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Verification of Component-based Systems with
Recursive Architectures

Marius Bozga∗, Radu Iosif, Joseph Sifakis

Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France

Abstract

We study a sound verification method for parametric component-based systems.
The method uses a resource logic, a new formal specification language for dis-
tributed systems consisting of a finite yet unbounded number of components.
The logic allows the description of architecture configurations coordinating in-
stances of a finite number of types of components, by means of inductive defini-
tions similar to the ones used to describe algebraic data types or recursive data
structures. For parametric systems specified in this logic, we show that decision
problems such as reaching deadlock or violating critical section are undecidable,
in general. Despite this negative result, we provide for these decision prob-
lems practical semi-algorithms relying on the automatic synthesis of structural
invariants allowing the proof of general safety properties. The invariants are de-
fined using the WSκS fragment of the monadic second order logic, known to be
decidable by a classical automata-logic connection, thus reducing a verification
problem to checking satisfiability of a WSκS formula.

Keywords: Resource Logic, Component-based Distributed Systems,
Parameterized Verification

1. Introduction

Mastering the complexity of a distributed system requires a deep under-
standing of its coordination mechanisms. We distinguish between endogenous
coordination, that explicitly uses synchronization primitives in the code describ-
ing the behavior of the components (e.g. semaphores, monitors, compare-and-5

swap, etc.) and exogenous coordination, that defines global rules describing
how the components interact. These two orthogonal paradigms play different
roles in the design of a system: exogenous coordination is used during high-level
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model building, whereas endogenous coordination is considered at a later stage
of development, to implement the model using low-level synchronization.10

In this paper we focus on (high-level) exogenous coordination of distributed
systems, consisting of a finite yet unbounded number of interconnected compo-
nents. Communication is assumed to be correct, i.e. we abstract from packet
losses and corruptions. Components behave according to a small set of finite-
state abstractions of sequential programs, whose transitions are labeled with15

events. They communicate via interactions (handshaking) modeled as sets of
events that occur simultaneously in multiple components. For instance, Fig-
ure 1(a) shows a token-ring system, whose components are depicted by gray
boxes containing state machines that represent their behavior and whose archi-
tecture is the set of connectors between components depicted by solid lines.20

The separation between behavior and coordination is a fundamental princi-
ple in the design of large-scale distributed systems [1]. This modular view of a
distributed system, in which the internal computation and the state changes of
each component are encapsulated in a well defined interface, is key to scalable
design methods that exploit a conceptual hierarchy. For instance, a ring is a25

chain whose final output port is connected to the initial input port, whereas a
chain consists of a (head) component linked to a separate (tail) chain as shown
in Figure 1(b). Moreover, system designers are accustomed to using architec-
tural patterns, such as rings, pipelines, stars, trees, etc., that define interactions
between (unboundedly large) sets of components. Such high-level models of real-30

life distributed systems are suitable for reasoning about correctness in the early
stages of system design, when details related to network reliability or the imple-
mentation of coordination by means of low-level synchronization mechanisms
(e.g. semaphores, monitors, compare-and-swap, etc.) are abstracted away.

1.1. Running Example35

For starters, we consider the following recursive definition of a token-ring
architecture, composed of a finite but unbounded number of stations that are
instances of the same component type S, connected via transfer connectors, of
interaction type T. The behavior of each station is a machine with two states,
indicating whether the station has a token (t) or not (n). The number of tokens40

is constant and equal to the number of stations that are initially in state t. Each
station not having a token may receive a token from the left, via the in port

(that triggers the transition n
in−→ t) and send its token to the right, via the

out port (that triggers the transition t
out−−→ n). We refer to Figure 1(a) for a

depiction of a token-ring system, defined by the rules:45

Ring() ← ∃y1∃y2 . Chain(y1, y2) ∗ T(y2, y1) (1)

Chain(x1, x2) ← Comp(x1) ∗ T(x1, x2) ∗ Comp(x2) (2)

Chain(x1, x2) ← ∃y1 . Comp(x1) ∗ T(x1, y1) ∗ Chain(y1, x2) (3)

Comp(x1) ← Sn(x1) (4)

Comp(x1) ← St(x1) (5)

2



· · ·
out out out

(a)

in

out

in

out

t

in

out

t

in

S[1]

in out

in

out

t

S[n]S[n− 1]

inin

T[n− 1, n]

T[n, 1]

S[2]

(b)

n

t

n n n
T[1, 2]

S(y1) S(y11) out

out out

Ring()

Chain(y11 , y2)

Chain(y1, y2)3

3

Chain(y21 , y2)
in in

T(y1, y
1
1) T(y11 , y

2
1)in

1

Figure 1: Recursive Specification of a Token-Ring System

Intuitively, rule 1 states that a token-ring consists of a chain of components
and an interaction between the out port of the last and the in port of the
first component in the chain. A chain consists of either two components and an
interaction between their out and in ports, respectively (rule 2), or a component
and an interaction between its out port and the in port of the first component50

of a distinct chain (3). The rules (4) and (5) intuitively say that a component
has type S and can be in state n or in state t, respectively. The star symbol ∗
used in the rules 1-5 is a commutative and associative logical connective that
composes sub-systems with disjoint sets of components and interactions; for
instance, in rule 2, the two components declared as Comp(x1) and Comp(x2)55

are necessarily different, meaning that x1 and x2 cannot be mapped to the
same value. The rules 2 and 3 correspond to the base and the inductive case
of a recursive definition of finite chains of length at least two. We refer to
Figure 1(b) for a depiction of the recursive unfolding of the above rules.

Note that no transfer of tokens is possible if the number of tokens in the60

system is either zero (there is no token to be transfered) or equals the number
of components (there is no room to place a token). In this case, we say that a
system is in a deadlock. The decision problem “can a token-ring started in a non-
deadlock actually reach a deadlock?” is challenging, because it requires a proof
that holds for systems of any size, i.e. number of components and interactions.65

We show that, even if such problems are undecidable, in general, a large number
of instances of these problems can be handled by the methods developed in this
paper.
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1.2. Contributions of this Work

The parameterized verification method presented in this paper relies on an70

idea reported in [2]. In addition to a complete development of the technical
results, previously omitted for space reasons, here we apply the verification
method to a specification language based on a resource logic, that resembles
Separation Logic [3], instead of the recursive term algebra introduced in [2].
An extension of this resource logic has been recently developed for Hoare-style75

reasoning about the safety properties of programmed reconfiguration in dis-
tributed systems [4], to which the work presented here provides a push-button
verification back-end. In combination with the proof system reported in [4],
the verification method presented in this paper can automatically prove the
correctness of a distributed system after the reconfiguration of its coordinating80

architecture. Since various dialects of (Concurrent) Separation Logic are being
commonly used to specify and reason about concurrent systems [5, 6, 7], we
expect this new logic to be easily accepted by the research and development
community. The contribution of this paper is three-fold:

1. We introduce a logic-based language, called Configuration Logic (CL), to85

describe the sets of configurations (i.e. architectures and local states of
components) of distributed systems parameterized by (i) the number of
components of each type that are active in the system, e.g. a system with
n readers and m writers, in which n and m are not known a priori and (ii)
the pattern in which the interactions occur (e.g. a pipeline, ring, star or90

more general hypergraph structures). The language uses predicate sym-
bols to hierarchically break the architecture into specific patterns. The
interpretation of these predicate symbols is defined inductively by rewrit-
ing rules consisting of formulæ that contain predicate atoms, in a way that
recalls the usual definitions of algebraic datatypes [8] or heaps [3].95

2. We tackle a parametric safety problem concerning systems described in
this language, which is essentially checking that the reachable states of
every instance stays clear of a set of global error configurations, such as
deadlocks or critical section violations. In particular, we show that both
the parametric deadlock freedom and critical section violation problems100

are undecidable, even for architectures as simple as a chain of components.

3. We develop a verification method that synthesizes parametric invariants
from the syntactic description of the architecture (in CL) and from the
behavior of its components (finite-state machines). The invariants and the
set of error configurations are both described using a decidable fragment of105

Monadic Second Order Logic (MSO), that enables the use of off-the-shelf
solvers for checking the resulting verification conditions.

The stages of the synthesis of verification conditions are depicted in Figure 2.
The starting point is a set of inductive definitions (SID) and a CL formula de-
scribing the initial configurations of the system, together with a description110
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Figure 2: The Synthesis of Verification Conditions

of component behavior by finite-state machines. The CL formula uses induc-
tively defined predicate symbols defined by sets of rewriting trees, describing
the unfoldings of their inductive definitions. In particular, these rewriting trees
describe architectures, up to a permutation of the indices of components of each
type.115

We use rewriting trees as the backbones of architecture encoding, from which
we derive a MSO flow formula, that essentially describes the operational seman-
tics induced by the interactions of the architecture, relying on (i) a static de-
scription of the profile of the interactions (how they glue component types), and
(ii) the transition systems describing the behavior of component types in the120

architecture. The main technical problem in building flow formulæ is tracking
the identities and values of the variables that occur within predicate symbols,
which, in turn, are recursively replaced by their definitions, in a rewriting tree.
For instance, the y2 variable introduced by rule (1) using existential quantifi-
cation substitutes the x2 variable from the definition of a Chain predicate, in125

rules (2) and (3) several times, before the same variable (y2) substitutes the x1

variable in rule (4) or (5) (§1.1). This is achieved by defining a path automaton
that traverses the rewriting tree downwards tracking the introduction of a vari-
able by existential quantification in a rule to the rule where it is instantiated in
a component atom.130

The flow formula is subsequently used to define invariants, i.e. over-approx-
imations of the sets of states reachable from some initial configuration, in a
system defined by some unfolding (rewriting) of the predicate symbols in CL
specifications. In contrast with the classical approach of invariant inference us-
ing, e.g. abstract interpretation [9], our technique generates invariants as MSO135

formulæ obtained directly from the flow formulæ, by a syntactic translation.
Analogously, the set of error configurations (deadlocks and critical section vio-
lations) is obtained directly from the flow formula of the system. The verification
condition asks that the conjunction of the MSO formulæ describing the invariant
and error configurations, respectively, is unsatisfiable; a satisfiable verification140

condition might indicate the presence of a spurious error caused by the over-
approximation introduced by the invariant synthesis. Since we represent the
configurations of a system by rewriting trees, we use a decidable fragment of
MSO, interpreted over trees to answer the verification condition automatically.
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The paper is structured as follows. Section 2 introduces the definitions of145

component-based systems and their operational semantics, Section 3 describes
the resource logic used to define sets of configurations, Section 4 describes the
parametric decision problems and gives the general undecidability results, Sec-
tion 5 defines rewriting trees formally, together with a notion of a canonical
model, induced by a rewriting tree of a logical formula, Section 6 describes150

the invariant synthesis and the encoding of the verification conditions in MSO,
Section 7 reports on related work and Section 8 gives concluding remarks and
sketches directions for future work.

2. Component-based Systems

2.1. Definitions155

This section introduces the definitions needed to formally describe our model
of component-based systems. We denote by N the set of natural numbers. Given
integers i and j, we write [i, j] for the set {i, i+ 1, . . . , j}, assumed to be empty
if i > j. For a set A and an integer i ≥ 1, we denote by Ai the i-times Cartesian
product of A with itself. By pow(A) we denote the powerset of A. For a finite160

set A, we denote by ||A|| its cardinality.
Let P be a countable set of ports. We consider classes of component-based

systems that share the same signature Σ = (C, I,P), where:
• C = {C1, . . . ,CN} is a finite set of relation symbols of arity one, called

component types,165

• I = {I1, . . . , IM} is a finite set of relation symbols of arity #(Ij) ≥ 1, called
interaction types,

• P : C ∪ I→ pow(P) ∪
⋃
i≥1 Pi is an interface associating each component

type C ∈ C a finite set of ports P(C) ∈ pow(P) and each interaction type
I ∈ I a finite tuple of ports P(I) ∈ P#(I).170

W.l.o.g., we assume that
⋃N
i=1 P(Ci) = P and P(Ci) ∩ P(Cj) = ∅, for all 1 ≤

i < j ≤ N , i.e. each port p belongs to the interface of exactly one component
type, denoted by comp(p). We denote by I(k) the subset of interaction types of

arity k, formally I(k) def
= {I ∈ I | #(I) = k}, for any k ≥ 1.

Example 1 (contd. from §1.1). The signature for the token-ring example from175

Figure 1a is Σ = 〈{S}, {T},P〉, where P(S) = {in, out} and P(T) = 〈out, in〉,
i.e. the interaction type T connects an out port to an in port. �

The component and interaction types are interpreted as sets and relations
over a countably infinite universe U of indices. The particular nature of indices
is not important at this point; we assume that two indices can only be compared180

for equality, with no other associated relation or function. An architecture α over
the signature Σ = (C, I,P) associates each component type Ci a set α(Ci) ⊆ U
and each interaction type Ij a relation α(Ij) ⊆ U#(Ij), defining:

• components Ci[u], for some u ∈ α(Ci), and
• interactions Ij [u1, . . . , u#(Ij)], for some 〈u1, . . . , u#(Ij)〉 ∈ α(Ij).185
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Intuitively, an architecture is a description of the static structure of a system.
Note that an index u ∈ U can refer two (or more) different components C1[u]
and C2[u] belonging to different component types and similarly, a tuple of in-
dices u can refer two (or more) different interactions I1[u] and I2[u] of different
interaction types, with the same arity; interactions may occur disconnected from190

components, e.g. I[u1, . . . , u#(I)] does not necessarily mean that each component
comp(〈P(I)〉i)[ui], for all i ∈ [1,#(I)] is present in the structure.

Example 2 (contd. from Example 1). Letting indices be natural numbers,
the structure of Figure 1a is described by the architecture α over Σ, such that
α(S) = [1, n] and α(T) = {〈1, 2〉, 〈2, 3〉, . . . , 〈n, 1〉}〉, for some n ≥ 2. �195

A behavior is described by a finite state machine M = (Q,P,−→), where Q
is a finite set of states, P ⊆ P is a finite set of ports and −→⊆ Q × P × Q is a

transition relation; we write q
p−→ q′ instead of (q, p, q′) ∈−→. Let B be the set of

finite-state machines with ports from P. The behavior map β : C→ B associates
each component type C ∈ C with a state machine β(C) = (QC,P(C),−→C),200

whose set of states is denoted by statesβ(C)
def
= QC. In the following, we consider

w.l.o.g. that statesβ(Ci) ∩ statesβ(Cj) = ∅, for all 1 ≤ i < j ≤ N and define

Qβ
def
=
⋃N
i=1 statesβ(Ci).

Example 3 (contd. from Example 1). The behavior of the component type S
in Figure 1a is described by the state machine β(S) = ({t, n}, {in, out},−→), with205

transitions n
in−→ t and t

out−−→ n. �

For a port p we denote by Tβ(p) the set of transitions labeled by p in the
finite-state machine associated by β to comp(p). We extend this notation to

tuples of ports by taking Tβ(〈p1, . . . , pn〉)
def
= Tβ(p1)× · · · × Tβ(pn). That is, the

set Tβ(〈p1, . . . , pn〉) contains n-tuples of transitions 〈t1, . . . , tn〉 labeled respec-210

tively with ports 〈p1, . . . , pn〉. For an interaction I we use Tβ(I) as a shortcut
for Tβ(P(I)). In particular, Tβ(I) contains the set of tuples of component’s
transitions that are synchronizing by interaction I.

A system S is a tuple (Σ, α, β), where α is an architecture and β is a behavior
associated with the signature Σ. When Σ is clear from the context, we omit it215

and denote a system as (α, β).

2.2. Operational Semantics

We represent the operational semantics of a system as a Petri net, recalled
below for self-containment reasons. A Petri net is a tuple N = (S, T,E), where
S is a set of places, T is a set of transitions, S ∩ T = ∅, and E ⊆ (S ×220

T ) ∪ (T × S) is a set of edges. Given x, y ∈ S ∪ T , we write E(x, y)
def
= 1 if

(x, y) ∈ E and E(x, y)
def
= 0, otherwise. Let •x

def
= {y ∈ S ∪ T | E(y, x) = 1},

x•
def
= {y ∈ S ∪ T | E(x, y) = 1} and lift these definitions to sets of nodes. A

marking of N is a function m : S → N. A transition t is enabled in m if and

only if m(s) > 0 for each place s ∈ •t. We write m
t−→ m′ whenever t is enabled225

in m and m′(s) = m(s)− E(s, t) + E(t, s), for all s ∈ S and t ∈ T . A sequence
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of transitions σ = t1, . . . , tn is a firing sequence, written m
σ−→ m′ if and only if

either (i) n = 0 and m = m′, or (ii) n ≥ 1 and there exist markings m1, . . . ,mn−1

such that m
t1−→ m1 . . .mn−1

tn−→ m′. A marking m is a deadlock of a Petri net
N = (S, T,E) if and only if no transition t ∈ T is enabled in m and let Dead(N)230

denote the set of deadlocks of N.
A marked Petri net is a pair N = (N,m0), where m0 is the initial marking

of N. A firing sequence is initial if it starts in m0. A marking m is reach-
able in N if there exists an initial firing sequence ending in m. Let Reach(N )
(resp. Step(N )) be the set of markings reachable (in one step) in N . For sim-235

plicity, we write Reach(N,m0) and Step(N,m0) instead of Reach((N,m0)) and
Step((N,m0)), respectively. A marked Petri net N is boolean2 if m(s) ≤ 1, for
each s ∈ S and m ∈ Reach(N ). All marked Petri nets considered in the following
will be boolean and we blur the distinction between a marking m : S → {0, 1}
and the set {s ∈ S | m(s) = 1}, by writing s ∈ m (resp. s 6∈ m) instead of240

m(s) = 1 (resp. m(s) = 0).

Definition 1. The operational semantics of a system S = (Σ, α, β) with sig-
nature Σ = (C, I,P) is represented by the Petri net N(S) = (S, T,E), where:

S
def
=

⋃
C∈C{ q[u] | q ∈ statesβ(C), u ∈ α(C) }

T
def
=

⋃
I∈I{ (I[u1, . . . , u#(I)], 〈t1, . . . , t#(I)〉) | 〈p1, . . . , p#(I)〉 = P(I),

〈u1, . . . , u#(I)〉 ∈ α(I), 〈t1, . . . , t#(I)〉 ∈ Tβ(I),

∀i, j ∈ [1,#(I)]. i 6= j ⇒ ui 6= uj or comp(pi) 6= comp(pj) }

E
def
=

⋃
I∈I{ (q[ui], (I[u1, . . . , u#(I)], 〈t1, . . . , t#(I)〉)),

((I[u1, . . . , u#(I)], 〈t1, . . . , t#(I)〉), q′[ui]) |
ti = (q

pi−→ q′), i ∈ [1,#(I)] }

The places, transitions and edges of N(S) are defined jointly by the ar-
chitecture α and the behavior β. For every component C[u] in α, the Petri
net contains the places q[u], for each state q in statesβ(C). For every interac-
tion I[u1, . . . , u#(I)] in α, the Petri net contains one transition for every tuple245

〈t1, . . . , t#(I)〉 of transitions of component types behavior, which are synchroniz-
ing according to I, that is, where their labeling ports 〈p1, . . . , p#(I)〉 form the tu-
ple P(I). Moreover, a transition corresponding to an interaction I[u1, . . . , u#(I)]
involves pairwise distinct components; the last condition in the definition of T
above requires that ui 6= uj or comp(pi) 6= comp(pj). Finally, edges are defined250

according to the tuple of synchronizing transitions 〈t1, . . . , t#(I)〉 and connect to
pre- and post- places, respectively q[ui] and q′[ui], for each involved component
C[ui]. For the sake of clarity we omit writing the tuple 〈t1, . . . , t#(I)〉 when it
is determined by I, namely for those behaviors where a port labels exactly one
transition, in each state machine, as it is the case in the example below:255

2Boolean Petri nets are sometimes called 1-safe or 1-bounded in the literature.
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Figure 3: The Execution Semantics of a Token-Ring System

Example 4 (contd. from Example 3). The Petri net describing the execution
semantics of the token-ring system from Figure 1(a) is given in Figure 3. Con-
sider the marking of this Petri net depicted in dashed lines. From this marking,
the sequence of interactions T[1, 2],T[2, 3], . . . ,T[n−1, n],T[n, 1] can be fired any
number of times, in this order. These interactions correspond to the joint exe-260

cution of the transitions labeled by the ports out and in, from any two adjacent
components i and (i mod n) + 1 of the ring, respectively. �

The executions of a system S = (Σ, α, β) can be represented by the firing
sequences of a marked Petri net involving only those boolean markings of N(S),
that contain exactly one state q ∈ statesβ(C) per component C[u], such that265

u ∈ α(C). We formalize and prove this fact below:

Definition 2. Given a system S = (Σ, α, β) with signature Σ = (C, I,P), a
marking m of the Petri net N(S) = (S, T,E) is precise if and only if, for each
C ∈ C and each u ∈ α(C), we have ||m ∩ {q[u] | q ∈ statesβ(C)}|| = 1.

Proposition 1. Given a system S and a precise initial marking m0 of N(S),270

every marking m ∈ Reach(N(S),m0) is precise.

Proof. Let S = (Σ, α) and m′ ∈ Reach(N(S),m0) be a marking. The proof
goes by the length n ≥ 0 of the firing sequence taking m0 into m′. For the base
case n = 0, we have that m′ = m0 is precise, by hypothesis. For the inductive
step n ≥ 1, let m be the predecessor of m′ in the sequence, hence m is precise
for S, by the inductive hypothesis. Then, by Def. 1, there exists a transition
(I[u1, . . . , u#(I)], 〈t1, . . . , t#(I)〉) in T , such that

m′ = (m \ {q1[u1], . . . , q#(I)[u#(I)]}) ∪ {q′1[u1], . . . , q′#(I)[u#(I)]} (6)

where P(I) = 〈p1, . . . , p#(I)〉 and ti = (qi
pi−→ q′i) ∈−→comp(pi) for all i ∈ [1,#(I)]

and moreover ui 6= uj or comp(pi) 6= comp(pj) for all distinct i, j ∈ [1,#(I)].
Let C ∈ C be a component type and let u ∈ α(C) be an index. Since m is

precise, we have m ∩ {q[u] | q ∈ statesβ(C)} = {q∗[u]}, for some state q∗. We275

distinguish the following cases:
• u = ui for some i ∈ [1,#(I)] and q∗ = qi In this case, we have:

m′ ∩ {q[u] | q ∈ statesβ(C)} = {q′i[u]}, by definition of m′ in (6)

• u = ui for some i ∈ [1,#(I)] and q∗ 6= qi. In this case, as the transition
(I[u1, . . . , u#(I)], 〈t1, . . . , t#(I)〉) fires in m it follows that qi[u] ∈ m. But

9



then qi[u] ∈ m ∩ {q[u] | q ∈ statesβ(C)} = {q∗[u]} implies qi = q∗, which
is a contradiction.280

• u 6∈ {u1, . . . , u#(I)}. In this case, we have:

m ∩ {q[u] | q ∈ statesβ(C)} = m′ ∩ {q[u] | q ∈ statesβ(C)}

In all non-contradictory cases, we obtain that ||m ∩ {q[u] | q ∈ statesβ(C)}|| = 1.
Because C ∈ C and u ∈ α(C) are arbitrary, m is precise for S.

3. The Configuration Logic

By configuration of a system, we understand the architecture describing the
components and interactions from the system, together with a snapshot of its285

current state. Configurations are used to reason about parametric systems,
that share a common architectural pattern (style) and differ in the number of
instances of a certain component type. For instance, a token-ring (Figure 1) ap-
plies the same architectural pattern (the output of each component is connected
to its right neighbor in a round-robin fashion) to any number of components,290

greater or equal to two.
We introduce the configuration logic (CL) to describe (possibly infinite) sets

of configurations, via inductive definitions. Let Σ = (C, I,P) be a signature and
β : C→ B be a behavior map, fixed for the rest of this section.

Definition 3. A configuration of a system S = (Σ, α, β) is a pair (α,m), where295

α is an architecture over the signature Σ and m is a precise marking of N(S).

We aim at describing sets of configurations recursively (i.e. configurations
with more complex structure being obtained by composing simpler ones), using
the following definition of composition:

Definition 4. Two architectures α1 and α2, over the signature Σ = (C, I,P),300

are disjoint if and only if α1(C)∩α2(C) = ∅, for all C ∈ C and α1(I)∩α2(I) = ∅,
for all I ∈ I. If α1 and α2 are disjoint, the composition of configurations

(α1,m1) and (α2,m2) is (α1,m1)• (α2,m2)
def
= (α1∪α2,m1∪m2), where α1∪α2

denotes the pointwise union of the architectures α1 and α2:
• (α1 ∪ α2)(C) = α1(C) ∪ α2(C), for each C ∈ C,305

• (α1 ∪ α2)(I) = α1(I) ∪ α2(I), for each I ∈ I.
The composition (α1,m1) • (α2,m2) is undefined if α1 and α2 are not disjoint.

It is easy to check that the composition of configurations (α1,m1) and
(α2,m2) with disjoint architectures is again a configuration, in particular m1 ∩
m2 = ∅ and m1 ∪m2 is a precise marking of the Petri net N(Σ, α1 ∪ α2, β).310

Let X1 be a set of first-order variables and A be a countably infinite set of
predicate symbols, where #(A) ≥ 0 denotes the arity of a predicate symbol
A ∈ A. The formulæ of CL are inductively defined by the following syntax:

φ ::= emp | C(x) | Cq(x) | I(x1, . . . , x#(I)) | A(x1, . . . , x#(A)) | φ ∗ φ | ∃x . φ
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where C ∈ C are component types, q ∈ statesβ(C) are states, I ∈ I are inter-
action types, A ∈ A are predicate symbols and x1, x2, . . . ∈ X1 denote first-
order variables. Atomic formulæ of the form C(x) or Cq(x), I(x1, . . . , x#(I)) and
A(x1, . . . , x#(A)) are called component, interaction and predicate atoms, respec-
tively. The logical connective ∗ is an associative and commutative separating315

conjunction operator.
By fv(φ) we denote the set of free variables that do not occur within the scope

of a quantifier; φ is called quantifier-free (q.f.) if and only if it has no quantifiers
and a sentence if and only if fv(φ) = ∅, respectively. A substitution is a partial
mapping θ : X1 → X1 and φθ is the formula obtained by replacing each variable320

x ∈ fv(φ) ∩ dom(θ) by θ(x) in φ, where dom(θ)
def
= {x ∈ X1 | θ is defined at x}.

We denote by [x1/y1, . . . , xk/yk] the substitution that replaces xi with yi, for all
i ∈ [1, k] and is undefined everywhere else. This notation is extended to tuples of
variables of equal length as [x/y], where x = 〈x1, . . . , xk〉 and y = 〈y1, . . . , yk〉.

Intuitively, a formula emp describes configurations with empty architecture,325

C(x) (resp. Cq(x)) describes configurations with architectures consisting of a
single instance of the component type C, indexed by the value of x (resp. in
state q), and I(x1, . . . , xk) describes a single interaction of type I, between com-
ponents indexed by x1, . . . , xk, respectively. The formula Cq1(x1)∗ . . .∗Cqk(xk)∗
I(x1, . . . , xk) describes an architecture consisting of k pairwise distinct instances330

of the component type C, in states q1, . . . , qk, respectively, joined by an inter-
action of type I. The formula I(x1, . . . , xk) ∗ I(x′1, . . . , x′k) states the existence of
two interactions of type I, with distinct tuples of indices, given by the values
of 〈x1, . . . , xk〉 and 〈x′1, . . . , x′k〉, respectively, i.e. the values of xi and x′i must
differ for at least one i ∈ [1, k].335

The semantics of CL formulæ is given by a satisfaction relation |=s
∆ between

configurations and formulæ. This relation is parameterized by:
• a store s : X1 → U, i.e. a function mapping variables to indices, and
• a set of inductive definitions (SID) ∆ consisting of rules of the form
A(x1, . . . , x#(A)) ← φ, where φ is a CL formula such that fv(φ) = {x1,340

. . ., x#(A)}.
The satisfaction relation is defined inductively on the structure of the formulæ:
(α,m) |=s

∆ emp ⇐⇒ α(C) = ∅, for all C ∈ C, α(I) = ∅, for all
I ∈ I and m = ∅

(α,m) |=s
∆ C(x) ⇐⇒ α(C) = {s(x)}, α(C′) = ∅, for all C′ ∈

C r {C}, α(I) = ∅, for all I ∈ I and m =
{q[s(x)]} , for some q ∈ statesβ(C)

(α,m) |=s
∆ Cq(x) ⇐⇒ α(C) = {s(x)}, α(C′) = ∅, for all C′ ∈

C r {C}, α(I) = ∅, for all I ∈ I and m =
{q[s(x)]}

(α,m) |=s
∆ I(x1, . . . , x#(Ik)) ⇐⇒ α(C) = ∅, for all C ∈ C, α(I) = {〈s(x1), . . .,

s(x#(Ik))〉}, α(I′) = ∅, for all I′ ∈ Ir{I} and
m = ∅

11



(α,m) |=s
∆ A(x1, . . . , x#(A)) ⇐⇒ (α,m) |=s

∆ φ[y1/x1, . . . , y#(A)/x#(A)], for
some rule A(y1, . . . , y#(A))← φ ∈ ∆

(α,m) |=s
∆ φ1 ∗ φ2 ⇐⇒ there exist configurations (α1,m1), (α2,m2)

such that (α,m) = (α1,m1) • (α2,m2) and
(αi,mi) |=s

∆ φi, for i = 1, 2.

(α,m) |=s
∆ ∃x . φ1 ⇐⇒ (α,m) |=s′

∆ φ1, for some store s′ that agrees
with s on all variables from X1 r {x}

To simplify the notation, we consider that ∆ is fixed and omit the ∆ subscript345

in the following. If the formula φ is a sentence, we can omit the store s from
the satisfaction relation |=s and write (α,m) |= φ. In this case, (α,m) is said to
be a model of φ and denote by [[φ]] the set of models of the sentence φ. For two
sentences φ and ψ, we say that φ entails ψ if [[φ]] ⊆ [[ψ]], written φ |= ψ.

Example 5 (contd. from §1.1). The SID consisting of the rules 1-5 (§1.1)
defines systems with token-ring architectures. On the other hand, the rules
below define chains of S and T components, with at least n, t ∈ N components
in state n and t, respectively:

Chain0,0(x, x) ← S(x)
Chain0,1(x, x) ← St(x)
Chain1,0(x, x) ← Sn(x)
Chainn,t(x, z) ← ∃y. St(x) ∗ T(x, y) ∗ Chainn,t−̇1(y, z)
Chainn,t(x, z) ← ∃y. Sn(x) ∗ T(x, y) ∗ Chainn−̇1,t(y, z)

where k−̇1
def
= max(k − 1, 0), k ∈ N. �350

Below we show that CL sentences define indeed system configurations.

Proposition 2. Given a sentence φ of CL, if (α,m) ∈ [[φ]] then m is a precise
marking of the Petri net N(Σ, α, β).

Proof. We prove a more general statement: for each formula φ and each store
s, if (α,m) |=s φ then m is a precise marking of N(Σ, α, β). The proof is by355

induction on the definition of the |=s relation, by distinguishing the following
cases:

• φ ∈ {emp, I(x1, . . . , x#(I))}: m = ∅ and α(C) = ∅, for all C ∈ C, thus m is
trivially precise for N(Σ, α, β).

• φ = C(x): m = {q[s(x)]}, for some q ∈ statesβ(C), α(C) = {s(x)} and360

α(C′) = ∅, for all C′ ∈ Cr {C}, hence m is precise for N(Σ, α, β).

• φ = Cq(x): m = {q[s(x)]}, α(C) = {s(x)} and α(C′) = ∅, for all C′ ∈
Cr {C}, hence m is precise for N(Σ, α, β).

• φ = A(x1, . . . , x#(A)): (α,m) |=s ψ[y1/x1, . . . , y#(A)/x#(A)], for some rule
A(y1, . . . , y#(A))← ψ ∈ ∆ and apply the inductive hypothesis.365
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• φ = φ1∗φ2: if (α,m) |=s φ1∗φ2 then there exists configurations (αi,mi) |=s

φi, for i = 1, 2, such that α1 and α2 are disjoint, α = α1 ∪ α2 and
m = m1 ∪ m2. By the inductive hypothesis, mi is a precise marking of
N(Σ, αi, β), for i = 1, 2. Let C ∈ C be a component type and let u ∈ α(C)
be an index. Then either u ∈ α1(C) or u ∈ α2(C), but not both. Let370

us consider the case u ∈ α1(C) r α2(C), the other case being symmet-
ric. Then m ∩ {q[u] | q ∈ states(C)} = m1 ∩ {q[u] | q ∈ states(C)}, hence
||m ∩ {q[u] | q ∈ states(C)}|| = ||m1 ∩ {q[u] | q ∈ states(C)}|| = 1. Since the
choices of C and u were arbitrary, we obtain that m is precise.

• φ = ∃x . φ1: by an application of the inductive hypothesis.375

4. Decision Problems

A decision problem is a class of yes/no queries of the same kind, that differ
only in their input. All decision problems considered in this paper are parame-
terized by a given signature Σ = (C, I,P). The queries take as input a sentence
φ, a SID ∆, a behavior map β : C → B and a tuple of states 〈q1, . . . , qn〉 ∈ Qnβ380

for some n ∈ N. They are defined as follows:

• deadlock(φ,∆, β): is there a configuration (α,m), such that (α,m) |=∆ φ
and Reach(N(Σ, α, β),m) ∩Dead(N(Σ, α, β)) 6= ∅ ?

• reach(φ, 〈q1, . . . , qk〉,∆, β): are there configurations (α,m), (α,m′) and
indices u1, . . . , uk ∈ U, such that (α,m) |=∆ φ, m′ ∈ Reach(N(Σ, α, β),m)385

and {qi[ui] | i ∈ [1, k]} ⊆ m′, with q1[u1], . . . , qk[uk] pairwise distinct?

The above queries occur typically as correctness conditions in system veri-
fication. For instance, proving that, in every system described by a formula φ,
no freeze configuration is reachable means showing that deadlock(φ,∆, β) does
not hold. Similarly, proving that each system described by φ stays clear of a set390

of error configurations e.g., at most one component is in some critical state qcrit
at any time amounts to proving that reach(φ, 〈qcrit, qcrit〉,∆, β) does not hold.

4.1. Undecidability Results for Linear Systems

We show that the problems defined by the sets of queries above, taken over
all inputs, but parameterized by a fixed given signature, are undecidable. In395

fact, we shall prove stronger results, in which the input formulæ define sets of
configurations with linear architectures.

Definition 5. Given a signature Σ = ({C}, I,P), a sentence φ, interpreted
over a SID ∆, is linear if and only if φ |=∆∪Λ φL, where Λ consists of the rules:

L(x, x) ← C(x) ∗ ∗ I∈I(1) I(x)
L(x, y) ← ∃z . C(x) ∗ ∗ I∈I(1) I(x) ∗ ∗ I∈I(2) I(x, z) ∗ L(z, y)

where L is a binary predicate symbol and φL is the sentence ∃x∃y . L(x, y).
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For example, the sentences ∃x∃y.Chain(x, y) (§1.1) and ∃x∃y.Chainn,t(x, y)
for n, t ≥ 0 (Example 5) are linear, when taking C = {S} and I = {T}.400

Below we show that undecidability occurs for classes of queries taking linear
sentences as input, over a fixed signature consisting of only one component type
and a fixed set of interaction types, which is not part of the input of a query.

Theorem 1. The following problems are undecidable:

LinearDeadlock
def
= {deadlock(φ,∆, β) | φ |=∆∪Λ φL}

LinearReachability
def
= {reach(φ, 〈q1〉,∆, β) | φ |=∆∪Λ φL}

The idea of the proof is to build a component-based system with linear
architecture that simulates the execution of a Post-Turing machine. We present405

the construction in §4.2 and complete the proof in §4.3.

4.2. Simulation of Post-Turing Machines by Linear Systems

A Post-Turing machine [10, 11] executes sequential deterministic programs
M of the form 1 : stmt1; 2 : stmt2; . . . ; m : stmtm, where each statement
stmti is one of following: write 0, write 1, go right, go left, goto step j if read 0,410

goto step j if read 1, stop, for some j ∈ [1,m]. The machine operates on an
infinite tape of zeroes and ones. Initially, the head is pointing at some position
on the tape and the program control is at the first statement. At any step,
the current statement is executed and the tape content, the head position and
control are updated according to that statement.415

We simulate a Post-Turing machine by a component-based system with lin-
ear architecture. Its signature ΣPT = (CPT , IPT ,PPT ) is presented in Fig-
ure 4(a) and consists of one component type CPT and ten interaction types
IPT , with associated ports as presented in the figure. In particular, the signa-
ture does not depend on the program executed by the machine.420

The linear system that simulates a Post-Turing machine is depicted in Fig-
ure 4(b). First of all, the machine program M is encoded in the behavior βM
of the component type CPT . In particular, this behavior includes three disjoint
state machines, as described in Table 1, labeled with the same set of ports.
Second, in the linear system, each component plays a different role depending425

on its position, i.e. it runs according to one of the three state machines below:
• the leftmost ctrl component behaves according to the control state ma-

chine derived from the program M : it issues the commands to be executed
by the tape components depending on the current statement, and proceeds
further according to the control flow of M . In case of read commands, it430

goes to an intermediate state, waiting to receive either read 0 or read 1
answers. In case of left! commands, it goes to an error state signaling the
overflow of the tape on the left side. The complete definition is given in
Table 1 (top).

• the middle tape components behave according to the tape state machine435

and mimic the behavior of a single tape cell: the k-th component state
records the k-th symbol of the tape γk and the presence (>) or absence
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Figure 4: Undecidability of Deadlock and Reachability for Linear Component-based Systems

(⊥) of the machine head at that cell. They react to commands (received
through in-ports) by changing their state and/or further issuing com-
mands to their neighbors (sent through out-ports). The complete defini-440

tion is given in Table 1 (middle).
• the rightmost sink component behaves according to the sink state machine

and detects the overflow of the tape on the right side and signals it as an
error. This happens when this component receives the right! command.
The complete definition is given in Table 1 (bottom).445

4.3. Proof of Theorem 1

Let M be the program of a Post-Turing machine and let w = γ1γ2 . . . γn
be a finite word in {0, 1}n, assuming moreover wlog3 that n ≥ 2. Consider
the signature ΣPT and the behavior βM as defined in the previous section.

Furthermore, consider the following set ∆w of rules, where I1
def
= I

(1)
PT , I2

def
= I

(2)
PT :

Zeroes(x, x) ← C
(0,⊥)
PT (z) ∗ ∗ I∈I1 I(x)

Zeroes(x, y) ← ∃z . C(0,⊥)
PT (x) ∗ ∗ I∈I1 I(x) ∗ ∗ I∈I2 I(x, z) ∗ Zeroes(z, y)

3w can be augmented with extra zeroes on the right
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control state machine

QMctrl
def
= {i, (i, ) | i ∈ [1,m+ 1]} represents the program M

i : write 0 i
out write 0−−−−−−−→ i+1

i : write 1 i
out write 1−−−−−−−→ i+1

i : go right i
out right−−−−−−→ i+1

i : go left i
out left−−−−−→ i+1, i

out left!−−−−−→ (i, ), (i, )
out err−−−−−→ (i, )

i : goto step j if read 0 i
out read−−−−−→ (i, ), (i, )

in read 0−−−−−−→ j, (i, )
in read 1−−−−−−→ i+1

i : goto step j if read 1 i
out read−−−−−→ (i, ), (i, )

in read 1−−−−−−→ j, (i, )
in read 0−−−−−−→ i+1

i : stop / ∗ nothing ∗ /

tape state machine

Qtape
def
= {(γ, π), (γ, π, a) | γ ∈ {0, 1}, π ∈ {⊥,>}, a ∈ IPT r {err}}

(γ,⊥) in a−−→ (γ,⊥, a) (γ,⊥, a) out a−−−→ (γ,⊥) ∀a 6= right !, left !, err

(γ,⊥) in right!−−−−−→ (γ,>) (γ,⊥, left) out left!−−−−−→ (γ,>)
(γ,>) in write γ′−−−−−−−→ (γ′,>)
(γ,>) in read−−−−−→ (γ,>, read) (γ,>, read) out read γ−−−−−−−→ (γ,>)
(γ,>) in right−−−−−→ (γ,>, right) (γ,>, right) out right!−−−−−−→ (γ,⊥)
(γ,>) in left!−−−−−→ (γ,⊥)

sink state machine with states Qsink
def
= {idle, busy}

idle
in right!−−−−−→ busy busy

out err−−−−−→ busy

Table 1: The behavior βM of CPT for a Post-Turing machine executing a program M

Word w(x, y) ← ∃z2 . . . ∃zn−1 . C
(γ1,>)
PT (x) ∗ ∗ I∈I1

I(x) ∗
∗ I∈I2

I(x, z2) ∗ C(γ2,⊥)
PT (z2) ∗ ∗ I∈I1

I(z2) ∗
∗ I∈I2

I(z2, z3) ∗ C(γ3,⊥)
PT (z3) ∗ ∗ I∈I1

I(z3) ∗
...

∗ I∈I2
I(zn−1, y) ∗ C(γn,⊥)

PT (y) ∗ ∗ I∈I1
I(y)

Tape w(x, y) ← ∃z1 ∃w1 ∃z2 ∃w2 . Zeroes(x, z1) ∗
∗ I∈I2 I(z1, w1) ∗Word w(w1, w2)

∗ I∈I2
I(w2, z2) ∗ Zeroes(z2, y)

Init w(x, y) ← ∃z1 ∃z2 . C
1
PT (x) ∗ ∗ I∈I1

I(x)

∗ I∈I2
I(x, z1) ∗ Tape w(z1, z2) ∗

∗ I∈I2
I(z2, y) ∗ CidlePT (y) ∗ ∗ I∈I1

I(y)

and let φw
def
= ∃x ∃y . Init w(x, y). Intuitively, φw is a linear sentence which

defines the valid (initial) configurations of the linear system encoding the Post-
Turing machine, where moreover w is written on the tape and the machine head
is pointing at the beginning w. We prove the following two assertions equivalent:450

1. the Post-Turing machine running M terminates on input w

16



2. the answer to deadlock(φw,∆w, βM ) is yes

“1⇒ 2”: If the machine terminates then it terminates by visiting finite portions
of the tape to the left and to the right, with respect to the initial placement
of w on the tape. Henceforth, if the linear component-based system is started455

with the amount of tape cells needed on both sides, it will run without errors
(that is, neither left or right tape overflow) until termination as well.
“2 ⇒ 1”: First of all, if the linear system reaches a deadlock from its initial
configuration, it means that neither left or right overflow occur (otherwise, the
unary err interactions are enabled and run in an endless loop). Henceforth, the460

computation of the linear system involved only the allocated tape components
and followed the execution of the statements in M . Moreover, by construction
of the linear system, the relationship between the control and the tape state
machines ensures that no blocking can occur between them: tape cells are con-
tinuously ready to receive the commands from the control and to execute them,465

in order. Therefore, the system stops in a deadlock only if no more commands
are sent, i.e. when the control machine reaches a stop statement and all tape
components are “idle”, that is, no other commands are pending for completion.

The termination problem of Post-Turing machines being undecidable [11],
it implies that the LinearDeadlock problem is also undecidable. Moreover, we470

can use a similar argument to show that the LinearReachability problem is
undecidable as well. Actually, we can restrict without loss of generality to
programs M containing a unique stop statement moreover occurring as the last
statement m in M . Then, for such programs we can prove the equivalence of
the previous assertions to the following one:475

3. the answer to reach(φw, 〈m〉,∆w, βM ) is yes

that is, the linear system reaches some configuration where a component is in
state m. In fact, by construction, the only component that could reach the
m state is the leftmost control component, and therefore we can map back
any execution of the linear component-based system reaching m in the control480

component, to a terminating execution of the Post-Turing machine.

5. Translating CL Specifications into Rewriting Trees

The inductive interpretation of predicate symbols in the CL logic, by means
of a finite set of definitions, supports the idea of designing systems hierarchically
(top-down). For instance, in §1.1, we specify a ring system first by a chain of485

components, with an interaction between the out port of the last to the in
port of the first component (rule 1). Then a chain consists of one component
and an interaction between the out port of that component and the in port of
the first component of a separate chain (rule 3), or of two components (rule
2). Intuitively, one can view these stages of the definition as rewriting steps,490

in which a predicate atom is replaced by one of the rules defining it. In this
section, we formalize this idea by introducing rewriting trees, i.e. trees labeled
with rules, that define a partial order in which the rules are applied.
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Moreover, the verification method described in §6 uses rewriting trees as
backbones for the encoding of sets of configurations in MSO interpreted over495

trees [12]. In particular, the component indices from the set U are going to be
interpreted as nodes of rewriting trees. As will be shown below, this interpre-
tation of logical variables loses no generality, because component indices can
only be compared for equality; their particular nature is of no importance from
the point of view of the verification problems considered. Furthermore, the in-500

terpretation of component indices as tree nodes enables the use of a decidable
fragment of MSO, to encode verification conditions.

The mapping of variables to the nodes of a rewriting tree is uniquely de-
fined by the occurrences of the component atoms in the tree. More precisely,
because all atomic propositions that occur in the rewriting tree are joined by505

separating conjunctions, the variables of all component atoms C(x) with the
same component type C must be interpreted as different indices, or else the
formula corresponding to the tree would not be satisfiable. Hence, a rewriting
tree uniquely defines an architecture α over a given signature Σ and, implicitly,
a Petri net N(Σ, α, β), for a given behavior map β (Def. 1).510

5.1. Rewriting Trees

Trees play an important role in the subsequent developments, hence we in-
troduce a few formal definitions, for self-containment reasons. Let κ ≥ 1 be
an integer constant and let [1, κ]∗ denote the set of finite sequences of integers
between 1 and κ, called nodes in the following. We denote the concatenation of515

nodes w, u ∈ [1, κ]∗ as w · u or simply wu, when no confusion arises. A set of
nodes T ⊆ [1, κ]∗ is said to be:

1. prefix-closed if wi ∈ T , for some i ∈ [1, κ], only if w ∈ T , and
2. complete if wi ∈ T , for some i ∈ [1, κ], only if wj ∈ T , for all j ∈ [1, i− 1].

A κ-ary tree T is a function mapping a complete prefix-closed set of nodes520

nodes(T ) into a finite set of labels. The root of T is the empty sequence ε, the

children of a node w ∈ nodes(T ) are childsT (w)
def
= {wi ∈ nodes(T ) | i ∈ [1, κ]}

and the parent of a node wi ∈ nodes(T ), where i ∈ [1, κ], is w. The leaves of T
are leaves(T )

def
= {w ∈ nodes(T ) | w · 1 6∈ nodes(T )}. The subtree of T rooted at

w is defined by nodes(T ↓w)
def
= {w′ | ww′ ∈ nodes(T )} and T ↓w (w′)

def
= T (ww′),525

for all w′ ∈ nodes(T ↓w). A prefix of a tree T is the restriction of T to a complete
prefix-closed subset of nodes(T ). We say that T is finite if nodes(T ) is finite.

Let ∆ be a fixed SID in the rest of this section. For an arbitrary CL formula
φ, we denote by #pred(φ) the number of occurrences of predicate atoms and
by predi(φ) the i-th predicate atom from φ, in some predefined total ordering530

of the symbols in the syntax tree of φ. A formula φ is said to be predicate-
free if #pred(φ) = 0. Without loss of generality, we assume from now on that
#pred(φ) ≤ κ, for each CL formula φ considered in the following. We shall also
simplify our technical life by considering the following assumption:

Assumption 1. For each sentence φ, there exists a rule Aφ()← φ in ∆, where535

Aφ is a predicate symbol of zero arity, not occurring in φ or elsewhere in ∆.
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This assumption loses no generality because each query in a decision problem
(§4) considers finitely many sentences, for which finitely many rules of the above
form are added to ∆.

Definition 6. Given a CL formula φ, a rewriting tree for φ is a tree T with la-540

bels from ∆, such that T (ε) =
(
A(x1, . . . , x#(A))← φ

)
, for some predicate sym-

bol A and, for each w ∈ nodes(T ) such that T (w) =
(
A0(x1, . . . , x#(A0))← ψ0

)
,

the following hold:
1. for all i ∈ [1,#pred(ψ0)], if predi(ψ0) = Ai(yi1, . . . , yi#(Ai)), then wi ∈

nodes(T ) and T (wi) =
(
Ai(x1, . . . , x#(Ai))← ψi

)
is a rule from ∆,545

2. wi 6∈ nodes(T ), for all i > #pred(ψi).
We denote by T(φ) the set of rewriting trees for φ.

By slight abuse of notation, we write φ[ψ1/ϕ1 . . . ψn/ϕn] for the result of
replacing each subformula ψi of φ by the formula ϕi, for all i ∈ [1, n]. We
associate each rewriting tree T ∈ T(φ) a characteristic formula F(T ), defined
inductively on the structure of T , as follows:

F(T )
def
=


φ, if nodes(T ) = {ε}

φ [A1(y1)/F(T ↓1)[x1/y1] . . . An(yn)/F(T ↓n)[xn/yn]] ,
if n = #pred(φ) ≥ 1 and predi(φ) = Ai(yi), for all i ∈ [1, n]

Intuitively, the characteristic formula of a rewriting tree is the predicate-free
formula obtained by replacing each predicate atom occurring in a node of the
tree by the characteristic formula of its corresponding subtree, recursively. In550

the process of building a characteristic formula, the free variables of the char-
acteristic formulæ of the subtrees are substituted with the parameters of their
corresponding predicate atoms.

Let M(T )
def
= η denote the matrix of the characteristic formula F(T ) i.e., the

largest quantifier-free formula of F(T ) = ∃x1 . . . ∃xn . η written in prenex form.555

Since the separating conjunction and the existential quantifier distribute, every
characteristic formula has a prenex form that is unique, modulo the commuta-
tivity and associativity of the separating conjunction.

Example 6. Let Σ = ({N, L}, {R, I},P) be a signature, where P(N) = {req,
reply}, P(L) = {reply , in, out}, P(R) = 〈req , reply , reply〉 and P(I) = 〈out , in〉.
Consider a behavior map β, such that statesβ(N) = {q0, q1} and statesβ(L) =
{s0, s1, s2}. The SID below defines tree-shaped architectures, whose leaves are
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N(rε)

Root()← ∃r∃n1∃`1∃r1∃n2∃`2∃r2 . Nq0 (r)
∗R(r, n1, n2) ∗ I(r1, `2) ∗ I(r2, `1)

∗Node(n1, `1, r1) ∗ Node(n2, `2, r2)

Node(n, `, r)← ∃n1∃r1∃n2∃`2 . Nq0 (n)
∗R(n, n1, n2) ∗ I(r1, `2)

∗Node(n1, `, r1) ∗ Node(n2, `2, r)

Node(n, `, r)← ∃n1∃r1∃n2∃`2 . Nq0 (n)
∗R(n, n1, n2) ∗ I(r1, `2)

∗Node(n1, `, r1) ∗ Node(n2, `2, r)

Node(n, `, r)← Nq0 (n)
∗R(n, `, r) ∗ Leaf (`)
∗I(`, r) ∗ Leaf (r)

Node(n, `, r)← Nq0 (n)
∗R(n, `, r) ∗ Leaf (`)
∗I(`, r) ∗ Leaf (r)

Leaf (x)←
Ls0 (x)

Leaf (x)←
Ls0 (x)

Node(n, `, r)← Nq0 (n)
∗R(n, `, r) ∗ Leaf (`)
∗I(`, r) ∗ Leaf (r)

Node(n, `, r)← Nq0 (n)
∗R(n, `, r) ∗ Leaf (`)
∗I(`, r) ∗ Leaf (r)

Leaf (x)←
Ls0 (x)

Leaf (x)←
Ls0 (x)

Leaf (x)←
Ls0 (x)

Leaf (x)←
Ls0 (x)

Leaf (x)←
Ls0 (x)

Leaf (x)←
Ls0 (x)
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Figure 5: Trees with Leaves Linked in a Token Ring

connected in a token ring:

Root()← ∃r∃n1∃`1∃r1∃n2∃`2∃r2 . N
q0(r) ∗ R(r, n1, n2) ∗ I(r1, `2)

∗ I(r2, `1) ∗Node(n1, `1, r1) ∗Node(n2, `2, r2) (7)

Node(n, `, r)← ∃n1∃r1∃n2∃`2 . Nq0(n) ∗ R(n, n1, n2) ∗ I(r1, `2)

∗ Node(n1, `, r1) ∗Node(n2, `2, r) (8)

Node(n, `, r)← Nq0(n) ∗ R(n, `, r) ∗ Leaf (`) ∗ I(`, r) ∗ Leaf (r) (9)

Leaf (x)← Ls0(x) (10)

Figure 5(a) shows an unfolding tree for φ = ∃r∃n1∃`1∃r1∃n2∃`2∃r2 . N
q0(r)∗

R(r, n1, n2) ∗ I(r1, `2) ∗ I(r2, `1) ∗ Node(n1, `1, r1) ∗ Node(n2, `2, r2), with Aφ =560

Root, and Figure 5(b) shows a model of the characteristic formula of this unfold-
ing tree. To avoid name clashes, we annotate existentially quantified variables
in the characteristic formula with the node of the unfolding tree where they
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are introduced, for instance rε, nε1 and nε2 are introduced at the root, whereas
n1

1, n
1
2, `

1
2, r

1
1 (n2

1, n
2
2, `

2
2, r

2
1) occur first at the left (right) child of the root. �565

The following result shows that each model of a sentence is the model of the
characteristic formula of some rewriting tree for that sentence, that represents
the way in which the model is “produced” by unfolding the rules in ∆. In
general, such rewriting trees are not unique, as different rewriting trees can
have equivalent characteristic formulæ.570

Lemma 1. For each CL sentence φ, we have [[φ]] =
⋃
T ∈T(φ) [[F(T )]].

Proof. We prove a slightly more general statement: for each formula φ, each
rule A(x1, . . . , x#(A))← φ from ∆, each configuration (α,m) and each store s:

(α,m) |=s φ ⇐⇒ (α,m) |=s F(T ), for some T ∈ T(φ), such
that T (ε) =

(
A(x1, . . . , x#(A))← φ

)
“⇒” By induction on the definition of the satisfaction relation |=, considering
the following cases:

• φ ∈ {emp,Cq(x), I(x1, . . . , x#(I))}: we define T by nodes(T )
def
= {ε} and

T (ε)
def
=
(
A(x1, . . . , x#(A))← φ

)
. By Def. 6, we have T ∈ T(φ) and575

F(T ) = φ, thus (α,m) |=s F(T ).

• φ = ∃y1 . . . ∃yn . φ0 ∗∗ k
i=1Ai(zi1, . . . , zi#(Ai)), where φ0 is quantifier- and

predicate-free: since (α,m) |=s ∃y1 . . . ∃yn . φ0 ∗ ∗ k
i=1Ai(zi1, . . . , zi#(Ai)),

there exists a store s′ that agrees with s over X1 \ {y1, . . . , yn} and config-
urations (αi,mi), such that (α,m) = (α0,m0)• . . .•(αk,mk), (α0,m0) |=s′

580

φ0 and (αi,mi) |=s′ Ai(zi1, . . . , zi#(Ai)), for all i ∈ [1, k]. For each i ∈ [1, k],

since (αi,mi) |=s′ Ai(zi1, . . . , zi#(Ai)), there exists Ai(x1, . . . , x#(Ai))← ψi

in ∆, such that (αi,mi) |=s′ ψi[x1/z
i
1, . . . , x#(Ai)/z

i
#(Ai)], by the defini-

tion of |=. Let s′i
def
= s′ ◦ [x1/z

i
1, . . . , x#(Ai)/z

i
#(Ai)] be a store. We have

(αi,mi) |=s′i ψi and, by the induction hypothesis, there exists a rewrit-585

ing tree Ti ∈ T(ψi), such that Ti(ε) =
(
Ai(x1, . . . , x#(Ai))← ψi

)
and

(αi,mi) |=s′i F(Ti), hence (αi,mi) |=s′ F(Ti)[x1/z
i
1, . . . , x#(Ai)/z

i
#(Ai)].

We define the rewriting tree T as:

– nodes(T ) = {ε} ∪
⋃k
i=1 i · nodes(Ti),

– T (ε) = A(x1, . . . , x#(A))← φ,590

– T (iw) = Ti(w), for each i ∈ [1, k] and each w ∈ nodes(Ti).
We obtain F(T ) = ∃y1 . . . ∃yn . φ0 ∗∗ k

i=1F(Ti)[x1/z
i
1, . . . , x#(Ai)/z

i
#(Ai)],

leading to (α,m) |=s F(T ).

”⇐” By induction on the structure of T ∈ T(φ), such that moreover T (ε) =(
A(x1, . . . , x#(A))← φ

)
, by distinguishing the following cases:595

• nodes(T ) = {ε}: since T (ε) =
(
A(x1, . . . , x#(A))← φ

)
, we have F(T ) =

φ, hence (α,m) |=s φ.
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• childsT (ε) = {1, . . . , k}, for some k ≥ 1: assume w.l.o.g. that φ =
∃y1 . . . ∃yn . φ0 ∗ ∗ k

i=1Ai(zi1, . . . , zi#(Ai)), where φ0 is a quantifier- and
predicate-free formula. By the definition of characteristic formulæ, we600

have F(T ) = ∃y1 . . . ∃yn . φ0 ∗ ∗ k
i=1F(T ↓i)[x1/z

i
1, . . . , x#(Ai)/z

i
#(Ai)],

where T (i) =
(
Ai(x1, . . . , x#(Ai))← ψi

)
, hence T ↓i∈ T(ψi). Since (α,m)

|=s F(T ), there exists a store s′ that agrees with s over X1 \ {y1, . . . , yn}
and configurations (α0,m0), . . . , (αk,mk), such that (α0,m0) |=s′ φ0 and
(αi,mi) |=s′ F(T ↓i)[x1/z

i
1, . . . , x#(Ai)/z

i
#(Ai)], for all i ∈ [1,m]. Consider605

an arbitrary index i ∈ [1,m] and let s′i
def
= s′ ◦ [x1/z

i
1, . . . , x#(Ai)/z

i
#(Ai)],

hence (αi,mi) |=s′i F(T ↓i). By the inductive hypothesis, we have (αi,mi)
|=s′i ψi, hence (αi,mi) |=s′i Ai(x1, . . . , x#(Ai)) and (αi,mi) |=s′ Ai(zi1, . . .,
zi#(Ai)) follows. Because the above holds for all i ∈ [1, k], we conclude

that (α,m) |=s φ.610

5.2. Canonical Models

In the following, we shall equate the universe of indices U with the set [1, κ]∗

of tree nodes, i.e. finite sequences of integers between 1 and κ. This is without
loss of generality, because both sets are infinitely countable and the nature
of indices plays no role in the interpretation of CL formulæ. In this setting,615

we define the canonical model (αT ,mT ) of the characteristic formula F(T ) of
a rewriting tree T . In order to simplify its definition, we proceed under the
following assumption:

Assumption 2. Each rule of ∆ is of one of the forms:

A(x1)← φ, such that φ 6= emp (I)

A(x1, . . . , x#(A))← ∃y1 . . . ∃yn . φ ∗ ψ ∗ ∗ p
i=1Ai(z

i
1, . . . , z

i
#(Ai)) (II)

for some n ≥ 0 and p ≥ 1, where:
• φ ∈ {Cq(x1) | C ∈ C, q ∈ statesβ(C)} ∪ {emp},620

• ψ is a separating conjunction of interaction atoms,
•
⋃p
i=1{zi1, . . . , zi#(Ai)} =

(
{x1, . . . , x#(A)} \ fv(φ)

)
∪ {y1, . . . , yn}, and

• {zi1, . . . , zi#(Ai)} ∩ {z
j
1, . . . , z

j
#(Aj)} = ∅, for all 1 ≤ i < j ≤ p.

The above assumption is not without loss of generality. On the positive
side, all examples considered in this paper can be written using only rules of625

this form, for instance, the definition of the Chainn,t predicates, for constant
integers n, t ≥ 0 (Example 5) or the definition of the Root , Node and Leaf
predicates (Example 6).

A direct consequence of the above assumption is that, each variable that
occurs in a characteristic formula of a rewriting tree, occurs in exactly one630

component atom, in a rule that labels exactly one node from the rewriting tree.
This fact is proved below:
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Lemma 2. Let φ be a CL formula and T ∈ T(φ) be a rewriting tree for φ. For
each variable x, that occurs free or existentially quantified in F(T ), there exists
exactly one node w ∈ nodes(T ) and one component atom Cq(x) in T (w).635

Proof. It is sufficient to prove the statement for the case where x occurs in the
label of the root of T . If it is introduced at some node w ∈ nodes(T ) \ {ε}
by an existential quantifier, the same proof can be done taking T ↓w instead
of T . The proof goes by induction on the structure of T . For the base case
nodes(T ) = {ε}, the only possibility is that T (ε) is a rule of the form (I) and
the proof is immediate. For the inductive step, let T (ε) be the following rule:

A(x1, . . . , x#(A))← ∃y1 . . . ∃yn . φ ∗ ψ ∗ ∗ p
i=1Ai(z

i
1, . . . , z

i
#(Ai))

If φ is of the form Cq(x1) and x = x1, then ε is the unique node such that x
occurs in a component atom. Else, x ∈ {x1, . . . , x#(A)} ∪ {y1, . . . , yn} \ fv(φ),
thus x ∈ {zi1, . . . , zi#(Ai)}, for exactly one i ∈ [1, p], by Assumption 2. In this
case the inductive hypothesis applies, thus x occurs in exactly one component
atom Cq(x) in T (w), for exactly one w ∈ nodes(T ↓i).640

The canonical model of a characteristic formula F(T ) is obtained by instan-
tiating each variable x that occurs free or existentially quantified in F(T ) by the
unique node w ∈ nodes(T ), such that x occurs in a single component atom Cq(x)
in T (w) (Lemma 2). Formally, let φ = ∃y1 . . . ∃yn . ψ ∗∗ p

i=1Ai(zi1, . . . , zi#(Ai))
be a formula, where ψ is quantifier- and predicate-free, and define, for each
rewriting tree T ∈ T(φ), a store sεT : fv(ψ) ∪

⋃p
i=1{zi1, . . . , zi#(Ai)} → nodes(T ),

as follows:

sεT (x)
def
=


ε if x occurs in a component atom from ψ
i · sεT↓i(xj) if x = zij , for some j ∈ [1,#(Ai)], where

T (i) =
(
Ai(x1, . . . , x#(Ai))← ϕi

)
, for all i ∈ [1, p]

Note that, because the rules of the SID meet the conditions of Assumption 2,
the two cases of the definition of sεT above are exclusive and, moreover, sεT (x)
is defined for all free variables of the matrix ψ ∗ ∗ p

i=1Ai(zi1, . . . , zi#(Ai)) of φ.

Recall that M(T ) denotes the quantifier-free matrix of the characteristic
formula F(T ). We extend the store sεT to a store sT : fv(M(T )) → nodes(T )
mapping all variables (free or existentially quantified) that occur in the charac-
teristic formula F(T ):

sT (x)
def
=

{
sεT (x) if x ∈ fv(F(T ))
w · sεT↓w(x) if x is existentially quantified at w ∈ nodes(T )

(11)

In the above definition, we have assumed that all existentially quantified vari-
ables have pairwise distinct names (this is w.l.o.g. as quantified variables can645

be α-renamed, if necessary). Note that sT is uniquely defined, for each given
rewriting tree T and induces a unique canonical model, defined below:

Definition 7. The canonical model of a rewriting tree T is the configuration
(αT ,mT ), defined as follows:
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• αT (C)
def
= {sT (x) | Cq(x) occurs in M(T )},650

• αT (I)
def
= {〈sT (x1), . . . , sT (x#(I))〉 | I(x1, . . . , x#(I)) occurs in M(T )}, and

• mT
def
= {q[sT (x)] | Cq(x) occurs in M(T )}.

Lemma 3. Given a sentence φ, for each rewriting tree T ∈ T(φ), we have
(αT ,mT ) |= F(T ).

Proof. We prove a more general statement, namely if φ is a formula, not nec-655

essarily a sentence, then (αT ,mT ) |=sT M(T ). The proof goes by induction on
the structure of T , distinguishing the cases below:

• nodes(T ) = {ε} and T (ε) = (A(x)← Cq(x)) is a rule of type (I): then
αT (C) = {sT (x)} = {ε}, mT = {q[sT (x)]} = {q[ε]}, αT (C′) = ∅, for all
C′ ∈ C \ {C} and αT (I) = ∅, for all I ∈ I, thus (αT ,mT ) |=sT Cq(x).660

• nodes(T ) 6= {ε} and T (ε) =
(
A(x1, . . . , x#(A)) ← ∃y1 . . . ∃yn . φ ∗ ψ ∗

∗ p
i=1Ai(zi1, . . . , zi#(Ai))

)
is a rule of type (II). By the definition of sT , we

have sT (x) = i · sT↓i(x), for all x ∈ fv(M(T ↓i)) and i ∈ [1, p]. We define
the structures (α0,m0), (α1,m1), . . . , (αp,mp) as follows:

– α0(C)
def
= {sT (x)} = {ε} and m0

def
= {q[sT (x)]} = {q[ε]} if φ = Cq(x1),665

else α0(C) = ∅ and m0 = ∅ and, moreover, α0(I)
def
= {〈sT (x1), . . .,

sT (x#(I))〉 | I(x1, . . . , x#(I)) occurs in ψ}, thus we have (α0,m0) |=sT

φ ∗ ψ.

– αi(C)
def
= {sT (x) | Cq(x) occurs in M(T ↓i)}, αi(I)

def
= {〈sT (x1), . . .,

sT (x#(I))〉 | I(x1, . . . , x#(I)) occurs in M(T ↓i)} and mi
def
= {q[sT (x)] |670

Cq(x) occurs in M(T ↓i)}, for each i ∈ [1, p]. Since sT (x) = i ·sT↓i(x),
for all x ∈ ηi and i ∈ [1, p], we have αi(C) = {i · u | u ∈ αT↓i(C)}, for
all C ∈ C, mi = {q[i · u] | q[u] ∈ mT↓i} and αi(I) = {〈i·u1, . . ., i·u#(I)〉
| 〈u1, . . . , u#(I)〉 ∈ αT↓i(I)}, for all I ∈ I. By the inductive hypothesis,
we have (αT↓i ,mT↓i) |=sT↓i ηi, thus (αi,mi) |=sT ηi, for all i ∈ [1, p].675

Since the sets of indices of α0, . . . , αp and m0, . . . ,mp are pairwise dis-
joint, their composition is defined and, moreover, we have (αT ,mT ) =
(α0,m0) • . . . • (αp,mp). Consequently, we obtain (αT ,mT ) |=sT φ ∗ ψ ∗
∗ p

i=1Ai(zi1, . . . , zi#(Ai)), as required.

Example 7. Since T is a rewriting tree for a sentence, each variable occurs
bound in F(T ) and is mapped by the store sT into the unique node of T that
contains a unique component atom in which that variable occurs:

sT (rε) = ε sT (nε1) = 1 sT (nε2) = 2
sT (n1

1) = 11 sT (n1
2) = 12 sT (n2

1) = 21 sT (n2
2) = 22

sT (`ε1) = 111 sT (r1
1) = 112 sT (`12) = 121 sT (rε1) = 122

sT (`ε2) = 211 sT (r2
1) = 212 sT (`22) = 221 sT (rε2) = 222

The configuration (αT ,mT ) corresponding to the rewriting tree T from Fig-
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ure 5(a) is given below:

αT (N) = {ε, 1, 2, 11, 12, 21, 22}
αT (L) = {111, 112, 121, 122, 211, 212, 221, 222}
αT (R) = {〈ε, 1, 2〉, 〈1, 11, 12〉, 〈11, 111, 112〉, 〈12, 121, 122〉, 〈21, 211, 212〉,

〈22, 221, 222〉}
αT (I) = {〈111, 112〉, 〈112, 121〉, 〈121, 122〉, 〈211, 212〉, 〈212, 221〉, 〈221, 222〉,

〈222, 111〉}
mT = {q0[ε], q0[1], q0[2], q0[11], q0[12], q0[21], q0[22], s0[111], s0[112],

s0[121], s0[122], s0[211], s0[212], s0[221], s0[222]} �

5.3. Symmetry Reduction680

As shown in Lemma 1, each model of a sentence is a model of the character-
istic formula of some rewriting tree for that sentence. In this section, we prove a
symmetry property of the models of a characteristic formula corresponding to a
given rewriting tree, that makes them indistinguishable from the point of view
of the decision problems considered previously (§4). Let us fix a signature Σ,685

with component types C = {C1, . . . ,CN} and interaction types I = {I1, . . . , IM},
and a behavior map β, in the rest of this section.

Intuitively, two architectures are symmetric if they differ only by a renaming
of indices used to interpret the component and interaction types. For instance,
the architectures α1 and α2, where α1(C1) = α1(C2) = {1}, α1(I1) = {〈1, 1〉}690

and α2(C1) = {1}, α2(C2) = {2}, α2(I1) = {〈1, 2〉} have the same shape (as-
suming N = 2 and M = 1). However, this isomorphism cannot be captured by
a global permutation of indices, as it is usually the case4 in the literature [13],
because the sets α1(C1) ∪ α1(C2) and α2(C1) ∪ α2(C2) have different cardinali-
ties. For this reason, our definition of symmetry considers one permutation per695

component type.
Formally, given an architecture α over Σ and a tuple of bijections f =

〈f1, . . . , fN 〉, where each fi : U → U renames the indices of the component
type Ci, for all i ∈ [1, N ], we define:

(f(α))(Ci)
def
= fi(α(Ci)), for all i ∈ [1, N ]

(f(α))(I)
def
= {〈fi1(u1), . . . , fi#(I)

(u#(I))〉 | 〈u1, . . . , u#(I)〉 ∈ α(I),
∀k ∈ [1,#(I)] . comp(〈P(I)〉k) = Cik}

For a marking m of the Petri net N(Σ, α, β), we define, moreover:

f(m)
def
= {q[fi(u)] | q[u] ∈ m, q ∈ statesβ(Ci), i ∈ [1, N ]}

Since the sets statesβ(Ci), for i ∈ [1, N ], are assumed to be pairwise disjoint, for
each state q there is exactly one component type Ci, such that q ∈ statesβ(Ci).

4Typically, global permutations suffice when only one component type is considered.

25



Definition 8. Two configurations are symmetric, denoted (α1,m1) ∼ (α2,m2),
if and only if there exists a tuple of bijections f = 〈f1, . . . , fN 〉, where fi : U→ U,700

for all i ∈ [1, N ], such that f(α1) = α2 and f(m1) = m2.

The main idea of using symmetries is to prove that models of the same
characteristic formula F(T ) of some rewriting tree T are symmetric and, in
particular, symmetric with the canonical model (αT ,mT ). This proof is greatly
simplified by considering only those architectures in which all interactions are705

tightly connected to components, in the following sense:

Definition 9. An architecture α is tight if and only if, for each interaction
I[u1, . . . , u#(I)] from α and each k ∈ [1,#(I)], we have uk ∈ α(C) where C =
comp(〈P(I)〉k)), that is, the unique component type such that 〈P(I)〉k ∈ P(C).

Note that the interactions from an architecture α having unconnected ports710

cannot fire in the Petri net N(Σ, α, β) (Def. 1), thus having no impact on the
answer of a decision problem (deadlock, reachability). However, such interac-
tions are important for the definition of the composition operation (Def. 4). For
instance, the tight architecture from Example 1 can only be decomposed into
loose non-empty architectures. Consequently, the syntax of CL formulæ does715

not impose any restriction that guarantee tightness of the architectures defined.
This is achieved by an easy-to-check condition below (Def. 10). In general, the
tightness problem is decidable and its complexity has been studied for several
fragments of CL [14].

Definition 10. A profile is a function λ : A →
⋃
i≥1 C

i, that associates each720

predicate symbol A(x1, . . . , x#(A)) of non-zero arity with a tuple of component
types of length #(A) ≥ 1. A formula φ is tight for a profile λ if and only if it
contains, for each interaction atom I(x1, . . . , x#(I)) and each k ∈ [1,#(I)]:

• a component atom Cq(xk), such that 〈P(I)〉k ∈ P(C), or
• a predicate atom A(y1, . . . , y#(A)), such that xk = y` and 〈P(I)〉k ∈725

P(〈λ(A)〉`), for some ` ∈ [1,#(A)].
A SID ∆ is tight if and only if there exists a profile λ∆, such that, for each rule
A(x1, . . . , x#(A)) ← φ from ∆, the formula φ is tight for λ∆ and contains, for
each k ∈ [1,#(A)]:

• a component atom Cq(xk), such that 〈λ∆(A)〉k = C, or730

• a predicate atom B(y1, . . . , y#(A)), such that xk = y` and 〈λ∆(A)〉k =
〈λ∆(B)〉`, for some ` ∈ [1,#(B)].

A formula φ, interpreted over a tight SID ∆, is tight if and only if it is tight
for the profile λ∆.

For instance, one can check that the predicate atoms Chainn,t(x, y) are tight,735

by taking the profile λ∆(Chainn,t) = 〈S,S〉, for all constants n, t ≥ 0 (Example
5). Analogously, the predicate atoms Node(n, `, r) are tight, by taking the profile
λ∆(Node) = 〈N, L, L〉 and λ∆(Leaf ) = 〈L〉 (Example 6). The above conditions
guarantee the tightness of architectures described by tight formulæ:

Lemma 4. For each model (α,m) of a tight sentence, the architecture α is tight.740
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Proof. Let φ be a tight sentence, such that (α,m) |= φ. By Lemma 1, there
exists a rewriting tree T ∈ T(φ), such that (α,m) |= F(T ). Let I(z1, . . . , z#(I))
be an interaction atom from F(T ) and k ∈ [1,#(I)]. Also, let w ∈ nodes(T )
be the node where this interaction atom was introduced, such that T (w) =(
A(x1, . . . , x#(A))← ϕ

)
and I(y1, . . . , y#(I)) occurs in ϕ, where y1, . . . , y#(I) are745

substituted by z1, . . . , z#(A), respectively, during the construction of F(T ). Since
the SID ∆, that interprets the formula φ, is tight, the rule body ϕ is tight, hence
one of the following holds:

• there exists a component atom Cq(yk) in ϕ, such that 〈P(I)〉k = C, or
• there exists a predicate atom B(ξ1, . . . , ξ#(B)) in ϕ, such that yk = ξ` and750

〈P(I)〉k = 〈λ∆(B)〉`, where λ∆ is the profile from Def. 10. In this case,
we apply induction to prove the existence of a component atom Cq(ξk) in
F(T ↓i), such that 〈P(I)〉k = C, where i ∈ [1,#pred(ϕ)] is the child of w
corresponding to B(ξ1, . . . , ξ#(B)) in T .

In both cases, F(T ) contains a component atom Cq(zk), such that 〈P(I)〉k = C,755

hence (α,m) is tight, by Def. 9.
The next result proves that each model of a tight sentence is necessarily

symmetric to a canonical model of that sentence:

Proposition 3. Given a tight sentence φ, for each T ∈ T(φ), if (α,m) |= F(T ),
then (α,m) ∼ (αT ,mT ).760

Proof. Since (αT ,mT ) |= F(T ), by Lemma 3, it is sufficient to prove that
(α1,m1) ∼ (α2,m2), for any two configurations (αi,mi), such that (αi,mi) |=
F(T ). Let F(T )

def
= ∃x1 . . . ∃xn . η, where η is a quantifier- and predicate-free

formula. Then (αi,mi) |= F(T ) if and only if there exist stores si, such that

(αi,mi) |=si η, for i = 1, 2. We define the sets U ij
def
= {si(x) | Cqj(x) occurs in η}765

and the bijections fj : U1
j → U2

j as fj(s1(x)) = s2(x), for all variables x, such

that Cqj(x) occurs in η. These bijections are extended to bijections f j : U→ U,
by the following fact:

Fact 1. Given finite sets U1, U2 ⊆ U, such that f : U1 → U2 is a bijection, there
exists a bijection f : U→ U, such that f(u) = f(u), for all u ∈ U1.770

Proof. Since f is a bijection, we have ||U1|| = ||U2|| and, since ||Ui|| = ||Ui \ U3−i||+
||U1 ∩ U2||, for i = 1, 2, we obtain ||U1 \ U2|| = ||U2 \ U1||. Hence there exists a
bijection f : U→ U, such that f(u) = f(u), for all u ∈ U1, f(U2 \U1) = U1 \U2

and f(U \ (U1 ∪ U2)) = f(U \ (U1 ∪ U2)).

For f
def
= 〈f1, . . . , fN 〉, we prove the following points:775

• f(α1) = α2: by the definition of f j , we have f j(α1(Cj)) = α2(Cj), for all

j ∈ [1, N ]. Let I ∈ I and we prove α2(I) = {〈f i1(u1), . . . , f i#(I)
(u#(I))〉 |

〈u1, . . . , u#(I)〉 ∈ α1(I), ∀k ∈ [1,#(I)] . comp(〈P(I)〉k) = Cik}. “⊆” Let
〈u1, . . . , u#(I)〉 ∈ α2(I). Then there exists an interaction atom I(x1, . . .,
x#(I)) in η, such that ui = s2(xi), for i ∈ [1,#(I)]. Since φ is a tight780

sentence and (α2,m2) |= φ, by Lemma 4, the architecture α2 is tight (Def.
9). Then, for each k ∈ [1,#(I)], we have uk ∈ α2(Cik), where Cik ∈ C is
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the unique component type such that 〈P(I)〉k ∈ P(Cik). By the previous
point, there exists u′k ∈ α1(Cik), such that f ik(u′k) = uk = s2(xk). By

the definition of f ik , we have u′k = s1(xk), hence 〈u′1, . . . , u′#(I)〉 ∈ α1(I).785

“⊇” Let 〈u1, . . . , u#(I)〉 ∈ α1(I), such that comp(〈P(I)〉k) = Cik , for all
k ∈ [1,#(I)]. Then there exists an interaction atom I(x1, . . . , x#(I)) in η,
such that uk = s1(xk), for all k ∈ [1,#(I)]. Since φ is a tight sentence and
(α1,m1) |= φ, by Lemma 4, the architecture α1 is tight, thus s1(xk) =
uk ∈ α1(Cik). By the definition of f ik , we have s2(xk) = f ik(uk), for all790

k ∈ [1,#(I)], hence 〈f i1(u1), . . . , f i#(I)
(u#(I))〉 ∈ α2(I).

• f(m1) = m2: we prove m2 = {q[f i(u)] | q[u] ∈ m1, q ∈ statesβ(Ci), i ∈ [1, N ]}.
“⊆” Let q[u] ∈ m2. Since (α2,m2) |=s2 η, there exists a component atom
Cqi (x) in η, such that u = s2(x) ∈ α2(Ci) and Ci is the unique compo-
nent type, such that q ∈ statesβ(Ci). By the definition of f i, we have795

s1(x) ∈ α1(Ci) and s2(x) = f i(s1(x)). Moreover, since (α1,m1) |=s1 η,
we have q[s1(x)] ∈ m1. “⊇” Let q[u] ∈ m1 and q ∈ statesβ(Ci), for some
i ∈ [1, N ]. Since (α1,m1) |=s1 η, there exists a component atom Cq(x) in
η, such that u = s1(x). By the definition of f i, we have f i(s1(x)) = s2(x),
hence q[f i(u)] = q[s2(x)] ∈ m2, since (α2,m2) |=s2 η.800

Moreover, the symmetry relation is preserved by the Petri net describing the
operational semantics of the system (Def. 1):

Lemma 5. Given a tight architecture α and a behavior β, over a signature
Σ = ({C1, . . . ,CN}, I,P), for any tuple of bijections f = 〈f1, . . . , fN 〉, where
fi : U→ U, for all i ∈ [1, N ], the following hold:805

1. m′ ∈ Reach(N(Σ, α, β),m) ⇐⇒ f(m′) ∈ Reach(N(Σ, f(α), β), f(m)),
2. m ∈ Dead(N(Σ, α, β)) ⇐⇒ f(m) ∈ Dead(N(Σ, f(α), β)),

for any two markings m,m′ of the Petri net N(Σ, α, β).

Proof. By Def. 1, let N(Σ, f(α), β) be the Petri net (Sf , T f , Ef ), where:

Sf =
⋃N

i=1
{q[u] | q ∈ states(Ci), u ∈ (f(α))(Ci)}

=
⋃N

i=1
{q[fi(u)] | q ∈ states(Ci), u ∈ α(Ci)}

T f =
⋃

I∈I
{ (I[u1, . . . , u#(I)], 〈t1, . . . , t#(I)〉) | 〈p1, . . . , p#(I)〉 = P(I),

〈u1, . . . , u#(I)〉 ∈ (f(α))(I), 〈t1, . . . , t#(I)〉 ∈ Tβ(I),

∀i, j ∈ [1,#(I)]. i 6= j ⇒ ui 6= uj or comp(pi) 6= comp(pj) }

=
⋃

I∈I
{ (I[fk1(u1), . . . , fk#(I)

(u#(I))], 〈t1, . . . , t#(I)〉) |

〈p1, . . . , p#(I)〉 = P(I), ∀i ∈ [1,#(I)]. Cki = comp(pi),

〈u1, . . . , u#(I)〉 ∈ α(I), 〈t1, . . . , t#(I)〉 ∈ Tβ(I),

∀i, j ∈ [1,#(I)]. i 6= j ⇒ fki(ui) 6= fkj (uj) or comp(pi) 6= comp(pj) }
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Ef =
⋃

I∈I
{ (q[fki(ui)], (I[fk1(u1), . . . , fk#(I)

(u#(I))], 〈t1, . . . , t#(I)〉)),

((I[fk1(u1), . . . , fk#(I)
(u#(I))], 〈t1, . . . , t#(I)〉), q′[fki(ui)]) |

ti = (q
pi−→comp(pi) q

′), i ∈ [1,#(I)] }

We obtain the following equivalence:

m
(I[u1,...,u#(I)],〈t1,...,t#(I)〉)−−−−−−−−−−−−−−−−−→ m′ in N(Σ, α, β)

⇐⇒

f(m)
(I[fk1 (u1),...,fk#(I)

(u#(I))],〈t1,...,t#(I)〉)
−−−−−−−−−−−−−−−−−−−−−−−−−→ f(m′) in N(Σ, f(α), β)

where k1, . . . , k#(I) ∈ [1, N ] are such that Cki = comp(〈P(I)〉i), for all i ∈
[1,#(I)]. Point (1) uses this fact inductively, on the length of the firing sequence810

leading from m to m′. For point (2) we use, moreover, that q[u] ∈ m ⇐⇒
q[fi(u)] ∈ f(m) and q[u] ∈ •(I[u1, . . . , u#(I)], 〈t1, . . . , t#(I)〉) ⇐⇒ q[fi(u)] ∈
•
(I[fk1(u1), . . . , fk#(I)

(u#(I))], 〈t1, . . . , t#(I)〉), where Ci is the unique component
type such that q ∈ statesβ(Ci).

Theorem 2. Given a tight sentence φ, interpreted over a SID ∆, a behavior
map β and a tuple of states 〈q1, . . . , qk〉, the following equivalences hold:

deadlock t(φ,∆, β) ⇐⇒ deadlock(φ,∆, β)
reacht(φ, 〈q1, . . . , qk〉,∆, β) ⇐⇒ reach(φ, 〈q1, . . . , qk〉,∆, β)

where deadlock t(φ,∆, β) and reacht(φ, 〈q1, . . . , qk〉,∆, β) are defined below:815

• deadlock t(φ,∆, β): does there exist rewriting tree T ∈ T(φ), such that
Reach(N(Σ, αT , β),mT ) ∩Dead(N(Σ, αT , β)) 6= ∅?

• reacht(φ, 〈q1, . . . , qk〉,∆, β): does there exist a rewriting tree T ∈ T(φ)
and a configuration (αT ,m) ∈ Reach(N(Σ, αT , β),mT ), such that {qi[ui]
| i ∈ [1, k]} ⊆ m, with q1[u1], . . . , qk[uk] pairwise distinct?820

Proof. We prove the following points:
• deadlock t(φ,∆, β) ⇒ deadlock(φ,∆, β): assume that deadlock t(φ,∆, β)

has a positive answer and let T ∈ T(φ) be a rewriting tree, such that
Reach(N(Σ, αT , β),mT ) ∩ Dead(N(Σ, αT , β)) 6= ∅, the existence of which
is stated by deadlock t(φ,∆, β). By Lemma 3, (αT ,mT ) |= F(T ) and, by825

Lemma 1, we obtain (αT ,mT ) |= φ, thus deadlock(φ,∆, β) has a positive
answer.

• deadlock(φ,∆, β)⇒ deadlock t(φ,∆, β): assume that deadlock(φ,∆, β) has
a positive answer and let (α,m) be a model of φ and m′ be a marking such
that m′ ∈ Reach(N(Σ, α, β),m) ∩ Dead(N(Σ, α, β)). By Lemma 1, there830

exists a rewriting tree T ∈ T(φ), such that (α,m) |= F(T ). By Lemma
3, since φ is a tight sentence, we obtain that (α,m) ∼ (αT ,mT ) and
let f = 〈f1, . . . , fN 〉 be the bijections from Def. 8, such that (αT ,mT ) =
(f(α), f(m)). By Lemma 5, we obtain that f(m′) ∈ Reach(N(Σ, f(α), β), f(m))
∩ Dead(N(Σ, f(α), β)), thus deadlock t(φ,∆, β) has a positive answer.835
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• reacht(φ, 〈q1, . . . , qk〉,∆, β)⇒ reach(φ, 〈q1, . . . , qk〉,∆, β): assume that
reacht(φ, 〈q1, . . . , qk〉,∆, β) has a positive answer and let T ∈ T(φ) be a
rewriting tree and m be a marking of N(Σ, αT , β), such that (αT ,m) ∈
Reach(N(Σ, αT , β),mT ) and {qi[ui] | i ∈ [1, k]} ⊆ m, where q1[u1], . . .,
qk[uk] are pairwise distinct places. By Lemma 3, (αT ,mT ) |= F(T ) and,840

by Lemma 1, we obtain (αT ,mT ) |= φ, thus reach(φ, 〈q1, . . . , qk〉,∆, β)
has a positive answer.

• reach(φ, 〈q1, . . . , qk〉,∆, β)⇒ reacht(φ, 〈q1, . . . , qk〉,∆, β): assume that
reach(φ, 〈q1, . . . , qk〉,∆, β) has a positive answer and let (α,m) be a model
of φ and m′ ∈ Reach(N(Σ, α, β),m) be a marking, such that {qi[ui] | i ∈ [1, k]} ⊆845

m′, where q1[u1], . . . , qk[uk] are pairwise distinct places of N(Σ, α, β). By
Lemma 1, there exists a rewriting tree T ∈ T(φ), such that (α,m) |=
F(T ). By Lemma 3, since φ is a tight sentence, we obtain that (α,m) ∼
(αT ,mT ) and let f = 〈f1, . . . , fN 〉 be the bijections from Def. 8, such
that (αT ,mT ) = (f(α), f(m)). By Lemma 5, we obtain that f(m′) ∈850

Reach(N(Σ, f(α), β), f(m)). Moreover, if C`i is the unique component
type, such that qi ∈ statesβ(C`i), for all i ∈ [1, k], since {qi[ui] | i ∈ [1, k]} ⊆
m′, we obtain {qi[f`i(ui)] | i ∈ [1, k]} ⊆ f(m′) and reacht(φ, 〈q1, . . . , qk〉,∆, β)
has a positive answer.

6. Parametric Verification using Structural Invariants855

In this section we present a sound (but necessarily incomplete) method to
address practical instances of the (undecidable) decision problems of deadlock
and reachability (Theorem 1). The method proceeds by synthesizing a sufficient
verification condition as a formula in a decidable fragment of MSO, interpreted
over trees of bounded arity κ, with second-order set variables ranging over finite860

sets. This logic is known as the Weak Second-order calculus of κ Successors
(WSκS). Well-known automata-theoretic decision procedures exist for WSκS
[12] and we rely on optimized provers [15] to check the verification conditions.

During the unfolding of the predicate symbols, according to the structure
of a rewriting tree T , an existentially quantified variable introduced by a rule865

might be renamed several times (the renaming occurs when replacing a predicate
atom A(y1, . . . , y#(A)) with one of its definitions ϕ[x1/y1 . . . x#(A)/y#(A)], for
some rule A(x1, . . . , x#(A)) ← ϕ from the SID) before it is instantiated by
a component atom Cq(x), that occurs in some node w ∈ nodes(T ). Due to
Assumption 2 on the syntax of the rules in the SID, this node is unique and the870

canonical store sT maps the variable to that node, i.e. sT (x) = w. In order to
determine this value, we must track x along the path in the rewriting tree that
leads from the node where it was introduced (by an existential quantifier, or the
root of the tree if the variable is a top-level parameter) to the node where the
component atom Cq(x) occurs.875

Example 8. Let us consider the rewriting tree T depicted in Fig. 5(a). The
variable `ε1 introduced by an existential quantifier at the root of the tree replaces
the ` parameter of the rule that labels the left successor of the root, i.e. the
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node 1, that replaces the ` parameter of the label of the node 11, which finally
replaces the x parameter of the label of the node 111, that contains a component880

atom Leaf s0(x). Hence, the value of `ε1 in the canonical store is sT (`ε1) = 111.
The path from the node where the variable has been introduced by existential
quantification and the node where its value is assigned by an instance atom is
shown in dashed lines in Fig. 5. �

Tracking variables is done by path automata that traverse the tree down-885

wards, following the substitutions of a particular variable. A path automaton
is then transformed into an equivalent WSκS path formula, that defines the set
of trees over which the automaton has an accepting run. The path formula is
used to define a flow formula that describes the pre- and post-sets for each tran-
sition of the Petri net N(Σ, αT , β) corresponding to the canonical architecture890

αT , defined by the rewriting tree T , and the given behavior map β. Moreover,
path formulæ allow to define WSκS formulæ describing the initial and final
configurations of the system.

In particular, the flow formula is used to derive invariants (i.e. over-approxi-
mations of the set of reachable configurations) directly from the structure of895

the Petri net N(Σ, αT , β). These invariants are defined by the sets of places of
N(Σ, αT , β) that do not lose (trap invariants) or generate extra tokens (mutex
invariants), respectively. All verification conditions for the problems considered
in this paper boil down to checking the satisfiability of a WSκS formula.

6.1. Weak Second Order Calculus of κ Successors900

We define the logic WSκS, which is a fragment of MSO interpreted over a
finite prefix of an infinite κ-ary tree. As a remainder, the prefix of a tree T is
the restriction of T to a prefix-closed and complete subset of nodes(T ) (§5.1).

Let X2 = {X,Y, Z, . . .} be a countably infinite set of second-order variables,
ranging over subsets of [1, κ]∗. The formulæ of WSκS are defined inductively
by the following syntax:

τ ::= ε | x | τ.i terms
ξ ::= τ = τ | X(τ) | ξ ∧ ξ | ¬ξ | ∃x . ξ | ∃X . ξ formulæ

where x ∈ X1, X ∈ X2 and i ∈ [1, κ]. As usual, we write x 6= y
def
= ¬x = y,

ξ1 ∨ ξ2
def
= ¬(¬ξ1 ∧ ¬ξ2), ξ1 → ξ2

def
= ¬ξ1 ∨ ξ2, ξ1 ↔ ξ2

def
= (ξ1 → ξ2) ∧ (ξ2 → ξ1),

∀x . ξ def
= ¬∃x . ¬ξ and ∀X . ξ

def
= ¬∃X . ¬ξ. For a constant n ∈ N, we define:

X = {y1, . . . , yn} ⇐⇒ ∀x . X(x)↔
n∨
i=1

x = yi (12)

||X|| ≥ n ⇐⇒ ∃y1 . . . ∃yn .
∧

1≤i<j≤n

yi 6= yj ∧
n∧
i=1

X(yi) (13)

||X|| = n ⇐⇒ ||X|| ≥ n ∧ ¬||X|| ≥ n+ 1 (14)

The variables of a WSκS formula are interpreted by a store ν : X1 ∪ X2 →
[1, κ]∗ ∪ 2[1,κ]∗ , such that ν(x) ∈ [1, κ]∗, for each x ∈ X1 and ν(X) ⊆ [1, κ]∗ is
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a finite set, for each X ∈ X2. The terms of WSκS are interpreted inductively,

as ν(ε)
def
= ε and ν(τ.i)

def
= ν(τ) · i. We denote by |=ν

wsks ξ the fact that the WSκS
formula ξ is valid for the valuation ν. This relation defined below, by induction
on the structure of the formulæ:

|=ν
wsks τ1 = τ2 ⇐⇒ ν(τ1) = ν(τ2)
|=ν

wsks X(τ) ⇐⇒ ν(τ) ∈ ν(X)
|=ν

wsks ξ1 ∧ ξ2 ⇐⇒ |=ν
wsks ξ1 and |=ν

wsks ξ2
|=ν

wsks ¬ξ ⇐⇒ not |=ν
wsks ξ

|=ν
wsks ∃x . ξ ⇐⇒ |=ν[x←w]

wsks ξ, for some node w ∈ [1, κ]∗

|=ν
wsks ∃X . ξ ⇐⇒ |=ν[X←S]

wsks ξ, for some finite set S ⊆ [1, κ]∗

A WSκS formula ξ is satisfiable if and only if there exists a store ν, such that
|=ν

wsks ξ. Such a store is said to be a model of ξ. Note that, because we have905

assumed the successor functions .i to be total, for all i ∈ [1, κ], formulæ defining
infinite sets, such as e.g. ∀x . X(x) → X(x.1), are unsatisfiable, under the
interpretation of second-order variables as finite sets.

6.2. Rewriting Trees and Configurations

We begin by building a WSκS formula that describes an infinite κ-ary tree,910

whose finite prefix is a rewriting tree T ∈ T(φ), for a CL formula φ. Let
∆ = {ρ1, . . . , ρP } be a fixed SID in the following, such that ρ1 is the rule that
labels the root of T , by convention. We use a designated tuple of second order
variables R = 〈R1, . . . , RP 〉, where each variable Ri is interpreted as the set
of tree nodes labeled with the rule ρi in some rewriting tree, for all i ∈ [1, P ].915

With this convention, the RewrTree∆(R) formula (Figure 6) defines rewriting
trees:

• line (15) states that the sets that interpret the second-order variables R
are pairwise disjoint and that R1 is a singleton containing the root of the
rewriting tree,920

• line (16) states that the union of the sets R is prefix-closed, i.e. the par-
ent of each node from the interpretation of a variable Ri belongs to the
interpretation of some variable Rj , for i, j ∈ [1, P ],

• lines (17) and (18) encode the conditions 1 and 2 of Def. 6, respectively, i.e.
for that every predicate atom A′(y1, . . . , y#(A′)) from a rule that labels a925

node w in the rewriting tree there is exactly one child of that node, labeled
with a rule A′(x1, . . . , x#(A′))← ψ and w has no other children.

It is not very hard to show that, for each model ν of RewrTree∆(R) there exists

a unique rewriting tree, denoted by T R
ν , such that nodes(T R

ν ) =
⋃P
i=1 ν(Ri)

and T R
ν (w) = ρi ⇐⇒ w ∈ ν(Ri), for all i ∈ [1, P ] and w ∈ nodes(T R

ν ).930

As discussed in §5, a rewriting tree T defines a canonical configuration
(αT ,mT ), where αT is the architecture consisting of the components and inter-
actions corresponding to the atoms of F(T ) and mT is a marking of the Petri
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RewrTree∆(R)
def
= ∀x .

∧
1≤i<j≤P

(
¬Ri(x) ∨ ¬Rj(x)

)
∧
(
R1(x)↔ x = ε

)
∧ (15)

∀x .
P∧
i=1

κ∧
`=1

Ri(x.`)→
P∨
j=1

Rj(x) ∧ (16)

∀x .
∧

i:ρi=(A(x1,...,x#(A))←ϕ)

#pred(ϕ)∧
j=1

Ri(x)→
∨

j:predj(ϕ)=A′(y1,...,y#(A′))

`:ρ`=(A′(x1,...,x#(A′))←ψ)

R`(x.j) ∧ (17)

∀x .
∧

i:ρi=(A(x1,...,x#(A))←ϕ)

κ∧
j=#pred(ϕ)+1

Ri(x)→
P∧
`=1

¬R`(x.j) (18)

Figure 6: Rewriting Trees

net N(Σ, αT , β), for a given signature Σ = ({C1, . . . ,CN}, {I1, . . . , IM},P) and
behavior map β. In the rest of this section, we consider Σ and β to be fixed935

and recall that Qβ denotes the finite set of states used to describe the behaviors
β(C1), . . . , β(CN ).

Our next concern is defining the precise markings of N(Σ, αT , β) (Def. 2) by
a WSκS formula. We define sets of places of N(Σ, αT , β) by means of a tuple of

second-order variables X
def
= 〈Xq | q ∈ Qβ〉. Any valuation ν of the variables X940

corresponds to a set of places σX
ν

def
= {q[u] | u ∈ ν(Xq)}. When needed, we shall

use distinct copies of X, such as X′
def
= 〈X ′q | q ∈ Qβ〉, Y

def
= 〈Yq | q ∈ Qβ〉 and

Z
def
= 〈Zq | q ∈ Qβ〉. The WSκS formula below defines the precise markings of a

Petri net N(Σ, αT , β), assuming that T is the rewriting tree corresponding to
some model of RewrTree∆(R):945

m(X,R)
def
= ∀x .

N∧
i=1

( ∧
q 6=q′∈statesβ(Ci)

(
¬Xq(x) ∨ ¬Xq′(x)

)
∧ (19)

( ∨
q∈statesβ(Ci)

Xq(x)↔
∨

ρj∈inst(Ci)

Rj(x)
))

(20)

Intuitively, line (19) above states that a component of type Ci may not be in
two different states from statesβ(Ci), and line (20) states that the index of a
component of type Ci must be a node of the rewriting tree labeled with a rule
in which a component atom of the form Cqi (x) occurs (see Assumption 2 on the
syntax of the rules labeling a rewriting tree). We write inst(C) for the subset of950

∆ consisting of those rules that contain a component atom of the form Cq(x).
The correctness of the encoding is stated and proved below:
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Lemma 6. For any model ν of RewrTree∆(R)∧m(X,R), the set σX
ν is a precise

marking of the Petri net N(Σ, αT R
ν
, β).

Proof. Let C ∈ C be a component type and u ∈ αT R
ν

(C) be an index. We prove955

that ||σX
ν ∩ {q[u] | q ∈ statesβ(C)}|| = 1, by proving the following points:

• σX
ν ∩ {q[u] | q ∈ statesβ(C)} 6= ∅: since |=ν

wsks RewrTree∆(R), we have that

T R
ν is a rewriting tree, such that nodes(T R

ν ) =
⋃P
i=1 ν(Ri) and ν(Ri) is the

set of nodes of T R
ν that are labeled with the rule ρi, for all i ∈ [1, P ]. Since

u ∈ αT R
ν

(C) ⊆ nodes(T R
ν ), there exists a rule ρi, such that C ∈ inst(ρi)960

and u ∈ ν(Ri), hence by line (20), we have u ∈ ν(Xq), i.e. q[u] ∈ σX
ν , for

some q ∈ statesβ(C). Consequently, q[u] ∈ σX
ν ∩ {q[u] | q ∈ statesβ(C)}.

• ||σX
ν ∩ {q[u] | q ∈ statesβ(C)}|| < 2: suppose that q[u], q′[u] ∈ σX

ν , for q 6=
q′ ∈ statesβ(C). Hence u ∈ ν(Xq) ∩ ν(Xq′), which contradicts line (19)
and the fact that |=ν

wsks m(X,R).965

6.3. Path Automata

The next step in building WSκS verification conditions that are sufficient for
proving deadlock freedom and unreachability of several control states at once
(§4) is tracking the variables that occur in a rule labeling a node of a rewriting
tree T , down to the component atoms which set their values, in the canonical970

architecture αT . These values are used to define the interactions of αT and, in
particular, to encode the pre-set (•t) and post-set (t•) of a transition (t) from
the Petri net N(Σ, αT , β), by a flow formula, described next (§6.4).

As briefly mentioned (see Example 8) a variable “traverses” the rewriting
tree of a given formula downwards, while replacing the formal parameters of975

the rule labeling the child. This traversal is described by a special type of
tree automaton, that walks down the tree, following the identity of the tracked
variable. These automata are a restricted version of tree walking automata [16].

A path in a tree T is a sequence n1, . . . , n` ∈ nodes(T ), such that ni+1 is a
child of ni, for all i ∈ [1, `− 1]. If m is a descendant of n, we denote by π(n,m)980

the unique path starting in n and ending in m. Note that π(n,m) is determined
by n and the sequence of directions d1, . . . , dp ∈ [1, κ], such thatm = n·d1·. . .·dp.
A path automaton is a tuple A = (S, I, F, δ), where S is a set of states, I, F ⊆ S
are the sets of initial and final states, respectively, and δ ⊆ S × [1, κ] × S is a

set of transitions s
d−→ s′, where s, s′ ∈ S are states and d ∈ [1, κ] is a direction.985

A run of A over the path π(n,m), where m = n · d1 · . . . · dp, is a sequence of

states s1, . . . , sp+1 ∈ S, such that s1 ∈ I and si
di−→ si+1, for all i ∈ [1, p]. The

run is accepting if and ony if sp+1 ∈ F . The language L(A) of A is the set of
paths in T over which A has an accepting run.

A path automaton A = ({s1, . . . , sL}, I, F, δ) corresponds, in the sense of990

Lemma 7 below, to the formula in Figure 7, which is, moreover, built directly
from the syntactic description of A. Here Y = 〈Y1, . . . , YL〉 are second order
variables interpreted as the sets of tree nodes labeled by the automaton with the
states s1, . . . , sL, respectively. Intuitively, the first three conjuncts of the above
formula (line 21) encode the facts that Y are disjoint (no tree node is labeled by995
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∆A(x, y,Y)
def
=

∧
1≤i6=j≤L

∀z.
(
¬Yi(z) ∨ ¬Yj(z)

)
∧
∨
si∈I

Yi(x) ∧
∨
sj∈F

Yj(y) (21)

∧
L∧
i=1

(
∀z . z 6= y ∧ Yi(z)→∨

j:si
d−→sj

Yj(z.d) ∨
∨

j:si
d−→sj

∃z′ . z′.d = z ∧ Yj(z′)
)

(22)

∧
L∧
j=1

(
∀z . z 6= x ∧ Yj(z)→∨

i:si
d−→sj

∃z′ . z′.d = z ∧ Yi(z′) ∨
∨

i:si
d−→sj

Yi(z.d)
)

(23)

Figure 7: Definition of the Path Automaton formula ∆A(x, y,Y)

more than one state during the run) and that the run starts in an initial state
with node x and ends in a final state with node y. The fourth conjunct (line 22)
states that, for every non-final node on the path, if the automaton visits that

node by state si, then the node has a d-child visited by state sj , where si
d−→ sj

is a transition of the automaton. The fifth conjunct (line 23) is the reversed flow1000

condition on the path, needed to ensure that the sets Y do not contain useless
nodes, being thus symmetric to the fourth. The following result stems from the
classical automata-logic connection (see [17, §2.10] for a textbook presentation):

Lemma 7. Given nodes n,m ∈ [1, κ]∗ and directions d1, . . . , dp ∈ [1, κ] such
that m = n · d1 · . . . · dp, for each valuation ν, such that ν(x) = n and ν(y) = m,1005

we have d1 . . . dp ∈ L(A) ⇐⇒ |=ν
wsks ∃Y . ∆A(x, y,Y) .

Our purpose is to infer, directly from the syntax of the rules in ∆, path
automata that recognize the path between the node where a variable is intro-
duced (either as a formal parameter of a rule or by an existential quantifier)
and the node where the variable is instantiated, in each given rewriting tree.1010

Formally, for each rule ρ = (A(x1, . . . , x#A)← ∃y1 . . . ∃ym . ψ), such that ψ
is a quantifie-free formula, and each variable x ∈ fv(ψ), we consider the path
automaton Axρ = (S, I, F, δ), where:

• S
def
= {szρ′ | ρ′ = (A′(x1, . . . , x#A′)← ∃y1 . . . ∃ym.φ) , φ is q.f., z ∈ fv(φ)};

the intuition is that the automaton visits the state szρ′ while tracking1015

variable z in the body of the rule ρ′, that labels the node of the rewriting
tree which is currently visited by the automaton,

• the initial and final states are I
def
= {sxρ} and F

def
= {szρ′ | ρ′ =

(
A′(x1, . . . , x#A′)

← ∃y1 . . . ∃ym . Cq(z) ∗ φ
)
, φ is q.f., C ∈ C, q ∈ statesβ(C)}; the automa-

ton starts to track x in ρ and moves down in the rewriting tree, finally1020

tracking a variable z that occurs in a component atom in ρ′,
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Figure 8: Path Automata Recognizing the Paths to Component Atoms from Example 6

• the transitions are s
yj
ρ

d−→ s
xj
ρ′ , for all rules ρ =

(
A(x1, . . . , x#(A))← ϕ

)
and

ρ′ =
(
A′(x1, . . . , x#(A′))← ϕ′

)
from ∆, all directions d ∈ [1,#pred(ϕ)],

such that predd(ϕ) = A′(y1, . . . , y#(A′)), and all j ∈ [1,#(A′)]; if ρ labels
the parent of the node labeled by ρ′ in the rewriting tree, the automaton1025

moves down one step, from tracking yj in ρ to tracking xj in ρ′.

Example 9. The path automata recognizing the paths to component atoms, for
the variables `ε1 and rε1 in the rewriting tree from Example 6 are depicted in
Figure 8. The initial states are s`17 and sr17 , respectively, and the final state is
sn10 for both automata. The rule labels are the ones from Example 6. �1030

The lemma below shows that these automata recognize the set of paths
corresponding to the recursive substitutions of a given variable down to the
node where it occurs in a component atom, in all rewriting trees built using the
rules from the given SID:

Lemma 8. Given a rule ρ =
(
A(x1, . . . , x#(A))← ∃y1 . . . ∃ym . φ

)
, such that1035

φ is a quantifier-free formula, and a variable x ∈ fv(φ), for each sequence w ∈
[1, κ]∗, the following are equivalent:

1. there exists a rewriting tree T and nodes n,m ∈ nodes(T ), such that
T (n) = ρ, m = n · w and sT (x) = m (see 11 for the definition of sT ).

2. w ∈ L(Axρ).1040

Proof. (1)⇒ (2) By the definition of sT , we have sT (x) = sεT↓n(x) and sεT↓n(x) =
m if there exist:

• a sequence of nodes n = n1, n2, . . . , np = m ∈ nodes(T ), such that ni+1 =
ni · di, for some di ∈ [1, κ], for all i ∈ [1, p− 1],

• a sequence of variables x = z1, . . . , zp ∈ X1, such that zi replaces zi+1 in1045

the construction of the characteristic formula F(T ), for all i ∈ [1, p− 1],
and occurs in a component atom from T (m).

By the definition of rewriting trees, each node ni is labeled by a rule ρi =(
Ai(x1, . . . , x#(Ai))← ∃y1 . . . ∃ym . φi

)
, where φi is quantifier-free, and there

exists j ∈ [1,#(Ai)] such that zi occurs on the j-th position in preddi(φi) and1050

zi+1 occurs j-th within the head Ai+1(x1, . . . , x#(Ai+1)) of ρi+1. By the defini-

tion of Axρ , there exist transitions sziρi
di−→ s

zi+1
ρi+1 , for all i ∈ [1, p− 1]. Moreover,
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sxρ = sz1ρ1 and s
zp
ρp are initial state and final states of Axρ , respectively. Since

m = n · d1 . . . dp = n · w, we obtain that w = d1 . . . dp ∈ L(Axρ).

(2) ⇒ (1) Let w = d1 . . . dp, where d1, . . . , dp ∈ [1, κ], and sziρi
di−→ s

zi+1
ρi+1 , for all1055

i ∈ [1, p− 1], be transitions of Axρ , such that sz1ρ1 = sxρ is the initial state and s
zp
ρp

is a final state of Axρ . Then, by the definition of Axρ , the nodes wi
def
= n · d1 . . . di

are labeled by rules ρi
def
=
(
Ai(x1, . . . , x#(Ai))← ϕi

)
, such that zi occurs in

preddi(ϕi) on the same position as zi+1, which occurs in Ai+1(x1, . . . , x#(Ai+1)).
Then, there exists a rewriting tree T and nodes n,m ∈ nodes(T ), such that1060

m = n · d1 . . . do and Axρ has an accepting run over d1 . . . dp. By the definition
of sT , we have sT (x) = sεT↓n(x) = m.

The path automata Azρ are used to define the Pathzρ(x, y,R) formulæ below:

Pathzρ(x, y,R)
def
= ∃Y . ∆Azρ

(x, y,Y) ∧Υ(Y,R)

Υ(Y,R)
def
=

∧
i:ρi=(A′(x1,...,x#(A′))←ϕ′)

∧
z∈fv(ϕ′) ∀x . Y zρi(x)→ Ri(x)

The formula Υ(Y,R) above states that all nodes labeled with a state qzρi during
the run must be also labeled with ρi in the rewriting tree given as input to the
path automaton. Here we denote by Y zρi the second-order variable corresponding1065

to the state qzρi in a path automaton Axρ . Intuitively, the formula Pathzρ(x, y,R)
states that, in each rewriting tree defined by a model ν of the RewrTree∆(R)
formula, there exists a path from ν(x) to ν(y), where ν(x) is a node labeled with
ρ, in which z occurs free or existentially quantified, and y is the node where a
variable necessarily equal to z occurs in a component atom.1070

6.4. Flow Formulæ

At this point, we introduce a WSκS formula Φ(X,X′,R) that defines the
structure of transitions in the Petri net N(Σ, αT R

ν
, β), where ν is a model of

RewrTree∆(R). By “structure” here we mean that ν(X) and ν(X′) encode the
pre- and post-sets of some transition in N(Σ, αT R

ν
, β), as explained in §6.2.1075

Figure 9 shows the flow formula of a given SID, consisting of the rules
ρ1, . . . , ρP . We denote by inter(ρ) the set of interaction atoms that occur in
the body of a rule ρ. Essentially, the formula (24) is split into a disjunction
of formulæ Ψ`,I(x1,...,x#(I)), one for each rule ρ` ∈ ∆ and each interaction atom
I(x1, . . . , x#(I)) that occurs in the body of ρ`. To understand the Ψ`,I(x1,...,x#(I))1080

formulæ, recall that each of the variables xi is mapped to the (unique) node of
the rewriting tree containing an instance atom Cq(x), such that xi replaces x in
the characterizing formula of the rewriting tree T R

ν , provided that ν is a model
of RewrTree∆(R). In order to find this node, we track the variable xi from the
node labeled by the rule ρ, to the node where this instance atom occurs. This1085

is done by the Pathxiρ`(y0, yi,R) formula (25), that holds whenever y0 and yi are
respectively mapped to the source and the destination of a path from a node
ν(y0) ∈ nodes(T R

ν ), with label ρ` to a node ν(yi) ∈ nodes(T R
ν ), such that the
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Φ(X,X′,R)
def
=

P∨
`=1

∨
I(x1,...,x#(I))∈inter(ρ`)

Ψ`,I(x1,...,x#(I))(X,X
′,R) (24)

Ψ`,I(x1,...,x#(I))(X,X
′,R)

def
= ∃y0 . . . ∃y#(I) . R`(y0) ∧

#(I)∧
i=1

Pathxiρ`(y0, yi,R)∧ (25)

( ∨
〈τ1,...,τ#(I)〉∈Tβ(I)

∧
q∈Qβ

Xq = {yi | i ∈ [1,#(I)], τi = (qi
pi−→ q′i), qi = q}∧ (26)

X ′q = {yi | i ∈ [1,#(I)], τi = (qi
pi−→ q′i), q

′
i = q}

)
∧ (27)∧

1≤i<j≤#(I)

(
yi 6= yj ∨ comp(〈P(I)〉i) = comp(〈P(I)〉j)

)
(28)

Figure 9: The Flow Formula

component atom that gives the value of xi
5 occurs in T R

ν (ν(yi)). Hence, xi is
interpreted as ν(yi) in the canonical model of the characteristic formula of T R

ν .1090

The correctness of the encoding is formalized and proved by the following:

Lemma 9. Given a model ν of RewrTree∆(R), we have |=ν
wsks Φ(X,X′,R) if

and only if σX
ν = •t and σX′

ν = t•, for some transition t of N(Σ, αT R
ν
, β).

Proof. “⇒” If |=ν
wsks Φ(X,X′,R) then there exists a rule ρ` ∈ ∆ = {ρ1, . . . , ρN}

and I(x1, . . . , x#(I)) ∈ inter(ρ`), such that |=ν
wsks Ψ`,I(x1,...,x#(I))(X,X

′,R). Then,1095

there exist nodes w0, . . . , wn ∈ nodes(T R
ν ), such that ν(yi) = wi, for all i ∈ [0, n]

and let ν′ = ν[y0 ← w0, . . . , yn ← wn]. Since, moreover, |=ν′

wsks R`(y0), we ob-
tain that T R

ν (w0) = ρ`, hence the variables x1, . . . , x#(I) occur in the body of
the rule ρ` and are assigned to the unique nodes w′1, . . . , w

′
#(I) ∈ nodes(T R

ν ),

for which π(w0, w
′
i) ∈ L(Axiρ`), for all i ∈ [1,#(I)], by Lemma 8. Since |=ν′

wsks1100

Pathxiρ`(y0, yi,R), by Lemma 7, we obtain π(w0, wi) ∈ L(Axiρ`), thus wi = w′i, for
all i ∈ [1,#(I)], by the uniqueness of these nodes. Let 〈τ1, . . . , τ#(I)〉 be a tuple of

transitions from Tβ(I) synchronizing by I. Since |=ν′

wsks Ψ`,I(x1,...,x#(I))(X,X
′,R),

we have wi 6= wj , for each 1 ≤ i < j ≤ #(I), such that comp(〈P(I)〉i) =
comp(〈P(I)〉j). By Def. 1, we have that t = (I[w1, . . . , w#(I)], 〈τ1, . . . , τ#(I)〉) is1105

a transition of N(Σ, αT R
ν
, β) and, moreover, •t = {q1, . . . , q#(I)} = σX

ν and t• =

{q′1, . . . , q′#(I)} = σX′
ν , because |=ν′

wsks Xq = {yi | i ∈ [1,#(I)], τi = (qi
pi−→ q′i), qi = q}

and |=ν′

wsks X
′
q = {yi | i ∈ [1,#(I)], τi = (qi

pi−→ q′i), q
′
i = q}, respectively.

“⇐” Let t = (I[w1, . . . , w#(I)], 〈τ1, . . . , τ#(I)〉) be a transition of N(Σ, αT R
ν
, β),

where τi = qi
〈P(I)〉i−−−−→ q′i is a transition of β(comp(〈P(I)〉i)), for each i ∈1110

5In the canonical store sTR
ν

, see §5.2 for its definition.
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[1,#(I)]. Then there exists a node w0 ∈ nodes(T R
ν ) and an interaction atom

I(x1, . . . , x#(I)) in T R
ν (w0), such that sT R

ν
(xi) = wi, for all i ∈ [1,#(I)]. As-

sume w.l.o.g. that T R
ν (w0) = ρ`, for some ` ∈ [1, P ] and let ν′ = ν[y0 ←

w0, . . . , y#(I) ← w#(I)] be a valuation. We prove the following points:

• |=ν′

wsks R`(y0): since |=ν
wsks RewrTree∆(R), T R

ν (w0) = ρ`, ν
′(y0) = w0 and ν′1115

agrees with ν over R.
• |=ν′

wsks Pathxiρ`(y0, yi,R), for all i ∈ [1,#(I)]: since sT R
ν

(xi) = wi, we obtain

π(w0, wi) ∈ L(Axiρ`) by Lemma 8 and |=ν′

wsks Pathxiρ`(y0, yi,R) follows, by
Lemma 7.

• |=ν′

wsks yi 6= yj , for all 1 ≤ i < j ≤ #(I), such that comp(〈P(I)〉i) =1120

comp(〈P(I)〉j): by Def. 1, wi 6= wj for all i, j ∈ [1,#(I)], such that
comp(〈P(I)〉i) = comp(〈P(I)〉j).

• |=ν′

wsks Xq = {yi | i ∈ [1,#(I)], τi = (qi
pi−→ q′i), qi = q}, for all q ∈ Qβ : be-

cause σX
ν = •t = {q1, . . . , q#(I)}.

• |=ν′

wsks Xq = {yi | i ∈ [1,#(I)], τi = (qi
pi−→ q′i), q

′
i = q}, for all q ∈ Qβ : be-1125

cause σX′
ν = t• = {q′1, . . . , q′#(I)}

We obtain that |=ν
wsks Ψ`,I(x1,...,x#(I)) and, consequently |=ν

wsks Φ(X,X′,R).

6.5. Structural Invariants

An invariant I of a marked Petri net N = (N,m0), where N = (S, T,E)
is a Petri net, is a set of markings that over-approximates the reachable states1130

Reach(N ), that is Reach(N ) ⊆ I ⊆ pow(S). The invariant is, moreover, said to
be inductive if and only if it is closed under the transition relation of the Petri

net, namely that {m′ | m ∈ I, t ∈ T, m
t−→ m′} ⊆ I.

The synthesis of inductive invariants is a notoriously difficult problem, that
has been received much attention in the past. The most common method of1135

infering inductive invariants is the iteration of an abstract (over-approximation)
transition relation in an abstract domain, until a fixpoint is reached. Depend-
ing on the complexity of the abstract domain, this approach, known as abstract
interpretation [9], can be quite costly. In contrast, we consider inductive invari-
ants that can be synthesized directly from the structure of a Petri net, without1140

iterating (an abstraction of) its transition relation up to a fixpoint. Such invari-
ants are called structural in the literature [18]. The next definition introduces
two types of structural invariants:

Definition 11. Given a marked Petri net N = (N,m0), where N = (S, T,E),
a set of places σ ⊆ S is said to be a:1145

• trap if ||σ ∩m0|| ≥ 1 and, for any t ∈ T , if ||σ ∩ •t|| ≥ 1 then ||σ ∩ t•|| ≥ 1,

• mutex if ||σ ∩m0|| = 1 and, for any t ∈ T , we have ||σ ∩ •t|| = ||σ ∩ t•|| ≤ 1.

The trap and mutex invariant of N are the below sets of markings, respectively:

• Θ(N )
def
= {m marking of N | ||m ∩ σ|| ≥ 1, for each trap σ of N},

• Ω(N )
def
= {m marking of N | ||m ∩ σ|| = 1, for each mutex σ of N}.1150
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By substituting the reachable set with the intersection of the trap and mutex
invariant, we obtain the following sufficient queries, that allow to prove the
absence of deadlocks and unreachability of a tuple of states in a system described
by a CL formula:

Lemma 10. Given a tight sentence φ, interpreted over a SID ∆, a behavior
map β and a tuple of states 〈q1, . . . , qn〉, the following hold:

deadlock(φ,∆, β) ⇒ deadlock ]t(φ,∆, β)

reach(φ, 〈q1, . . . , qn〉,∆, β) ⇒ reach]t(φ, 〈q1, . . . , qn〉,∆, β)

where deadlock ]t(φ,∆, β) and reach]t(φ, 〈q1, . . . , qn〉,∆, β) are defined below:1155

• deadlock ]t(φ,∆, β): does there exist a rewriting tree T ∈ T(φ), such that
Θ(N(Σ, αT , β),mT ) ∩ Ω(N(Σ, αT , β),mT ) ∩Dead(N(Σ, αT , β)) 6= ∅?

• reach]t(φ, 〈q1, . . . , qn〉,∆, β): does there exist a rewriting tree T ∈ T(φ) and
a configuration (αT ,m) ∈ Θ(N(Σ, αT , β),mT )∩Ω(N(Σ, αT , β),mT ), such
that {qi[ui] | i ∈ [1, n]} ⊆ m, with q1[u1], . . . , qn[un] pairwise distinct?1160

Proof. We show first that the trap Θ(N ) and mutex Ω(N ) invariants of a marked
Petri net N are invariants of N . If m0 = ∅ then N has no traps nor mutexes and
Reach(N ) = Θ(N ) = Ω(N ) = ∅, thus Θ(N ) and Ω(N ) are trivially inductive
invariants. So we assume m0 6= ∅.

For the set Θ(N ), let σ be an arbitrary trap of N . Since m0 6= ∅, we have1165

||σ ∩m0|| ≥ 1, hence m0 ∈ Θ(N ), by the choice of σ. For each pair of markings

m and m′, such that m ∈ Θ(N ) and m
t−→ m′, for some transition t ∈ T , we

have m′ = (m\ •t) ∪ t•. If σ∩ •t = ∅ then ||m′ ∩ σ|| ≥ ||m ∩ σ|| and ||m ∩ σ|| ≥ 1,
because m ∈ Θ(N ). Otherwise, ||σ ∩ •t|| ≥ 1, thus ||σ ∩ t•|| ≥ 1 because σ is
a trap of N , hence ||m′ ∩ σ|| ≥ 1. In both cases, we obtain that ||m′ ∩ σ|| ≥ 1,1170

hence m′ ∈ Θ(N ), because σ is an arbitrary trap of N .
A similar argument shows that Ω(N ) is an inductive invariant of N . Let

σ be an arbitrary mutex of N . Then ||σ ∩m0|| = 1, hence m0 ∈ Ω(N ), by
the choice of σ. For each pair of markings m and m′, such that m ∈ Θ(N )

and m
t−→ m′, for some transition t ∈ T , we have m′ = (m \ •t) ∪ t• and1175

||σ ∩ •t|| = ||σ ∩ t•|| ≤ 1, hence ||m′ ∩ σ|| = 1 and m′ ∈ Ω(N ), because σ is an
arbitrary mutex of N . Moreover, since inductive invariants are closed under
intersection, the set Θ(N ) ∩ Ω(N ) is also an inductive invariant of N . Finally,
because Reach(N ) is known to be the least inductive invariant of N , we obtain
Reach(N ) ⊆ Θ(N ) ∩ Ω(N ). The rest of the proof follows from Theorem 2 and1180

the above fact.
Given a CL sentence φ that describes the set of initial configurations of a

system, Figure 10 introduces WSκS formulæ that define the trap and mutex in-
variants of the marked Petri nets (N(Σ, αT , β),m0), where T ∈ T(φ) are rewrit-
ing trees and (αT ,m0) |= φ are initial configurations. This construction uses the1185

flow formula (Figure 9) derived from the SID that interprets the predicate sym-
bols from φ and the behavior map β of the system. Here we denote by X (resp.
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Init(Y,R)
def
= m(Y,R) ∧ ∀x .

∧
q∈Qβ

(
Yq(x)↔

∨
`∈[1,P ] such that

Cq(z) occurs in ρ`

R`(x)
)

(29)

θ(X,R)
def
= ∀Y∀Z . Φ(Y,Z,R)→ (||X ∩Y|| ≥ 1→ ||X ∩ Z|| ≥ 1) (30)

Θ(X,Y,R)
def
= m(X,R) ∧ ∀Z . (||Y ∩ Z|| ≥ 1 ∧ θ(Z,R))→ ||X ∩ Z|| ≥ 1 (31)

ω(X,R)
def
= ∀Y∀Z . Φ(Y,Z,R)→

(
(||X ∩Y|| = 0↔ ||X ∩ Z|| = 0) ∧
(||X ∩Y|| = 1↔ ||X ∩ Z|| = 1)

)
(32)

Ω(X,Y,R)
def
= m(X,R) ∧ ∀Z . (||Y ∩ Z|| = 1 ∧ ω(Y,R))→ ||X ∩ Z|| = 1 (33)

Figure 10: Initial Configurations and Structural Invariants

Y and Z) the tuple of second-order variables 〈Xq | q ∈ Qβ〉 (resp. 〈Yq | q ∈ Qβ〉
and 〈Zq | q ∈ Qβ〉) and we write X∩Y (resp. X∩Z) for

⋃
q∈Qβ Xq ∩ Yq (resp.⋃

q∈Qβ Xq∩Zq), where the definitions of set union and intersection are standard1190

in MSO and omitted to avoid clutter.
Let ν be a model of RewrTree∆(R), meaning that T R

ν is a rewriting tree for

φ. We recall that, by letting ρ1
def
= (Aφ()← φ) be the first rule in the SID, we

capture the fact that T R
ν ∈ T(φ), for each model ν of RewrTree∆(R) (see the

second conjunct in line 15 from Figure 6). The formula Init(Y,R) (29) encodes1195

the fact that σY
ν is an initial marking of the Petri net N(Σ, αT R

ν
, β) namely, that

each node of the rewriting tree T R
ν is the index of a component of type C in

state q, if Cq(z) occurs in the rule that labels the node.
We assume further that ν is a model of RewrTree∆(R) ∧ Init(Y,R). The

formulæ θ(X,R) (30) and Θ(X,Y,R) (31) define the traps and the trap in-1200

variant of the marked Petri net (N(Σ, αT R
ν
, β), σY

ν ), respectively. Similarly,
ω(X,R) (32) and Ω(X,R) (33) define the mutexes and the mutex invariant
of (N(Σ, αT R

ν
, β), σY

ν ), respectively. We intentionally use the same symbols to
denote trap (mutex) invariants and their defining WSκS formulæ, the distinc-
tion between sets of markings and formulæ being clear from the context. The1205

following lemma shows the correctness of the definitions from Figure 10:

Lemma 11. If |=ν
wsks RewrTree∆(R) ∧ Init(Y,R) then the following hold:

1. Θ(N(Σ, αT R
ν
, β), σY

ν ) = {σX

ν′ | |=ν′

wsks Θ(X,Y,R), ν′(Y,R) = ν(Y,R)},

2. Ω(N(Σ, αT R
ν
, β), σY

ν ) = {σX

ν′ | |=ν′

wsks Ω(X,Y,R), ν′(Y,R) = ν(Y,R)}.

Proof. We give the proof for point (1), the proof for (2) uses a similar argument1210

and is left for the reader.

“⊆” Let m ∈ Θ(N(Σ, αT R
ν
, β), σY

ν ) be a marking and ν′ be a valuation such that
σX

ν′ = m and ν′ agrees with ν over Y and R. Clearly, such a valuation exists
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and, in order to show that m ∈ {σX

ν′ | |=ν′

wsks Θ(X,Y,R), ν′(Y,R) = ν(Y,R)},
it suffices to prove |=ν′

wsks Θ(X,Y,R). Because σX

ν′ = m, we have |=ν′

wsks m(X,R)1215

and we are left with proving |=ν′

wsks ∀Z . θ(Z,R) ∧ ||Y ∩ Z|| ≥ 1→ ||X ∩ Z|| ≥ 1.
To this end, let µ be any valuation that agrees with ν′ over X, Y and R, such
that |=µ

wsks θ(Z,R) ∧ ||Y ∩ Z|| ≥ 1. It suffices to prove that σZ
µ is a trap of the

marked Petri net (N(Σ, αT R
ν
, β), σY

ν ) to obtain |=µ
wsks ||X ∩ Z|| ≥ 1, using the fact

that m ∈ Θ(N(Σ, αT R
ν
, β), σY

ν ) and σX
µ = m. Note that, since µ agrees with1220

ν′ over X, we also have σX
µ = σX

ν′ = m. Since |=µ
wsks ||Y ∩ Z|| ≥ 1 and µ agrees

with ν over Y, we have σZ
µ ∩ σY

ν 6= ∅. Let t be a transition of N(Σ, αT R
ν
, β),

such that σZ
µ ∩ •t 6= ∅ and let µ′ be a valuation that agrees with µ over Z, such

that σY′
µ′ = •t and σZ′

µ = t•, where Y′ and Z′ are distinct copies of Y and Z,

respectively. By Lemma 9, we obtain |=µ′

wsks Φ(Y′,Z′,R). Since |=µ
wsks θ(Z,R) and1225

µ′ agrees with µ over Z, we obtain |=µ′

wsks ||Z ∩ Z′|| ≥ 1, thus σZ
µ ∩σZ′

µ′ = σZ
µ ∩t• 6= ∅.

We have showed that σZ
µ is a trap of the marked Petri net (N(Σ, αT R

ν
, β), σY

ν ),
which concludes this direction of the proof.

“⊇” Let ν′ be a valuation that agrees with ν over Y and R, such that |=ν′

wsks

Θ(X,Y,R). To show that σX

ν′ ∈ Θ(N(Σ, αT R
ν
, β), σY

ν ), we must prove that1230

σX

ν′ ∩ θ 6= ∅, for each trap θ of the marked Petri net (N(Σ, αT R
ν
, β), σY

ν ). Let θ be
such a trap and let µ be a valuation that agrees with ν′ over X, Y and R, such
that σZµ = θ. Since σZµ is a trap of the marked Petri net (N(Σ, αT R

ν
, β), σY

ν ), we
obtain:

• |=µ
wsks ||Y ∩ Z|| ≥ 1, since |=ν

wsks Init(Y,R) and µ agrees with ν over Y, and1235

• |=µ
wsks θ(X,R), by Lemma 9, since µ agrees with ν over X and R.

Since |=µ
wsks Θ(X,Y,R), we obtain that |=µ

wsks ||X ∩ Z|| ≥ 1, thus σX
µ ∩ σZ

µ = σX

ν′ ∩
θ 6= ∅, which concludes this direction of the proof.

6.6. Verification Conditions

The final step in generating sufficient verification conditions for the deadlock1240

and reachability problems (§4) is the encoding of the sets of error configurations
in WSκS. This is done separately, for the two kinds of errors considered, by
the formulæ in Figure 11. The convention here is to use X to represent the
configurations in the error sets. However, none of the formulæ from Figure 11
constrains X to be a marking, i.e. by conjunction with m(X), since the latter1245

formula is already included in the definition of the structural invariants, by the
formulæ Θ(X,Y,R) and Ω(X,Y,R) (Figure 10).

We recall that a marking m is a deadlock of a Petri net N = (S, T,E) if
and only if •t 6⊆ m, for all transitions t ∈ T (if •t ⊆ m for some transition
t, then that transition could be fired from m). This condition is captured by1250

the DeadLock(X,R) formula (34), where Φ(Y,Z,R) is the flow formula that
defines the pre- and post-sets, for some transition in the Petri net N(Σ, αT R

ν
, β),

where ν is a model of RewrTree∆(R) (Lemma 9). Here we write Y ⊆ X as
a shorthand for ∀x .

∧
q∈Qβ Yq(x) → Xq(x), denoting the fact that the set of

places defined by Y is included in the one defined by X.1255

42



DeadLock(X,R)
def
= ∀Y∀Z . Φ(Y,Z,R)→ ¬Y ⊆ X (34)

ErrSet〈q1,...,qn〉(X)
def
=
∧
q∈Qβ

||Xq|| ≥ ||{i ∈ [1, k] | qi = q}|| (35)

Figure 11: Error Configurations for the Deadlock and Reachability Problems

The set defined by the ErrSet〈q1,...,qn〉(X) formula (35) captures the fact that
each configuration encoded by X contains pairwise distinct places q1[w1], . . .,
qn[wn] which is, essentially, the condition required by a reachability query. Note
that, because the tuple of states 〈q1, . . . , qn〉 is part of the input of the query,
the number ||{i ∈ [1, k] | qi = q}|| of occurrences of each state q in the tuple is1260

constant, hence the cardinality of each set Xq is compared to a constant (13).
The following theorem states the soundness of the verification conditions

built throughout this section:

Theorem 3. Given a tight sentence φ, interpreted over a SID ∆, a behavior
map β and a tuple of states 〈q1, . . . , qn〉, the following hold:1265

1. DeadLock(X,R)∧Θ(X,Y,R)∧Ω(X,Y,R)∧Init(Y,R)∧RewrTree∆(R)
is unsatisfiable only if deadlock(φ,∆, β) has a negative answer.

2. ErrSet〈q1,...qn〉(X)∧Θ(X,Y,R)∧Ω(X,Y,R)∧Init(Y,R)∧RewrTree∆(R)
is unsatisfiable only if reach(φ, 〈q1, . . . , qn〉,∆, β) has a negative answer.

Proof. (1) To prove the contrapositive statement, assume that deadlock(φ,∆, β)1270

has a positive answer. By Lemma 10, the query deadlock ]t(φ,∆, β) has a positive
answer as well, thus there exists a rewriting tree T ∈ T(φ) and a marking m ∈
Θ(N(Σ, αT , β),mT )∩Ω(N(Σ, αT , β),mT )∩Dead(N(Σ, αT , β)), where (αT ,mT )
is the canonical model of φ corresponding to T . Let ν be a valuation such that
T R
ν = T , σY

ν = mT and σX
ν = m. Since the tuples of second-order variables X,1275

Y and T are pairwise disjoint, such a valuation exists. We prove the following
points:

• |=ν
wsks Init(Y,R) follows directly from the definitions of mT (Def. 7) and

Init(Y,R) (29).
• |=ν

wsks Θ(X,Y,R) follows from point 1 of Lemma 11, because σX
ν = m,1280

T R
ν = T and m ∈ Θ(N(Σ, αT , β),mT ).

• |=ν
wsks Ω(X,Y,R) follows from point 2 of Lemma 11, because σX

ν = m,
T R
ν = T and m ∈ Ω(N(Σ, αT , β),mT ).

• |=ν
wsks DeadLock(X,R) because Dead(N(Σ, αT , β)) is the set of markings

σX

ν′ of N(Σ, αT , β), such that |=ν′

wsks DeadLock(X,R) ∧ RewrTree∆(R). This1285

follows directly from the definition of a deadlock marking and the defini-
tion of DeadLock(X,R) (34), using the characterization of the pre- and
post-sets of the transitions from N(Σ, αT , β) provided by Lemma 9.

(2) The proof of this point follows a similar argument as for point 1, the only
difference being that the set of markings containing a set {qi[ui] | i ∈ [1, n]} ⊆1290
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m, with q1[u1], . . . , qn[un] pairwise distinct coincides with the set {σX

ν′ | |=ν′

wsks

ErrSet〈q1,...,qn〉(X) ∧m(X,R) ∧ RewrTree∆(R)}.
Since the WSκS logic is decidable with non-elementary complexity, in gen-

eral [12], the problem of checking the satisfiability of the verification conditions
provided by Theorem 3 is decidable. By inspection of the formulæ (1) and (2),1295

one can show that checking the verification conditions is in 4EXPTIME, where
4 is the maximum quantifier alternation depth of these formulæ. In practice,
however, these checks are quite fast, as shown by the preliminary experiments
performed on a similar encoding, reported in our previous work [2].

7. Related Work1300

This paper reports on a resource logic for the specification of sets of config-
urations of parametric distributed systems with unbounded numbers of compo-
nents (processes) and a verification method for safety properties, such as absence
of deadlocks and critical section violations.

Traditionally, verification of unbounded networks of parallel processes con-1305

siders known architectural patterns, typically cliques or rings [19, 20]. Because
the price for decidability is drastic restriction on architecture styles [21], more re-
cent works propose practical semi-algorithms, e.g. regular model checking [22, 23]
or automata learning [24]. Here the architectural pattern is implicitly deter-
mined by the class of language recognizers: word automata encode pipelines or1310

rings, whereas tree automata describe trees.
A first attempt at specifying architectures by logic is the interaction logic

of Konnov et al. [25], which is a combination of Presburger arithmetic with
monadic uninterpreted function symbols, that can describe cliques, stars and
rings. More structured architectures (pipelines and trees) can be described1315

using a second-order extension [26]. As such, these interaction logics are unde-
cidable and have no support for automated verification. Recently, interaction
logics that support the verification of safety properties, by structural invari-
ant synthesis have been developed. These logics use fragments of first order
logic with interpreted function symbols that implicitly determine the class of1320

architectures, such as cliques [27], or pipelines, rings and trees [28].
From a theoretical point of view, our resource logic with inductive defini-

tions is strictly more expressive: for instance, a chain of components where
a certain component type occurs on all even (odd) positions is provably not
expressible in first order logic, but can be easily defined using our language,1325

whose inductive definitions allow to describe second order constructs in a con-
trolled manner (rather than using unrestricted second order quantification, as in
[26]). Moreover, first order logic with successor functions can describe at most
tree-like architectures, whereas our language describes structures more general
than trees6, using no interpreted function symbols, other than ports involved in1330

interactions [27, 28].

6For instance, the tree-shaped architecture with leaves linked in a ring §5.
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Specifying parameterized component-based systems by inductive definitions
is, however, not new. Network grammars [29] use context-free grammar rules
to describe systems with linear (pipeline, token-ring) architectures obtained by
composition of an unbounded number of processes. In contrast, we use predicate1335

symbols of unrestricted arities to describe architectural patterns that are, in
general, more complex than trees. Such complex structures can be specified
recursively using graph grammar rules with parameter variables [30, 31]. To
avoid clashes, these variables must be renamed to unique names and assigned
unique indices at each unfolding step. Our specifications use quantifiers to avoid1340

name clashes and separating conjunction to guarantee that the components and
interactions obtained by the unfolding of the rules are unique.

Verification of network grammars against safety properties requires the syn-
thesis of network invariants [32], computed by rather costly fixpoint iterations
[33] or by abstracting (forgetting the particular values of indices in) the compo-1345

sition of a small bounded number of instances [34]. Instead, our method uses
lightweight structural invariants, that are synthesized with little computational
effort and prove to be efficient in many practical examples [28, 2].

8. Conclusions and Future Work

The paper proposes a general framework for the practical semi-algorithmic1350

verification of parametric systems. The framework integrates previous work
of the authors and extends it through developments in two complementary di-
rections. The first direction is modeling parametric system architectures from
instances of predefined component types and interaction types. Configuration
logic allows the specification of configurations characterizing architecture styles1355

with snapshots of their component states. Parametric system behavior can be
obtained, in the form of Petri nets using operational semantics, from given
configuration logic specifications and behaviors of component types. We show
that even for very simple linear architectures, essential safety properties such as
deadlock-freedom or mutual explosion are undecidable.1360

The second direction proposes a method that from given configuration logic
specifications and the finite-state behavior of its components, leads to formu-
las of WSκS characterizing two types of structural invariants used to prove
deadlock-freedom and mutual exclusion properties. The generation process
avoids the complexity of traditional fixpoint computation techniques. It synthe-1365

sizes constraints on the state space induced by the interactions of the parametric
architecture. Verification boils down to checking the satisfiability of WSκS for-
mulæ, for which optimized solvers exist. The whole generation process involves
transformations from configuration specifications into rewriting trees and then
into WSκS through path automata. Proving its soundness requires some te-1370

dious technical developments; nonetheless, its implementation does not suffer
from the usual limitations due to state space complexity and the number of
components. Experimental results show that the proposed verification method
is scalable and allows proving safety in a number of non-trivial cases [2].
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As future work, we plan on adding support for broadcast in our specification1375

language and develop further the invariant synthesis method to take broadcast
into account. We also envisage an extension of the finite-state model of behavior
to more complex automata, such as pushdown or timed automata.
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