
HAL Id: hal-04106085
https://hal.science/hal-04106085

Submitted on 25 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programming dynamic reconfigurable systems
Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis

To cite this version:
Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis. Programming dynamic recon-
figurable systems. International Journal on Software Tools for Technology Transfer, 2021, 23 (5),
pp.701-719. �10.1007/s10009-020-00596-7�. �hal-04106085�

https://hal.science/hal-04106085
https://hal.archives-ouvertes.fr

International Journal on Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Programming Dynamic Reconfigurable Systems

Rim El Ballouli · Saddek Bensalem · Marius Bozga · Joseph Sifakis

Received: date / Accepted: date

Abstract DR-BIP is an extension of the BIP com-

ponent framework intended for programming reconfig-

urable systems encompassing various aspects of dynamism.

It relies on architectural motifs to structure the archi-

tecture of a system and to coordinate its reconfigura-

tion at runtime. An architectural motif defines a set of

interacting components that evolve according to recon-

figuration rules. With DR-BIP, the dynamism can be

captured as the interplay of dynamic changes in three

independent directions 1) the organization of interac-

tions between instances of components in a given con-

figuration; 2) the reconfiguration mechanisms allowing

creation/deletion of components and management of

their interaction according to a given architectural mo-

tif; 3) the migration of components between predefined

architectural motifs which characterizes dynamic exe-
cution environments. The paper lays down the formal

foundation of DR-BIP, illustrates its expressiveness on

few examples and discusses avenues for dynamic recon-

figurable system design.

Keywords architectural motifs · components ·
reconfigurable systems

The research leading to these results has received funding
from the European Union Horizon 2020 research and innova-
tion programme under grant agreement no. 700665 CITADEL
(Critical Infrastructure Protection using Adaptive MILS)

Rim El Ballouli · Saddek Bensalem · Marius Bozga · Joseph
Sifakis
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of En-
gineering Univ. Grenoble Alpes), 38000 Grenoble, France E-
mail: Marius.Bozga@univ-grenoble-alpes.fr

1 Introduction

Modern computing systems exhibit dynamic and re-

configurable behavior. They evolve in uncertain envi-

ronments and have to continuously adapt to changing

internal or external conditions. This is essential to effi-

ciently use system resources e.g. reconfiguring the way

resources are accessed and released in order to adapt the

system behavior in case of mishaps such as faults, and

to provide the adequate functionality when the external

environment changes dynamically as in mobile systems.

In particular, mobile systems are becoming important

in many application areas including transport, telecom-

munications and robotics.

There exist two complementary approaches for the

expression of dynamic coordination rules. One respects
a strict separation between component behavior and its

coordination. Coordination is exogenous in the form of

an architecture that describes global coordination rules

between the coordinated components. This approach

is adopted by numerous Architecture Description Lan-

guages (ADL) (see [11] for a survey). The other ap-

proach is based on endogenous coordination by using

explicitly primitives in the code describing the behav-

ior of components. Most programming models use inter-

nalized coordination mechanisms. Components usually

have interfaces that specify their capabilities to coor-

dinate with other components. Composing components

boils down to composing interfaces. This approach is in

particularly adopted by formalisms such as dynamic

wright [3], leda [14], pilar [35], scel [17] to name

just a few based on process algebra. The obvious advan-

tage of endogenous coordination is that programmers

do not have to build explicitly a global coordination

model. The absence of such a model makes the valida-

tion of coordination mechanisms and the study of their

2 Rim El Ballouli et al.

underlying properties much harder. In contrast, exoge-

nous coordination is advocated for enabling the study

of the coordination mechanisms and their properties. It

motivated numerous publications and the development

of 100+ ADLs [29]. In this case, the coordination model

is external to the behavior and can therefore be used to

perform some analysis almost independently from the

behavior.

There exists a huge literature on architecture mod-

eling reviewed in detailed surveys classifying the vari-

ous approaches and outlining new trends [24] and needs

from an industrial perspective [29]. Despite the impres-

sive amount of work on this topic there is no clear un-

derstanding about how different aspects of architecture

dynamism can be characterized.

We consider that the degree of dynamism of a sys-

tem can be captured as the interplay of dynamic change

in three independent aspects. The first aspect requires

the ability to describe parametric system coordination

for arbitrary number of instances component types. For

example, systems with m Producers and n Consumers

or Rings formed from n identical components. The sec-

ond aspect requires the ability to add/delete compo-

nents and manage their interaction rules depending on

dynamically changing conditions. This is needed for a

reconfigurable ring of n components e.g. removing a

component which self-detects a failure and adding the

removed component after recovery. So adding/deleting

components implies the dynamic application of specific

interaction rules depending on their type. This is also

needed for mobile components which are subject to dy-

namic interaction rules depending on the state of their

neighborhood. The third aspect is currently the most

challenging. It meets in particular, the vision of “fluid

architectures” [38] which allows components/services to

seamlessly roam and continue their activities on any

available device or computer. Applications and objects

live in an environment which is conceptually an ar-

chitecture motif. They can be dynamically transported

from one motif to another. Supporting dynamic migra-

tion of components allows a disciplined and easy-to-

implement management of dynamically changing co-

ordination rules. For instance, self-organizing systems

may adopt different coordination motifs to adapt their

behavior so as to meet a global property.

The paper presents Dynamic Reconfigurable BIP (DR-

BIP) component framework, an extension of BIP [4, 5]

which encompasses all these three aspects of dynamism.

DR-BIP has been introduced in [22] and represents one

further step in our research toward extending BIP with

dynamic features. This research was initiated with Dy-

BIP [9] for BIP with dynamic interactions and more re-

cently continued with Functional BIP [20] and Java BIP

[31] for BIP with dynamic components and interactions.

As such, DR-BIP follows an exogenous approach re-

specting the strict separation between behavior and ar-

chitecture. It directly encompasses multiparty interac-

tion [7] and is rooted in formal operational semantics

allowing a rigorous implementation. DR-BIP privileges

an imperative and exogenous style characterizing dy-

namic architecture as a set of interaction rules imple-

mented by connectors and a set of configuration rules.

Although DR-BIP does not allow adhoc dynamism,

it directly encompasses several kinds of dynamism at

run time namely, programmed dynamism and in addi-

tion adaptive dynamism, and self-organizing dynamism

according to the classification in [11]. It provides sup-

port for component creation and removal at run time.

Moreover, DR-BIP directly supports component mi-

gration from one motif to another. It supports pro-

grammed reconfiguration and triggered reconfiguration

as defined in [13]. The big advantage from using motifs

is that when a component is created, its type defines

the interaction with other components. So, a motif is

a “world” where components live and from which they

can migrate to join other “worlds” as in fluid architec-

tures [38].

This paper is an extended version of two recent con-

ference papers, namely [22] presenting the formal foun-

dation and [21] introducing additional examples of DR-

BIP. It was restructured to provide a comprehensive

introduction and clarification of key DR-BIP concepts

as well as to fully illustrate its modeling expressivity

on a complete set of benchmarks. It justifies the pro-

posed concepts, discusses their limitations and identifies

potential improvements from a practical point if view.

Furthermore, it provides an extended discussion of re-

lated work.

The paper is organized as follows. Section 2 pro-

vides a brief overview of DR-BIP and major design

principles. Section 3 briefly recalls the key concepts

of BIP and its operational semantics. Section 4 intro-

duces formally the motif concept and its semantics and

Section 5 introduces formally motif-based systems. Sec-

tion 6 presents several examples with benchmarks us-

ing the DR-BIP implementation as well as some lessons

learned from these experiments. We discuss related work

in section 7. Finally, section 8 presents conclusions and

future work directions.

2 DR-BIP Overview

The DR-BIP framework is designed to cover the practi-

cal needs for the design of dynamic systems, and there-

fore, fulfill specific requirements for rigorous design and

analysis. It allows to:

Programming Dynamic Reconfigurable Systems 3

– specify architectural constraints/styles, i.e. define

architectures as parametric operators on components

guaranteeing by design specific properties,

– describe systems with evolving architectures, i.e de-

fine system architecture that can be updated at run-

time using dedicated primitives,

– support separation of concerns, i.e. keeping sepa-

rate the component behavior (functionality) from

the system architecture to avoid blurring the behav-

iors with information about their execution context

and/or reconfiguration needs,

– provide sound foundation for analysis and imple-

mentation, i.e. rely on a well-defined operational se-

mantics, leveraging on existing models for rigorous

component-based design.

The following motivating example belongs to the

category of dynamic systems we are interested to con-

sider for DR-BIP. This example will be used along the

paper to illustrate the newly proposed concepts.

Example 1 (dynamic token ring) A token ring consists

of two or more identical components interconnected us-

ing uni-directional communication links according to a

ring topology. A number of tokens are circulating within

the ring. A component is busy when it holds a token and

idle otherwise. A component can do specific internal ac-

tions depending on its state, busy or idle. It can receive

a token from the incoming link only its idle and send

its token on the outgoing link only when its busy.

A token ring is dynamic if idle components are al-

lowed to leave the ring at any time as long as at least

two components remains in the ring. New idle com-

ponents are allowed to enter the ring at any time (as

long as the maximal allowed ring size is not reached).

A token ring system consists of one or more, pairwise

disjoint, token rings. A token ring system is dynamic if

every ring is dynamic, and moreover, two rings are al-

lowed to merge into a single one provided their overall

size is not exceeding the maximal allowed ring size.

2.1 Motifs for Dynamic Architectures

In DR-BIP, a motif is the elementary unit used to

describe dynamic architectures. A motif encapsulates

(i) behavior, as a set of components, (ii) interaction

rules dictating multiparty interaction between compo-

nents and (iii) reconfiguration rules dictating the al-

lowed modifications to the configuration of a motif in-

cluding the creation/deletion/migration of components.

Motifs are structurally organized as the deployment of

component instances on a logical map as illustrated in

Fig. 1. Maps are arbitrary graph-like structures con-

sisting of interconnected positions. Deployments relate

components to positions on the map.

Deployment

Map

Interaction rules

Reconfiguration rules

Behavior

Fig. 1: Motif Concept

Reconfiguration rules

Map H

when |B| ≤ 10

Deployment D

b2b1

Behavior B

Interaction rules

when D(x1) 7→ D(x2)
sync x1.out x2.in

b3

n:=H.extend(), D.attach(x, n)
do x := B.create(C, idle),

Fig. 2: Motif Example

Example 2 (motif structure) Fig. 2 (middle) illustrates

the proposed motif concept for describing the dynamic

token ring system introduced in Example 1. In the de-

picted configuration, three component instances b1, b2,

b3 define the behavior B. They are deployed into a

three-position cycle map denoted by H. The deploy-

ment is denoted by D.

The definition of the motif is completed by two sets

of rules, defining interactions and reconfiguration ac-

tions of the following generic forms:

interaction-rule ::=

sync-rule-name(formal-params) ≡
when rule-constraint

sync interaction-ports

[[guard →] interaction-action+]

reconfiguration-rule ::=

do-rule-name(formal-params) ≡
when rule-constraint

do [guard →] reconfiguration-action+

Both sets of rules are interpreted on the current

motif configuration. Formal-params denotes (sets of)

component instances and defines the scope of the rule.

Rule-constraint defines the conditions under which the

rule is applicable. Constraints are essentially boolean

combinations on deployment and map constraints built

from formal-args. An interaction rule also defines the

set of interacting ports (interaction-ports), the inter-

action guard (guard) and the associated interaction ac-

tions (interaction-action). The guard and the action de-

fine respectively a triggering condition and an update

4 Rim El Ballouli et al.

of the data of components participating in the interac-

tion. Finally, a reconfiguration rule defines a reconfigu-

ration guard (guard) and a number of reconfiguration

actions (reconfiguration-action) to update the content

of the motif. Such actions include creation/deletion of

component instances, and change of their deployment

on the map as well as change of the map itself, i.e.

adding/removing map positions and their interconnec-

tion. Notice that rule constraints and guards deal with

complementary aspects. The former are constraints on

motif configuration (map and deployment) whereas the

later are constraints on component data only. In a sim-

ilar way, reconfiguration actions update motif configu-

rations whereas interaction actions update component

data only.

Example 3 (motif rules) The interaction rule given in

Fig. 2 (top) reads as follows: for components x1, x2
deployed on adjacent nodes (that is, D(x1) 7→ D(x2))

connect their ports x1.out and x2.in
1. This rule de-

fines three interactions between the components namely

{b1.out b3.in}, {b3.out b2.in}, and {b2.out b1.in}. The

reconfiguration rule given in Fig. 2 (bottom) allows to

extend the ring by adding one more component. The

rule is applicable as long as the number of component

instances |B| is less than or equal to 10. When executed,

a new component x of type C is created at initial state

idle (that is, x := B.create(C, idle)), a new node n is

added to the cycle map (that is, n := H.extend()) and

the component x is deployed on the node n (that is,

D.attach(x, n)).

Notice that the distinction between reconfiguration

and interaction rules allows separation of concerns in

modeling dynamic architectures. On one hand, recon-

figuration rules are used to update the motif structure

(components, map, deployment) under specific condi-

tions (as depicted by the the red arrows in Fig. 1). On

the other hand, interaction rules use the motif structure

to define how the components of the motif are inter-

connected (as depicted by the green arrows in Fig. 1).

This approach associates interaction rules with motifs

and these rules remain unchanged when components

are created or removed.

The reason for choosing maps and deployments as

a mean for structuring motifs is their simplicity. On

one hand, maps and deployments are common con-

cepts, easy to understand, manipulate and formalize.

On the other hand, they adequately support the def-

inition of arbitrarily complex sets of interactions over

1 The dot operator is used interchangeably to access a
component’s port/data, and to access a motif’s compo-
nents/deployment/map, and to apply primitives over a mo-
tif’s deployment/map.

components by relating them to connectivity properties

(neighborhood, reachability, etc). Moreover, maps and

deployments are orthogonal to behavior. Therefore they

can be manipulated/updated independently and they

also provide a very convenient way to express various

forms of reconfiguration. Both maps and deployments

are implemented as dynamic collections of objects, with

specific interfaces, in a similar way to standard collec-

tion libraries available for standard programming lan-

guages.

2.2 Motif-based Systems

Several types of motifs may be defined separately by

specifying the types of hosted components, paramet-

ric interactions and reconfiguration rules. Then, sys-

tems are described by superposing a number of motif

instances of certain motif types. In this manner, the

overall system architecture captures specific architec-

tural/functional properties by design.

Systems are defined as collections of motifs sharing

a set of components as depicted in Fig. 3. Each mo-

tif can evolve independently of the others, depending

only on its internal structure and associated rules. Fur-

thermore, several motifs can synchronize all together to

jointly perform a reconfiguration of the system. Coor-

dination between motifs is therefore possible either im-

plicitly by means of shared components or explicitly by

means of inter-motif reconfiguration rules. These rules

allow joint reconfiguration of several motif instances.

They also allow two additional types of actions, respec-

tively creation and deletion of motif instances, and ex-

changing component instances between motifs.

Both coordination mechanisms were proven useful

and easy to use in practice. On one hand, global recon-

figuration rules provide an imperative way of changing

several motifs simultaneously e.g., to migrate a com-

ponent between motifs, to merge several motifs into a

single one, etc. On the other hand, sharing a component

between several motifs allows controlling local reconfig-

uration in the motifs. For instance, local reconfiguration

rules may be enabled in some motif, and disabled in an-

other one, depending on the state of the component.

How these two coordination mechanisms are com-

bined depends on the dynamics of the considered sys-

tem architecture. In some cases, the dynamics can be

captured by a fixed number of motifs with a very re-

stricted form of global reconfiguration (e.g., only mi-

gration of components between motifs). This is the sit-

uation for the dynamic multicore task system in section

6.1 and the self-organizing robot colonies in section 6.3.

In other cases, the dynamics is captured by an evolving

number of motifs and complex global reconfiguration

Programming Dynamic Reconfigurable Systems 5

(e.g., merging or splitting existing motifs). This is the

situation for the dynamic token ring example, as well

as for the highway traffic system in section 6.2.

Deployment

Map

Interaction rules

Reconfiguration rules

Behavior

...

Reconfiguration rules

Deployment

Map

Interaction rules

Reconfiguration rules

Behavior

Fig. 3: Motif-based System Concept

Fig. 4 provides an overall view on the structure and

evolution of a motif-based system. The initial configu-

ration (left) consists of six interacting components orga-

nized using three motifs (indicated with dashed lines).

The central motif contains components b1 and b2 con-

nected in a ring. The upper motif contains components

b1, c1, c2, c3, with b1 being connected to all others. The

lower motif contains connected components b2, c4. The

second system configuration (in the middle) shows the

evolution following a reconfiguration step. Component

c3 migrated from the upper motif to the lower motif,

by disconnecting from b1 and connecting to b2. The

central motif is not impacted by the move. The third

system configuration (right) shows one more reconfigu-

ration step. Two new components have been created b3
and c5. The central motif now contains one additional

component b3, interconnected along b1 and b2 forming

a larger ring. Furthermore, a new motif is created con-

taining b3 and c5.

b1

b2

c1 c2

c4 c3

b1

b2

c1 c2 c3

c4

b1

b2

c1 c2

c4 c3

b3

c5

Fig. 4: An example of system reconfigurations

2.3 Execution Model

The evolution of motif-based systems in DR-BIP is

defined in a compositional manner. Every motif defines

its own set of interactions based on its local structure.

This set of interactions and the involved components

remain unchanged as long as the motif does not ex-

ecute a reconfiguration action. Hence in the absence

of reconfigurations, the system keeps a fixed static ar-

chitecture and behaves like an ordinary BIP system.

The execution of interactions has no effect on the ar-

chitecture. In contrast to interactions, system and/or

motif reconfigurations rules are used to define explicit

changes in the architecture. However, these changes

have no impact on components, i.e. all running com-

ponents preserve their state although components may

be created/deleted. This independence between execu-

tion steps is illustrated in Fig. 5.

b b′

m

m′

α
Interaction

Reconfiguration ρ

Behavior

Configuration

Fig. 5: Reconfiguration vs Interaction Steps

3 Component-Based Systems

BIP [4, 5] is the underlying component-based frame-

work for DR-BIP. In BIP, systems are constructed

from atomic components, which are finite state automata,

extended with data and ports. Communication between

components is by multiparty interactions with data trans-

fer. BIP systems are static in the sense that components

and interactions are fixed at design time and do not

change during system execution. We briefly recall the

key BIP concepts and their operational semantics.

3.1 Component types and instances

A component type Bt is an extended labeled transition

system (L,P, V, T), where L is a finite set of control lo-

cations, P is a finite set of ports, V is a finite set of data

variables and T ⊆ L×P ×G(V)×F(V)×L is a finite

set of labeled transitions, where G(V) and F(V) are re-

spectively Boolean guards and update functions defined

over variables V . Every transition τ = (`, p, g, f, `′) ∈ T

6 Rim El Ballouli et al.

is equivalently denoted as τ = `
p g f−−−→ `′ ∈ T . For every

port p ∈ P , we associate a subset of variables Vp ⊆ V

exported and available for interaction through p.

For a component type Bt = (L,P, V, T), its set of

states is Q = L × V where V is the set of all val-

uations defined on V . A valuation of a set of vari-

ables V is a function v : V → D, where D is an

underlying domain of data values. The semantics of

a component type Bt is defined as the labeled tran-

sition system [[Bt]] = (Q,Σ,−→) where the set of labels

Σ = {p(vp) | vp ∈ Vp} and transitions −→⊆ Q×Σ×Q
are defined by the rule:

τ = `
p g f−−−→ `′ ∈ T

g(v) v′′p ∈ Vp v′ = f(v[v′′p/Vp])

Bt : (`,v)
p(v′′p)
−−−→ (`′,v′)

That is, (`′,v′) is a successor of (`,v) labeled by p(v′′p)

iff (1) τ = `
p g f−−−→ `′ is a transition of T , (2) the guard g

holds on the current state valuation v, (3) v′′p is a valu-

ation of exported variables Vp and (4) v′ = f(v[v′′p/Vp])

that is, the next-state valuation v′ is obtained by apply-

ing f on v previously updated according to v′′p . When-

ever a p-labeled successor exists from a state, we say

that p is enabled in that state.

We consider a given finite set of component types.

A component instance b is a couple (Bt, k) for some

k ∈ N. We denote respectively by ports(b), states(b),

labels(b) the set of ports, states and labels associated

to the instance b according to its type.

Example 4 (component type) Fig. 6 (left, top) illustrates

graphically a component type. The component has two

ports (in, out) attached with variables (respectively u,

v. It has two control locations (idle, busy) and three

transitions labeled by the ports. For example, the tran-

sition labeled by in changes control location from idle
to busy while performing the computation v := u+1.

u

busy

v

b4

b1

b2 b3

b6

out
idle

outv:=u+1

in
in

in

out

in

out in out
b5

out

in

outinout

in
out v u in

true → u:=v

Fig. 6: Component types, interactions and systems in

BIP

3.2 Systems of components

Systems of components Γ (B) are obtained by compos-

ing a finite set of component instances B = {b1, ..., bn}
using a finite set of multiparty interactions Γ . A multi-

party interaction a is a triple (Pa, Ga, Fa), where Pa ⊆⋃n
i=1 ports(bi) is a set of ports, Ga is a Boolean guard,

and Fa is an update function. By definition, Pa must

use at most one port of every component in B, that

is, |Pi ∩ Pa| ≤ 1 for all i ∈ {1..n}. Therefore, we sim-

ply denote Pa = {bi.pi}i∈I , where I ⊆ {1..n} contains

the indices of the components involved in a and for all

i ∈ I, pi ∈ ports(bi). Ga and Fa are defined on the

variables exported by ports in Pa (i.e.,
⋃
p∈Pa

Vp).

The semantics of a system S = Γ (B) is defined as

the labeled transition system [[S]] = (Q,Σ,−→) where

the set of states Q = 〈b 7→ q | b ∈ B, q ∈ states(b)〉,
the set of labels Σ ⊆ P(ports(B)×P(V)) contains the

ports and sets of values exchanged on interactions and

transitions −→ are defined by the rule:

a = ({bi.pi}i∈I , Ga, Fa) ∈ Γ
Ga({vpi}i∈I) {v′′pi}i∈I = Fa({vpi}i∈I)

∀i ∈ I.
(
Bti : (`i,vi)

pi(v
′′
pi

)
−−−−→ (`′i,v

′
i)

)
∀i 6∈ I. (`i,vi) = (`′i,v

′
i)

Γ (B) : 〈b1 7→ (`1,v1), . . . , bn 7→ (`n,vn)〉
{bi.pi(v′′pi)}i∈I−−−−−−−−−−→

〈b1 7→ (`′1,v
′
1), . . . , bn 7→ (`′n,v

′
n)〉

For each i ∈ I, vpi above denotes the valuation vi
restricted to variables of Vpi . The rule expresses that

S can execute an interaction a ∈ Γ enabled in state

((`1,v1), . . . , (`n,vn)), iff (1) for each pi ∈ Pa, the cor-

responding component instance bi can execute a tran-

sition labeled by pi, and (2) the guard Ga of the inter-

action holds on the current valuation vpi of exported

variables on ports in a. Execution of a triggers first the

update function Fa which modifies exported variables

Vpi . The new values obtained, encoded in the valua-

tion v′′pi , are then used by the components’ transitions.

The states of components that do not participate in the

interaction remain unchanged.

Example 5 (system of components) Fig. 6 (left, bot-

tom) depicts a binary interaction between two ports

out, in, having guard true and update function u := v.

That is, whenever the interaction is executed, the data

is transferred from the out port to the in port. Fig. 6

(right) illustrates a system obtained by composing six

bi instances with six out in interactions in a ring struc-

ture.

Programming Dynamic Reconfigurable Systems 7

4 Motifs for Dynamic Architectures

Motifs are dynamic structures composed of interacting

components. Their structure is expressed as a combina-

tion of three concepts namely, behavior, map and de-

ployment. The behavior consists of a set of components.

The map is an underlying logical structure (backbone)

used to organize the interaction of components. The

deployment provides the association between the com-

ponents and the map. The components within a motif

run in parallel and synchronize using multiparty inter-

actions. The set of multiparty interactions is defined by

interaction rules evaluated on the structure of the motif.

Finally, the motif structure is also evolving. Any of the

three constituents can be modified i.e., components can

be added/removed to/from the motif, the map and/or

the deployment can change. The motif evolution is ex-

pressed using reconfiguration rules, which evaluate and

update the motif structure accordingly. The following

subsections present formally all the motif-related con-

cepts.

4.1 Maps and deployments

Maps and deployments are abstract concepts used to

organize the motifs. Maps denote arbitrary dynamic

collections of inter-connected nodes (positions). They

are defined as particular instances of generic map types

Ht characterized by (i) an underlying domain N(Ht) of

nodes, (ii) a set of primitives Ω(Ht) to update/access

the map content and (iii) a logic L(Ht) to express con-

straints on the map content.

We use maps as dynamic data structures (objects).

For a map H of type Ht, its set of nodes is denoted by

dom(H) and is a subset of N(Ht). For any primitive

op ∈ Ω(Ht) we use the dotted notation H.op(...) to de-

note the update and/or access to the map H according

to op. Moreover, for any ψ ∈ L(Ht) we will use H |= ψ

to denote that the constraint ψ is satisfied on H.

Example 6 (maps as directed graphs) Map types can

be directed graphs (V,E) where vertices V denote the

positions and edges E ⊆ V × V expressing the connec-

tivity between these positions. Such a map type (i) has

the domain V , (ii) can be manipulated explicitly us-

ing primitives such as addVertex, remVertex, addEdge,

remEdge and (iii) has predicates allowing to express

edge constraints · 7→ ·, path constraints · 7→∗ ·, etc,

with the usual meaning.

Example 7 (maps as cycle graphs) In the dynamic to-

ken ring example from Fig. 2 the map type is a cy-

cle graph consisting of a single cycle, where (i) vertices

compose the domain, (ii) primitives include init, extend,

remove to respectively initialize to an empty cycle, ex-

tend by one vertex (inserted arbitrarily), remove one

specified vertex from the cycle and (iii) predicates al-

lows for checking edge constraints · 7→ ·, as usual.

Deployments are partial mappings of a set B of com-

ponent instances to the nodes of a map H, formally

D : B → dom(H)∪{⊥}. As for maps, deployments are

dynamic data structures defined as particular instances

of a generic deployment types Dt. We consider a set of

primitives Ω(Dt) to update and/or access the deploy-

ment as well as a logic L(Dt) to express constraints

on it. In particular, we will use the primitive attach to

associate a component instance to a node of the map.

Given a deployment D : B → dom(H) ∪ {⊥}, for

a subset of components B′ ⊆ B we denote by D|B′

the restriction of D to B′, that is, the partial function

DB′ : B′ → dom(H) ∪ {⊥} where D|B′(b) = D(b) for

all b ∈ B′. Similarly, for an arbitrary map H ′ we denote

by D|H′ the restriction of D to H ′, that is, the partial

function D|H′ : B → dom(H ′) ∪ {⊥} where D|H′(b) =

D(b) if D(b) ∈ dom(H) ∩ dom(H ′) and ⊥ otherwise.

4.2 Motif types

Henceforth we consider a given finite collection of com-

ponent types, map types and deployment types.

Definition 1 A motif type M t is a tuple ((B,H,D),

IR, RR) where:

– the triple (B,H,D) consists of motif meta-variables,

that is, typed symbols used to denote respectively
the set of component instances, the map and the

deployment of component instances on the map,

– IR is a set of motif interaction rules of the form

(Z, Ψ , PI , GI , FI) where Z is a set of rule param-

eters, Ψ is a rule constraint, and (PI , GI , FI) is the

interaction specification, namely the set of ports of

involved components, the guard and the data trans-

fer,

– RR is a set of motif reconfiguration rules of the

form (Z, Ψ , GR, ZL, AR) where as before Z is a set

of rule parameters, Ψ is a rule constraint, GR is a

reconfiguration guard, ZL are local rule parameters,

and AR is a (sequence of) reconfiguration action(s).

The motif configuration is defined by a valuation of

meta-variables B, H, D as respectively B, H, D where

(i) B is a finite set of components instances with types

belonging to the predefined set of component types, (ii)

H is a map instance of the type of H, (iii) D is a de-

ployment instance of the type of D which associates

8 Rim El Ballouli et al.

component instances from B to nodes of the map, for-

mally D : B → dom(H) ∪ {⊥}.
The meaning of the rules is explained in the next

subsections. Note that motif configuration can dynam-

ically change as the meta-variables are being updated

in reconfiguration rules. Furthermore, component in-

stances can interact as dictated by interaction rules.

Overall, we tacitly restrict to syntactically consistent

motif definitions, that is, where the interaction and re-

configuration rules are restricted to use only the map

and deployment primitives defined for the types of H
and D respectively.

Example 8 (dynamic token ring motif type) Fig. 7 illus-

trates the structure of a Ring motif type defined for the

dynamic token ring system. In any configuration, the

behaviour B contains several component instances, all

of the same type C presented in Example 4. The map

H is a cycle graph (or equivalently, a circular linked

list) with specific primitives presented in Example 7.

The deployment D assigns components to locations of

the map in a bijective manner.

b2

b4
b1

b3

b6 b5

n1

n6 n5

n4

n3n2

B

D

H

Fig. 7: A configuration of the dynamic token ring motif

type

Moreover, we consider that our Ring motif type con-

tains one interaction rule denoted as sync-ring-inout for

defining interactions and three reconfiguration rules de-

noted respectively do-ring-init, do-ring-insert and do-ring-
remove for dynamic reconfiguration, as follows:

sync-ring-inout(x1, x2 : C) ≡
when D(x1) 7→ D(x2)

sync x1.out x2.in

true → x2.u := x1.v
do-ring-init() ≡

when B = ∅
do x1 := B.create(C, busy),

x2 := B.create(C, idle), H.init(),
n1 := H.extend(), D.attach(x1, n1)
n2 := H.extend(), D.attach(x2, n2)

do-ring-insert() ≡
do x := B.create(C, idle),

n := H.extend(), D.attach(x, n)
do-ring-remove(x : C) ≡

when |B| ≥ 3
do x.idle → n := D(x), B.delete(x), H.remove(n)

For the sake of readability, we use the generic tex-

tual syntax of rules proposed in section 2. This textual

representation is actually a readable alternative for the

abstract representation introduced in Def. 1. The rela-

tion between the two representations will be clarified in

the following subsections.

4.3 Rule parameters and constraints

The motif evolution is defined by interaction and recon-

figuration rules. The set of rule parameters Z include

typed symbols denoting (sets of) component instances

or map nodes and interpreted as (subsets) elements ofB

or dom(H) respectively. Rule constraints Ψ are boolean

combinations of map, deployment and basic constraints

built using parameters in Z and meta-variables B, H,

D:

Ψ ::= ψ0 | ψH | ψD | Ψ1 ∧ Ψ2 | ¬Ψ
In the above, Ψ0 denotes any basic constraint using

equality and/or set constraints on parameters, ΨH de-

notes a constraint on the map (conforming to the map

logic L(Ht), for Ht being the type of H) and ΨD de-

notes a constraint on the deployment (conforming to

the deployment logic L(Dt), for Dt being the type of

D). For example, the sync-ring-inout interaction rule in

Example 8 has two parameters x1, x2 denoting compo-

nents of type C. The rule constraint D(x1) 7→ D(x2)

checks if x1 and x2 are deployed on adjacent nodes on

the map, using the 7→ predicate defined for cycle graphs.

For fixed motif configuration in terms of B,H,D,

for given interpretation ζ of parameters, the constraint

satisfaction B,H,D, ζ |= Ψ is defined recursively on the

structure of Ψ as follows:

B,H,D, ζ |= ψ0 iff ζ ∪ [B/B, H/H, D/D] |= ψ0

B,H,D, ζ |= ψH iff H, ζ ∪ [B/B, D/D] |= ψH

B,H,D, ζ |= ψD iff D, ζ ∪ [B/B, H/H] |= ψD

B,H,D, ζ |= Ψ1 ∧ Ψ2 iff B,H,D, ζ |= Ψ1 and

B,H,D, ζ |= Ψ2

B,H,D, ζ |= ¬Ψ iff B,H,D, ζ 6|= Ψ

That means, equalities and/or set constraints are eval-

uated in the usual way on the context ζ extended with

the current valuation for meta-variables B, H, D. Map

constraints are evaluated as defined by their underlying

logic L(Ht) on the map H and the context ζ extended

with the valuation for meta-variables B, D. The evalu-

ation of deployment constraints is similar.

Programming Dynamic Reconfigurable Systems 9

4.4 Interactions rules

Interaction rules are used to define multiparty inter-

actions on the components instances within the motif.

The syntax of the interaction specification part is as

follows:

ports: PI ::= x.p | X.p | PI PI
guard: GI ::= true | eI | GI ∧GI | ¬GI
action: FI ::= ε | x.v := eI | X.v := eI | aI , aI

expression: eI ::= x.v | opd(eI , · · · eI) | op′d(X.v)

The symbols x, X are rule parameters denoting re-

spectively component instances or sets of component

instances. Moreover, p is a component port, v is a com-

ponent (exported) data variable and opd (resp. op′d) are

operations on (resp. sets of) data values. A rule is syn-

tactically well-formed iff all parameter names used in

expressions (part of the guard or data transfer) are also

used as part of the interacting port specification. That

is, only data from components participating in the in-

teraction can be used.

For given B, H and D in a motif, the set of multi-

party interactions Γ (r) corresponding to an interaction

rule r = (Z, Ψ, PI , GI , FI) is defined as:

Γ (r) =

(Pa, Ga, Fa)

B,H,D, ζ |= Ψ

Pa = ζ(PI), Ga = ζ(GI),

Fa = ζ(FI)

(Pa, Ga, Fa) is well formed


In the above, we tacitly lift the interpretation of

ζ to port interactions PI , guards GI and actions AI
which are all constructed from rule parameters Z. The

resulting triple Pa, Ga, Fa is considered well formed iff

it conforms to the definition of multiparty interactions,

namely if Pa does not contain replicated or multiple

ports of the same components, as well as if Ga and Fa
use and update only variables exported on ports in Pa.

Example 9 (interaction rules) The ring motif type pre-

sented in Example 8 has a unique interaction rule de-

noted sync-ring-inout. The rule connects the out port

of a component x1 to the in port of the component

x2 deployed next to it on the map. Consider the motif

configuration depicted in Fig. 7. The interpretation of

rule parameters ζ = {x1 7→ b3, x2 7→ b4} satisfies the

rule constraint and therefore defines the binary interac-

tion (Pa, Ga, Fa) where Pa = {b3.out, b4.in},Ga = true,

Fa = (b4.u := b3.v). The set of all defined interactions,

for all interpretations of rule parameters satisfying the

rule constraint, is depicted in Fig. 6.

4.5 Reconfiguration rules

Reconfiguration rules are used to define actions impact-

ing the content / organization of the motif. These ac-

tions essentially include creating/deleting component

instances, updating the map structure and/or the de-

ployment of component instances to the map. They are

expressed as specific updates on the corresponding B,

H, D meta-variables. For enhanced expressiveness, re-

configuration rules might use additional local parame-

ters (that is, the local context ZL) with arbitrary types

(component instances, map nodes, maps, deployments,

etc). The local context is updated using standard as-

signments. As mentioned already, we tacitly restrict to

syntactically correct rules, that is, where primitive op-

erations conform to the types of the different symbols

used, including meta-variables as well as rule parame-

ters.

The syntax of reconfiguration guards and actions is

as follows:

guard: GR ::= GI
action: AR ::= x := B.create(Bt, q) | B.delete(x) |

z := H.updateH(eR, · · · eR) |
z := D.updateD(eR, · · · eR) |
z := eR | AR, AR

expression: eR ::= z | B | H | D | op(eR, · · · eR)

That is, guards are the same as for interaction rules

and define constraints on components data. In the defi-

nition of reconfiguration actions, the symbol x denotes

a rule parameter interpreted as component instance, z

denotes an arbitrary local rule parameter. The intu-

itive meaning of reconfiguration actions is as follows.

The action x := B.create(Bt, q) denotes the creation

of a new component instance of type Bt. The newly

created instance is x and is added to the set of compo-

nents instances B. The parameter q denotes the initial

state for the instance. The action B.delete(x) denotes

the deletion of the component x from the motif, that is,

the removal of the component instance x from the set

B. The action z := H.updateH(...) denotes an update

of the map according to a primitive operation updateH
from Ω(Ht), for Ht being the type of H. Whenever

an extra-value is returned by the primitive, it can be

(optionally) assigned to the local parameter z. If no

extra-value is returned, the assignment to z is omit-

ted. Similarly, the action z := D.updateD(...) denotes

an update of the deployment according to a primitive

operation updateD from Ω(Dt), for Dt being the type

of D. Finally, the action z := eR denotes an update of

a rule parameter z according to the expression eR. Ex-

pressions are constructed from rule parameters z and

meta-variables B, H, D using a set of predefined oper-

ations op, with given interpretation.

10 Rim El Ballouli et al.

Formally, the semantics [[AR]] of a reconfiguration

action AR is defined as a function2 updating the motif

configuration (B, H, D), the set of component config-

urations (b) and the parameter interpretation (ζ):

[[x := B.create(Bt, q)]](B,H,D,b, ζ) =

(B ∪ {b}, H,D′,b′, ζ ′)
where b = (Bt, k) fresh, D′ = D[b 7→ ⊥],

b′ = b[b 7→ q], ζ ′ = ζ[x 7→ b]

[[B.delete(x)]](B,H,D,b, ζ) = (B \ {b}, H,D|B\{b},b, ζ)

where b = ζ(x) ∈ B
[[z := H.updateH(e1, · · · en)]](B,H,D,b, ζ) =

(B,H ′, D|H′ ,b, ζ
′)

where H ′, v′ = H.updateH(ζ(e1), · · · ζ(en)),

ζ ′ = ζ[z 7→ v′]

[[z := D.updateD(e1, · · · em)]](B,H,D,b, ζ) =

(B,H,D′,b, ζ ′)

where D′, v′ = D.updateD(ζ(e1), · · · ζ(em)),

ζ ′ = ζ[z 7→ v′]

[[z := e]](B,H,D,b, ζ) = (B,H,D,b, ζ[z 7→ ζ(e)])

[[AR1, AR2]](B,H,D,b, ζ) =

([[AR2]] ◦ [[AR1]])(B,H,D,b, ζ)

In the above, for an expression e we denoted by ζ(e) its

valuation given the interpretation ζ of rule parameters

and the implicit assignment of meta-variables (B 7→
B,H 7→ H,D 7→ D).

Example 10 (reconfiguration rules) The ring motif type

introduced in Example 8 contains three reconfiguration

rules. The rule do-ring-init initializes the motif with a

ring of two components. The rule do-ring-create cre-

ates a new component in the ring. The rule do-ring-
remove(x:C) removes an idle component x from the

ring, provided it contains more than three components.

4.6 Operational semantics

The semantics of component composition within a mo-

tif involve two categories of atomic interleaved steps,

namely, interaction steps and reconfiguration steps. An

interaction step corresponds to the execution of an in-

teraction (as in BIP) from a set of interactions defined

by the interaction rules. Reconfiguration steps corre-

spond to the execution of a reconfiguration rule.

Formally, the operational semantics of a motif type

M t = ((B,H,D), IR, RR) is defined as the labeled

transition system [[M t]] = (Q, Σ, −→) where

– the states of set Q correspond to motif configura-

tions B, H, D consistently extended with configu-

rations for all component instances b = 〈b 7→ q | b ∈
B, q ∈ states(b)〉,

2 up to the choice of fresh component instance

– the labels of Σ correspond to valid interactions α

constructed on components and an additional re-

configuration action label ρ,

– the transitions −→=−→
I
∪ −→

R
correspond to execution

of respectively multiparty interactions as defined by

interaction rules (−→
I

) and reconfiguration actions,

as defined by reconfiguration rules (−→
R

), formally

(Mot-I)
Γ = ∪r∈IRΓ (r) Γ (B) : b

α−→ b′

M t : (B,H,D,b)
α−→
I

(B,H,D,b′)

(Mot-R)

(Z, Ψ,GR,ZL, AR) ∈ RR B,H,D, ζ |= Ψ

(ζ(GR))(b) = true

[[AR]](B,H,D,b, ζ) = (B′, H ′, D′,b′, ζ ′)

M t : (B,H,D,b)
ρ−→
R

(B′, H ′, D′,b′)

The rule (Mot-I) says that the motif executes a mul-

tiparty interaction α and change the configurations of

components instances from b to b′ iff (1) α belongs to

the set of valid interactions Γ defined from the interac-

tion rules (that is, according to the operational seman-

tics in the static case presented earlier in section 3) and

(2) a valid step labeled by α is indeed allowed between

b and b′ according to the component-based semantics.

The rule (Mot-R) says that the motif executes a re-

configuration if (1) some reconfiguration rule is enabled

at the current motif configuration, when both its con-

straint Ψ and guard GR are satisfied for the given in-

terpretation of parameter ζ and configurations of com-

ponent instances b and (2) the current and next motif

configuration are related according to the semantics of

the action AR. The dichotomy between interaction and

reconfiguration steps ensures separation of concerns for

execution within a motif as previously discussed in sec-

tion 2 and illustrated in Fig. 5.

5 Motif-based Systems

We consider systems defined as finite collection of mo-

tif instances, with predefined types, and sharing a finite

set of component instances. In such systems, every mo-

tif can evolve independently of the others, depending

on its internal structure and associated rules. In addi-

tion, several motifs can also synchronize altogether and

perform a joint reconfiguration over the system.

Two ways of coordination between motifs are there-

fore possible: implicit coordination, by means of shared

components and explicit coordination, by means of in-

ter-motif reconfiguration rules.

This section introduces formally inter-motif recon-

figuration and defines the operational semantics of mo-

tif-based systems. Henceforth we consider a given finite

Programming Dynamic Reconfigurable Systems 11

set of motif types. As for components, a motif instance

m is a couple (M t, k) for some motif typeM t and k ∈ N.

5.1 Inter-motif reconfiguration rules

The rules for inter-motif reconfiguration allow joint re-

configuration of several motif instances. In addition to

the application of local reconfiguration actions, these

rules allow two additional types of actions, respectively

creation and deletion of motif instances, and exchang-

ing component instances between motifs.

Inter-motif reconfiguration rules are defined as tu-

ples (Z?, Ψ?, G?, Z?L, A?R) similar to local reconfigura-

tion rules. The set of rule parameter Z? might include

additional symbols denoting motif instances (y). The

constraints Ψ∗ are defined by the grammar:

Ψ∗ ::= Ψ0∗ | 〈y : Ψ〉 | Ψ∗1 ∧ Ψ∗2 | ¬Ψ∗

In the above, Ψ0∗ denotes some basic equality and/or

set constraint expressed on context parameters, 〈y : Ψ〉
denotes a local constraint Ψ to be checked in the context

of the motif instance y.

These constraints are evaluated on motif configura-

tions extended with context parameters. Motif config-

urations are tuples (M,m) where M is a set of motif

instances and m = 〈m 7→ (B,H,D) | m ∈M〉 provides

the structure of these instances in terms of behavior,

map and deployment. The constraints are evaluated as

follows:

M,m, ζ |= Ψ0∗ iff ζm |= Ψ0∗

M,m, ζ |= 〈y : Ψ〉 iff B,H,D, ζm |= Ψ where

m 7→ (B,H,D) ∈m, ζ(y) = m

M,m, ζ |= Ψ∗1 ∧ Ψ∗2 iff M,m, ζ |= Ψ∗1 and M,m, ζ |= Ψ∗2
M,m, ζ |= ¬Ψ∗ iff M,m, ζ 6|= Ψ∗

In the above, ζm denotes an extended context, including

valuations for all meta-variables B, H, D accessed using

parameters y of ζ:

ζm = ζ ∪ 〈y.B 7→ B, y.H 7→ H, y.D 7→ D |
ζ(y) = m, m 7→ (B,H,D) ∈m〉

Inter-motif reconfiguration guards and actions are de-

fined by the following grammar:

guard: G?R ::= GI
action: A?R ::= y :=M.create(M t, (e?R, e

?
R, e

?
R)) |

M.delete(y) | y.B.migrate(x) |
〈y : AR〉 | z := e?R | A?R, A?R

expression: e∗R ::= z | y.B | y.H | y.D | op(e?R, · · · , e?R)

That is, guards are the same as for interaction rules. For

inter-motif reconfiguration actions, we use theM sym-

bol to refer the current set of existing motif instances.

Also, the y symbol denotes a rule parameter interpreted

as motif instance, and z a rule parameter of arbitrary

type. The action y := M.create(M t, (eB , eH , eD)) de-

notes the creation of a new motif instance y of type

M t, with initial structure defined by the valuation of

eB , eH , eD. The actionM.delete(y) denotes the deletion

of the motif instance y, that is, its removal from the set

of motif instances. The action y.B.migrate(x) denotes

the insertion of an existing component instance x within

the set of component instances of the motif y. Finally,

the action 〈y : AR〉 denotes any local reconfiguration

action AR to be executed in the context of the motif

instance y and z := e?R an assignment of expression e?R
to a local rule parameter z. As for intra-motif reconfig-

uration rules, expressions e?R are constructed from rule

parameters z and meta-variables B, H, D associated to

motif instances y, using a set of available primitives op.

Formally, the semantics [[A∗R]] of inter-motif reconfig-

uration actions is defined as a function updating motif

configurations (M,m), component configurations (B,b)

and context parameters (ζ), as follows:

[[y :=M.create(M t, (eB , eH , eD))]](M,m, B,b, ζ) =

(M ∪ {m},m′, B,b, ζ ′)
where m = (M t, k) fresh,

m′ = m ∪ 〈m 7→ (ζm(eB), ζm(eH), ζm(eD))〉,
ζ ′ = ζ[y 7→ m]

[[M.delete(y)]](M,m, B,b, ζ) =

(M \ {m},m|M\{m}, B,b, ζ)

where m = ζ(y) ∈M
[[y.B.migrate(x)]](M,m, B,b, ζ) = (M,m′, B,b, ζ)

where m = ζ(y) ∈M,m 7→ (B1, H,D) ∈m,

ζ(x) 7→ b ∈ B,
m′ = m[m 7→ (B1 ∪ {b}, H,D[b 7→ ⊥])]

[[〈y : AR〉]](M,m, B,b, ζ) = (M,m′, B′,b′, ζ ′)

where m = ζ(y) ∈M,m 7→ (B1, H,D) ∈m,

[[AR]](B1, H,D,b, ζ) = (B′1, H
′, D′,b′, ζ ′),

m′ = m[m 7→ (B′1, H
′, D′)], B′ = B ∪B′1

[[z := e]](M,m, B,b, ζ) = (M,m, B,b, ζ[z 7→ ζm(e)])

[[A∗R1, A
∗
R2]](M,m, B,b, ζ) =

([[A∗R2]] ◦ [[A∗R1]])(M,m, B,b, ζ)

In the above, for an expression e we denoted by ζm(e)

its valuation in the extended context ζm.

Example 11 (inter-motif reconfiguration rule) Consider

an inter-motif reconfiguration rule for two ring motifs:

do-ring-merge(y1, y2 : Ring) ≡
when y1.B ∩ y2.B = ∅ and |y1.B| + |y2.B| ≤ 10
do zB := union(y1.B, y2.B),

zH := merge-cycle(y1.H, y2.H),
zD := union(y1.D, y2.D),
M.create(Ring, (zB , zH , zD)),
M.delete(y1), M.delete(y2)

12 Rim El Ballouli et al.

The rule allows merging two ring motif instances y1,

y2 into a single one, whenever their sets of component

instances are disjoint and altogether their number does

not exceed 10. The new motif is created by taking the

union of component instances, the union of deployments

and the merging of the two underlying cyclic maps. The

original motifs y1 and y2 are deleted.

5.2 Operational semantics

A motif-based system S is defined as a tuple ((Bti)i,

(M t
j)j , RR

∗)) consisting of a set of component types

(Bti)i, a set of motif types (M t
j)j and a set of inter-

motif reconfiguration rules RR∗.
A motif-based system evolves either by executing in-

teractions and/or reconfiguration within any of the mo-

tifs, or by executing some inter-motif reconfiguration.

Formally, the semantics of motif-based systems S is de-

fined as the labeled transition system [[S]] = (Q,Σ,−→)

where:

– the set Q of system configuration contains tuples

(M,m, B,b) where M = {m1,m2, ...} is a set of

motif instances, m = 〈mj 7→ (Bj , Hj , Dj) | mj ∈
M, Bj ⊆ B〉 are the motif configurations, B is the

set of components instances, and b = 〈b 7→ q | b ∈
B, q ∈ states(b)〉 are the component configurations,

– the set of labels Σ correspond to valid interactions

α on component instances, a local reconfiguration

action label ρ and an inter-motif reconfiguration ac-

tion label ρ∗,

– the set of transitions −→=−→
I
∪ −→

R
∪ −−→

R∗
correspond

to execution of respectively multiparty interactions

as defined by interaction rules (−→
I

), local reconfigu-

ration as defined by local reconfiguration rules (−→
R

)

and global reconfiguration actions (−−→
R?

), formally

(M-I)

mj 7→ (Bj , Hj , Dj) ∈m

M t
j : (Bj , Hj , Dj ,bj)

α−→
I

(Bj , Hj , Dj ,b
′
j)

b′ = b[Bj 7→ b′j]

S : (M,m, B,b)
α−→
I

(M,m, B,b′)

(M-R1)

mj 7→ (Bj , Hj , Dj) ∈m

M t
j : (Bj , Hj , Dj ,bj)

ρ−→
R

(B′j , H
′
j , D

′
j ,b
′
j)

m′ = m[(B′j , H
′
j , D

′
j)/mj]

B′ = B ∪B′j b′ = b[b′j/B
′
j]

S : (M,m, B,b)
ρ−→
R

(M,m′, B′,b′)

(M-R2)

(Z∗, Ψ∗, G∗,Z∗L, A∗R) ∈ RR∗
M,m, ζ |= Ψ∗ (ζ(G∗))(b) = true

[[A∗R]](M,m, B,b, ζ) = (M ′,m′, B′,b′, ζ ′)

S : (M,m, B,b)
ρ∗−−→
R?

(M ′,m′, B′,b′)

Rules (M-I) and (M-R1) lift the transitions (steps)

allowed within the motifs at the level of the system,

respectively for interactions and reconfigurations. The

rule (M-R2) handles inter-motif reconfiguration. These

transitions are allowed if (1) some inter-motif reconfig-

uration rule is enabled and (2) the current and next

system configurations are related by the semantics of

A∗R.

6 Implementation and Experiments

We have developed a prototype implementation of DR-

BIP including a concrete language to describe motif-

based systems and an interpreter (implemented in Java)

for the operational semantics. The language provides

syntactic constructs for describing component and mo-

tif types, with some restrictions on the maps and de-

ployments allowed3. The interpreter allows the com-

putation of enabled interactions and (inter-motif) re-

configuration rules on system configurations, and their

execution according to predefined policies (interactive,

random, etc). The DR-BIP prototype can be retrieved

from [39].

We have effectively used DR-BIP for programming

reconfigurable systems in different application domains

[21]. We provide tentative solutions using the DR-BIP

formalism and evaluate their performance at executing

dynamically changing configurations.

6.1 Dynamic Multicore Task System

A multicore task system consists of a fixed n × n grid

of interconnected homogeneous cores, each executing a

finite number of tasks. Every task is either running or

completed; running tasks may execute on the associ-

ated cores and get eventually completed. The load of

a core is defined as the number of its associated tasks,

both running and completed. A multicore task system

is dynamic if the overall number of tasks and their allo-

cation to cores may change over time. More specifically,

new running tasks may enter the system at the core c11
and completed tasks may be withdrawn from the sys-

tem at the core cnn. Moreover, any task is allowed to

migrate from its core to any of the neighboring cores

3 maps are restricted to simple graphs e.g., chain, cycle,
star

Programming Dynamic Reconfigurable Systems 13

(left, right, top or bottom) in the grid, provided the

load of the receiving core is smaller than the load of

the departing core minus some constant (K).

c11

c21 c22

c12

Processor

t1 t4t3

t6

t2

t5 t7 t8

CoreTask

CoreTask

CoreTask

exec

work

exec fin

fin

work

CoreTask
Core

Task
c

r

w

Fig. 8: Multicore Task System

Fig. 8 presents the overall structure of the motif-

based system for four cores. We distinguish two types

of atomic components, namely Task and Core. Multiple

cores are interconnected together in a motif of type Pro-
cessor. The interconnecting topology reflects the plat-

form architecture (e.g., a 2×2 grid in the figure) and is

enforced using a similar grid-like map and deployment.

An additional CoreTask motif type is used to represent

every core with its assigned tasks.

The interactions in the system are defined within

the CoreTask motif. The execution of a task by the core

and the task completion are represented by the rules:

sync-coretask-exec(x1 : Core, x2 : Task) ≡
sync x1.work x2.exec

sync-coretask-fin(x : Task) ≡ sync x.fin

The migration of a task from one core to another is

modeled using an inter-motif reconfiguration rule which

involves three distinct motifs. A task x3 migrates from

motif y1 (of type CoreTask) to motif y2 (of type Core-
Task) if the core x1 of y1 is connected to the core x2 of

y2 (according to the processor motif Processor) and if

the number of tasks in y1 exceeds the number of tasks

in y2 by constant K:

do-migrate(y1, y2 : CoreTask, y3 : Processor,
x1, x2 : Core, x3 : Task) ≡

when 〈 y1 : x1 ∈ B 〉 and 〈 y2 : x2 ∈ B 〉 and
〈 y3 : D(x1) 7→ D(x2) 〉 and
|y1.B| > |y2.B| + K and x3 ∈ y1.B

do y2.B.migrate(x3), 〈y1 : B.delete(x3) 〉

To simplify notations in reconfiguration rules, we rely

henceforth on sandwiching constraints / actions with

angle brackets to specify the scope. For example 〈y1 :

x1 ∈ B 〉 is a constraint stating that x1 is a component

instance in motif y1.

0 1,000 2,000 3,000

5

10

15

20

c11

c33

c12
c21

c13
c22
c31
c23
c32

c11 c12 c13
c21 c22 c23
c31 c32 c33

Fig. 9: Task load across 3000 steps

Fig. 9 illustrates the execution of the dynamic mul-

ticore task system with 3×3 cores for 3000 steps. Each

core is initialized with a random load between 1 and 20.

The constant K is set to 3, hence tasks are allowed to

migrate to neighboring cores (left, right, top or bottom)

that differ in task load by at least 3 tasks. The cores

c11, and c33 are used to respectively create new tasks

and withdraw completed tasks. These two cores retain

the maximum and minimum load. As tasks migrate, the

task load of cores converges and balances along the ex-

ecution having at most a difference of 3 tasks between

neighboring cores. For example, in core c21 the task load

increased from 6 to 14. As expected the cores (c21, and

c12) closest to c11 maintain a high load and as we move

away from c11 the core’s load gradually decreases. This

highlights the task migration process cascading from

the top left core to the bottom right core.

Fig. 10 illustrates the evolution of the dynamic mul-

ticore task system for different initial configurations.

We vary the number of cores in the processor from 4 to

36 cores. Each core is initialized with a random load as

discussed above. The system initial size varies between

46 and 482 component instances as depicted in the fig-

ure. Each configuration is simulated for 1000 random

steps. As the number of cores increases in size the execu-

tion time increases reaching a maximum of 7.3 seconds.

The motif instance count remains constant across each

configuration, however the component instance count

varies as tasks are being created and deleted once com-

pleted. Also note that the average ratio of executed in-

teractions vs reconfigurations is 0.7, since the task load

converges to a similar value across cores and less task

migrations (i.e. reconfigurations) are required.

14 Rim El Ballouli et al.

10 20 30 40
0

2

4

6

8

Exec. Time (sec)

10 20 30 40
0

0.2

0.4

0.6

0.8

1

I/R Ratio

10 20 30 40

10

20

30

40

Motifs

10 20 30 40
0

200

400

Components

Fig. 10: Dynamic multicore task system measurements

- the x-axis indicates the number of motifs in the ini-

tial configuration (i.e. n2 + 1 for n = 2, 3, 4, 5, 6). The

meaning of y-axis is indicated at the top

6.2 Autonomous Highway Traffic System

This exercise is inspired from autonomous traffic sys-

tems for automated highways [6]. The system consists of

a single-lane one-way road where an arbitrary number

of autonomous homogeneous self-driving cars are mov-

ing in the same direction, at different cruising speeds.

Cars are organized into platoons, i.e. groups of cars

cruising at the same speed and closely following a leader

car. Platoons may dynamically merge or split. A merge

takes place if two platoons are close enough, i.e. the dis-

tance between the tail car of the first platoon and the

leader car of the second is smaller than some constant

K. After the merge, the speed of the new platoon is set

to the speed of the first platoon. A platoon may split

when an arbitrary car requests to leave the platoon e.g.,

in order to perform some specific maneuver. After the

split, the leading platoon will increase its speed by 2%

whereas the tail platoon will reduce its speed by 2%.

Fig. 11 illustrates the motif-based system in DR-

BIP. We use a component type Car to model the be-

havior of a car. Each car maintains its position pos and

speed v. The position pos is updated on the move tran-

sition. Transitions setSpeed and ack split are used by

leader cars only to respectively define the platoon speed

and acknowledge a platoon split. Similarly, transitions

getSpeed and split are used by follower cars only to re-

spectively synchronize on the leader speed and initiate

a platoon split.

...

Platoon

......
Platoon

Road

...ci cj

Car

move getSpeed setSpeed

setSpeed

setSpeed ack split

getSpeed [...] split

move

split ack split

split

speed

move
pos := pos + v · ∆t

v = v · 1.02

v := v · 0.98

ci+1

Fig. 11: Automated Highway Traffic System

The Road motif type contains all cars without ad-

ditional structuring. The Platoon motif type is struc-

tured as a chain of cars. The map of the platoon motif

is a (dynamic) linear graph of locations and the deploy-

ment assigns a single car to every position of the map.

The Road motif defines a single interaction by the rule

sync-road-move, which synchronizes the move ports of

all cars and therefore performing a joint update of their

positions. The Platoon motif defines several interactions

by the rules sync-platoon-speed and sync-platoon-split.
The first rule synchronizes the speed of the leading car

with the speed of all follower cars. The second rule al-

lows any follower car to initiate a split maneuver and

become a leader in a newly created platoon.

sync-road-move(X : Car) ≡
when X = B sync X.move

sync-platoon-speed(x : Car, X : Car) ≡
when X = B \ x and D(x) = head(H)
sync x.setSpeed X.getSpeed

true → X.v := x.v

sync-platoon-split(x1, x2 : Car) ≡
when D(x1) = head(H) and x1 6= x2
sync x1.ack split x2.split

Two reconfiguration rules do-platoon-merge and do--
platoon-split handle the merging and the splitting of

platoons respectively:

do-platoon-merge(y1, y2 : Platoon, x1, x2 : Car) ≡
when 〈y1 : D(x1) = tail(H)〉

and 〈y2 : D(x2) = head(H) 〉
do abs(x1.pos − x2.pos) < K →

zB := union(y1.B, y2.B),
zH := append(y2.H, y1.H),
zD := union(y1.D, y2.D),
M.create(Platoon, (zB , zH , zD)),
M.delete(y1), M.delete(y2)

Programming Dynamic Reconfigurable Systems 15

do-platoon-split(y : Platoon, x : Car) ≡
do 〈y : n := D(x),

zH1
:= sublist1(H, n), zD1

:= extract(D, zH1
),

zB1 := components(zD1),
zH2

:= sublist2(H, n), zD2
:= extract(D, zH2

),
zB2

:= components(zD2
) 〉,

M.create(Platoon, (zB1 , zH1 , zD1)),
M.create(Platoon, (zB2

, zH2
, zD2

)) ,
M.delete(y)

Note that we use specific map primitives head, and tail
which point respectively to the position of the leader

and tail of a platoon, namely the beginning and the end

of the list. Furthermore, we use the primitive append
which appends and links two maps of type linked list

together. Finally, primitives sublist1,2 extract sublists

from a linked list, respectively ending before / start-

ing at the node given as argument. The primitive ex-
tract computes a restricted deployment for component

instances attached to a subset of nodes of the map.

Fig. 12 illustrates the evolution of the system in-

volving 200 cars along 2000 sampled steps. Each line

describes a configuration of the system. We show 13

sampled nonconsecutive configurations. A thin black

rectangle represents a platoon. Its length is propor-

tional to the number of cars contained. Its position in

the line corresponds to its position on the road. For

reference, we show the evolution of a particular car by

highlighting it in yellow. Initially, all the cars belong

to the same platoon. As the system evolves the initial

platoon splits into several platoons, which then keep

splitting/merging back, etc.

Fig. 12: Automated highway traffic evolution along few

steps

Fig. 13 summarizes the execution of several initial

configurations. We evaluate the performance and track

the system evolution while varying the number of cars

in the initial platoon from 200 to 600 cars. Each config-

uration is simulated for 3000 random steps. Notice that

the component instance count remains constant across

each configuration as cars only rearrange within differ-

ent platoons. However the motif instance count varies as

platoons merge/split. Finally, execution time increases

reaching a maximum of 5 minutes and the average ratio

of executed interactions vs reconfigurations is 0.77.

200 400 600

100

200

300

Exec. Time (sec)

200 400 600
0

0.2

0.4

0.6

0.8

1

I/R Ratio

200 400 600

0

20

40

60

Motifs

200 400 600

200

400

600

Components

Fig. 13: Measurements on automated highway traffic

systems

6.3 Self-Organizing Robot Colonies

This exercise is inspired by swarm robotics [34]. A num-

ber of identical robots are randomly deployed on a field

and have a mission to locate an object (the prey) and

to bring it near another object (the nest). The robots

know neither the position of the nest nor the position of

the prey. They have limited communication and sensing

capabilities, i.e. they can display a status (by turning

on/off some colored leds) and can observe each other as

long as they are physically close in the field. We con-

sider hereafter the swarm algorithm proposed in [34].

In a first phase, the robots self-organize into an explo-

ration path starting at the nest. The first robot detect-

ing the nest initiates the path, i.e. stops moving and

displays a specific (on-path) status. Any robot that de-

tects (robots on) the path, begins moving along the

path towards its tail, explores a bit further its neigh-

borhood and gets connected as well (i.e. becomes the

new tail, stops moving and displays the on-path sta-

tus). Two cases may occur, either no new robot gets

connected to the path within some delay, hence the tail

robot disconnects and moves randomly (away from the

path), or the tail robot detects the prey and the second

phase starts. The path stays in place while additional

robots converge near the prey. When enough robots

have converged, they start pushing the prey along the

path towards the nest. The path gets consumed, and

the system will stop when the prey gets close enough

to the nest.

16 Rim El Ballouli et al.

We model the first phase of the algorithm above us-

ing three different types of components and three differ-

ent types of motifs as illustrated in Fig. 14. The Arena
motif contains all the robots, the nest and the prey com-

ponent instances. No map and deployment are used as

no specific architecture is enforced by this motif. This

motif defines a global tick interaction used to model the

synchronous passage of time within the system. When-

ever the tick interaction is triggered the robots update

their positions, i.e. they move on the field.

Chain

Neighborhood

Arena

Neighborhood

r1

r2

r3

r4

r5

r6

r7

r8

r9

p : Prey

n : Nest

ri : Robot

Fig. 14: Self-organizing robot colonies

For every robot, its Neighborhood motif is used to

represent its visibility range, i.e the set of robots phys-

ically close to it in the field. This motif uses a star-like

location map. The inner robot is deployed at the cen-

ter and the visible neighbors on the leaves. The motif

defines a set of binary observe status interactions which

are used by the inner robot to collect all the available

information from its neighbors. Finally, the Chain motif

represents the exploration chain linking robots to the

nest. It uses a linear map to deploy the robots belong-

ing to the chain. This motif defines a set of binary next
prev interactions which are used to communicate along

the chain.

For this example, reconfiguration is used to rede-

fine the content of the Neigborhood and Chain motifs.

For the former, as robots are moving in the field, they

continuously enter or leave the visibility range of other

robots. We use two inter-motif reconfiguration rules to

update the neighborhood information:

do-neighborhood-enter(y1 : Neighborhood, y2 : Arena,
x1, x2: Robot) ≡

when 〈y1 : D(x1) = center(H) and ¬(x2 ∈ B)〉 and
〈y2 : x2 ∈ B〉

do dist(x1.pos, x2.pos) ≤ Rmin →
y1.B.migrate(x2),
〈y1 : n := H.extend(), D.attach(x2,n) 〉

do-neighborhood-leave(y1 : Neighborhood,

x1, x2: Robot) ≡
when 〈y1 : D(x1) = center(H) and x2 ∈ B〉 and

x1 6= x2 and
do dist(x1.pos, x2.pos) ≥ Rmax →
〈y1 : n := D(x2), B.delete(x2), H.remove(n) 〉

The rules above describe the reconfiguration allowing

any robot x2 to enter (resp. leave) the neighborhood

y1 of any different robot x1 whenever the distance be-

tween x1 and x2 is smaller than Rmin (resp. greater

than Rmax). The evolution of the chain is also described

by reconfiguration. At any time, the tail can disconnect

or a robot can connect if it is close enough to the tail.

do-chain-connect(y1 : Chain, y2 : Neighborhood,
x1, x2 : Robot) ≡

when 〈y1 : D(x1) = tail(H) and x2 6∈ B〉 and
〈y2 : D(x1) = center(H) and x2 ∈ B〉

do y1.B.migrate(x2),
〈y1 : n := H.extend(), D.attach(x2,n) 〉

do-chain-disconnect(y1 : Chain, x1 : Robot) ≡
when 〈y1 : D(x1) = tail(H) 〉
do x1.timeout →
〈y1 : n := D(x1), B.delete(x1), H.remove(n) 〉

6.4 Lessons learned

Although very preliminary, these experiments allowed

us to draw some conclusions and identify potential lines

for improvement:

- Arbitrarily complex interaction and/or architec-

tural reconfiguration patterns are usually decomposable

as a super-position of motifs, which moreover, use rel-

atively restricted forms of maps and addressing func-

tions. No example required a map topology different

than the ones mentioned so far (chain, cycle, star).

- While DR-BIP semantics leaves unspecified the

choice of next rule to be executed between multiple in-

teraction and reconfiguration rules, some control mech-

anism is needed to restrict non-determinism and enforce

a desirable scenario. For instance, giving high priority

to specific reconfiguration rules may enforce atomicity

on a long reconfiguration sequence by avoiding interfer-

ence with execution of interactions (e.g., for migrating

a task to some final executing core). In contrast, giving

higher priority to interaction rules may be useful when

reconfiguration is triggered by external events and will

take place only when the system reaches some stable

state (e.g., for constraining the insertion of new tasks

in the task system).

- The handling of time is very rudimentary. Actu-

ally, synchronous time progress is modeled using a mul-

tiparty interaction rule involving all timed components

Programming Dynamic Reconfigurable Systems 17

in a global motif. For example, all cars are synchronized

for making their move action in the Road motif, sim-

ilarly, all robots are synchronized in the Arena motif,

etc. Whereas semantically correct, this representation

is cumbersome and shall be improved by using clock

variables like in Real-Time BIP [1] and an implicit se-

mantics of time allowing to separate time-dependent

system evolution from functional (interaction, reconfig-

uration) behavior.

- Going beyond toy examples would require a new

implementation of DR-BIP concepts integrating a full-

fledged representation of component types (e.g., as in

BIP or Real-Time BIP) as well as richer types of maps

and of addressing functions (e.g., defined as abstract

data types in some implementation language). This is

needed for building detailed models, that could be used

both for analysis with simulation-based techniques or

for concrete implementation and deployment as part of

real systems.

7 Related Work

There exists a significant number of frameworks dealing

with dynamic software and system architectures. We

recommend [12, 13] for exhaustive surveys and clas-

sification of existing approaches and [24, 29] for an

overview of current and foreseen design challenges. In

this section, we restrict ourselves to formal frameworks

dealing with an explicit notion of architecture in terms

of components and connectors and providing primitives

to express architectural reconfigurations. In particular,

we do not consider general-purpose programming lan-

guages or domain specific languages.

We distinguish between frameworks for specification

or for programming architectural reconfiguration. In the

first category, we include frameworks based on tem-

poral logics such as [2, 19], hybrid logics such as [36]

or extended configuration logics such as dream [18].

These frameworks allow characterizing reconfiguration

from the perspective of an external observer. Nonethe-

less, they do not provide support for implementation of

reconfiguration within the system.

The DR-BIP framework is part of the second cate-

gory dealing with explicit programming of reconfigura-

tion within the system. Most of the reconfigurable ADL

frameworks belong to this category. Usually, they can

be classified according to the underlying formalism for

programming reconfiguration and/or defining their op-

erational semantics e.g., based on process algebra such

as π-ADL [15], montiarc [25], pilar [35], darwin

[28]; using graph rewriting rules such as [26], [37]; using

chemical reaction rules such as cham [40]; using spe-

cific rules such as gerel [23], c2sadel [32], rapide

[27] to cite only a few. According to this classification,

the reconfiguration rules of DR-BIP are a specific class

of graph rewriting rules allowing to change the architec-

ture seen as a hyper-graph of interconnected BIP com-

ponents. Our originality lies in the use of maps and ad-

dressing functions to express reconfiguration constraints

and to organize the different types of rewriting rules as

reconfiguration and interaction rules.

The distinction between exogeneous and endoge-

neous reconfiguration is another criteria for the classifi-

cation of existing approaches. Frameworks such as leda

[14] are endogenoeus as they allow to freely use recon-

figuration primitives e.g., to create and remove com-

ponents and connectors, as regular actions of compo-

nents. π-adl [15] allows for both endogeneous (within

components) and exogeneous (within subsystems) re-

configuration. Nevertheless, most frameworks are exo-

geneous and try to isolate as best as possible reconfig-

uration from applicative component behavior. For ex-

ample, mode-based reconfiguration in montiarc [25],

aadl-slim [16] or graph-rewriting rules in [26] are both

examples of exogeneous reconfiguration. It is also the

case of DR-BIP where reconfiguration and interaction

rules are kept fully separated from the behavior of com-

ponents.

Finally, let us briefly discuss the positioning of DR-

BIP in the BIP landscape. The BIP framework intro-

duced in [4] and the big majority of its descendants in-

cluding Real-Time BIP [1], Distributed Send/Receive

BIP [8], Stochastic Real-Time BIP [33], etc, are re-

stricted to static architectures, that is, with a fixed

number of components and fixed connectors. The dif-

ferent variants consider specific models for components,

semantics of time, specific forms of interaction, etc. The

first extension towards dynamic reconfigurable systems

has been Dy-BIP [9] allowing for changes on the con-

necting topology, whereas the set of components re-

main fixed. Later on, fully reconfigurable extensions

have been studied in relation with specific implementa-

tions on some host languages. For example, the Functional-

BIP [20] allows for implementation in functional lan-

guages whereas Java-BIP [31] has been developed to

support concrete use of BIP concepts in relation with

industrial Java-based software platforms. With DR-

BIP we try to re-unify these different dynamic variants

behind a unique high-level framework, independent of

target host languages and/or application domains to

provide a common platform for analysis and implemen-

tation of dynamically reconfigurable systems.

18 Rim El Ballouli et al.

8 Discussion

The DR-BIP framework for programming dynamic re-

configurable systems has been designed to encompass

three complementary structuring aspects of component-

based coordination. Architecture motifs are environ-

ments where live instances of components of predefined

types subject to specific parametric interaction and re-

configuration rules. Reconfiguration within a motif sup-

ports in addition to creation/deletion of components,

the dynamic change of maps and the mobility of com-

ponents. Maps are a common reference structure that

proves to be very useful for both the parametrization

of interactions and the mobility of components. It is

important to note that a map can have either a purely

logical interpretation, or a geographical one or a com-

bination of both. For instance, a purely logical map is

needed to describe the functional organization of the

coordination in a ring or a pipeline. To describe mobil-

ity rules of cars on a highway a map is needed repre-

senting at some abstraction level their external environ-

ment e.g. the structure of the highway with fixed and

mobile obstacles. Finally a map with both logical and

geographic connectivity relations may be used for cars

on a highway to express their coordination rules. These

depend not only on the physical environment but also

on the communication features available.

Structuring a system as a set of loosely coordinated

motifs confers the advantage that when components are

created or migrate, we do not need to specify associ-

ated coordination rules; depending on their type, com-

ponents are subject to predefined coordination rules of

motifs. Clearly these results are too recent and there

are many open avenues to be explored. One is how we

make sure that the modeled systems meet given proper-

ties. The proposed structuring principle allows a sepa-

ration of concerns between interaction and reconfigura-

tion aspects. To verify correctness of the parametric in-

teracting system of a motif we can extend the approach

adopted for static BIP: assuming that dynamic con-

nectors correctly enforce the sought coordination, it re-

mains to show that restricting the behavior of deadlock-

free components does not introduce deadlocks. We have

recently shown this approach can be extended for para-

metric systems [10].

To verify the correctness of reconfiguration opera-

tions a different approach can be taken. If we have al-

ready proven correctness of the parametric interacting

system of a motif, it is enough to prove that its archi-

tecture style is preserved by statements changing the

number of components, move components and modify

maps and their connectivity. In other words the archi-

tecture style is an invariant of the coordination struc-

ture. This can be proven by structural induction. The

architecture style of a motif can be characterized by a

formula of configuration logic φ [30]. We have to prove

that if a model m of the system satisfies φ then after the

application of a reconfiguration operation the resulting

model m′ satisfies φ.

References

1. Abdellatif T, Combaz J, Sifakis J (2010) Model-

based implementation of real-time applications. In:

Carloni LP, Tripakis S (eds) Proceedings of the

10th International conference on Embedded soft-

ware, EMSOFT 2010, ACM, pp 229–238

2. Aguirre N, Maibaum T (2002) A temporal logic

approach to the specification of reconfigurable

component-based systems. In: Automated Software

Engineering, 17th IEEE International Conference,

ASE 2002, IEEE, pp 271–274

3. Allen R, Douence R, Garlan D (1998) Specifying

and analyzing dynamic software architectures. In:

Fundamental Approaches to Software Engineering,

1st International Conference, FASE’98, Springer,

LNCS, vol 1382, pp 21–37

4. Basu A, Bozga M, Sifakis J (2006) Modeling hetero-

geneous real-time components in BIP. In: Fourth

IEEE International Conference on Software Engi-

neering and Formal Methods (SEFM 2006), IEEE

Computer Society, pp 3–12

5. Basu A, Bensalem S, Bozga M, Combaz J, Jaber M,

Nguyen T, Sifakis J (2011) Rigorous component-

based system design using the BIP framework.

IEEE Software 28(3):41–48

6. Bergenhem C (2015) Approaches for facilities layer

protocols for platooning. In: IEEE 18th Inter-

national Conference on Intelligent Transportation

Systems, ITSC 2015, IEEE, pp 1989–1994

7. Bliudze S, Sifakis J (2008) The algebra of connec-

tors — structuring interaction in BIP. IEEE Trans-

actions on Computers 57(10):1315–1330

8. Bonakdarpour B, Bozga M, Jaber M, Quilbeuf J,

Sifakis J (2012) A framework for automated dis-

tributed implementation of component-based mod-

els. Distributed Comput 25(5):383–409

9. Bozga M, Jaber M, Maris N, Sifakis J (2012) Mod-

eling dynamic architectures using Dy-BIP. In: Soft-

ware Composition - 11th International Conference,

SC 2012, Springer, LNCS, vol 7306, pp 1–16

10. Bozga M, Iosif R, Sifakis J (2019) Checking

deadlock-freedom of parametric component-based

systems. In: Tools and Algorithms for the Con-

struction and Analysis of Systems - 25th Interna-

Programming Dynamic Reconfigurable Systems 19

tional Conference, TACAS 2019, Springer, LNCS,

vol 11428, pp 3–20

11. Bradbury J (2004) Organizing definitions and for-

malisms for dynamic software architectures. Tech.

Rep. 2004-477, Software Technology Laboratory,

School of Computing, Queen’s University

12. Bradbury J, Cordy J, Dingel J, Wermelinger M

(2004) A survey of self-management in dynamic

software architecture specifications. In: Proceed-

ings of the 1st ACM SIGSOFT workshop on Self-

managed systems, ACM, pp 28–33

13. Butting A, Heim R, Kautz O, Ringert JO, Rumpe

B, Wortmann A (2017) A classification of dynamic

reconfiguration in component and connector ar-

chitecture description. In: Proceedings of MOD-

ELS 2017 Satellite Event: Workshops (ModComp),

CEUR-WS.org, CEUR Workshop Proceedings, vol

2019, pp 10–16

14. Canal C, Pimentel E, Troya JM (1999) Speci-

fication and refinement of dynamic software ar-

chitectures. In: Software Architecture, TC2 First

Working IFIP Conference on Software Architecture

(WICSA1), Kluwer, IFIP Conference Proceedings,

vol 140, pp 107–126

15. Cavalcante E, Batista TV, Oquendo F (2015)

Supporting dynamic software architectures: From

architectural description to implementation. In:

Bass L, Lago P, Kruchten P (eds) 12th Working

IEEE/IFIP Conference on Software Architecture,

WICSA 2015, IEEE Computer Society, pp 31–40

16. Cimatti A, DeLong R, Stojic I, Tonetta S (2019)

Model-based run-time synthesis of architectural

configurations for adaptive MILS systems. In: Ro-

manovsky AB, Troubitsyna E, Bitsch F (eds) Com-

puter Safety, Reliability, and Security - 38th Inter-

national Conference, SAFECOMP 2019, Springer,

Lecture Notes in Computer Science, vol 11698, pp

200–215

17. De Nicola R, Loreti M, Pugliese R, Tiezzi F (2014)

A formal approach to autonomic systems program-

ming: The SCEL language. TAAS 9(2):7:1–7:29

18. De Nicola R, Maggi A, Sifakis J (2018) DReAM:

Dynamic reconfigurable architecture modeling. In:

Margaria T, Steffen B (eds) Leveraging Applica-

tions of Formal Methods, Verification and Valida-

tion. Distributed Systems - 8th International Sym-

posium, ISoLA 2018, Springer, Lecture Notes in

Computer Science, vol 11246, pp 13–31

19. Dormoy J, Kouchnarenko O, Lanoix A (2010) Us-

ing temporal logic for dynamic reconfigurations of

components. In: Barbosa LS, Lumpe M (eds) For-

mal Aspects of Component Software - 7th Inter-

national Workshop, FACS 2010, Springer, Lecture

Notes in Computer Science, vol 6921, pp 200–217

20. Edelmann R, Bliudze S, Sifakis J (2017) Func-

tional BIP: embedding connectors in functional

programming languages. J Log Algebr Meth Pro-

gram 92:19–44

21. El Ballouli R, Bensalem S, Bozga M, Sifakis J

(2018) Four exercises in programming dynamic re-

configurable systems: Methodology and solution in

DR-BIP. In: Leveraging Applications of Formal

Methods, Verification and Validation. Distributed

Systems - 8th International Symposium, ISoLA

2018, Springer, LNCS, vol 11246, pp 304–320

22. El Ballouli R, Bensalem S, Bozga M, Sifakis J

(2018) Programming dynamic reconfigurable sys-

tems. In: Formal Aspects of Component Software

- 15th International Conference, FACS 2018, Pro-

ceedings, Springer, Lecture Notes in Computer Sci-

ence, vol 11222, pp 118–136

23. Endler M, Wei J (1992) Programming generic dy-

namic reconfigurations for distributed applications.

In: International Workshop on Configurable Dis-

tributed Systems, 1992, IET, pp 68–79

24. Garlan D (2014) Software architecture: a travel-

ogue. In: Proceedings of the on Future of Software

Engineering, FOSE 2014, ACM, pp 29–39

25. Heim R, Kautz O, Ringert JO, Rumpe B, Wort-

mann A (2016) Retrofitting controlled dynamic re-

configuration into the architecture description lan-

guage MontiArcAutomaton. In: Software Architec-

ture - 10th European Conference (ECSA’16)

26. Le Métayer D (1996) Software architecture styles

as graph grammars. In: ACM SIGSOFT Software

Engineering Notes, ACM, vol 21(6), pp 15–23

27. Luckham D, Kenney J, Augustin L, Vera J, Bryan

D, Mann W (1995) Specification and analysis of

system architecture using Rapide. IEEE Transac-

tions on Software Engineering 21(4):336–354

28. Magee J, Kramer J (1996) Dynamic structure in

software architectures. In: ACM SIGSOFT Soft-

ware Engineering Notes, ACM, vol 21(6), pp 3–14

29. Malavolta I, Lago P, Muccini H, Pelliccione P, Tang

A (2013) What industry needs from architectural

languages: A survey. IEEE Trans Software Eng

39(6):869–891

30. Mavridou A, Baranov E, Bliudze S, Sifakis J (2017)

Configuration logics: Modeling architecture styles.

J Log Algebr Meth Program 86(1):2–29

31. Mavridou A, Rutz V, Bliudze S (2017) Coordina-

tion of dynamic software components with Jav-

aBIP. In: Formal Aspects of Component Soft-

ware - 14th International Conference, FACS 2017,

Springer, LNCS, vol 10487, pp 39–57

20 Rim El Ballouli et al.

32. Medvidovic N, Rosenblum DS, Taylor RN (1999)

A language and environment for architecture-based

software development and evolution. In: Boehm

BW, Garlan D, Kramer J (eds) Proceedings of the

1999 International Conference on Software Engi-

neering, ICSE’ 99, ACM, pp 44–53

33. Nouri A, Mediouni BL, Bozga M, Combaz J, Ben-

salem S, Legay A (2018) Performance evaluation of

stochastic real-time systems with the SBIP frame-

work. IJCCBS 8(3/4):340–370

34. Nouyan S, Gross R, Bonani M, Mondada F,

Dorigo M (2009) Teamwork in self-organized robot

colonies. IEEE Trans on Evolutionary Computa-

tion 13(4):695–711

35. Quintero CEC, de la Fuente P, Barrio-Solórzano M

(2001) Dynamic coordination architecture through

the use of reflection. In: Proceedings of the 2001

ACM Symposium on Applied Computing (SAC),

ACM, pp 134–140

36. Sanchez A, Madeira A, Barbosa LS (2015) On the

verification of architectural reconfigurations. Com-

put Lang Syst Struct 44:218–237

37. Taentzer G, Goedicke M, Meyer T (1998) Dynamic

change management by distributed graph transfor-

mation: Towards configurable distributed systems.

In: International Workshop on Theory and Appli-

cation of Graph Transformations, Springer, pp 179–

193

38. Taivalsaari A, Mikkonen T, Systä K (2014) Liquid

software manifesto: The era of multiple device own-

ership and its implications for software architec-

ture. In: IEEE 38th Annual Computer Software and

Applications Conference, COMPSAC 2014, IEEE

Computer Society, pp 338–343

39. Verimag (2018) DR-BIP Prototype. https:

//www-verimag.imag.fr/~bozga/download/

drbip.tgz

40. Wermelinger M (1998) Towards a chemical model

for software architecture reconfiguration. IEE

Proceedings-Software 145(5):130–136

https://www-verimag.imag.fr/~bozga/download/drbip.tgz
https://www-verimag.imag.fr/~bozga/download/drbip.tgz
https://www-verimag.imag.fr/~bozga/download/drbip.tgz

	Introduction
	DR-BIP Overview
	Component-Based Systems
	Motifs for Dynamic Architectures
	Motif-based Systems
	Implementation and Experiments
	Related Work
	Discussion

