

finite length bitvectors. Then, we introduce the encoding of connector types and state predicates as

(interpreted) predicates and functions on bitvectors. Finally, we present the structural translation

of CL formulas as formulas of finite-length bitvector theory.

4.1 Encoding using finite-length bitvectors
Let (𝑈 ,𝛾, 𝜎) be a fixed configuration defined on a finite set of component instances𝑈 . Let denote

by 𝑁 the cardinality of𝑈 .

Let choose≪𝑈 a total order on𝑈 and denote by idx≪𝑈
(𝑢) the index of 𝑢 in the ordered sequence

defined by ≪𝑈 on𝑈 , formally

idx≪𝑈
(𝑢) △

= |{𝑢′ ∈ 𝑈 | 𝑢′ ≪𝑈 𝑢, 𝑢
′ ≠ 𝑢}|

We associate constant bitvectors of length 𝑁 to component instances, sets of component instances,

component types as follows:

bvconst-𝑢 △
= nat2bv[𝑁 ] (2idx≪𝑈 (𝑢 ) )

bvconst-∅ △
= nat2bv[𝑁 ] (0)

bvconst-{𝑢1, · · ·𝑢𝑘 }
△
= bvor(bvconst-𝑢1, · · · bvconst-𝑢𝑘 )

bvconst-𝐶 △
= bvconst-{𝑢 ∈ 𝑈 | type(𝑢) = 𝐶}

In the above, the function nat2bv[𝑁 ] takes a non-negative integer 𝑛 smaller than 2
𝑁
and returns a

bitvector of length 𝑁 corresponding to the binary encoding of 𝑛 using 𝑁 bits.

Example 4.1. Consider the system configuration (𝑈 ,𝛾, 𝜎) depicted in Figure 1. The cardinality of

𝑈 is 14, that is, target formulas will operate with bitvectors of size 14. Let consider the total order

≪𝑈 defined by the sequence𝑚1,𝑚2, ...𝑚5, 𝑠1, 𝑠2, ...𝑠9. Instances and sets of instances are therefore

encoded as follows, for example:

bvconst-𝑚2

△
= ⟨01000 000000000⟩

bvconst-{𝑠1, 𝑠2, 𝑠7}
△
= ⟨00000 110000100⟩

bvconst-∅ △
= ⟨00000 000000000⟩

bvconst-Master

△
= ⟨11111 000000000⟩

We define few more helper predicates, respectively, bvpred-𝑜𝑛𝑒 to check if a bitvector contains

precisely a single 1 bit (that is, it represents precisely a unique instance), bvpred-𝑠𝑢𝑏𝑠𝑒𝑡 to check
inclusion between two sets and bvpred-𝑒𝑙𝑒𝑚 to checkmembership of an element to a set, represented

as bitvectors:

bvpred-𝑜𝑛𝑒 (𝑥) △
= ∨𝑁−1

𝑖=0 (𝑥 = nat2bv[𝑁 ] (2𝑖 ))
bvpred-𝑠𝑢𝑏𝑠𝑒𝑡 (𝑋,𝑌 ) △

= bvor(𝑋,𝑌 ) = 𝑌
bvpred-𝑒𝑙𝑒𝑚(𝑥,𝑋 ) △

= bvpred-𝑜𝑛𝑒 (𝑥) ∧ bvpred-𝑠𝑢𝑏𝑠𝑒𝑡 (𝑥,𝑋 )
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Table 1. Translation rules for state expressions (left) and CL formulas (right)

tr(𝑐) △
= 𝑐

tr(𝑥 .𝑠) △
= bvfun-𝑠 (𝑥)

tr(𝑓 (𝑡1, 𝑡2, · · · ))
△
= 𝑓 (tr(𝑡1), tr(𝑡2), · · · )

tr(𝑡1 = 𝑡2)
△
= tr(𝑡1) = tr(𝑡2)

tr(𝑝 (𝑡1, 𝑡2, · · · ))
△
= 𝑝 (tr(𝑡1), tr(𝑡2), · · · )

tr(𝑒1 ∨ 𝑒2)
△
= tr(𝑒1) ∨ tr(𝑒2)

tr(¬𝑒) △
= ¬tr(𝑒)

tr(𝑢) △
= bvconst-𝑢 tr(𝑈 ) △

= bvconst-𝑈
tr(𝑥) △

= 𝑥 tr(𝑋 ) △
= 𝑋

tr(𝑧1 = 𝑧2)
△
= tr(𝑧1) = tr(𝑧2) tr(𝑧 ∈ 𝑍 ) △

= bvpred-𝑠𝑢𝑏𝑠𝑒𝑡 (tr(𝑧), tr(𝑍 ))
tr(Φ1 ∨ Φ2)

△
= tr(Φ1) ∨ tr(Φ2) tr(¬Φ) △

= ¬tr(Φ)
tr(∃𝑥 : 𝐶. Φ) △

= ∃𝑥 : bv[𝑁 ] . bvpred-𝑒𝑙𝑒𝑚(𝑥, bvconst-𝐶) ∧ tr(Φ)
tr(∃𝑋 : 𝐶. Φ) △

= ∃𝑋 : bv[𝑁 ] . bvpred-𝑠𝑢𝑏𝑠𝑒𝑡 (𝑋, bvconst-𝐶) ∧ tr(Φ)
tr(∼𝐾 (𝑧1, · · · 𝑧𝑛, 𝑍1, · · ·𝑍𝑚))

△
= bvpred-𝐾 (tr(𝑧1), · · · tr(𝑧𝑛), tr(𝑍1), · · · tr(𝑍𝑚))

tr(𝑃 (𝑧1, · · · 𝑧𝑛, 𝑍1, · · ·𝑍𝑚))
△
= bvpred-𝑃 (tr(𝑧1), · · · tr(𝑧𝑛), tr(𝑍1), · · · tr(𝑍𝑚))

4.2 Handling connector types
For every connector type 𝐾 , we define the predicate bvpred-𝐾 to encode the set of interactions of

type 𝐾 defined in 𝛾 . Assuming the signature of 𝐾 is sign(𝐾) = (𝐶𝑖𝑘 )𝑘=1,𝑛𝐾 (2𝐶 𝑗ℓ )ℓ=1,𝑚𝐾 , the predicate
bvpred-𝐾 is defined on tuples of 𝑛𝐾 +𝑚𝐾 bitvectors by taking

bvpred-𝐾 (𝑥1, ..., 𝑥𝑛𝐾 , 𝑋1, ..., 𝑋𝑚𝐾 )
△
=∨

𝐾 (𝑢1,· · ·𝑢𝑛𝐾 ,𝑈1,· · ·𝑈𝑚𝐾 ) ∈𝛾

©­«
∧𝑛𝐾
𝑖=1
𝑥𝑖 = bvconst-𝑢𝑖

∧
∧𝑚𝑘
𝑗=1
𝑋 𝑗 = bvconst-𝑈 𝑗

ª®¬
Example 4.2. In the configuration depicted in Figure 1, the set of interactions 𝛾 contains 5

interactions of type InOut of the form InOut(𝑚𝑖 ,𝑚𝑖+1). These are encoded by the bitvector predicate
bvpred-InOut(𝑥1, 𝑥2) defined as follows:

bvpred-InOut(𝑥1, 𝑥2)
△
= ∨5

𝑖=1 (𝑥1 = bvconst-𝑚𝑖 ∧ 𝑥2 = bvconst-𝑚𝑖+1)
The next lemma characterizes the encoding of connector types.

Lemma 4.3. For any connector type 𝐾

(𝑈 ,𝛾, 𝜎) |= ∼𝐾 (𝑢1, · · ·𝑢𝑛𝐾 ,𝑈1, · · ·𝑈𝑚𝐾 ) iff
bvpred-𝐾 (bvconst-𝑢1, · · · bvconst-𝑢𝑛𝐾 ,

bvconst-𝑈1, · · · bvconst-𝑈𝑚𝐾 ) ≡ True

Proof. By definition of bvpred-𝐾 and semantics of ∼𝐾 (...). □

4.3 Handling state predicates
As for connector types, for every state predicate 𝑃 , we define the bitvector predicate bvpred-𝑃 to

encode its interpretation [[𝑃]] restricted to the state configuration 𝜎 . Assuming that the signature

of 𝑃 is sign(𝑃) = (𝐶𝑖𝑘 )𝑘=1,𝑛𝑃 (2𝐶 𝑗ℓ )ℓ=1,𝑚𝑃 , the predicate bvpred-𝑃 is defined on tuples of 𝑛𝑃 +𝑚𝑃

bitvectors.

For practical reasons, we restrict to state predicates defined by multi-sorted expressions con-

structed from state variables and constants, functions and predicates defined for some data sorts

𝑇𝑖 ’s. We consider that, for every component type 𝐶 , the set of component states 𝑄𝐶 is defined as a

Cartesian product 𝑇𝑖1 ×𝑇𝑖2 × ... corresponding to valuations of a tuple ⟨𝑠𝐶
1
, 𝑠𝐶

2
, ...⟩ of state variables

with sorts respectively 𝑇𝑖1 , 𝑇𝑖2 , · · · . The syntax of predicates terms and expressions is as follows

𝑡 ::= 𝑐 | 𝑥 .𝑠 | 𝑓 (𝑡1, 𝑡2, · · · )
𝑒 ::= 𝑡1 = 𝑡2 | 𝑝 (𝑡1, 𝑡2, · · · ) | 𝑒1 ∨ 𝑒2 | ¬𝑒

In the above, 𝑐 denotes a predefined constant, 𝑓 a predefined function and 𝑝 a predefined predicate

of the considered data sorts. 𝑥 is a typed variable denoting component instances and 𝑠 a state
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variable defined for the type of 𝑥 . We tacitly assume that terms and expressions are correctly typed

with respect to data sorts and component types. A state predicate 𝑃 described by an expression

𝑒𝑃 (𝑥1, · · · 𝑥𝑚) has signature sign(𝑃) = (type(𝑥𝑖 ))𝑖=1,𝑚 according to the types of variables used in

𝑒𝑃 and the interpretation [[𝑃]] defined through the standard evaluation of 𝑒𝑃 . The encoding of

predicates 𝑃 relies on the encoding of state variables as functions on bitvectors. Let 𝑠 be the 𝑗th

state variable of component type 𝐶 and let 𝑇 be the sort of 𝑠 . We define the bitvector function

bvfun-𝑠 : bv[𝑁 ] → 𝑇 to obtain the value of 𝑠 for instances of type𝐶 in the state configuration 𝜎 by

taking:

bvfun-𝑠 (𝑥) △
=


𝑐 𝑗 if 𝑥 = bvconst-𝑢 for some 𝑢 ∈ 𝑈 such that

type(𝑢) = 𝐶 and 𝜎 (𝑢) = (𝑐1, 𝑐2, · · · 𝑐 𝑗 , · · · )
𝑐0 otherwise, for some fixed 𝑐0 ∈ 𝑇

Based on the encoding of state variables, we define a translation of state terms and state expressions

into bitvector expressions. The translation preserves their structure and rewrites any component

variable access 𝑥 .𝑠 with the function call respectively bvfun-𝑠 (𝑥). Formally, the translation is defined

in Table 1 (left). Finally, for any predicate 𝑃 described by a state expression 𝑒𝑃 (𝑥1, · · · 𝑥𝑚) we define
the bitvector predicate bvpred-𝑃 by taking

bvpred-𝑃 (𝑥1, · · · 𝑥𝑚)
△
= tr(𝑒𝑃 )

By construction, bvpred-𝑃 (𝑥1, · · · 𝑥𝑚) evaluates into the value of 𝑒𝑃 (𝑥1, · · · 𝑥𝑚) depending on the

assignment of 𝑥𝑖 ’s to component instances from𝑈 and on their state configuration as defined by 𝜎 .

The following lemma characterizes formally our encoding.

Lemma 4.4. For any state predicate 𝑃

(𝑈 ,𝛾, 𝜎) |= 𝑃 (𝑢1, · · ·𝑢𝑚) iff
bvpred-𝑃 (bvconst-𝑢1, · · · bvconst-𝑢𝑚) ≡ True

Proof. By structural induction on the expression 𝑒𝑃 . □

4.4 Handling CL formulas
The translation of a configuration formula Φ is defined in Table 1 (right). Intuitively, the translation

fully preserves the logical structure of Φ and rewrites (1) constants 𝑢,𝑈 into bitvector constants

bvconst-𝑢, bvconst-𝑈 , (2) variables 𝑥 , 𝑋 of some component type 𝐶 into (first-order) bitvector

variables 𝑥 , 𝑋 plus additional bitvector constraints (to restrict type to instances of𝐶 and cardinality

for first-order), (3) formulas ∼𝐾 (· · · ) into bitvector predicates bvpred-𝐾 (· · · ) and (4) state predicates
𝑃 (...) into bitvector predicates bvpred-𝑃 (...).

Example 4.5. Consider the configuration formula Φ0 introduced in Example 3.8:

∀𝑥 : Master. ∃𝑥 ′ : Master. ∼OutIn(𝑥, 𝑥 ′)
The translation tr(Φ0) according to configuration (𝑈 ,𝛾, 𝜎) depicted in Figure 1 is defined as

∀𝑥 : bv[14] . (bvpred-𝑒𝑙𝑒𝑚(𝑥, bvconst-Master)) ⇒
(∃𝑥 ′ : bv[14] . bvpred-𝑒𝑙𝑒𝑚(𝑥 ′, bvconst-Master) ∧

bvpred-InOut(𝑥, 𝑥 ′))
where bitvector constants bvconst-Master, and bitvector predicates bvpred-𝑒𝑙𝑒𝑚, bvpred-𝑠𝑢𝑏𝑠𝑒𝑡 and
bvpred-InOut were defined earlier.

The next proposition expresses the correctness of the encoding.

Proposition 4.6. If Φ is a CL formula then

(𝑈 ,𝛾, 𝜎) |=∅ Φ iff tr(Φ) is sat.
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Proof. By structural induction on the formula Φ. □

Finally, let us remark that the complexity of satisfiability problems for fixed-size bitvector logics

has been thoroughly investigated [13, 14]. In particular, if unary encoding (that is, bit blasting) is

used, the complexity is respectively NP-complete for the quantifier-free fragment and PSPACE-

complete for the full bit-vector logic. These known results can be used to establish upper bounds

for the complexity of the verification problem of CL formulas on finite configurations. Nonetheless,

determining precisely this complexity needs further investigation and is not considered in this

work.

5 TEMPORAL CONFIGURATION LOGIC TCL
The temporal configuration logic has the following syntax

Ψ ::= Φ | flip | NΨ | ΨUΨ | Ψ ∨ Ψ | ¬Ψ
where Φ is a second-order configuration formula, flip is the reconfiguration status operator, N is

the next operator, U is the until operator.

The semantics of TCL formulas is defined on infinite sequences𝑤 = 𝑤0𝑤1... of configurations,

that is, where every𝑤𝑖 is a configuration (𝑈𝑖 , 𝛾𝑖 , 𝜎𝑖 ) as defined earlier. For an infinite sequence𝑤 ,

we denote by𝑤 (𝑖 )
the infinite subsequence of𝑤 starting at index 𝑖 .

𝑤 |= Φ iff 𝑤0 |=∅ Φ
𝑤 |= flip iff 𝑈0 ≠ 𝑈1 ∨ 𝛾0 ≠ 𝛾1 where𝑤 = (𝑈𝑖 , 𝛾𝑖 , 𝜎𝑖 )𝑖≥0
𝑤 |= NΨ iff 𝑤 (1) |= Ψ
𝑤 |= Ψ1UΨ2 iff ∃𝑖 ≥ 0. 𝑤 (𝑖 ) |= Ψ2 ∧ ∀𝑗 ∈ [0, 𝑖). 𝑤 ( 𝑗 ) |= Ψ1

𝑤 |= Ψ1∨Ψ2 iff 𝑤 |= Ψ1 or𝑤 |= Ψ2

𝑤 |= ¬Ψ iff 𝑤 ̸ |= Ψ

Notice that the formula flip is satisfied for sequences with an initial state after which a reconfigura-

tion (change of configuration) occurs. We consider the additional boolean operators defined in the

standard way, that is, Ψ1 ∧ Ψ2

△
= ¬(¬Ψ1 ∨ ¬Ψ2), Ψ1 ⇒ Ψ2

△
= ¬Ψ1 ∨ Ψ2. We consider moreover the

usual eventually operator ^Ψ
△
= TrueUΨ, and always operator □Ψ △

= ¬^¬Ψ. We define furthermore

an additional next reconfiguration N𝑅 operator by taking N𝑅Ψ
△
= (¬flip)U(flip ∧ NΨ). Notice that

this formula characterizes all the sequences where Ψ holds right after the first reconfiguration.

Example 5.1. We show how TCL allows the expression of non-trivial properties of DR-systems.

For example, immediately after reconfiguration, all instances of type Master are running

□ (flip ⇒ N(∀𝑥 : Master. running(𝑥)))
or, whenever an instance of type Master is not running, reconfiguration is eventually executed

□ (∃𝑥 : Master. ¬running(𝑥)) ⇒ ^flip
Moreover, we can specify the rule of load balancing as follows:

□
(
∃𝑥1, 𝑥2 : Master. ∃𝑌1, 𝑌2 : 2Slave . ∼OutIn(𝑥1, 𝑥2) ∧

(∀𝑦1 : Slave. 𝑦1 ∈ 𝑌1 ⇔ ∼Link(𝑥1, 𝑦1)) ∧
(∀𝑦2 : Slave. 𝑦2 ∈ 𝑌2 ⇔ ∼Link(𝑥2, 𝑦2)) ∧
|𝑌1 | ≥ |𝑌2 | + 2

)
⇒ flip

that is, whenever exist two masters 𝑥1, 𝑥2, such that 𝑥2 is the successor of 𝑥1 in the ring, the sets of

connected slaves 𝑌1, 𝑌2 respectively satisfy |𝑌1 | ≥ |𝑌2 | + 2, the system must reconfigure at its next

step, that is, flip hold.
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We note that by considering CL formulas (Φ) and flip in the TCL as atomic propositions, we

obtain a standard linear-time temporal logic (LTL) formula [20]. Runtime Verification (RV) [3, 7, 21]

is a lightweight formal approach that consists in checking that a single run of a system complies

with a given specification (typically described in LTL). Existing RV approaches provide tools such as

LTL3Tools [3], and LamaConv [10] capable of automatically synthesizing monitors as finite-state

machines. To check a TCL formula on a sequence of configurations, we first evaluate the validity

of each CL formula for each configuration as described in Section 4, and assign the corresponding

truth value to its associated atomic proposition (for that particular configuration). Once CL formulas

are evaluated, we are able to check the TCL formula using standard RV tools and approaches, as it

has been rewritten to LTL. For the atomic proposition flip, we compute its value depending on the

change of configuration as specified by its semantics.

6 EXPERIMENTS
We implemented our approach in the tool drbip-verify for DR-BIP [2, 6] traces. We check several

properties on two dynamic reconfigurable systems: the Master/Slave system described in this paper,

and the Platoon system described in [6].

6.1 Tool Integration
The drbip-verify tool integrates a set of modules as shown in Figure 2.

drbip-verify reads a dr-bip trace containing relevant information on the execution of a dynamic

reconfigurable system. In addition it reads a specification file that contains temporal formulas

defined over a set of atomic propositions, and for each such atomic proposition an associated

CL formula. The temporal formulas are passed to LamaConv [10] to generate FSM monitors. A

temporal formula can be specified using any of the LamaConv input logics such as LTL, PLTL,

regular expressions, and SALT. The CL formulas are passed to the trace processor which gathers

information from the trace based on the referenced components and connectors. For our experiments

we evaluate properties whenever the system reconfigures as the configuration changes. This allows

us to sample uniformly traces of 100 reconfigurations for the experiments.

DR-BIP
trace

Specification

CL
LamaConv format
temporal
specification

LamaConv

FSM monitors

Trace processor

Gather components +
connectors for instantiated

CL formula

Translator

SMT-LIB QBVF Z3
instantiated formula

Z3

Assign to atomic proposition
values of T: sat, F: unsat

for each step and formula

Monitoring verdicts

Fig. 2. The main components of drbip-verify.
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Whenever a reconfiguration occurs, the trace processor generates for each CL formula found

in the specification the corresponding instantiated formula using the connector instances and

the component instances present during that moment of execution as described in Section 4.

The instantiated formula is then passed to Z3 to solve it. Once solved, the associated LTL atomic

proposition with the CL formula is set to true iff the Z3 instance was satisfiable. Once all instantiated

formulas are solved, the monitors receive the atomic propositions associated with them to update

their evaluation of the temporal properties.

dr-bip utilizes the concept of architectural motifs gathering sets of components subject to the

same coordination rules. For instance in theMaster/Slave system amaster with its slaves constitute a

motif instance. Using motifs we can restrict the universe of each property to the relevant component

and connector instances.

6.2 Experimental Setup
For our experiments, we consider two reconfigurable systems: the Master/Slave system, and the

Platoon system. The properties considered are shown in Table 2.

Table 2. Properties considered.

Prop CL Formula

Φ𝑙𝑖𝑛𝑘
∀𝑠 : Slave. (𝑠 .𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 = 0) ⇒

(∃𝑚 : Master. ∼Link(𝑚, 𝑠))

Φ𝑖𝑛𝑜𝑢𝑡
∀𝑚0 : Master. ∃𝑚1 : Master. ∼OutIn(𝑚0,𝑚1) ∧

(∀𝑚2 : Master. 𝑚2 ≠𝑚1 ⇒ ¬∼OutIn(𝑚0,𝑚2))

Φ𝑟𝑖𝑛𝑔

∀𝑋 : 2
Master

:

(∃𝑥, 𝑥 ′ : Master. 𝑥 ∈ 𝑋 ∧ 𝑥 ′ ∉ 𝑋 ) ⇒
(∃𝑥, 𝑥 ′ : Master. 𝑥 ∈ 𝑋 ∧ 𝑥 ′ ∉ 𝑋 ∧ ∼OutIn(𝑥, 𝑥 ′))

Φ𝑢𝑛𝑏𝑎𝑙

∃𝑥1, 𝑥2 : Master. ∃𝑌1, 𝑌2 : 2Slave .
(∀𝑦1 : Slave. 𝑦1 ∈ 𝑌1 ⇔ ∼Link(𝑥1, 𝑦1)) ∧
(∀𝑦2 : Slave. 𝑦2 ∈ 𝑌2 ⇔ ∼Link(𝑥2, 𝑦2)) ∧
∼OutIn(𝑥1, 𝑥2) ∧ |𝑌1 | ≥ |𝑌2 | + 2

Φ𝑠𝑝𝑙𝑖𝑡
∀𝑐0 : Car. ∀𝑐1 : Car. ∼Split(𝑐0, 𝑐1) ⇒

(∀𝑐2 : Car. 𝑐2 ≠ 𝑐1 ⇒ ¬∼Split(𝑐0, 𝑐2))

Φ𝑠𝑝𝑒𝑒𝑑
∀𝑐 : Car. ∀𝑋0 : 2

Car. ∼Speed(𝑋0, 𝑐) ⇒
(∀𝑋1 : 2

Car. 𝑋0 ≠ 𝑋1 ⇒ ¬∼Speed(𝑋1, 𝑐))
Φ𝑛𝑜ℎ𝑎𝑙𝑡 ∀𝑐 : Car. 𝑐 .velocity > 0

Φ𝑠𝑎𝑓 𝑒
∃𝑐0 : Car. ∃𝑋0 : 2

Car . ∼Speed(𝑋0, 𝑐0) ∧
(∀𝑐1 : Car. 𝑐1 ∈ 𝑋0 ⇒ 𝑐1.pos < 𝑐0 .pos)

Master/Slave System. For the Master/Slave system we consider two parameters: the number of

masters and slaves per master. The properties we check are taken from Examples 3.8 and 5.1,

Platoon System. The Platoon system introduced in [6] describes cars moving on a single lane-road,

grouped together in platoons. Each platoon has a leader that regulates the speed of the cars. Cars

can split to form new platoons. Platoons also merge when close to each other. For the Platoon

system we consider a single parameter: the number of cars on the road. We consider the following

four properties: 1) a follower car can only split from a single leader car (Φ𝑠𝑝𝑙𝑖𝑡 ); 2) a leader car only
regulates the speed of a single platoon (Φ𝑠𝑝𝑒𝑒𝑑 ); 3) cars are always moving (Φ𝑛𝑜ℎ𝑎𝑙𝑡 ); and 4) each

platoon consists of a leader car and several followers cars located behind the leader (Φ𝑠𝑎𝑓 𝑒 ).



16 Antoine El-Hokayem, Marius Bozga, and Joseph Sifakis

6.3 Results
For each system, we execute 10 runs for different values of their parameters to obtain configurations

of varying number of connector and component instances.

We stop the execution after 100 reconfigurations, and record the trace. Each trace is then checked

using drbip-verify. We record the time spent by Z3 to solve the instantiated CL formulas. Table 3

presents the average number of connector instances, component instances, and the average time

needed to solve a single instantiated CL formula. The parameters are the following: number of

masters followed by number of slaves per master for the Master/Slave system, and number of

cars for the Platoon system. When the solving time of a given CL formula does not depend on a

parameter, we used its maximum value to simplify presentation. For some formulas, we notice a

lower number of components than the sum of all components of the system. This is because they

apply to motif instances and therefore benefit from a smaller universe size, even as the system

grows (e.g., for Φ𝑙𝑖𝑛𝑘 applies to all components of a single master and is evaluated multiple times

for each master).

Table 3. Average time spent by Z3 (in ms) to solve instantiated CL formulas in traces of size 100. Cell contains:

mean ± 95% confidence interval error.

Prop Params |Γ |𝑖𝑛𝑠𝑡 |U |𝑖𝑛𝑠𝑡 𝑡𝑖𝑛𝑠𝑡

Φ𝑙𝑖𝑛𝑘 4

50 97.4 49.2 31.80 ± 1.00

100 190.52 95.76 64.81 ± 2.02

200 399.99 200.49 195.11 ± 6.16

Φ𝑖𝑛𝑜𝑢𝑡

2

200

1.68 1.84 11.32 ± 0.70

3 2.98 2.98 12.94 ± 0.80

4 3.86 3.86 13.67 ± 0.85

Φ𝑟𝑖𝑛𝑔

2

200

1.68 1.84 15.73 ± 0.98

3 2.98 2.98 157.48 ± 9.76

4 3.86 3.86 1,707.21 ± 105.81

Φ𝑢𝑛𝑏𝑎𝑙

5 5 57.01 30.00 32.44 ± 2.01

2 51 199.38 104.00 122.23 ± 7.58

4 25 200.59 104.00 144.75 ± 8.97

8 12 201.25 104.00 152.41 ± 9.45

13 7 200.38 104.00 343.04 ± 21.26

Φ𝑠𝑝𝑙𝑖𝑡

20 18.55 20.00 18.57 ± 1.15

50 48.52 50.00 45.84 ± 2.84

100 98.51 100.00 207.37 ± 12.85

Φ𝑠𝑝𝑒𝑒𝑑

20 18.55 20.00 12.57 ± 0.78

50 48.52 50.00 16.74 ± 1.04

100 98.51 100.00 24.29 ± 1.51

Φ𝑛𝑜ℎ𝑎𝑙𝑡

20 18.55 20.00 13.23 ± 0.82

50 48.52 50.00 23.02 ± 1.43

100 98.51 100.00 52.21 ± 3.24

Φ𝑠𝑎𝑓 𝑒

20 11.36 13.33 13.50 ± 0.68

50 31.34 33.33 19.67 ± 1.00

100 64.67 66.67 31.87 ± 1.61

We notice generally that the time needed by Z3 to solve an instantiated formula increases with

the number of connector and component instances. However, for complex formulas such as Φ𝑟𝑖𝑛𝑔
where we have a universally quantified second-order variable (∀𝑋 : 2

Master
) and an alternation of
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quantifiers, we are unable to handle rings of size larger than 4. Nonetheless for most formulas,

including ones with second-order variables (Φ𝑠𝑝𝑒𝑒𝑑 , Φ𝑢𝑛𝑏𝑎𝑙 , Φ𝑠𝑎𝑓 𝑒 ), we are able to handle systems

containing up to 100 components.

We also notice sensitivity to different parameters, since the exploration of the models for the

formula by the solver is affected by its structure, and the universe over which the variables are

quantified. For the load (un)balancing property Φ𝑢𝑛𝑏𝑎𝑙 , we observe worse solving times when we

have more masters even if the number of component instances is the same. The instantiated formula

is solved much faster when we have 2 masters and 51 slaves per master, than when we have 13

masters and 7 slaves per master, where both amount to 104 component instances.

7 RELATEDWORK
The use of configuration logics for specifying static architectures and/or architecture styles has

been investigated in [17]. A model checking procedure has been proposed which relies on the

syntactic transformation to a normal form, followed by the checking of every term of this form

against the configuration model. In [19], configuration logics are extended to express precedence

constraints on execution of interactions. Yet, the systems considered have a static architecture.

Formal verification of dynamic reconfigurable systems has been considered in [4] where system

configurations are expressed as annotated hyper-graphs, reconfiguration is specified using graph

transformations, and configuration properties are specified using a variant of first-order logic. In

this work, Alloy Analyzer [11] is used as a back-end tool to generate valid configurations and/or to

check invariant properties on finite traces. No temporal logic aspects were considered.

The use of temporal logic for expressing properties about the evolution of reconfigurable systems

dates back to [1] and has been widely investigated in several contexts, e.g., recently for dynamic

product lines [22]. Nonetheless, its use in combinationwith richer configuration logics for expressing

architectural properties remainsmarginal, with few exceptions such as [16] which consider a specific

computational model of reconfigurable systems.

Temporal logic has been studied in [5, 15] in the context of runtime verification for reconfigurable

systems. Architectural configurations are expressed in the B language and validated on instantiated

models with the ProB
1
model checker. For temporal aspects, an extension of LTL is used. In contrast,

our proposed configuration logic aims to maintain the separation between architectural constraints

and state constraints, and relies on state-of-the-art LTL runtime checkers in order to provide more

effective decision procedures and achieve scalability for larger systems.

8 CONCLUSION
The contribution of the paper is two-fold. The first is on modeling and specification of dynamic

reconfigurable systems allowing deeper insight into key characteristics of their behavior and

properties. In contrast to static component-based systems, the knowledge of the states of the

constituent components is not enough to capture system dynamics; two instances of the same

type of component may exhibit very different behavior depending on their position in the system

coordination structure. The application of specification and verification techniques based on

temporal logic, relies on the concept of configuration which combines state and architecture

information. The second contribution is on runtime verification of temporal logic properties. The

method uses an effective procedure for checking the validity of configuration logic formulas on finite

configurations. Temporal logic formulas are checked using existing runtime verification techniques

as their atomic propositions are configuration logic formulas. The preliminary experimental results

concerning the verification of two non trivial examples are encouraging. Future work will focus on

1
https://www3.hhu.de/stups/prob
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the investigation of verification techniques for unrestricted TCL and further improvement of the

performance of the drbip-verify tool.
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