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Magneto-gravity-elliptic instability is addressed here considering an unbounded strained7
vortex (with constant vorticity 2Ω and with ellipticity parameter 𝜀) of a perfectly conducting8
fluid subjected to a uniform axial magnetic field (with Alfvén velocity scaled from the basic9
magnetic field 𝐵) and an axial stratification (with a constant Brunt-Väisälä frequency 𝑁).10
Such a simple model allows us to formulate the stability problem as a system of equations11
for disturbances in terms of Lagrangian Fourier (or Kelvin) modes which is universal for12
wavelengths of the perturbation sufficiently small with respect to the scale of variation of13
the basic velocity gradients. It can model localised patches of elliptic streamlines which14
often appear in some astrophysical flows (stars, planets and accretion discs) that are tidally15
deformed through gravitational interaction with other bodies. In the limit case where the flow16
streamlines are exactly circular (𝜀 = 0), there are fast and slow magneto-inertia-gravity waves17
with frequencies 𝜔1,2 and 𝜔3,4, respectively. Under the effect of finite ellipticity, the resonant18
cases of these waves,𝜔𝑖−𝜔 𝑗 = 𝑛Ω (𝑖 ≠ 𝑗) (𝑛 being an integer), can become destabilising. The19
maximal growth rate of the subharmonic instability (related to the resonance of order 𝑛 = 2)20
is determined by extending the asymptotic method by Lebovitz & Zweibel (Astrophys. J., vol.21
609, 2004, pp. 301–312). The domains of the (𝑘0𝐵/Ω, 𝑁/Ω) plane for which this instability22
operates are identified (1/𝑘0 being a characteristic length scale). We demonstrate that the23
𝑁 → 0 limit is, in fact, singular (discontinuous). The axial stable stratification enhances the24
subharmonic instability related to the resonance between two slow modes because, at large25
magnetic field strengths, its maximal growth rate is twice that found in the case without26
stratification.27

.28
Key words: vortex instability, stratified astrophysical flows, MHD turbulence.29

1. Introduction30

The three-dimensional (3D) elliptical flow instability is very generic and occurs in many flow31
configurations, when the basic velocity field (or base flow) consists of large horizontal vortices32
with elliptical streamlines in their core. The elliptic instability is a parametric resonance of33
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internal (usually inertial) waves due to an elliptical deformation of the streamlines of a34
rotating flow. The reader is referred to Kerswell (2002) for a detailed review and references35
therein. The origin of the ellipticity in the core of eddies is multifold. In the study of the36
stability of airplane wakes, we have to consider the presence, before their possible breaking,37
of a pair of large counter-rotating vortices: this is the mutual induction of these eddies that38
render their core elliptic. More generally, the characteristics and behaviour of counter-rotating39
and corotating vortex pairs have been recently reviewed in the study by Leweke, Le Dizès &40
Williamson (2016).41

In line with former studies, McKeown et al. (2020) showed that iterations of the elliptical42
instability, arising from the interactions between counter-rotating vortices, lead to the43
emergence of turbulence. As a second example, in rotating flows subjected to precession, the44
gyroscopic torque, mediated by the misalignment of solid-body rotation and system angular45
velocity, induces an additional shear that, superimposed to solid-body rotation, results in46
elliptical streamlines, as shown by Kerswell (1993a) and by Salhi & Cambon (2009) in the47
simplest geometry. More generally, elliptical shape caused by tidal forces is very common48
in many astrophysical systems such as planetary cores, binary stars, gaseous planets and49
accretion discs. The importance of elliptical instability, in a purely hydrodynamic context, in50
the tidal dissipation mechanism in such astrophysical systems has been the subject of several51
studies in the literature (Barker & Lithwick 2013; Cébron et al. 2013; Barker, Braviner52
& Ogilvie 2016; Barker 2016). Note that tidal dissipation generates heat in astrophysical53
systems, which in some cases may be important for their structure and evolution (Ogilvie54
2014).55

Being the ellipticity due to the mutual induction of adjacent vortices or not, the elliptical56
instability is local, so that it is generally sufficient to consider a single elliptic eddy57
for the base (or mean) flow. For trailing vortices again, it has been shown that the58
Moore–Saffman–Tsai–Widnall (MSTW) instability (Moore & Saffman 1975; Tsai & Widnall59
1976), in the short-wavelength regime, is an elliptical instability (Éloy & Le Dizès 2001;60

Sipp & Jacquin 2003; Fukumoto 2003; Chang & Smith 2021). It is worth mentioning that61
the MSTW instability encompasses the long-wave instability bearing with Crow’s instability62
(Crow 1970) which occurs through the mutual induction of a pair of parallel counter-rotating63
vortex columns (McKeown et al. 2020): the Biot–Savart law is generally used to compute the64
induced velocity on one of the trailing vortices owing to the presence of the other. Recently,65
Feys & Maslowe (2016) have examined the elliptical instability of the Moore and Saffman66
model Moore & Saffman (1975) for a single trailing vortex. Their results demonstrate the67
significant effect of the distribution and intensity of the axial flow on the elliptical instability of68
a trailing vortex. Such a robust 3D instability leads to vortex decay under most circumstances,69
as reviewed by Lesur & Papaloizou (2009). Rather old experimental evidences are quoted in70
the following historical review, and recently the nonlinear fate of libration-induced elliptical71
instability in low-dissipation and low-forcing regimes has been explored experimentally by72
Le Reun, Favier & Le Bars (2019). They showed that once the saturation of the elliptical73
instability is reached, a turbulent state is observed for which the energy is injected only in74
the resonant inertial waves.75

It is clear that the elliptical instability has a very long history, and deserves a survey, as76
follows. This allows us to discuss what is the simplest mathematical way to identify it and77
to quantify its effects, first in the neutral (non-stratified), purely hydrodynamical case. After78
some experimental evidences of that instability (Gledzer et al. 1975; Malkus 1989), see also79
the recent review by McKeown et al. (2020), a sudden interest arose when Pierrehumbert80
(1986) discovered its characteristic properties by a conventional normal mode analysis81

approach, whereas at the same time Bayly (1986) found the same results using the simpler82
and more elegant method using Kelvin modes, or mean-flow-advected (Lagrangian) Fourier83
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modes along elliptical trajectories. The latter study, similar to that by Craik & Criminale84
(1986), was foreshadowed by a rapid distortion theory (RDT) analysis by Cambon (1982),85
and Cambon et al. (1985) (in French). This is re-discussed, in English, by Godeferd,86
Cambon & Leblanc (2001), with especially its figure 3, and in Sagaut & Cambon (2008,87
2018) for a recent overview. Waleffe (1989, 1990) clearly described the physical mechanism88
of the elliptical instability as a vortex stretching mechanism and showed how the growing89
Kelvin modes found by Bayly (1986) in the case of unbounded strained vortex could be90
superimposed to create a localised, unstable disturbance of the form found in the bounded91
elliptical cylinder case (Gledzer et al. 1975).92

From the previous studies, let us summarise the advantages of the formalism with93
projection of the disturbance fields onto Kelvin modes. The Kelvin modes are essentially94
3D Fourier modes, even if the wave vector can become time-dependent following the95
mean flow streamlines. The time dependency of the wave vector represents the convection96
of the plane wave exp(i𝒌 (𝑡)·𝒙) by the base flow. Both the direction and magnitude of97
𝒌 change as wave crests rotate and approach or separate from each other due to basic98
velocity gradients. Accordingly, all the formal advantages of Fourier space remain valid:99
pure algebraic formulation of integro-differential equations, including Poisson equation for100
pressure disturbances, algebraic dissipation term instead of Laplacian operator, algebraic101
linkage from vorticity to velocity (instead of a Biot-Savart relationship). It is worth102
emphasising that the system of equations for disturbances in terms of Lagrangian Fourier103
modes is universal under a typical length scale. Indeed, such a system is recovered for small-104
scale disturbances traveling near any smooth base-flow trajectory, in the zonal asymptotic105
method of Lifschitz & Hameiri (1991) with close connection with geometric optics; the106
velocity gradients of the base flow are treated as space-uniform in a domain of unspecified107
length scale, asymptotically small (see also Godeferd, Cambon & Leblanc (2001)).108

Can the elliptic instability, in the pure hydrodynamic context, survive in the presence109
of vertical basic density stratification, that is stabilising considered alone? A first answer110
is given by the study of the stability of inertia-gravity waves when it is altered by the111
ellipticity of streamlines. In relation to the dynamics of ocean and atmosphere Miyazaki &112
Fukumoto (1992); Miyazaki (1993) investigated the influence of the Coriolis force and113
density stratification, caused by temperature or salinity gradient, on the elliptical instability.114
Miyazaki & Fukumoto (1992) considered an unbounded strained-vortex flow with stable115
axial stratification. They have found that the growth rates for the elliptical instability were116
invariably reduced: the subharmonic elliptical instability is completely suppressed when117
Brunt-Väisälä frequency (𝑁) is greater or equal to the half of the basic vorticity strength (Ω).118
For small eccentricities, asymptotic theory leads to formulae for the maximum growth rate119
(Kerswell 2002) (see also § 3 in the present study). It is worth mentioning that the elliptical120
instability of stratified vortices has been addressed as well in previous studies (Otheguy,121
Chomaz & Billant 2006; Le Bars & Le Dizès 2006; Guimbard et al. 2010; Suzuki, Hirota122
& Hattori 2018). The effects of differential diffusion between momentum and density on the123
elliptical instability have recently been addressed by Singh & Mathur (2019). They showed124
that, in the case where the ratio of thermal diffusivity to kinematic diffusivity is equal to125
unity, the viscous effects are purely suppressive, whereas for sufficiently small values of this126
ratio, there is an oscillatory instability whose signature is nevertheless present with zero127
growth rate in the inviscid limit. In turbulent Rayleigh-Bénard convection, Zwirner, Tilgner128
and Shishkina (2020) showed that the mechanism which causes the twisting and breaking of129
a single-roll large-scale circulation into multiple rolls is the elliptical instability. On the other130
hand, density effects on the MSTW instability have been recently investigated by Chang &131
Smith (2021) who performed a normal mode stability analysis and showed that, for the132
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subharmonic instability (resonance (𝑚, 𝑚 +2) = (0, 2), 𝑚 being the azimuthal wavenumber)133
the growth rate is maximised when the ratio of vortex to ambient fluid density is near 0.215.134

The interaction of vortices with a magnetic field is a fundamental process in astrophysical135
magnetohydrodynamics (MHD). Therefore, a similar question occurs when one moves from136
hydrodynamics to MHD when the electrically conducting elliptical flow is subjected to an137
unperturbed (or a basic) magnetic field. In a geophysical context, Kerswell (1994) studied the138
effect of a toroidal magnetic field on the elliptic instability in a rotating spheroidal container139
filled with an incompressible electrically conducting fluid, which carries a constant axial140
electric current. He concluded that the toroidal magnetic field has a stabilizing influence. By141
including the effect of a uniform magnetic field perpendicular to the plane of the elliptical base142
flow, the resulting magneto-elliptic instability has been related to the problem of turbulence143
generation and, hence, momentum transport in accretion discs by Lebovitz & Zweibel144
(2004) (hereafter LZ04). In that study, an analytical technique was developed to determine145
the maximal growth rates of the destabilising resonances of order 𝑛 = 2 (i.e., subharmonic146
instabilities, see equation (1.1)) in the limit of small elliptical (tidal) deformations. This147
analytical technique has been used in previous studies by Mizerski & Bajer (2009) for the148
magneto-elliptical instability of rotating systems and by Salhi, Lehner & Cambon (2010)149
for the magneto-precessional instability. Herreman et al. (2010) conducted experiments to150
explain some aspects of the nonlinear transition process for the elliptic instability in rotating151
cylinders under imposed magnetic field. It is worth noting that in the case where the Coriolis152
and Lorentz forces are simultaneously present and when the wave vector 𝒌 aligns with the153
magnetic field the elliptical flow can develop horizontal instability which dominates over154
all other modes (Bajer & Mizerski 2013). In the astrophysical context (tidal dissipation in155
gaseous planets and stars), Barker & Lithwick (2014) found that magnetic fields do prevent156
vortices from forming and, hence, greatly enhance the steady-state dissipation rate.157

The combined effects of stable density stratification and MHD on the elliptical instability158
within an elliptically distorted cylinder have been investigated by Kerswell (1993b).159
He performed a normal mode stability analysis for a simple configuration possessing160
considerable symmetry between the velocity and magnetic fields: a purely azimuthal161
magnetic field, which in the frozen flux limit is also elliptically distorted. In that study,162
stratification is either axial (the isopycnics are parallel to the streamlines) or radial (the163
isopycnics are perpendicular to the streamlines).164

In the present paper we analyse in detail the joint influence of a stable axial stratification165
(with strength 𝑁) and an external (axial) uniform magnetic field (with Alfvén velocity166
scaled from the basic magnetic field 𝐵) on the stability of an unbounded flow with elliptical167
streamlines of a perfectly conducting fluid. Our study extends the study by Miyazaki &168
Fukumoto (1992) by including the effects of a magnetic field and also the study by LZ04169
by including the effects of an axial stable stratification. An important aspect of the present170
study is to map out the regime of (𝐵/(𝐿0Ω), 𝑁/Ω) space (𝐿0 being a characteristic length171
scale) for which the destabilising resonances of order 𝑛 = 2 (see equation (1.1)) of magneto-172
inertia-gravity (MIG) waves prone to operate and to determine their growth rates at small173
ellipticity by extending the analytical technique by LZ04. In the laboratory experiment of174
a magnetised turbulent Taylor-Couette flow of liquid metal by Nornberg et al. (2010),175
the combined fast and slow Alfvén-inertial waves were clearly identified where the observed176
slow wave is damped. These authors have identified a relationship between the slow magneto-177
inertial waves and the magneto-rotational instability (MRI) (Balbus & Hawley 1991; Wang178
et al. 2022). On the other hand, Mizerski & Lyra (2012) examined the link between the179
magneto-elliptical instability and the MRI, explaining that the two instabilities are different180
manifestations of the same magneto-elliptical-rotational instability. Salhi et al. (2012) have181
studied the effects of stable stratification on the MRI instability and showed that, under the182
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MHD Boussinesq approximation (e.g. Wilczyński, Hughes & Kersalé (2022)), the so-called183
“magnetic induction potential scalar” (MIPS, i.e., the scalar product of the magnetic field184
vector and the density gradient) is a Lagrangian invariant for a non-diffusive fluid. In contrast,185
the potential vorticity (PV), which is very useful as an invariant in stratified geophysical flows186
(e.g. Pedlowsky (2013)), is no longer valid in MHD because it removes the baroclinic torque187
in the extended vorticity equation, but not the counterpart of the Lorentz force.188

An asymptotic stability analysis is developed in section 3 at leading order in the ellipticity189
parameter 𝜀 in order to determine the growth rates of the (subharmonic) instability tongues190
that emanate from the points at vanishing ellipticity. In this limit, disturbances to the basic191
flow are found in terms of MIG dispersive waves, with a dispersion law (Salhi et al. 2017)192
that includes Ω, 𝑁, 𝐵/𝐿0 and the angular parameter 𝜇 = cos(𝜃) (the angle 𝜃 being the193
angle between the wave vector of the perturbations and that of the base-flow vorticity). In194
contrast with particular cases, the general dispersion law of MIG waves is no longer a simple195
combination of the individual dispersion frequencies, considered alone, but is obtained in196
combining the eigenvalues of the matrix of the whole linear system of equations (Salhi et197
al. 2017). Fast and slow modes are identified, with different resonance conditions between198
them, or199

𝜔𝑖 − 𝜔 𝑗 = 𝑛Ω (𝑖, 𝑗 = 1, 2, 3, 4, 𝑖 ≠ 𝑗 , 𝑛 being an integer). (1.1)200

Without an analysis of the resonant conditions, it is not possible to simply identify the different201
instabilities, namely if they are subharmonic or not, if they result from the interaction of two202
fast modes, two slow modes, or one fast and one slow.203

As detailed in section 2, the use of the magnetic invariant (MIPS) makes it possible204
to reduce the linear system of ordinary differential equations, which represents a Floquet205
problem, from a five-component system to a four-component system only. In §3, we show206
that stable stratification enhances the destabilising resonance of order 𝑛 = 2 between two207
slow modes because we find that, at large magnetic strengths, its growth rate is about twice208
that found in the case without stratification (LZ04). Asymptotic formulae are compared with209
numerical results carried out at arbitrary ellipticity in Section 4. The effect of diffusion is210
briefly addressed in the special case where the diffusion coefficients (kinetic, thermal and211
magnetic) are equal. Conclusions and perspectives are offered in Section 5.212

2. MHD Boussinesq’s equations213

We consider a stratified electrically conducting fluid. Density variations are introduced using214
the Boussinesq approximation for simplicity (Chandrasekhar 1961). The fluid is assumed to215
be inviscid and non-diffusive. The effect of viscosity (𝜈) and thermal (𝜅) and magnetic (𝜂)216
diffusivity are briefly addressed in §4.3 by considering the case where 𝜈 = 𝜅 = 𝜂 (i.e., the217
case where the magnetic and thermal Prandtl numbers are unity)218

The Boussinesq MHD equations written in a fixed frame take the form (Davidson 2013)219

𝐷𝑡 𝒖̃ = −∇𝑝 +
(
𝒃̃·∇

)
𝒃̃ + 𝜗̃𝒏 + 𝜈∇2𝒖̃, (2.1a)220

𝐷𝑡 𝒃̃ =

(
𝒃̃·∇

)
𝒖̃ + 𝜂∇2 𝒃̃, (2.1b)221

𝐷𝑡 𝜗̃ = 𝜅∇2𝜗̃ (2.1c)222

∇·𝒖̃ = 0 (2.1d)223

∇·𝒃̃ = 0 (2.1e)224225

where 𝐷𝑡 (·) ≡ (𝜕𝑡 + 𝒖̃·∇) (·) denotes the material derivative, 𝒖̃ denotes the velocity and 𝒃̃226
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denotes the magnetic field which is scaled using Alfvén velocity units, i.e., it is divided by227 √
𝜌0𝜇0 where 𝜌0 and 𝜇0 are the constant density and the magnetic permeability of the fluid.228

Here, 𝑝 being the total pressure (including the magnetic part) divided by the constant density229
𝜌0. In the present study, we consider axial stratification,230

𝒏 = 𝒆3 = −𝒈/𝑔. (2.2)231

where 𝒆3 is the upward vertical unit vector and 𝒈 is the gravitational acceleration vector. The232
first equation in the above system is the momentum equation, the second is the induction233
equation for the magnetic field and the third is the buoyancy scalar equation. Both velocity234
field and magnetic field are solenoidal (Eq. (2.1-d,e)).235

For a non magnetised Boussinesq ideal fluid, one may easily show that the potential236
vorticity (PV) (Pedlowsky 2013),237

𝜛̃𝜅 = 𝝎̃𝑎 ·∇𝜗̃, (2.3)238

is a Lagrangian, invariant, i.e., 𝐷𝑡𝜛̃𝜅 = 0. Here, 𝝎̃𝑎 is the absolute vorticity vector which,239
in the absence of the Coriolis force, identifies with the vorticity vector 𝑾 = ∇ × 𝒖̃. In240
counterpart, for a magnetised Boussinesq ideal fluid, it is the so-called MIPS (Salhi et al.241
2012)242

𝜛̃𝑚 = 𝒃̃·∇𝜗̃ (2.4)243

that is a Lagrangian invariant, i.e., 𝐷𝑡𝜛̃𝑚 = 0, and not 𝜛̃𝜅 . The usefulness of introducing244
the MIPS is illustrated later.245

2.1. Base flow246

The solutions of system (2.1) are conveniently decomposed into a ’basic flow’ (𝑼, 𝑃, 𝑩, 𝛩)247
and a ’disturbance’ (𝒖, 𝑝, 𝒃, 𝜗), but the latter needs to be small compared with the former,248

𝒖̃ = 𝑼 + 𝒖, 𝑝 = 𝑃 + 𝑝, 𝒃̃ = 𝑩 + 𝒃, 𝜗̃ = 𝛩 + 𝜗. (2.5)249

We consider the linear stability of a stratified vortical flow with elliptical streamlines and250
with uniform vertical magnetic field (see figure 1)251

𝑼 = A·𝒙, A = Ω
©­«

0 −𝐸 0
𝐸−1 0 0
0 0 0

ª®¬ (2.6a)252

𝑩 = 𝐵𝒆3, (2.6b)253

𝛩 = 𝑁2𝑥3 (2.6c)254255

where Ω is a constant that is a measure of the intensity of the flow and 𝐸 ⩾ 1 is a measure256
of elliptical deformation of the streamlines, and 𝑁 is the Brunt-Väisälä frequency such that257

𝑁2 = − 𝑔

𝜌0

𝑑𝜚

𝑑𝑥3
. (2.7)258

Circular streamlines correspond to the case where 𝐸 = 1. The parameter259

𝜀 =
1
2

(
𝐸 − 𝐸−1

)
(2.8)260

represents the departure of the streamlines of the unperturbed flow from axial symmetry. We
note that

0 < 𝛿 = (𝐸 − 𝐸−1)/(𝐸 + 𝐸−1) < 1
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Figure 1
A schematic drawing of the basic state – planar flow with elliptical streamlines, Ψ = −(Ω/2)

(
𝐸−1𝑥2

1 + 𝐸𝑥2
2

)
being the stream function in the presence of an axial uniform magnetic field (𝑩 = 𝐵𝒆3) and an axial stable
stratification (𝛩 = 𝑁2𝑥3, 𝑁

2 = −(𝑔/𝜌0) (𝑑𝜚/𝑑𝑥3), 𝑁 being the Brunt Brunt-Väisälä frequency). The gravity
vector is given by 𝒈 = −𝑔𝒆3 with 𝑔 > 0.

for the flow to be elliptical. We also note that, an equivalent form for the unperturbed velocity261
field has been used in previous studies (Waleffe 1990; Miyazaki & Fukumoto 1992; Miyazaki262
1993; Kerswell 2002; Mizerski & Bajer 2009; Bajer & Mizerski 2013)263

𝑼 = Γ [− (1 + 𝛿) 𝑥2𝒆1 + (1 − 𝛿) 𝑥1𝒆2] , (2.9)264

where 2Γ = Ω
(
𝐸 + 𝐸−1) and −Γ𝛿 represents the strain rate, but the expression (2.6a) seems265

more suitable for analysing resonant destabilisation (Mizerski & Bajer 2009).266
The basic buoyancy scalar𝛩 varies linearly with the axial coordinate 𝑥3 (axial stratification)267

and is proportional to the gravitational acceleration, 𝑔, and to a background density268
(or temperature) gradient. This linear profile admits a constant Brunt-Väisälä frequency269
𝑁 throughout the entire fluid. More general exact solutions of the combined stratified270
fluid/magnetic equations exist in an unbounded domain (Craik 1989); the case in hand271
(i.e. equation (2.6)) is probably the simplest of these. As indicated previously, Miyazaki &272
Fukumoto (1992) considered an unbounded strained-vortex flow with stable exponential273
stratification in the axial direction at small Froude number, Fr = Γ2𝐿0/𝑔 ≪ 1 with 𝐿0 a274
characteristic length scale. One may show that the resulting linear differential system for the275
disturbances superimposed on the base flow is the same considering either an exponential276
basic stratification or a linear (with respect to space coordinates) basic stratification. Both277
profiles (exponential or linear) admit a constant Brunt-Väisälä frequency through-out the278
entire fluid.279

2.2. Perturbed system280

In the following, we consider the case of a non-diffusive fluid. Diffusivity effects with the281
assumption that the diffusion coefficients are equal (𝜈 = 𝜅 = 𝜂) or, equivalently, the magnetic282
and thermal Prandtl numbers are equal to one are briefly discussed at the end of §4.283

2.2.1. Linearized system in physical space284

We substitute the solutions (2.5) into the system (2.1) and linearise. Linearisation is not285
readily justified by the fact that the flow disturbances are very small with respect to the base286
flow. Linearisation is briefly discussed in the conclusion. Thus, we expect our analysis to287
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break down when the disturbances become so large that nonlinear effects become important.288
The resulting perturbed equations are289

𝐷𝑡𝒖 = −∇𝑝 − (𝒖·∇)𝑼 + (𝑩·∇) 𝒃 + 𝜗𝒆3, (2.10a)290

𝐷𝑡 𝒃 = (𝒃·∇)𝑼 + (𝑩·∇) 𝒖, (2.10b)291

𝐷𝑡𝜗 = −𝑁2𝑢3, (2.10c)292

∇·𝒖 = 0, (2.10d)293

∇·𝒃 = 0. (2.10e)294295

As for the linear part of MIPS (see Eq. (2.4)), it takes the form296

𝜛𝑚 = 𝐵
𝜕𝜗

𝜕𝑥3
+ 𝑁2𝑏3. (2.11)297

where 𝐷𝑡𝜛𝑚 = 0, so that 𝜛𝑚 = constant. As shown later, for the purposes of studying298
stability, we may set 𝜛𝑚 = 0 (see also Benkacem et al. (2022)).299

2.2.2. Floquet system in wave space.300

The disturbances are expressed in terms of Lagrangian Fourier modes, as discussed in section301
1. These modes were used for shear waves by Moffatt (2010), who was probably the first to302
call them ‘Kelvin modes’, in reference to a pioneering paper by Lord Kelvin Kelvin (1887)303
in the nineteenth century. They are advected by the mean flow as Lagrangian invariants304
(Cambon 1982; Sagaut & Cambon 2008, 2018), as plane waves for which the direction and305
the speed of propagation depend on time, via a time-dependent wave vector:306

[𝒖, 𝑝, 𝒃, 𝜗] (𝒙, 𝑡) =
[
𝒖̂, 𝑝, 𝒃̂, 𝜗̂

]
(𝒌, 𝑡) exp (i𝒙·𝒌 (𝑡)) , (2.12)307

where i2 = −1. Accordingly, the material derivative of the fluctuating velocity can be
rewritten as

𝐷𝑡𝒖 =

(
𝜕𝑡 +𝑈 𝑗

𝜕

𝜕𝑥 𝑗

)
[𝒖̂(𝒌, 𝑡) exp (i𝒙·𝒌 (𝑡))]

with 𝑈 𝑗 = 𝐴 𝑗𝑚𝑥𝑚, so that

𝐷𝑡𝒖 =
[
𝜕𝑡 𝒖̂ + i

(
(𝑑𝑡 𝑘 𝑗)𝑥 𝑗 + 𝐴 𝑗𝑚𝑘 𝑗𝑥𝑚

)
𝒖̂
]

exp (i𝒙·𝒌 (𝑡)) ,
or, equivalently,

𝐷𝑡𝒖 =

(
𝜕𝑡 𝒖̂ + i

[(
𝑑𝑡 𝒌 + 𝐴𝑇 𝒌

)
·𝒙

]
𝒖̂
)

exp (i𝒙·𝒌 (𝑡)) .

In order to remove the explicit dependence on 𝒙 in the resulting equations for the Fourier308
amplitudes 𝒖̂, 𝒃̂, 𝑝 and 𝜗̂, one has to ensure that 𝒌 (𝑡) varies in time according to the eikonal309
equation310

𝑑𝑡 𝒌 = −A𝑇
·𝒌, (2.13)311

where 𝑑𝑡 (·) ≡ 𝑑 (·)/𝑑𝑡 and 𝑇 denotes transpose. Equation (2.13) can be solved to give312

𝑘1 = 𝑘 𝑝 cos(𝜏 − 𝜙), 𝑘2 = 𝐸𝑘 𝑝 sin(𝜏 − 𝜙), 𝑘3 = 𝑘30, (2.14)313

where 𝜏 = Ω𝑡 being a dimensionless time,

𝑘2
𝑝 = 𝑘2

1 + 𝐸−2𝑘2
2 = 𝑘2

10 + 𝐸−2𝑘2
20, tan 𝜙 = −𝐸−1𝑘20/𝑘10,

with 𝑘 𝑗0 ( 𝑗 = 1, 2, 3) the initial wave vector component. For purposes of studying stability,314
we may set 𝜙 = 0. This is easily seen by making the substitution Ω𝑡′ = Ω𝑡 + 𝜙, which315
eliminates 𝜙 from the equation.316
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Substituting the plane waves solution (2.12) into the system (2.10) and taking into account317
the eikonal equation (2.13), we obtain318

𝑑𝑡 𝒖̂ = −i𝑝𝒌 − A·𝒖̂ + i (𝑘3𝐵) 𝒃̂ + 𝜗̂𝒆3, (2.15a)319

𝑑𝑡 𝒃̂ = A·𝒃̂ + i (𝑘3𝐵) 𝒖̂, (2.15b)320

𝑑𝑡 𝜗̂ = −𝑁2𝑢̂3, (2.15c)321322

together with 𝒌·𝒖̂ = 0 and 𝒌·𝒃̂ = 0. The use of the latter conditions allows one to eliminate323
the Fourier amplitude of fluctuating pressure,324

𝑝(𝒌, 𝑡) = −i𝑘−2
(
2Ω2𝑐1 + 𝑘3𝜗̂

)
, Ω𝑐1 = 𝐸𝑘1𝑢̂2 − 𝐸−1𝑘2𝑢̂1, (2.16)325

and to reduce the above seven-component Floquet system to a five-component version. Here,326

𝑘 =

√︃
𝑘2

1 + 𝑘2
2 + 𝑘2

3 is the modulus of the wave vector. This reduction of components results327

from the fact that both Fourier modes for fluctuating velocity and for fluctuating magnetic328
field are two-component in the plane normal to the wave vector. Such projection can be done329
using the orthonormal Craya-Herring frame of reference, as used in several articles (e.g.330
from Salhi & Cambon (1997)).331

We note that the case where the wave vector is vertical, so that 𝑘1 = 𝑘2 = 0, 𝑘 𝑝 = 0332
and 𝑘3 = ±𝑘, characterises a special class of disturbances, called horizontal perturbations,333
in which the vertical components 𝑢̂3 and 𝑏̂3 identically vanish (Bajer & Mizerski 2013). In334
that case, axial stratification has no effect on the horizontal perturbations, and then there is335
no instability without the Coriolis force.336

2.2.3. Change of variables337

At 𝑘3 = 0, the solution of the resulting Floquet system (2.15) is stable. Accordingly, we338
henceforth consider only perturbations with vertical wave number 𝑘3 ≠ 0. As in the studies339
by LZ04 and by Mizerski & Bajer (2009), we transform the resulting Floquet system in340
terms of the following variables to facilitate subsequent calculations341

Ω𝑐2 = −𝑘3𝑢̂3, Ω𝑐3 = 𝐸𝑘1𝑏̂2 − 𝐸−1𝑘2𝑏̂1, Ω𝑐4 = −𝑘3𝑏̂3, Ω2𝑐5 = −𝑘3𝜗̂. (2.17)342

Given (2.16) we transform the system (2.15) according to these new variables,343

𝑑𝜏𝑐1 = −4𝜀
𝑘1𝑘2

𝑘2 𝑐1 − 2𝑐2 + i
(𝑘3𝐵)
Ω

𝑐3 + 2𝜀
𝑘1𝑘2

𝑘2 𝑐5 (2.18a)344

𝑑𝜏𝑐2 = 2
𝑘2

3
𝑘2 𝑐1 + i

(𝑘3𝐵)
Ω

𝑐4 +
𝑘2
⊥
𝑘2 𝑐5 (2.18b)345

𝑑𝜏𝑐3 = i
(𝑘3𝐵)
Ω

𝑐1 (2.18c)346

𝑑𝜏𝑐4 = i
(𝑘3𝐵)
Ω

𝑐2 (2.18d)347

𝑑𝜏𝑐5 = −𝑁2

Ω2 𝑐2 (2.18e)348
349

where 𝑑𝜏𝑐1 = Ω−1𝑑𝑡𝑐1 and 𝑘⊥ =

√︃
𝑘2

1 + 𝑘2
2 . Combining equations (2.18d) and (2.18e), we350

deduce the following relation:351

−Ω

𝑘3

[
iΩ (𝑘3𝐵) 𝑐5 + 𝑁2𝑐4

]
= i (𝑘3𝐵) 𝜗̂ + 𝑁2𝑏̂3 = 𝜛̂𝑚 = constant (2.19)352
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which represents the spectral counterpart of the MIPS (see Eq. (2.4)). Accordingly, system353
(2.18) can be further reduced to a fourth-order inhomogeneous Floquet system,354

𝑑𝜏 𝒄̂ = D(𝜏)·𝒄̂ + 𝝋̂ (2.20)355

where the only non-zero elements of D(𝜏) are356

𝐷11 = −4𝜀
𝑘1𝑘2

𝑘2 , 𝐷12 = −2, 𝐷21 = 2
𝑘2

3
𝑘2 , (2.21a)357

𝐷13 = 𝐷31 = 𝐷42 = i
(𝑘3𝐵)
Ω

, (2.21b)358

𝐷14 = 2i𝜀
𝑁2

Ω(𝑘3𝐵)
𝑘1𝑘2

𝑘2 , (2.21c)359

𝐷24 = i
(
(𝑘3𝐵)
Ω

+ 𝑁2

Ω (𝑘3𝐵)
𝑘2
⊥
𝑘2

)
. (2.21d)360

361

The non-zero components of the inhomogeneous term in Eq. (2.20) take the form362

𝜑̂1 = 2i𝜀
𝑘1𝑘2

𝑘2
𝜛̂𝑚

(Ω2𝐵)
, (2.22a)363

𝜑̂2 = i
𝑘2
⊥
𝑘2

𝜛̂𝑚

(Ω2𝐵)
(2.22b)364

365

and it can be seen as a time-varying forcing excitation.366
Note that in the non-magnetised stratified case, one can use the fact that the PV is367

a Lagrangian invariant for a non-diffusive fluid (Pedlowsky 2013) to derive a non-368
homogeneous two-component Floquet system in terms of the variables 𝑐1 and 𝑐2.369

2.3. Homogeneous Floquet system370

The linear system (2.20) has the properties D(𝜏 + 𝑇) = D(𝜏) and 𝝋̂(𝜏 + 𝑇) = 𝝋̂(𝜏) where371
𝑇 = 2𝜋 is the period common to both the matrix D and the vector 𝝋̂. Floquet theory does not372
address stability of the inhomogeneous system described by Eq. (2.20) where the ’forcing373
excitation’ 𝝋̂(𝜏) is present. However, the 𝑇−periodic nature of 𝝋̂(𝜏) allows an extension to374
the theory (Slane & Tragesser 2011). Following the study of Slane & Tragesser (2011), it375
is shown that the basic behaviour of the homogeneous system376

𝑑𝜏 𝒄̂ = D·𝒄̂ (2.23)377

does not change with the addition of the term 𝝋̂(𝜏). Here, 𝒄̂ = (𝑐1, 𝑐2, 𝑐3, 𝑐4)𝑇 in the378
canonical basis of C4. In other words, for purposes of studying stability, one may set 𝜛̂𝜅 = 0,379
so that 𝝋̂ = 0 (Benkacem et al. 2022).380

We denote by 𝚽(𝜏) any fundamental matrix solution of the homogeneous system (2.23)381
where 𝚽(0) = I4. According to Floquet–Lyapunov theorem, 𝚽 is expressible in the form382
(Kuchment 1993),383

𝚽(𝜏) = F(𝜏) exp (K𝜏) , (2.24)384

where F(𝜏) is a non-singular continuous 2𝜋−periodic 4×4 matrix-function (whose derivative385
is an integrable piecewise-continuous function) and K is a constant matrix. The determinant386
of 𝚽 is unity at 𝜏 = 2𝜋, |𝚽(2𝜋) | = 1 because387

trace D =

4∑︁
𝑗=1

𝐷 𝑗 𝑗 = −4𝜀
𝑘1𝑘2

𝑘2 = − 1
𝑘2 𝑑𝜏𝑘

2. (2.25)388

Rapids articles must not exceed this page length
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It follows that whenever 𝜆 is an eigenvalue of the monodromy matrix, M = 𝚽(2𝜋), so too389
are its inverse 𝜆−1 and its complex conjugate 𝜆∗ (see LZ04). Consequently, in the stable case,390
eigenvalues of M lie on the unit circle. If any eigenvalue 𝜆 of M has modulus exceeding one,391
this implies that there is indeed an exponentially growing solution. The growth rates are then392
given by393

𝜎 =
1

2𝜋
log (𝜆) . (2.26)394

In the Floquet system (2.23) figure four dimensionless parameters, namely395

𝜀 =
1
2

(
𝐸 − 𝐸−1

)
, 𝜇 = 𝑘3/𝑘0, N = 𝑁/Ω, B = (𝑘0𝐵)/Ω (2.27)396

where 𝑘0 =

√︃
𝑘2
𝑝 + 𝑘2

3 represents the modulus of the initial wave vector for 𝜀 = 0. The397

parameters 𝑘0𝐵 , 𝑁 and 2Ω can be seen as the maximal frequencies of Alfvén, gravity and398
inertial waves, respectively (we return to this later).399

For the stability analysis of system (2.23), we perform an asymptotic analysis to leading400
order in 𝜀 to determine the maximal growth rates of instability (if it exists). In addition, we401
integrate numerically (using the fourth-order Runge-Kutta-Gill method) system (2.23) from402
𝜏 = 0 to 𝜏 = 2𝜋 and we determine the eigenvalues of the solution matrix numerically (using403
the double QR method).404

3. Destabilised resonances of MIG waves405

In this section, we start from the case of a vertically stratified flow with (horizontal) circular406
streamlines subjected to a vertical magnetic field. In that case, there are MIG waves. We407
characterise the resonant cases of these waves because some of them become destabilising408
when the streamlines are elliptical (𝜀 ≠ 0). We perform an asymptotic analysis to leading409
order in 𝜀 of the Floquet system (2.23) and determine the maximal growth rate of the410
destabilising resonant cases of order 𝑛 = 2 (called subharmonic instability). The asymptotic411
analysis is performed by extending analytical techniques developed by LZ04. For the sake412
of clarity, all the asymptotic calculations are reported in Appendix. Here we only state the413
results.414

3.1. Dispersion relation of MIG waves415

In this section, we establish the dispersion relation of the MIG waves propagating in a non-416
diffusive unbounded fluid. The cases of inertia-gravity waves and magneto-inertia waves are417
briefly addressed.418

We denote by D0 the matrix D for 𝐸 = 1 (i.e., circular streamlines)419

D0 = Ω−1
©­­­­«

0 −2Ω i𝜔𝑎 0
(2Ω)−1𝜔2

𝑟 0 0 i
(
𝜔2

𝑎 + 𝜔2
𝑔

)
𝜔−1

𝑎

i𝜔𝑎 0 0 0
0 i𝜔𝑎 0 0

ª®®®®¬
(3.1)420

where421

𝜔𝑟 = 2𝛀·(𝒌/𝑘) = 2Ω𝜇, (3.2a)422

𝜔𝑎 = 𝑩·𝒌 = 𝐵𝑘0𝜇 = ΩB𝜇, (3.2b)423

𝜔𝑔 = 𝑁 |𝒈 × 𝒌 |/(𝑔𝑘) = 𝑁

√︃
1 − 𝜇2 = ΩN

√︃
1 − 𝜇2 (3.2c)424

425
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are the frequencies of inertial, Alfvèn and gravity waves, respectively. The eigenvalues 𝜎𝑗426
( 𝑗 = 1, 2, 3, 4) of the constant matrix D0 take the form (Salhi et al. 2017),427

−Ω2𝜎2
1,2 = 𝜔2

1,2 =
1
2

[
2𝜔2

𝑎 + 𝜔2
𝑟 + 𝜔2

𝑔 +
√︃(

𝜔2
𝑟 + 𝜔2

𝑔

)2 + 4𝜔2
𝑟𝜔

2
𝑎

]
(3.3a)428

−Ω2𝜎2
3,4 = 𝜔2

3,4 =
1
2

[
2𝜔2

𝑎 + 𝜔2
𝑟 + 𝜔2

𝑔 −
√︃(

𝜔2
𝑟 + 𝜔2

𝑔

)2 + 4𝜔2
𝑟𝜔

2
𝑎

]
, (3.3b)429

430

or equivalently,431

𝜔1 = −𝜔2 =
Ω
√

2

√︂(
4 + 2B2 − N2) 𝜇2 + N2 +

√︃[(
4 − N2) 𝜇2 + N2

]2 + 16B2𝜇4 (3.4a)432

𝜔3 = −𝜔4 =
Ω
√

2

√︂(
4 + 2B2 − N2) 𝜇2 + N2 −

√︃[(
4 − N2) 𝜇2 + N2

]2 + 16B2𝜇4 (3.4b)433
434

These are distinct and non-zero as long as

B ≠ 0, and 0 < 𝜇2 < 1.

In the non-stratified case (N = 0), the frequencies 𝜔1,2,3,4 are linear with respect to the435
variable 𝜇 (see equation (3.7)); in the presence of stratification , they are not. This has436
the consequence of making the asymptotic analysis calculations much more complex (see437
Appendix) than in the cases without stratification which were studied by LZ04 (the magneto-438
elliptical instability) and Mizerski & Bajer (2009) (the magneto-elliptical instability of439
rotating systems).440

On the other hand, we note that (3.3), which can be rewritten as follows (Salhi et al. 2017)441 (
𝜔2 − 𝜔2

𝑔

) (
𝜔2 − 𝜔2

𝑎 − 𝜔2
𝑔

)
− 𝜔2

𝑟𝜔
2 = 0, (3.5)442

represents the dispersion relation for MIG waves in a non-diffusive fluid. As it was discussed443
in Salhi et al. (2017), the dispersion relation (3.5) remains similar to that one of 𝑓−plane444
MHD (Schecter et al. 2001).445

We can gain insight into the analysis of resonant cases of MIG waves by examining some446
limiting cases.447

3.1.1. Inertia-gravity waves.448

In the absence of unperturbed magnetic field (𝐵 = 0, so that, 𝜔𝑎 = 0), the frequency 𝜔3,4449
given by (3.3) vanishes, whereas the frequency 𝜔1,2 reduces to450

𝜔1,2 = ±
√︃
𝜔2
𝑔 + 𝜔2

𝑟 = Ω

√︃
(4 − N2)𝜇2 + N2. (3.6)451

In that case, there are inertia-gravity waves where the simultaneous presence of the solid-452
body rotation and stable vertical stratification produces higher-frequency waves because453
𝜔2
𝑟 ⩽ 𝜔2

1,2 and 𝜔2
𝑔 ⩽ 𝜔2

1,2.454
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3.1.2. Magneto-inertia waves455

. In the non-stratified case, 𝑁 = 0, the frequency of gravity waves vanishes, 𝜔𝑔 = 0. In that456
case, there are fast and slow magneto-inertia waves with frequency457

𝜔1,2 = ±1
2

(√︃
𝜔2
𝑟 + 4𝜔2

𝑎 + 𝜔𝑟

)
= ±Ω

(√︁
1 + B2 + 1

)
𝜇 (3.7a)458

𝜔3,4 = ±1
2

(√︃
𝜔2
𝑟 + 4𝜔2

𝑎 − 𝜔𝑟

)
= ±Ω

(√︁
1 + B2 − 1

)
𝜇, (3.7b)459

460

respectively. Note that, in the study by LZ04, the fast magneto-inertia waves are called461
“hydrodynamic modes” and the slow magneto-inertia waves are called “magnetic modes”462
because 𝜔3,4 = 0 at vanishing unperturbed magnetic field.463

3.2. Resonant cases of MIG waves464

In this section, we establish the condition of resonances of order 𝑛 between two fast or465
between two slow modes or between a fast mode and a slow mode.466

The resonant cases of MIG waves are those parameter values (𝜇,N ,B, ) such that467

𝜔𝑖 − 𝜔 𝑗 = 𝑛Ω, (𝑖 ≠ 𝑗) (3.8)468

where 𝑛 is an integer. For the elliptical flow, the only resonant cases that can lead to instability469
are those for which the integer 𝑛 is even.470

By using (3.3) we deduce that the resonance condition between two fast modes (𝜔1 −𝜔2 =471
𝑛Ω) or between two slow modes (𝜔3 − 𝜔4 = 𝑛Ω) is described by the following algebraic472
equation,473

4B2
(
B2 − N2

)
𝜇4 +

(
4B2N2 − 2𝑛2B2 − 4𝑛2 + 𝑛2N2

)
𝜇2 + 𝑛2

(
𝑛2

4
− N2

)
= 0. (3.9)474

with 0 < 𝜇2 < 1. Because the replacement 𝜇 → −𝜇 and/or 𝑛 → −𝑛 in Eq. (3.9) result in the475
same condition, we may therefore assume without loss of generality that 𝜇 > 0 and 𝑛 > 0.476

The condition (3.9) for resonance readily extends that by Bayly (1986) for basic elliptical477
flow instability (B = 0 and N = 0). Note that 𝜋/Ω is the typical time (period) for a wave478
packet to run the closed elliptical streamline, in the limit of vanishing, but non-zero, 𝜀; in the479
same limit, this period characterises the periodic alignment of the fluctuating vorticity with480
the mean (weak) strain, as 2𝜋/𝜔. The condition can be written 4Ω𝜇 = 𝑛Ω from the seminal481
study (Bayly 1986), that immediately yielded 𝜇 = 𝑛/4 = 0.5 (because only 𝑛 = 2 gives rise482
to 𝜇 < 1), giving the origin of time-dependent instability tongues at vanishing 𝜀. Even if a483
single-mode analysis is apparently sufficient, as emphasised by Craik & Criminale (1986)484
without the need for nonlinearity (exact solution), a two-mode resonance is implied , as also485
suggested by the classical normal mode analysis. For both basic elliptical flow instability and486
precessional instability, we have to consider the modes with dispersion law 𝜔1 = +𝜔𝑟 and487
𝜔2 = −𝜔𝑟 , and the subharmonic destabilising resonance is found for 𝜔1 −𝜔2 = 2𝜔𝑟 = ±𝑛Ω.488
Accordingly, the subharmonic order is 𝑛 = 2 for the basic elliptical flow instability, and489
𝑛 = 1 for the precessional instability. Also in agreement with his triad instability principle,490
a detailed analysis of Waleffe (1992) shows that the elliptical instability corresponds to a491
forward F-interaction: the two modes with eigenfrequency𝜔1 and𝜔2 have opposite polarities492
and are coupled with the mean flow, which is associated to a zero frequency, the unstable493
modes are thereby two resonant inertial waves associated with the uniform background494
rotation.495

In a similar manner, we determine from equation (3.3) the resonance condition between a496
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fast mode and a slow mode (𝜔1 − 𝜔3 = 𝑛Ω or 𝜔1 − 𝜔4 = 𝑛Ω),497 [(
4 − N2

)2
+ 16B2

]
𝜇4 − 2

[
2𝑛2B2 +

(
N2 − 4

) (
N2 − 𝑛2

)]
𝜇2 +

(
N2 − 𝑛2

)2
= 0. (3.10)498

In the three following sections, we present asymptotic formulae for the maximal growth499
rates of the subharmonic instabilities (those corresponding to the destabilising resonances of500
order 𝑛 = 2). The asymptotic formulae are yielded by the asymptotic analysis at leading501
order in 𝜀 of the Floquet system (2.23). Obviously, the instabilities related to higher-502
order resonances (𝑛 = 4, 6, 8, · · · ) are excluded by the procedure leading to the asymptotic503
formulae. These instabilities (if they exist) can be captured by the numerical computations504
(see section 4).505

3.3. Destabilising resonance between two fast modes506

As shown by LZ04, the universal elliptic instability, which results from the resonances (of507
order 𝑛 = 2) between two fast modes, persists in the presence of magnetic fields of arbitrary508
strength, although the growth rate decreases somewhat (LZ04). As a counterpart, in the509
presence of vertical (stable) stratification, it is completely suppressed when N reaches 1510
(Miyazaki & Fukumoto 1992). In this section, we investigate the effects of the axial (stable)511
stratification and magnetic field when there are simultaneously present on this instability512
(referred to as IF instability).513

A detailed analysis of the algebraic equation (3.9), knowing that 0 ⩽ 𝜇2 ⩽ 1, 0 ⩽ B < +∞514
and 0 ⩽ N < +∞, indicates that the resonant case of order 𝑛 = 2 between two fast modes515
(𝜔1 − 𝜔2 = 2Ω) exists for516

(B,N) ∈ ([0, +∞[×[0, 1]) ∪ D 𝑓 (3.11)517

which corresponds to the domains I, II and VI of the plane (B,N) shown by figure 2. Here,518
the domain D 𝑓 is defined as follows:519

∀ (B,N) ∈ D 𝑓 ⇔ for given N ∈]2, +∞[ =⇒ 1 < 𝑓 (N) ⩽ B <
√

3, (3.12)520

where 𝑓 :]2, +∞[→]1,
√

3[ is a continuous decreasing function with reciprocal function521

𝑓 −1 :]1,
√

3[→]2, +∞[,522

∀N ∈]2, +∞[, 𝑓 (N) = 1
N2

√︃
N4 + 4N2 − 8 + 4

√︁
(N2 − 1) (N4 − 4) −→

N→+∞
1, (3.13a)523

∀B ∈]1,
√

3[, 𝑓 −1(B) = 2
(B2 − 1)

√︃
1 + B2 + B

√︁
4 − (B2 − 1)2 −→

B→1+
+∞. (3.13b)524

525

For (B,N) belonging to the domain given by (3.11), the resonances (of order 𝑛 = 2) between526
two fast modes occur when527

𝜇2 =
1 − N2

4 − N2 if B = 0, (3.14a)528

𝜇2 =
B2 − 1

B4 − B2 − 4
if B = N , (3.14b)529

𝜇2 =
(1 + B2) (1 − N2) + B2 + 3 −

√
Δ

2B2(B2 − N2)
if B ≠ N , (3.14c)530

531

where532

Δ(B,N) =
(
N2

(
B2 − 1

)
− 4

)2
+ 16

(
B2 − N2

)
. (3.15)533
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Figure 2
Domains of the (B,N) plane for which the magneto-gravity-elliptic instability operates. The subharmonic
instability resulting from a resonance (of order 𝑛 = 2) between two fast modes (referred to as IF instability)
exists for (B,N) belonging to domains I, II and VI. The subharmonic instability resulting from a resonance
between two slow modes (referred to as IS instability) exists for (B,N) belonging to domains II, IV, V
and VI. The subharmonic instability resulting from a resonance between a fast mode and a slow mode
(referred to as IM instability) exists for (B,N) belonging to domains I, II, III and IV. For (B,N) belonging
to domain VII, there is no subharmonic instability, whereas instabilities related to higher order resonances
(𝑛 = 4, 6, 8, · · · ) can exist.
Domain I: (B,N) ∈ [0,

√
3] × [0, 1]; domain II: (B,N) ∈ [

√
3, +∞[×[0, 1]; domain III: (B,N) ∈

[0,
√

3] × [1, 2]; domain IV: (B,N) ∈ [
√

3, +∞[×[1, 2]; domain V: (B,N) ∈ [
√

3, +∞[×[2, +∞[; domain
VI: (B,N) ∈ D 𝑓 where D 𝑓 is defined by equation (3.12); domain VII: (B,N) ∈ [0,

√
3[×[2, +∞[\D 𝑓 .

It immediately follows that534

lim
0⩽N⩽1,B→+∞

B2𝜇2 = 1 − N2, lim
1<B<

√
3,N→+∞

B2𝜇2 = 1. (3.16)535

In the non-stratified magnetised case (N = 0), the parameter 𝜇 = [1 +
√

1 + B2]−1 changes536

from 0.5 (so that, 𝜃 = �(𝒌,𝑾) = cos−1(𝜇) = 𝜋/3) at B = 0 to zero (so that, 𝜃 = 𝜋/2) as537
B → +∞ (see also LZ04). Recall that 𝒌 denotes the wave vector and 𝑾 = ∇ ×𝑼 denotes538
the basic vorticity vector. In the non-magnetised stratified case (B = 0), the parameter539

𝜇 =
√︁
(1 − N2)/(4 − N2) changes from 𝜇 = 0.5 at N = 0 to 𝜇 = 0 at N = 1. For (B,N) ∈540

[0, +∞[×[0, 1] and when B is fixed, the parameter 𝜇 changes from 𝜇 = [1 +
√

1 + B2]−1 at541
N = 0 to 𝜇 = 0 at N = 1. For (B,N) ∈ D 𝑓 and when B is fixed, the parameter 𝜇 increases542
from 𝜇(B, 𝑓 (B)) at N = 𝑓 (B) to 𝜇 = 1 as N → +∞. As an illustration, figure 3 shows the543

variation of 𝜇 versus N for three values of B =
√

3, 1.632, 1.532.544
According to our asymptotic analysis at leading order in 𝜀 (see Appendix), the maximal545

growth rate of the subharmonic instability (if it exists) resulting from the resonance between546
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two fast modes is of the form547

𝜎𝑚 𝑓

𝜀
=

(
3 − B2𝜇2) (

1 + B2𝜇2)
8

[ (
N2 − B2 + 2

)
𝜇2 +

(
1 − N2) ][ (

N2 − 2B2 − 4
)
𝜇2 +

(
2 − N2) ] (3.17)548

in which 𝜇2 is given by equation (3.14).549

Some results reported in previous studies (Waleffe (1990); Kerswell (2002) and LZ04)550
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can be recovered from equation (3.17) by using (3.14)551

𝜎𝑚 𝑓

𝜀
=

9
16

for N = 0, B = 0, (3.18a)552

𝜎𝑚 𝑓

𝜀
=

9
4
(1 − N2)
(4 − N2)

for 0 ⩽ N ⩽ 1, B = 0, (3.18b)553

𝜎𝑚 𝑓

𝜀
=

1
4

(
1 + 1

√
B2 + 1 + 1

)2
for N = 0, 0 ⩽ B < +∞. (3.18c)554

555

Equation (3.18b) indicates that the maximal growth rate is zero at N = 1. Therefore in the556
non-magnetised stratified case (B = 0), the subharmonic instability is completely suppressed557
by stratification when N reaches 1 (Miyazaki & Fukumoto 1992; Kerswell 2002). For the558
non-stratified magnetised case (N = 0), equation (3.18c) indicates that 𝜎𝑚 𝑓 /𝜀 decreases as559
B increases so as (see also LZ04)560

lim
N=0, B→+∞

𝜎𝑚 𝑓

𝜀
=

1
4
. (3.19)561

However, in the stratified magnetised case, the analysis of equation (3.17) is more subtle as562
shown in the following.563

For (B,N) ∈]0, +∞[×]0, 1] and when N is fixed, 𝜎𝑚 𝑓 /𝜀 also decreases from 𝜎𝑚 𝑓 /𝜀 =564

[9(1 − N2)]/[4(4 − N2)] at B = 0 to zero (and not to 1/4) as B → +∞. Indeed, from565
equation (3.17), one easily deduces that566

lim
0<N⩽1, B→+∞

𝜎𝑚 𝑓

𝜀
= 0, (3.20)567

because limB→+∞ B2𝜇2 = 1 − N2, as indicated previously. Therefore, the N → 0 limit is,568
in fact, singular (discontinuous). As an illustration, figure 4 shows 𝜎𝑚 𝑓 /𝜀 versus B for five569
values of N = 0.0, 0.2, 0.5, 0.7, 0.9. At N = 1, one has 𝜎𝑚 𝑓 = 0 independently of B.570

For (B,N) ∈ D 𝑓 and for fixed N , the maximal growth rate 𝜎𝑚 𝑓 increases from 0 at571

B =
√

3 to 𝜎𝑚 𝑓 ( 𝑓 (N) , 𝑁) at B = 𝑓 (N) with572

lim
N→+∞

𝜎 𝑓 𝑚 ( 𝑓 (N) , 𝑁)
𝜀

=
1
2
. (3.21)573

This is illustrated by figure 5 which displays the variation of 𝜎𝑚 𝑓 /𝜀 versus B (1 < B <
√

3)
for N = 10 and N = 50. Therefore, this subharmonic instability, which occurs when

2Ω < 𝑁 < +∞ and Ω < 𝑘0𝐵 = Ω 𝑓 (N) <
√

3 Ω,

is the results of the simultaneous presence of axial (stable) stratification and magnetic field.574
On the other hand, the above analysis clearly shows that, for (B,N) ∈ [0, +∞[×[0, 1],575
the IF instability is completely suppressed by the stratification when N reaches 1. When576
0 < N < 1, stratification acts to render the IF instability less efficient especially for large B577
because its maximal growth approaches zero as B → +∞ (see equation (3.20)).578

3.4. Destabilising resonances between two slow modes579

As shown by LZ04, in the presence only of the magnetic field, there exist other subharmonic580
instabilities, which are due to the presence of the magnetic field, in addition to the universal581
elliptical instability. One of them is the subharmonic instability resulting from the resonances582
(of order 𝑛 = 2) between two slow modes (referred to as IS instability). In this section, we583
study the effects of the vertical (stable) stratification on the IS instability.584
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Maximal growth rates of subharmonic instabilities resulting from the resonances between two fast modes
(𝜎𝑚 𝑓 ) or between two slow modes (𝜎𝑚𝑠) in the case where (B,N) ∈ D 𝑓 (see equation (3.12)). The figure
shows the variation of 𝜎𝑚 𝑓 /𝜀 and 𝜎𝑚𝑠/𝜀 versus B = 𝑘0𝐵/Ω for N = 𝑁/Ω = 10 and N = 50. Numerical
results (see section 4) for 𝜀 = 0.05 are represent by symbols.

From the resonant condition described by relation (3.9), we deduce that the resonant cases585
of order 𝑛 = 2 between two slow modes, so that 𝜔3 − 𝜔4 = 2Ω, exist for586

(B,N) ∈
(
[
√

3, +∞[×[0, +∞[
)
∪ D 𝑓 (3.22)587

This corresponds to the domains II, IV, V and VI shown in figure 2.588
For (B,N) belonging to these domains, the resonant cases of order 𝑛 = 2 between two589

slow modes occur at the following points of the 𝜇 axis590

𝜇2 =
B2 − 1

B4 − B2 − 4
if B = N , (3.23a)591

𝜇2 =
(1 + B2) (1 − N2) + B2 + 3 +

√
Δ

2B2(B2 − N2)
if B ≠ N (3.23b)592

593

It immediately follows that594

lim
N⩾0, B→+∞

𝜇2B2 = 1, lim
B>1, N→+∞

𝜇2B2 = 1. (3.24)595

In the non-stratified magnetised case, equation (3.23) reduces to 𝜇 = [
√
B2 + 1 − 1]−1, or596

equivalently, 𝜇2B2 = 1+2𝜇.Thus, the parameter 𝜇 changes from 1 atB =
√

3 to 0 asB → +∞597
(see also LZ04). In the stratified magnetised case, equation (3.23) indicates that, at fixed B598

such that (B,N) ∈ [
√

3, +∞[×[0, +∞[, the parameter 𝜇 changes from 𝜇 = [
√
B2 + 1 − 1]−1599

at N = 0 to 𝜇 = 1/B as N → +∞. For fixed B such that (B,N) ∈ D 𝑓 , the parameter 𝜇600
decreases from 𝜇(B, 𝑓 (B)) at N = 𝑓 (B) to 𝜇 = 1/B as N → +∞ (see figure 3).601

As shown in Appendix, the maximal growth rate, denoted by 𝜎𝑚𝑠, of the IS instability is602
also described by equation (3.17) (repeated here for the sake of clarity)603

𝜎𝑚𝑠

𝜀
=

(
3 − B2𝜇2) (

1 + B2𝜇2)
8

[ (
N2 − B2 + 2

)
𝜇2 +

(
1 − N2) ][ (

N2 − 2B2 − 4
)
𝜇2 +

(
2 − N2) ] (3.25)604

in which 𝜇 is now given by equation (3.23) and not by (3.14).605
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In the non-stratified magnetised case (N = 0), equation (3.25) reduces to606

𝜎𝑚𝑠

𝜀
=

1
4

(
1 − 1

√
B2 + 1 − 1

)2
−→

N=0, B→+∞

1
4
, (3.26)607

where
√

3 < B < +∞, in agreement with the previous results by LZ04. In that case, 𝜎𝑚𝑠/𝜀608

increases from 0 at B =
√

3 to 1/4 as B → +∞.609

For (B,N) ∈
(
[
√

3, +∞[×[0, +∞[
)
∪ D 𝑓 , we use the equation (3.24) to deduce from610

equation (3.25) the following limits611

lim
N>0, B→+∞

𝜎𝑚𝑠

𝜀
=

1
2
, lim

B>1, N→+∞

𝜎𝑚𝑠

𝜀
=

1
2
. (3.27)612

Indeed, when B ≫ 1 and B ≫ N > 0, an equivalent form for 𝜎𝑚𝑠/𝜀 can be written as613

𝜎𝑚𝑠

𝜀
∼

B→+∞

(
3 − B2𝜇2) (

1 + B2𝜇2)
8

(
1 − N2 − B2𝜇2)(
2 − N2 − 2B2𝜇2) −→

B→+∞

1
2

(3.28)614

because limB→+∞ 𝜇2B2 = 1. When N ≫ B > 1, an equivalent form for 𝜎𝑚𝑠/𝜀 can be615
written as616

𝜎𝑚𝑠

𝜀
∼

N→+∞

(
3 − B2𝜇2) (

1 + B2𝜇2)
8

−→
N→+∞

1
2

(3.29)617

because limN→+∞ 𝜇2B2 = 1.618

It follows that, for (B,N) ∈ [
√

3, +∞[×[0, +2] and when N is fixed, 𝜎𝑚𝑠/𝜀 increases619

from 0 at B =
√

3 to 0.5 as B → +∞. This is illustrated by figure 6 which shows 𝜎𝑚𝑠/𝜀620
versus B for N = 0, 0.5, 1 and N = 2. By comparing (3.26) and (3.29), we can remark that,621
in this case, the N → 0 limit is, in fact, singular (discontinuous). Consequently, we can622
conclude that in the presence of the stratification with N ⩽ 2 the IS instability is reinforced623
since 𝜎𝑚𝑠/𝜀 tends towards 1/2 like B → +∞, whereas without stratification (N = 0), 𝜎𝑚𝑠/𝜀624
approaches 1/4.625

On the other hand, for (B,N) ∈ D 𝑓 ∪
(
[
√

3, +∞[×]2, +∞[
)

(this corresponds to the626
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domains V and VI shown in figure 2) and when N is fixed, 𝜎𝑚𝑠/𝜀 also increases from627
𝜎𝑚 𝑓 ( 𝑓 (N),N)/𝜀 at B = 𝑓 (N) to 0.5 as B → +∞. Indeed, for (B1,N) ∈ D 𝑓 and628

(B2,N) ∈ [
√

3, +∞[×]2, +∞[, we have (see figure 5),629

0 ⩽ 𝜎𝑚 𝑓 (B1,N) ⩽ 𝜎𝑚𝑠 (B1,N) ⩽ 𝜎𝑚𝑠 (B2,N) < 𝜀

2
. (3.30)630

It clearly appears that in the simultaneous presence of the axial magnetic field and strati-631
fication with N > 2, the subharmonic instability resulting from the resonances (of order632

𝑛 = 2) between two slow modes, which emerges beyond the threshold B𝑐 = 𝑓 (N) <
√

3, is633
dominant with a maximal growth rate approaching 𝜀/2 for large B.634

3.5. Destabilising resonances between a fast mode and a slow mode635

In this section, we study the effects of the vertical (stable) stratification on the subharmonic636
instability resulting from the resonances (of order 𝑛 = 2) between a fast mode and a slow637
mode (hereinafter, referred to as IM instability). Without stratification, the IM instability638
occurs for all magnetic field strengths where its maximal growth rate approaches 𝜀/4 as639
B → +∞ (see LZ04).640

The resonance of order 𝑛 = 2 between a fast mode and a slow mode, i.e. 𝜔1 −𝜔3 = 2Ω or
𝜔1 − 𝜔4 = 2Ω, exists for

(B,N) ∈]0, +∞[×[0, +∞[.
In the case where 𝜔1 − 𝜔4 = 2Ω, one has 𝜇 = 1, but this resonant case does not induce any641
instability because the Floquet system (2.23) is stable at 𝜇 = 1, as already indicated.642

In the case where 𝜔1 − 𝜔3 = 2Ω, we deduce from the algebraic equation (3.10) that the643
points of the 𝜇−axis characterising the resonances between a fast mode and a slow mode are644
given by645

𝜇2 =

(
4 − N2)2(

4 − N2)2 + 16B2
(3.31)646

The latter expression implies that, for fixed N ⩾ 0, the parameter 𝜇 decreases from 1 at647
B = 0 to zero as B → +∞. Inversely, for fixed B > 0, the parameter 𝜇 increases from648

𝜇 = 1/
√

1 + B2 at N = 0 to 1 as N → +∞.649
However, according to our asymptotic analysis (see Appendix), only the resonant cases650

for which the couple (B,N) belongs to the domain ]0, +∞[×[0, 2[ (this corresponds to the651
domains I-IV shown in figure 2), are destabilising. In that case, the maximal growth rate of652
the IM instability, denoted by 𝜎𝑚𝑚, is found as (see Appendix A.3.3.)653

𝜎𝑚𝑚

𝜀
=

(1 − 𝜇2)
16

[
(1 − 𝜇2) (4 − N2) + 4N2]

√
4 + N2

√︄
(4 − N2)3

(4 − N2)2 + B2N4 (3.32)654

It immediately follows that 𝜎𝑚𝑚 = 0 for N = 2, independently of the magnetic field strength.655
In the non-stratified case (N = 0), Equation (3.32) reduces to656

𝜎𝑚𝑚

𝜀
=

1
4

(
1 − 𝜇2

)2
=

B4

4
(
1 + B2)2 −→

B→+∞

1
4
, (3.33)657

in agreement with the study by LZ04. Therefore, 𝜎𝑚𝑚/𝜀 increases from 0 at B = 0 to658
approach 1/4 as B → +∞.659

However, in the simultaneous presence of the vertical (stable) stratification and the660
magnetic field and for fixed N ⩽ 2, 𝜎𝑚𝑚/𝜀 increases from 0 to reach its maximum value661
(which is less than 1/4), then it decreases tending towards zero when B → +∞. Also in this662
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Maximal growth rate of the destabilising resonances of order 𝑛 = 2 between a fast and a slow mode (see
equation (3.32)). The figure shows 𝜎𝑚𝑚/𝜀 versus B for N = 0., 0.5, 1 and N = 1.5

case, the N → 0 limit is, in fact, singular (discontinuous). As an illustration, figure 7 shows663
𝜎𝑚𝑚/𝜀 versus B for N = 0, 0.5, 1, 1.5 and N = 2.664

We can therefore conclude that the effect of (stable) stratification on the IM instability is665
to suppress it if N exceeds 2, or to make it less efficient otherwise (0 < N < 2) because666
𝜎𝑚𝑚 approaches zero for large B.667

4. Numerical results668

In this section, we numerically determine the maximal growth rate of the dominant instability669
for a given value of the triplet (B,N , 𝜀) such that 0 ⩽ B = 𝐵/Ω ⩽ 4 and 0 ⩽ N = 𝑁/Ω ⩽ 4670

and 0 ⩽ 𝜀 ⩽ 1 (or, equivalently, 1 ⩽ 𝐸 = 𝜀 +
√

1 + 𝜀2 = 1 +
√

2 ). We use the resonance671
conditions (3.9) and (3.10) for the identification of the instability (if it exists) and we compare672
the asymptotic formulae with the numerical results. At the end of this section, we briefly673
examine the effect of fluid diffusivity in a special case where the diffusion coefficients are674
equal (𝜈 = 𝜅 = 𝜂).675

4.1. Identification of instabilities676

For the identification of the instabilities picked up by the numerical procedure we use the677
resonance conditions described by equation (3.9) and (3.10) as explained as follows.678

On the one hand, for a given value of the couple (B,N), we use (3.14), (3.23) and (3.31)679
and determine the values of 𝜇, say 𝜇0, characterising the resonant cases of order 𝑛 = 2. On680
the other hand, for the same value of the couple (B,N), we consider several values of 𝜀681
uniformly distributed in the interval [0, 1] and, for each of these values of 𝜀, we integrate682
numerically the Floquet system (2.23) and determine the growth rate 𝜎 for 2000 values683
of 𝜇 (evenly distributed) in ]0, 1[. Obviously, 𝜎(𝜇) = 0 if there is no instability. Thus, in684
the plane (𝜇, 𝜎 + 𝜀), the region of instability that emanates from the point of abscissa 𝜇0685
characterises a subharmonic instability. As an illustration, figure 8 shows 𝜎 + 𝜀 versus 𝜇686
for B = 4 and N = 0.5 and 100 values of 𝜀 evenly distributed in the interval [0, 0.8] .687
In that case, there are three subharmonic instabilities IF, IM and IS which correspond to688
the regions of instability emanating from the points (𝜇0 = 0.1755, 0), (𝜇0 = 0.2282, 0)689
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Figure 8
Magneto-gravity elliptic instabilities. The figure shows 𝜎 + 𝜀 versus 𝜇 for B = 4 and N = 0.5 and 100
values of 𝜀 evenly distributed in the interval [0, 0.8] . The regions of instability labelled by f, m and s denote
the IF, IM and IS instabilities that emanate from the points of the 𝜇−axis of abscissa 0.1775, 0.2282 and
0.3074, respectively. The other instabilities picked up by the numerical procedure are related to higher-order
resonances (𝑛 = 4, 6, 8, · · · ) : for 𝑛 = 4, 𝜇 = 0.3836 (fast, fast), 𝜇 = 0.4792 (fast, slow), 𝜇 = 0.6359 (slow,
slow); for 𝑛 = 6, 𝜇 = 0.5821 (fast, fast), 𝜇 = 0.7252 (fast, slow).

and (𝜇0 = 3074, 0), respectively. The other instabilities appearing in figure 6 are related to690
higher-order resonances (𝑛 = 4, 6, 8, · · · ), but as they are dominated by the subharmonic691
instabilities, we do not seek to identify them one by one.692

4.2. Comparison between the asymptotic formulae and the numerical results693

We recall that the present asymptotic results (at leading order in 𝜀) clearly shows that
subharmonic instability exists when

(B,N) ∈ ([0, +∞[×[0, 2]) ∪
(
[
√

3 + ∞[×[2, +∞[
)
∪ D 𝑓 .

Obviously, the procedure leading to the asymptotic formulae excludes the instabilities related694
to higher-order resonances (𝑛 = 4, 6, 8, · · · ). Numerical calculations indicate that, when695
(B,N) belongs to domains I-VI (see figure 2) deprived of a very narrow band which are696
specified below, one of the subharmonic instabilities listed in section 3 is dominant.697

In figure 9, we show the continuous variation of the maximal growth rate 𝜎𝑚 (maximum
𝜎 over 0 ⩽ 𝜇 ⩽ 1) of the dominant instability normalised by 𝜎0 = 9/16 plotted as a function
of 0 ⩽ B ⩽ 4 and 0 ⩽ N ⩽ 4. Figure 9(a) displays the numerical results for 𝜀 = 0.1, where
the grid consists of 201 points evenly distributed in each one of the ranges 0 ⩽ B ⩽ 4 and
0 ⩽ N ⩽ 4. 9(b) shows the analytical results for 𝜎𝑚/𝜎0 where

𝜎𝑚 = max(𝜎𝑚 𝑓 , 𝜎𝑚𝑠, 𝜎𝑚𝑚).
Recall that 𝜎𝑚 𝑓 , 𝜎𝑚𝑠 and 𝜎𝑚𝑚 are given by equations (3.17), (3.25) and (3.32), respectively.698

As can be seen, the agreement between the numerical results and the asymptotic for-699
mulae is quite good except for (B,N) belonging to a narrow band around N = 3 and700
B ≿ 𝑓 (N = 3) = 1.6035. This can also be observed more quantitatively from figure 10701
which shows 𝜎𝑚/𝜀 versus N for some selected values of B = 1 (figure 10-a), B = 2 (figure702
10-b), B = 3 (figure 10-c) and B = 4 (figure 10-d).703

A closer examination of the regions of instability in the plane (𝜇, 𝜎+𝜀) for a given (B,N)704
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Figure 9
Magneto-gravity elliptic instabilities. Maximal growth rate of dominant instability normalised by 𝜎0 = 9/16
plotted as a function of 0 ⩽ B ⩽ 4 and 0 ⩽ N ⩽ 4. Left panel: numerical results for 𝜀 = 0.1. Right panel:
asymptotic analysis results.
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Figure 10
Magneto-gravity elliptic instabilities. Maximal growth rate of the dominant instability normalised by 𝜀

versus N for selected values of B = 1 (figure 10-a), B = 2 (figure 10-b), B = 3 (figure 10-c) and B = 4
(figure 10-d). The figure compares the asymptotic formulae with the numerical results at 𝜀 = 0.1. The
subharmonic instability resulting from a resonance between two fast (respectively, slow) modes is labelled
by IF (respectively, IS), whereas that resulting from a resonance between a fast and a slow mode is labelled
by IM. From figure 10-a, we observe that an instability related to higher-order resonances (IHOR) is present
for N > 3.7.
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Figure 11
Magneto-gravity elliptic instabilities. The figure shows 𝜎 + 𝜀 versus 𝜇 for N = 3.1 and B =

√
3, and 100

values of 𝜀 regularly distributed in the interval 0 ⩽ 𝜀 ⩽ 0.15. The subharmonic instability IS emanates
from the point (0.6589, 0) and disappears beyond 𝜀 ≈ 0.1. Before disappearing, the IS instability coalesces
with the instability associated with a resonance of order 𝑛 = 6 between two slow modes which emanates
from the point (0.5262, 0). The region of instability emanating from the point (0.7168, 0) corresponds to
the instability related to resonances of order 𝑛 = 4 between a fast mode and a slow mode.

belonging to the narrow band around N = 3 reveals that beyond 𝜀 ≈ 0.1 the subharmonic705
instability resulting from the resonances between two slow modes disappears and it is the706
instability related to resonances of order 𝑛 = 4 between a fast mode and a slow mode which707
becomes dominant. This is illustrated by figure 11 which shows𝜎+𝜀 versus 𝜇 forN = 3.1 and708

B =
√

3. It can be observed that, before disappearing, the subharmonic instability coalesces709
with the instability related to the resonances of order 𝑛 = 6 between two slow modes. Recall710
that for the identification of the different regions of instability we use equations (3.9) and711
(3.10).712

Similar conclusions are drawn from the analysis of the numerical results for 0.1 < 𝜀 in713
the sense that, for (B,N) belonging to one of the domains I-VI, the dominant instability714
corresponds to one of the subharmonic instabilities listed in section 3. As for the agreement715
between the asymptotic formulae and the numerical results at 𝜀 > 0.1, it is not as satisfactory716
as in the case of weak ellipticity (𝜀 ≾ 0.1). Indeed, the difference between the numerical717
results and the asymptotic formulae increases as 𝜀 increases especially for (B,N) belonging718
to the domains V and VI. This is illustrated by figure 12 that displays 𝜎𝑚/𝜀 versus N for719
B = 4 and five values of 𝜀 = 0.1, 0.2, 0.3, 0.4 and 𝜀 = 0.5.720

We point out that the present numerical computations, as well as the asymptotic analysis,721
do not detect any instabilities for 2 < N < 3 and 0 ⩽ B ⩽ 𝑓 (N = 3) = 1.6035. As an722
illustration, figure 13 shows the continuous variation of the maximal growth rate 𝜎𝑚 of the723
dominant instability normalised by 𝜎0 = 9/16 plotted as a function of 0 ⩽ B ⩽ 4 and724
0 ⩽ N ⩽ 4 for 𝜀 = 0.5 (left panel) and 𝜀 = 1 (right panel).725

4.3. Accounting for diffusivity, in the simplest case726

As indicated in the introduction, Singh and Mathur (2019) investigated the effects of727
differential diffusion between momentum and density (𝑆𝑐 = 𝜅/𝜈) in their local stability728
analysis for an elliptical vortex with a uniform stable stratification along the vorticity axis.729
They showed that in the case where 𝑆𝑐 = 𝜅/𝜈 = 1 viscous effects are purely suppressive,730



25

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  1  2  3  4  5  6

Bk0/Ω = 4

σ
m

 /
 ε

N/Ω

Asym. analysis
Num. results ε = 0.1

ε = 0.2
ε = 0.3
ε = 0.3
ε = 0.5

Figure 12
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Figure 13
Magneto-gravity elliptic instabilities. Maximal growth rate of dominant instability normalised by 𝜎0 = 9/16
plotted as a function of 0 ⩽ B ⩽ 4 and 0 ⩽ N ⩽ 4. (a) 𝜀 = 0.5. (b) 𝜀 = 1.

whereas for sufficiently small 𝑆𝑐 < 1, there is an oscillatory instability the signature of which731
is nevertheless present with zero growth rate in the inviscid limit.732

The study of the effects of differential diffusion in the case of an elliptical vortex with733
a uniform stable stratification and a uniform magnetic field involves three dimensionless734
numbers, namely, the Reynolds number and the thermal and magnetic Prandtl numbers, in735
addition to the parameters 𝜀, B and N . This requires a detailed study and is beyond the scope736
of the present work. For instance, we consider the very special case where the diffusion737
coefficients are equal, 𝜈 = 𝜅 = 𝜂.738

In that case, the dispersion relation of the MIG waves is obtained by replacing𝜔 in equation739
(3.5) by (𝜔 − 𝜈𝑘2), and the Fourier amplitudes of the velocity, magnetic field and buoyancy740
scalar perturbations may be associated with those in the inviscid limit 𝒖̂, 𝒃̂ and 𝜗̂ by the741
substitution (Cambon et al. 1985; Landman & Saffman 1987)742 (

û(𝑣) , b̂(𝑣) , 𝜗̂ (𝑣)
)
=

(
𝒖̂, 𝒃̂, 𝜗̂

)
exp

(
−𝜈

∫ 𝑡

0
𝑘2(𝑠)𝑑𝑠

)
. (4.1)743
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Reynolds number Re𝑐 versus N for 𝐸 = 1.5 (therefore 𝜀 = 0.41667) = and B = 1,
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Dominant instability can survive the effects of diffusion, provided Re > Re𝑐 .

Accordingly, the maximal growth rate of the dominant instability, if attainable, is744

𝜎
(𝑣)
𝑚 = 𝜎𝑚 − Re−1𝑘2

0𝐿
2
0

(
1 + (𝐸2 − 1) (1 − 𝜇2

𝑚)
2

)
(4.2)745

where Re = Ω𝐿2
0/𝜈 is the Reynolds number, 𝐿0 is a characteristic length scale and 𝜇𝑚 is the746

value of 𝜇 where 𝜎𝑚 occurs. At 𝐿0𝑘0 ∼ 1, the dominant instability survives the diffusive747
effects if Re > Re𝑐, where748

Re𝑐 =
2 + (𝐸2 − 1) (1 − 𝜇2

𝑚)
2𝜎𝑚

. (4.3)749

Figure 14 shows the variation of Re𝑐 versus N for 𝐸 = 1.5 (so that 𝜀 = 0.41667) and750

B = 1,
√

3, 3 and B = 4. It appears that in the case where B ⩾
√

3, the dominant instability751

survives the diffusion effects for Re𝑐 ∼ 50 and (B,N) ∈ [
√

3, +∞[×[0, +∞[. Since there752
are no instabilities when 2 < N < 3 and 0 < B < 𝑓 (N) = 1.6035, the critical Reynolds753
number Re𝑐 takes large values for N in the left (respectively, right) neighbourhood of N = 2754
(respectively, N = 3). This is the case for B = 1 that we observe in figure 14.755

5. Concluding remarks756

We have analysed here the joint influence of a stable stratification and an external uniform757
magnetic field on the stability of an unbounded flow with elliptical streamlines of a perfectly758
conducting fluid. Both stable stratification, via the mean buoyancy gradient, and mean759
magnetic field are in the axial direction. Such a simple model allows us to formulate the760
stability problem as a system of equations for disturbances in terms of Lagrangian Fourier761
modes which is universal for wavelengths of the perturbation sufficiently small with respect762
to the scale of variation of the mean velocity gradients. Moreover, it can similarly model763
localised patches of elliptic streamlines which often appear in geophysical and astrophysical764
flows. For example, an elliptical vortex patch embedded in the accretion disc can be created765
by the non-uniform average angular velocity profile in the disc. Indeed, some previous studies766
using the zonal asymptotic method of Lifschitz & Hameiri (1991) show that these localised767
patches of elliptic streamlines are unstable to short-wavelength instabilities regardless of what768
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type of flow surrounds (e.g., Lifschitz (1994); Sipp, Lauga & Jacquin (1999); Godeferd,769
Cambon & Leblanc (2001); Aravind, Dubos & Mathur (2022)).770

The analysis presented in the present paper extends the study by Miyazaki & Fukumoto771
(1992) by including the effect of the (axial) magnetic field on the gravity-elliptic instability772
and the study by LZ04 by including the effect of an axial stratification on the magneto-773
elliptic instability. The stability analysis involves a non-homogeneous Floquet system with774
arbitrary value of the MIPS in its right-hand-side (equation (2.20)) . For the purpose of775
the study of stability, this right-hand-side (equation (2.20) and equations (2.23) and (3.1))776
can be set to zero without lack of generality. Of course, the resulting homogeneous Floquet777
system (left-hand-side) already accounts for the invariance of the MIPS with parameters778
(𝜇, 𝜀, 𝑘0𝐵/Ω, 𝑁/Ω). This is shown by equation (3.5) as well.779

Because most of the instabilities appearing in this elliptical flow are due to the destabilising780
resonances, we have analysed in detail the resonant cases of the MIG waves propagating781
in flows with circular streamlines (𝜀 = 0). These resonant cases are of three types: the782
resonances between two fast modes, the resonances between a fast mode and slow mode and783
the resonances between two slow modes, where the last two types disappear in the absence of784
the unperturbed magnetic field. The asymptotic method at leading order in 𝜀 by LZ04 has been785
extended to determine the growth rates of the destabilising resonances of order 𝑛 = 2 (i.e. the786
subharmonic instability). It results from this analysis that the subharmonic instability operates787

for (𝑘0𝐵/Ω, 𝑁/Ω) belonging to the domain (]0, +∞[×[0, 2]) ∪
(
[
√

3 + ∞[×[2, +∞[
)
∪D 𝑓788

(see figure 2) where D 𝑓 is defined by equation (3.12). Moreover, the present analysis reveals789
that the effects of stable (axial) stratification on the magneto-elliptical instability can be790
analyzed by distinguishing the two cases 𝑁 ⩽ 2Ω and 𝑁 > 2Ω.791

Case where 0 < 𝑁 ⩽ 2Ω. In that case, three subharmonic instabilities can exist: the792
IF (respectively, IS) instability results from resonances between two fast (slow) modes793
and the IM (M for mixed) instability results from resonances between a fast mode and a794
slow mode. For these three subharmonic instabilities, the 𝑁 → 0 limit is, in fact, singular795
(discontinuous). The IF (respectively, IM) instability is completely suppressed by stable796
stratification when 𝑁/Ω reaches 1, (respectively, 2), independently of the magnetic field797
strength. For 0 < 𝑁/Ω < 1 (respectively, 0 < 𝑁/Ω < 2) its maximal growth rate approaches798
zero for large 𝑘0𝐵, whereas in the case without stratification, it approaches 𝜀/4. As for the799

IS instability which only occurs for 𝑘0𝐵/Ω >
√

3, it is enhanced by the stable stratification800
because its maximal growth rate approaches 𝜀/2 for large 𝑘0𝐵 whereas without stratification801
it approaches 𝜀/4.802

Case where 𝑁/Ω > 2. In that case, only the subharmonic instabilities resulting from803
resonances between two fast modes (IF+) or two slow modes (IS+) can occur. The IF+804
instability can only occur for 2 < 𝑁/Ω < +∞ and 1 < 𝑓 (𝑁/Ω) ⩽ 𝐵/Ω <

√
3 (i.e., the805

domain D 𝑓 ). Its maximal growth rate, which approaches 𝜀/2 as 𝑘0𝐵/Ω → +∞, remains less806
than that of the IS+ instability. On other words, for (𝑘0𝐵/Ω, 𝑁/Ω) belonging to the domain807
D 𝑓 , the IS+ instability dominates the IF+ instability (see figure 5). The IS+ instability is also808

present for 2 < 𝑁/Ω < +∞ and
√

3 < 𝑘0𝐵/Ω < +∞with a maximal growth rate approaching809
𝜀/2 for large 𝑘0𝐵. Note that the enhancement of the IS instability when the two backgrounds810
are simultaneously present is connected with a large exchange of energy between the kinetic811
and magnetic energies and between the kinetic and potential energies.812

The analytical results were compared to the numerical results for several values of 0 ⩽813
𝜀 ⩽ 1, 0 ⩽ B ⩽ 4 and 0 ⩽ N ⩽ 4. The comparison reveals that the subharmonic instability,814
if it exists, dominates the instabilities related to higher-order resonances (𝑛 = 4, 6, 8, · · · ).815
The agreement between the asymptotic formulae and the numerical results is quite good816
for small ellipticities (𝜀 ≾ 0.1) (see figure 12). The numerical results also reveal that for a817
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narrow band around N = 3, the dominant instability is rather that related to resonances of818
order 𝑛 = 4 between a fast mode and a slow mode (see figure 11). Instabilities related to819

higher-order resonances can occur for (B,N) ∈ [0,
√

3[×]2,∞[\D 𝑓 (e.g., see figure, 8).820
The whole analysis developed in this study is essentially linear, and linearisation deserves821

some discussion. On the one hand, it was clarified that a two-mode analysis is needed for the822
destabilising resonances, in contrast with a single-mode analysis where the nonlinearity is823
identically zero (Moffatt 2010; Craik & Criminale 1986). Other cases where the nonlinearity824
is not explicit, but implicitly present, exist in the literature, especially in astrophysics, with825
the regeneration of modes for bypass transition in accretion discs (e.g. Chagelishvili et al.826
(2003)). Looking at the velocity field, linearisation cannot be justified by a small value of the827
perturbed velocity field with respect to the base (mean) velocity field, which is extensional:828
a ratio of time-scale is used instead in the so-called RDT as the linear ‘rapid’ limit: a typical829
time-scale of the ‘turbulent’ velocity field is assumed to be large with respect to the time-scale830
given by the (inverse of the magnitude of) the mean velocity gradients (e.g. A in equation831
(2.6a)). As suggested by an anonymous referee, some robustness of the linear solution results832
from the particular mean flow configuration, where the periods of a fluid element moving833
along different streamlines are the same. Accordingly, there is no growth of gradient, as a834
source of nonlinearity, and thereby of wavenumber, across the streamlines direction.835

The present analysis, which allowed us to map the domains of the (B,N) space for836
which the magneto-gravity-elliptic instability can operate, would serve to guide future DNS837
for the study of the effects of nonlinearity on this instability. Note that, in the case of the838
magneto-precessional instability, the regime of the saturation of this instability by nonlinear839
interactions was identified. It corresponds to a saturation stage during which the total turbulent840
energy (kinetic + magnetic), the production rate due to the base flow and the total dissipation841
rate remain almost independent of time where the dissipation rate balances the production842
rate (Salhi, Khlifi & Cambon 2020).843

The question that can arise concerns the joint influence of Lorentz, Coriolis and buoyancy844
forces on the elliptical instability. With the inclusion of the Coriolis force, in addition to845
the Lorentz and buoyancy forces, the problem turns out to be more complex because the846
resulting fourth four-component linear Floquet system becomes one with five parameters,847
namely (𝜇, 𝜀,B,N ,Ω𝑐/Ω), (Ω𝑐 being the angular velocity of system rotation). For that we848
preferred not to include, in this analysis, the effect of the Coriolis force.849

As a useful extension of our present study, more complex but with a similar analysis, an850
additional Coriolis force can be introduced. Keeping the same effects of stratified MHD, the851
problem will include the angular velocity Ω𝑐 of the system rotation in addition to the basic852
angular velocity Ω. Moreover, for anticyclonic rotation (i.e. Ω𝑐 ⩽ −Γ/2 = −Ω(𝐸 +𝐸−1)/4),853
the horizontal instability is dominant (Bajer & Mizerski 2013)). Indeed, when the wave854
vector is axial (here, the vectors 𝛀𝑐, 𝑩 and ∇𝜚 are also axial) there is no effect of the855
buoyancy force (in the linear regime) since the frequency of gravity waves is zero (𝜔𝑔 = 0).856
In that case, the maximal growth rate of the horizontal instability, which is not of resonant857
nature, is about 𝜎𝑚/𝜀 = 1 for (𝑘3𝐵)2 = −Ω2(1 + 2Ω𝑐/Ω) in the limit of small 𝜀 (so that,858
Γ = Ω(1+O(𝜀2)). The study of the effect of cyclonic rotation on the magneto-gravity-elliptic859
instability, as well as the study of the joint influence of a stable stratification and unperturbed860
magnetic field on the precessional instability, are the subject of future studies.861

Appendix A. Asymptotic analysis at leading order in 𝜀 of the Floquet system (2.23)862

In this appendix, we extend the asymptotic method of LZ04 to determine, at leading order863
in 𝜀, the maximal growth rate of the solution of the four-component Floquet system (2.23),864
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𝑑𝜏 𝒄̂ = D·𝒄̂. Recall that 𝚽(𝜏, 𝜀, 𝜇,B,N) denotes the fundamental matrix solution,865

𝑑𝜏𝚽 = D·𝚽, 𝚽(𝜏 = 0) = I4 (A 1)866

and M = 𝚽(2𝜋, 𝜀, 𝜇,B,N) denotes the Floquet multiplier matrix where its determinant is867
unity (see the end of section 2.3.). It follows that whenever 𝜆 is an eigenvalue of M, so also868
are its inverse 𝜆−1 and its complex conjugate 𝜆∗. We denote by869

p(𝜆, 𝜀) = |M − 𝜆I4 | (A 2)870

the characteristic polynomial of the characteristic polynomial of the Floquet multiplier matrix871
M and by Λ1,Λ2,Λ3 and Λ4 its roots. A necessary condition for stability is that each root lie872
on the unit circle (see LZ04).873

A.1. Expansion in Taylor series of the Floquet multiplier matrix874

We expand the Floquet multiplier matrix M(𝜀, 𝜇,B,N) in Taylor series in the neighbourhood875
of (𝜀, 𝜇) = (0, 𝜇0), holding (B,N) constant,876

M = M0(𝜇0, 0) + 𝜀M𝜀 (𝜇0, 0) + (𝜇 − 𝜇0)M𝜇 (𝜇0, 0) + · · · (A 3)877

where M𝜀 = (𝜕M/𝜕𝜀) , M𝜇 = (𝜕M/𝜕𝜇) and the dots indicate higher-order terms in 𝜀 and878
𝜇 − 𝜇0. In general, at sufficiently small 𝜀, the region in the the (𝜀, 𝜇) plane where instability879
occurs is typically a wedge with apex at a point (𝜀, 𝜇)) = (0, 𝜇0) and boundaries880

𝜇 = 𝜇0 + 𝛾±𝜀 (A 4)881

where the slopes 𝛾+ and 𝛾− are to be found. The instability (if it exists) has a bandwidth882
(𝛾+ − 𝛾−) 𝜀 : that is, for given 𝜀, B and N , the length of the 𝜇−interval for which the883
wavenumbers are unstable. Therefore, equation (A 3) can be rewritten as884

M = M0 + 𝜀M1 + O(𝜀2) (A 5a)885

M1 = M𝜀 + 𝛾M𝜇. (A 5b)886887

Accordingly, we no longer need the designation 𝜇0 and, hereinafter, use the symbol 𝜇 in its888
place.889

To determine matrices M0, M𝜀 and M𝜇, we expand, for a given 𝜏 ∈ [0, 2𝜋], 𝚽 and D,890

𝚽(𝜏, 𝜀) = 𝚽0(𝜏, 𝜇, 0) + 𝜀𝚽1(𝜏, 𝜇, 0) + O(𝜀2), (A 6a)891

D(𝜏, 𝜀) = D0 + 𝜀D𝜀 (𝜏, 0) + O(𝜀2) (A 6b)892893

where 𝚽0(𝜏 = 0) = I4 and 𝚽1(𝜏 = 0) = 0. Substituting (A 6) into (A 1), we obtain

𝑑𝜏𝚽0 = D0·𝚽0, 𝑑𝜏𝚽1 = D0·𝚽1 + D𝜀 ·𝚽0,

with solution 𝚽0(𝜏) = e𝜏D0 and894

𝚽1(𝜏) = 𝚽0(𝜏)·
(∫ 𝜏

0
𝚽−1

0 (𝑠)·D𝜀 (𝑠)·𝚽0(𝑠)𝑑𝑠
)
. (A 7)895

Because the characteristic polynomial p(𝜆, 𝜀) is the same in any coordinate system and the896
four eigenvalues of the matrix D0, given by equation (3.5) (repeated here for the sake of897
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clarity) are distinct898

𝜎1 = −𝜎2 = − i
√

2

√︂(
4 + 2B2 − N2) 𝜇2 + N2 +

√︃[(
4 − N2) 𝜇2 + N2

]2 + 16B2𝜇4 (A 8a)899

𝜎3 = −𝜎4 = − i
√

2

√︂(
4 + 2B2 − N2) 𝜇2 + N2 −

√︃[(
4 − N2) 𝜇2 + N2

]2 + 16B2𝜇4 (A 8b)900
901

as long as B ≠ 0 and 0 < 𝜇2 < 1, we transform the solution in the base diagonalising D0,902

D̃0 = T−1
·D0·T = diag (𝜎1,−𝜎1, 𝜎3,−𝜎3) . (A 9)903

Here, the columns of T are the eigenvectors of D0,904

T =

©­­­«
𝜎1 −𝜎1 𝜎3 −𝜎3

− 1
2
(
𝜎2

1 + 𝑚2) − 1
2
(
𝜎2

1 + 𝑚2) − 1
2
(
𝜎2

3 + 𝑚2) − 1
2
(
𝜎2

3 + 𝑚2)
i𝑚 i𝑚 i𝑚 i𝑚

− i
2

𝑚
𝜎1

(
𝜎2

1 + 𝑚2) i
2

𝑚
𝜎1

(
𝜎2

1 + 𝑚2) − i
2

𝑚
𝜎3

(
𝜎2

3 + 𝑚2) i
2

𝑚
𝜎3

(
𝜎2

3 + 𝑚2)
ª®®®¬ (A 10)905

906

T−1 =
1(

𝜎2
1 − 𝜎2

3

) ©­­­­­­«

1
2
𝜎1
𝑚2

(
𝜎2

3 + 𝑚2) −1 i
2𝑚

(
𝜎2

3 + 𝑚2) − i𝜎1𝜎
2
3

𝑚3

− 1
2
𝜎1
𝑚2

(
𝜎2

3 + 𝑚2) −1 i
2𝑚

(
𝜎2

3 + 𝑚2) i𝜎1𝜎
2
3

𝑚3

− 1
2
𝜎3
𝑚2

(
𝜎2

1 + 𝑚2) 1 − i
2𝑚

(
𝜎2

1 + 𝑚2) i𝜎3𝜎
2
1

𝑚3

1
2
𝜎3
𝑚2

(
𝜎2

1 + 𝑚2) 1 − i
2𝑚

(
𝜎2

1 + 𝑚2) − i𝜎3𝜎
2
1

𝑚3

ª®®®®®®¬
, (A 11)907

where 𝑚 = B𝜇. Therefore, in the base diagonalising D0, M̃0 and M̃𝜀 take the form908

M̃0 = T−1
·M0·T = diag

(
e2𝜋𝜎1 , e−2𝜋𝜎1 , e2𝜋𝜎3 , e−2𝜋𝜎3

)
= diag (𝜆1, 𝜆2, 𝜆3, 𝜆4) , (A 12a)909

M̃𝜀 = T−1
·M𝜀 ·T = M̃0·J̃, (A 12b)910

𝐽𝑖 𝑗 =

(
T−1

)
𝑖𝑚

𝑇𝑙 𝑗

∫ 2𝜋

0
e(𝜎 𝑗−𝜎𝑖 )𝜏 (D𝜀)𝑚𝑙 (𝜏)𝑑𝜏. (A 12c)911

912

To complete the construction of the matrix M̃1,which appears in (A 5), we need the derivative913
of M̃0(𝜇) = M̃(𝜇, 0) with respect to 𝜇,914

𝛾M̃𝜇 = 𝛾
𝜕M̃0

𝜕𝜇
=

2i𝜋𝛾
Ω

diag
(
𝜕𝜔1

𝜕𝜇
𝜆1,

𝜕𝜔2

𝜕𝜇
𝜆2,

𝜕𝜔3

𝜕𝜇
𝜆3,

𝜕𝜔4

𝜕𝜇
𝜆4

)
. (A 13)915

A.2. Expansion of the characteristic polynomial916

We expand the characteristic polynomial in Taylor series around 𝜀 = 0 to second order in 𝜀,917

p(𝜆, 𝜀) = p0(𝜆) + p1(𝜆)𝜀 + p2(𝜆)𝜀2 + O
(
𝜀3

)
, (A 14)918

where p0(𝜆) is the characteristic polynomial of M0 with roots 𝜆1 = e2𝜋𝜎1 , 𝜆2 = e−2𝜋𝜎1 ,

𝜆3 = e2𝜋𝜎3 and 𝜆4 = e−2𝜋𝜎3 . Although 𝜎1, 𝜎2, 𝜎3 and 𝜎4 are distinct, it is possible for the
multipliers 𝜆 𝑗 ( 𝑗 = 1, 2, 3, 4) to be repeated: if 𝜎𝑗 − 𝜎𝑚 = iℓ for an integer ℓ ≠ 0, then
𝜆 𝑗 = 𝜆𝑚. As shown by LZ04, a necessary condition for the onset of instability is that there
be a double (or higher) root of the characteristic equation. As we only consider the case in
which the eigenvalues are multiplicity 2, the Puiseux expansion takes the form

Λ1 = 𝜆1 + 𝜀
1
2 𝛽 1

2
+ 𝜀𝛽1 + O

(
𝜀

3
2

)
,
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where, for definiteness, we have assumed that 𝜆1 = 𝜆2. It can be shown, however, that919
𝛽 1

2
= 0, in this case, and then the leading-order correction to the eigenvalue, 𝛽1 ≠ 0, can be920

established from a quadratic equation921

1
2

[
𝑑2p0
𝑑𝜆2 (𝜆1)

]
𝛽2

1 +
[
𝑑p1
𝑑𝜆

(𝜆1)
]
𝛽1 + p2(𝜆1) = 0. (A 15)922

By the use of the formulae for the derivatives of the characteristic polynomial with respect923
to parameter 𝜀, derived by LZ04 (see their appendix B), we obtain924

𝑑2p0
𝑑𝜆2 (𝜆1) = 2 (𝜆3 − 𝜆1) (𝜆4 − 𝜆1) (A 16a)925

p1(𝜆1) =
4∑︁
𝑗=1

(
M̃1

)
𝑗 𝑗

∏
ℓ≠ 𝑗

(𝜆ℓ − 𝜆) , (A 16b)926

𝑑p1
𝑑𝜆

(𝜆1) =
[ (

M̃1
)
11 +

(
M̃1

)
22

]
(𝜆3 − 𝜆1) (𝜆4 − 𝜆1) , (A 16c)927

p2(𝜆1) =
���� (

M̃1
)
11

(
M̃1

)
12(

M̃1
)
21

(
M̃1

)
22

���� (𝜆3 − 𝜆1) (𝜆4 − 𝜆1) . (A 16d)928
929

Going back to the general case of 𝜆 𝑗 = 𝜆𝑚, the quadratic equation (A 15), with the aid930
of (A 5b), (A 12) and (A 16) can easily be transformed to an equation for the coefficient931
𝛼 = 𝛽/𝜆 𝑗 ,932

𝛼2 −
(
𝐽 𝑗 𝑗 + 𝐽𝑚𝑚 + 2i𝜋𝛾

Ω

(
𝜕𝜔 𝑗

𝜕𝜇
+ 𝜕𝜔𝑚

𝜕𝜇

))
𝛼 +

����� 𝐽 𝑗 𝑗 + 2i𝜋𝛾
Ω

𝜕𝜔 𝑗

𝜕𝜇
𝐽 𝑗𝑚

𝐽𝑚𝑗 𝐽𝑚𝑚 + 2i𝜋𝛾
Ω

𝜕𝜔𝑚

𝜕𝜇

����� = 0.

(A 17)933
Therefore, either 𝛼 is pure imaginary and we infer stability (to leading order in 𝜀), or Re 𝛼 ≠ 0934
and we infer instability (see the proposition 2 in LZ04).935

A.3. Maximal growth rates of subharmonic instabilities936

The solutions of the quadratic equation (A 17) take the form,937

𝛼 =
1
2

[
𝐽 𝑗 𝑗 + 𝐽𝑚𝑚 + 2i𝜋𝛾

Ω

(
𝜕𝜔 𝑗

𝜕𝜇
+ 𝜕𝜔𝑚

𝜕𝜇

)]
± 1

2
√
𝐷 (A 18)938

where the expression for 𝐷 can be put in the form939

𝐷 = −
����𝐽 𝑗 𝑗 − 𝐽𝑚𝑚 + 2i𝜋𝛾

Ω

(
𝜕𝜔 𝑗

𝜕𝜇
− 𝜕𝜔𝑚

𝜕𝜇

)����2 + 4𝐽 𝑗𝑚𝐽𝑚𝑗 (A 19)940

because all the diagonal elements of the matrix J̃ are pure-imaginary numbers (see below).
The discriminant 𝐷 must be greater than zero in order to have instability, so that

4𝐽 𝑗𝑚𝐽𝑚𝑗 >

����𝐽 𝑗 𝑗 − 𝐽𝑚𝑚 + 2i𝜋𝛾
Ω

(
𝜕𝜔 𝑗

𝜕𝜇
− 𝜕𝜔𝑚

𝜕𝜇

)����2 > 0.

Now the maximal growth rate, which in this case is achieved for941

𝛾 =
iΩ

(
𝐽 𝑗 𝑗 − 𝐽𝑚𝑚

)
2𝜋

(
𝜕𝜔 𝑗

𝜕𝜇
− 𝜕𝜔𝑚

𝜕𝜇

) ∈ R (A 20)942
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is943

𝜎𝑚𝑎𝑥 =
𝜀

2𝜋
(Re 𝛼)𝑚𝑎𝑥 =

𝜀

2𝜋

√︃
𝐽 𝑗𝑚𝐽𝑚𝑗 (with 𝑗 ≠ 𝑚). (A 21)944

We now show that the diagonal elements of the matrix J̃ are pure-imaginary numbers.945
From Equation (2.21) giving the matrix D, we deduce D𝜀 , where its non-zero elements946

are947

(D𝜀)11 = i
(
1 − 𝜇2

) (
e2i𝜏 − e−2i𝜏

)
(A 22a)948

(D𝜀)14 =
N2

2B

(
1 − 𝜇2)

𝜇

(
e2i𝜏 − e−2i𝜏

)
(A 22b)949

(D𝜀)21 = 𝜇2
(
1 − 𝜇2

) (
e2i𝜏 + e−2i𝜏 − 2

)
(A 22c)950

(D𝜀)24 = −i
N2

2B 𝜇

(
1 − 𝜇2

) (
e2i𝜏 + e−2i𝜏 − 2

)
(A 22d)951

952

Substituting the above expressions into (A 12c) and using (A 10) and (A 11) we obtain953

𝐽 𝑗 𝑗 =

(
T−1

)
𝑗2

(
𝑇1 𝑗

∫ 2𝜋

0
(D𝜀)21 𝑑𝜏 + 𝑇4 𝑗

∫ 2𝜋

0
(D𝜀)24 𝑑𝜏

)
(A 23a)954

𝐽11 = −𝐽22 = i𝜋𝜇2
(
1 − 𝜇2

) (
4 − N2) 𝜔2

1 + N2B2𝜇2

𝜔1

(
𝜔2

3 − 𝜔2
1

) (A 23b)955

𝐽33 = −𝐽44 = −i𝜋𝜇2
(
1 − 𝜇2

) (
4 − N2) 𝜔2

3 + N2B2𝜇2

𝜔3

(
𝜔2

3 − 𝜔2
1

) , (A 23c)956

957

in which, as well as throughout the remainder of this appendix, the frequencies 𝜔1 and958
𝜔3 are normalised by Ω. Equation (A 23) proves that the diagonal elements of the matrix959
J̃ are pure-imaginary numbers. This implies that the slopes 𝛾±, which are solutions of960

the equation Re(𝛼) = 0, are also solutions of the equation Re(
√
𝐷) = 0. The expression961

of 𝐷 given by (A 19) involves the term
(
𝜕𝜇𝜔 𝑗 − 𝜕𝜇𝜔𝑚

)
. However the dependence of the962

frequencies 𝜔 𝑗 and 𝜔𝑚 on the variable 𝜇 is not linear which increases the complexity of963

an analytical development in the resolution of Re
(√

𝐷

)
= 0. It appears more convenient964

to perform analytically the derivatives 𝜕𝜇𝜔 𝑗 and 𝜕𝜇𝜔𝑚, and to resolve numerically the965

equation Re
(√

𝐷

)
= 0.966

967
We now calculate the maximal growth rates associated with the three unstable cases,968

namely the fast-fast (case 1), slow-slow (case 2) and fast-slow (case 3) destabilising969
resonances.970

A.3.1. Case 1971

The frequencies 𝜔1 and 𝜔2 = −𝜔1 given by (3.4a) correspond to fast modes and a resonance972
(or order 𝑛 = 2) between them is characterised by 𝜔1 − 𝜔2 = 2, so973

𝜔1 = −𝜔2 = 1 or 𝜎1 = −𝜎2 = i. (A 24)974

The maximal growth rate of the subharmonic instability IF, denoted by 𝜎𝑚 𝑓 , is described by975
(A 21) which, in this case, reduces to976

𝜎𝑚 𝑓 =
𝜀

2𝜋
(Re 𝛼)𝑚𝑎𝑥 =

𝜀

2𝜋

√︃
𝐽12𝐽21 (A 25)977
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with978

𝐽12 =

(
T−1

)
1𝑚

𝑇𝑛2

∫ 2𝜋

0
e−2i𝜏 (D𝜀)𝑚𝑛 𝑑𝜏 =

(
T−1

)
1𝑚

𝑇𝑛2𝐻
+
𝑚𝑛 (A 26a)979

𝐽21 =

(
T−1

)
2𝑚

𝑇𝑛1

∫ 2𝜋

0
e+2i𝜏 (D𝜀)𝑚𝑛 𝑑𝜏 =

(
T−1

)
2𝑚

𝑇𝑛1𝐻
−
𝑚𝑛 (A 26b)980

981

where, given (A 22), the non-zero elements 𝐻+
𝑚𝑛 and 𝐻−

𝑚𝑛 take the form982

𝐻+
11 = −𝐻−

11 = 2i𝜋(1 − 𝜇2) (A 27a)983

𝐻+
14 = −𝐻−

14 = 𝜋
N2

B
(1 − 𝜇2)

𝜇
(A 27b)984

𝐻+
21 = 𝐻−

21 = 2𝜋𝜇2(1 − 𝜇2) (A 27c)985

𝐻+
24 = 𝐻−

24 = −i𝜋
N2

B 𝜇(1 − 𝜇2). (A 27d)986
987

With the aid of (A 10) and (A 11) one easily shows that 𝐽21 = −𝐽12. Now back to determining988
the element 𝐽12989

𝐽12 =

(
T−1

)
11

(
𝐻+

11𝑇12 + 𝐻+
14𝑇42

)
+

(
T−1

)
12

(
𝐻+

21𝑇12 + 𝐻+
24𝑇42

)
. (A 28)990

The substitution of T−1
𝑖 𝑗
, 𝐻+

𝑖 𝑗
and 𝑇𝑖 𝑗 by their expressions respectively given by (A 11), (A 27)991

and (A 10) into (A 28) leads to992

𝐽12 = −𝐽21 = − i𝜋
4

(1 − 𝜇2)
(1 − 𝜔2

3)

(
4 − N2 + B2N2𝜇2

) (
1 + 2𝜇2 −

𝜔2
3

B2𝜇2

)
. (A 29)993

From equations (3.4a) and (3.4b) giving the expression of the frequencies 𝜔1 and 𝜔3, we994
deduce that995

𝜔2
1 + 𝜔2

3 = 1 + 𝜔2
3 =

(
4 + 2B2 − N2

)
𝜇2 + N2 (A 30)996

because 𝜔1 = 1 in case 1. Moreover, with the aid of the resonance condition (3.9), we deduce997
the equality998

𝜔2
3 =

(
4 + 2B2 − N2

)
𝜇2 + N2 − 1 = B2𝜇2

[(
B2 − N2

)
𝜇2 + 1

]
. (A 31)999

Accordingly, the substitution of (A 31) into (A 29) leads to1000

𝐽12 = −𝐽21 = − i𝜋
4

(
3 − B2𝜇2

) (
1 + B2𝜇2

) [ (
N2 − B2 + 2

)
𝜇2 +

(
1 − N2) ][ (

N2 − 2B2 − 4
)
𝜇2 +

(
2 − N2) ] . (A 32)1001

Hence, we obtain the expression of

𝜎𝑚 𝑓

𝜀
=

1
2𝜋

(Re 𝛼)𝑚𝑎𝑥 =
1

2𝜋

√︃
𝐽12𝐽21 =

√︃
−

(
𝐽12

)2
⩾ 0

given by (3.17) in which the parameter 𝜇 is given by (3.14).1002

A.3.2. Case 21003

The frequencies𝜔3 and𝜔4 = −𝜔3 given by (3.4b) correspond to slow modes and a resonance1004
(or order 𝑛 = 2) between them is characterised by 𝜔3 − 𝜔4 = 2, so1005

𝜔3 = −𝜔4 = 1 or 𝜎3 = −𝜎4 = i. (A 33)1006
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The maximal growth rate of the subharmonic instability IS, denoted by𝜎𝑚𝑠, is then described1007
by (A 21) which, in this case, reduces to1008

𝜎𝑚𝑠 =
𝜀

2𝜋
(Re 𝛼)𝑚𝑎𝑥 =

𝜀

2𝜋

√︃
𝐽34𝐽43. (A 34)1009

With the aid of (A 10) and (A 11) we show that 𝐽43 = −𝐽34. The determination of the element1010

𝐽34 =

(
T−1

)
31

(
𝐻+

11𝑇12 + 𝐻+
14𝑇44

)
+

(
T−1

)
32

(
𝐻+

21𝑇14 + 𝐻+
24𝑇44

)
(A 35)1011

is similar to that of 𝐽12 since if we perform the permutation 𝜎1 ↔ 𝜎3 in the expression of1012 (
T−1)

11 ,
(
T−1)

12 , 𝑇12 and 𝑇42 in (A 10) and (A 11) we obtain the expression of
(
T−1)

31 ,1013 (
T−1)

32 , 𝑇14 and 𝑇44, and, hence,1014

𝐽34 = −𝐽43 = − i𝜋
4

(1 − 𝜇2)
(1 − 𝜔2

1)

(
4 − N2 + B2N2𝜇2

) (
1 + 2𝜇2 −

𝜔2
1

B2𝜇2

)
, (A 36)1015

where1016

𝜔2
1 =

(
4 + 2B2 − N2

)
𝜇2 + N2 − 1 = B2𝜇2

[(
B2 − N2

)
𝜇2 + 1

]
. (A 37)1017

Thus, the substitution of (A 37) into (A 38) gives rise to1018

𝐽34 = −𝐽43 = − i𝜋
4

(
3 − B2𝜇2

) (
1 + B2𝜇2

) [ (
N2 − B2 + 2

)
𝜇2 +

(
1 − N2) ][ (

N2 − 2B2 − 4
)
𝜇2 +

(
2 − N2) ] , (A 38)1019

which is identical to (A 32). The difference is due to the fact that, in (A 32), the parameter 𝜇
is described by (3.14), whereas in (A 38) it is given by (3.23). It then results in the expression

𝜎𝑚𝑠

𝜀
=

1
2𝜋

(Re 𝛼)𝑚𝑎𝑥 =
1

2𝜋

√︃
𝐽34𝐽43 =

√︃
−

(
𝐽34

)2
⩾ 0

given by (3.25) in which the parameter 𝜇 is given by (3.23).1020

A.3.3. Case 31021

The resonance (of order 𝑛 = 2) between a fast mode and a slow mode is characterised by1022
𝜔1 −𝜔3 = 2. If this resonant case is destabilising, its maximal growth rate is then of the form1023

𝜎𝑚𝑚 =
𝜀

2𝜋
(Re 𝛼)𝑚𝑎𝑥 =

𝜀

2𝜋

√︃
𝐽13𝐽31 (A 39)1024

where1025

𝐽13 =

(
T−1

)
11

(
𝐻+

11𝑇13 + 𝐻+
14𝑇43

)
+

(
T−1

)
12

(
𝐻+

21𝑇13 + 𝐻+
24𝑇43

)
(A 40a)1026

𝐽31 =

(
T−1

)
31

(
𝐻+

11𝑇11 + 𝐻+
14𝑇41

)
+

(
T−1

)
32

(
𝐻+

21𝑇11 + 𝐻+
24𝑇41

)
(A 40b)1027

1028

With the aid of (A 10), (A 11) and (A 27) we find1029

𝐽13 =
i𝜋(1 − 𝜇2)

8𝜔3(𝜔2
1 − 𝜔2

3)

((
4 − N2

)
𝜔2

3 + B2N2𝜇2
) (

𝜔1 −
𝜔1𝜔

2
3

B2𝜇2 + 2𝜇2

)
(A 41a)1030

𝐽31 =
i𝜋(1 − 𝜇2)

8𝜔1(𝜔2
3 − 𝜔2

1)

((
4 − N2

)
𝜔2

1 + B2N2𝜇2
) (

𝜔3 −
𝜔3𝜔

2
1

B2𝜇2 − 2𝜇2

)
. (A 41b)1031

1032
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We set1033

A0 = −
(
1 − 𝜇2)(

𝜔2
1 − 𝜔2

3

)2 , (A 42a)1034

A1 =

((
4 − N2

)
𝜔2

3 + B2N2𝜇2
) ((

4 − N2
)
𝜔2

1 + B2N2𝜇2
)
, (A 42b)1035

A2 =

(
1 − 𝜇2)
𝜔1𝜔3

(
𝜔1 −

𝜔1𝜔
2
3

B2𝜇2 + 2𝜇2

) (
𝜔3 −

𝜔3𝜔
2
1

B2𝜇2 − 2𝜇2

)
(A 42c)1036

1037
so as

𝐽13𝐽31 =
𝜋2

64
A0A1A2.

To calculate the quantities A0,A1 and A2 we proceed as follows. We use the resonance1038
condition either in the form 𝜔1 − 𝜔3 = 2 or in an equivalent form (see equation (3.31))1039

1 − 𝜇2 =
16(

4 − N2)2 B
2𝜇2 (A 43)1040

together with the expressions of 𝜔1 and 𝜔3 described by (3.3) and determine 𝜔1𝜔3, 𝜔
2
1 +𝜔

2
31041

and
(
𝜔2

1 − 𝜔2
3
)2

1042

𝜔1𝜔3 = −
(
4 + N2)(
4 − N2)B2𝜇2, (A 44a)1043

𝜔2
1 + 𝜔2

3 =2 (2 + 𝜔1𝜔3) , (A 44b)1044 (
𝜔2

1 − 𝜔2
3

)2
=16 (1 + 𝜔1𝜔3) (A 44c)1045

1046

We therefore substitute (A 44) into (A 42) to obtain1047

A0 = − B2(
4 − N2)2 + B2N4

(A 45a)1048

A1 =

(
4 − N2

)3 (
1 − 𝜇2

) [(
4 − N2

) (
1 − 𝜇2

)
+ 4N2

]
, (A 45b)1049

A2 = −
(
1 − 𝜇2)

B2 (
4 + N2) [(

4 − N2
) (

1 − 𝜇2
)
+ 4N2

]
. (A 45c)1050

1051

Thus, we deduce the expression of 𝜎𝑚𝑚/𝜀 given by (3.32).1052

Declaration of interests. The authors report no conflict of interest.1053

Author ORCIDs. Abdelaziz Salhi https://orcid.org/0000-0002-3154-345X.1054

REFERENCES
Aravind, H. M., Dubos, T., & Mathur, M. 2022 Local stability analysis of homogeneous and stratified1055

Kelvin–Helmholtz vortices. J. Fluid Mech. 943, A18.1056
Bajer, K. & Mizerski, K. A. 2013 Elliptical Flow Instability in a Conducting Fluid Triggered by an External1057

Magnetic Field. Phys. Rev. Lett. 110, 104503.1058
Balbus, S. A., & Hawley, J. F. 1991 A powerful local shear instability in weakly magnetised disks. I-Linear1059

analysis. Astrophys. J., 376, 214-222.1060
Barker, A. J., & Lithwick, Y. 2013. Non-linear evolution of the tidal elliptical instability in gaseous planets1061

and stars. Mon Not R Astron Soc., 435 (4), 3614-3626.1062



36

Barker, A. J., Braviner, H. J., & Ogilvie, G. I. 2016. Non-linear tides in a homogeneous rotating planet or1063
star: global modes and elliptical instability. Mon Not R Astron Soc., 459 (1), 924-938.1064

Barker, A. J. 2016. Non-linear tides in a homogeneous rotating planet or star: global simulations of the1065
elliptical instability. Mon Not R Astron Soc., 459 (1), 939-956.1066

Barker, A. J., & Lithwick, Y. 2014 Non-linear evolution of the elliptical instability in the presence of weak1067
magnetic fields. Mon Not R Astron Soc., 437 (1), 305-315.1068

Bayly, B. J. 1986 Three-Dimensional instability of elliptical flow. Phys. Rev. Lett. 57 (17), 2160–2163.1069
Benkacem, N., Salhi, A., Khlifi, A., Nasraoui, S., & Cambon, C. 2022 Destabilizing resonances of precessing1070

inertia-gravity waves. Phys. Rev. E, 105 (3), 035107.1071
Cambon, C. 1982 Etude spectrale d’un champ turbulent incompressible, soumis à des effets couplés1072

de déformation et de rotation, imposés extérieurement. (Doctoral dissertation, Université Claude1073
Bernard-Lyon I).1074

Cambon, C., Teissedre, C., & Jeandel, D. 1985. Etude d’effets couplés de déformation et de rotation sur une1075
turbulence homogène. Journal de mécanique théorique et appliquée, 4(5), 629-657.1076

Cébron, D., Le Bars, M., Le Gal, P., Moutou, C., Leconte, J., & Sauret, A. 2013. Elliptical instability in hot1077
Jupiter systems. Icarus, 226 (2), 1642-1653.1078

Chang, C., & Smith, S. G. L. 2021 Density and surface tension effects on vortex stability. Part 2.1079
Moore–Saffman–Tsai–Widnall instability. J. Fluid Mech., 913 A15.1080

Chandrasekhar, S. 1961 Hydrodynamic and hydromagnetic stability. Clarendon Press.1081
Chagelishvili, G. D., Zahn, J. P., Tevzadze, A. G., & Lominadze, J. G., 2003 On hydrodynamic shear1082

turbulence in Keplerian discs: via transient growth to bypass transition. A & A 402, 401–407.1083
Craik, A. D. D. & Criminale, W. O. 1986 Evolution of wave-like disturbances in shear flows. A class of1084

exact-solutions of the Navier–Stokes equations. Proc. R. Soc. Lond. A 406, 13–26.1085
Craik, A. D. D. 1989 The stability of unbounded two- and three-dimensional flows subject to body forces:1086

some exact solutions. J. Fluid Mech. 198, 275–292.1087
Crow, S. C. 1970 Stability theory for a pair of trailing vortices. AIAA journal, 8 (12), 2172-2179.1088
Davidson, P. A. 2013 Turbulence in rotating, stratified and electrically conducting fluids. Cambridge1089

University Press.1090
Éloy, C., & Le Dizes, S. 2001 Stability of the Rankine vortex in a multipolar strain field. Phys. Fluids, 131091

(3), 660-676.1092
Feys, J., & Maslowe, S. A. 2016 Elliptical instability of the Moore–Saffman model for a trailing wingtip1093

vortex. J. Fluid Mech., 803, 556-590.1094
Fukumoto, Y. 2003 The three-dimensional instability of a strained vortex tube revisited. J. Fluid Mech., 493,1095

287-318.1096
Gledzer, E. B., Dolzhansky, F. V., Obukhov A. M., Pononmarev V. M. 1975 An experimental and theoretical1097

study of the stability of a liquid in an elliptical cylinder. Isv. Atmos. Ocean. Phys. 11:617-22.1098
Godeferd, F. S., Cambon, C., & Leblanc, S. 2001 Zonal approach to centrifugal, elliptic and hyperbolic1099

instabilities in Stuart vortices with external rotation. J. Fluid Mech., 449, 1-37.1100
Guimbard, D., Le Dizès, S., Le Bars, M., Le Gal, P., & Leblanc, S. 2010 Elliptic instability of a stratified1101

fluid in a rotating cylinder. J. Fluid Mech., 660, 240-257.1102
Kelvin, L. (1887). Stability of fluid motion: rectilinear motion of viscous fluid between two parallel plates.1103

Phil. Mag, 24 (5), 188-196.1104
Herreman, W., Cébron, D., Le Dizès, S., & Le Gal, P. 2010 Elliptical instability in rotating cylinders: liquid1105

metal experiments under imposed magnetic field. J. Fluid Mech., 661, 130-158.1106
Kerswell, R. R. 1993a. The instability of precessing flow. Geophys. Astrophys. Fluid Dyn. 72 (1-4), 107-144.1107
Kerswell, R. R. 1993b Elliptical instabilities of stratified, hydromagnetic waves. Geophys. Astrophys. Fluid1108

Dyn. 71 (1-4), 105-143.1109
Kerswell, R. R. 1994 Tidal excitation of hydromagnetic waves and their damping in the Earth. J. Fluid1110

Mech., 274, 219-241.1111
Kerswell, R. R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34, 83–113.1112
Kuchment, P. A. 1993 Floquet theory for partial differential equations (Vol. 60). Springer Science &1113

Business Media.1114
Landman, M. J. & Saffman, P. G. 1987 The three-dimensional instability of strained vortices in a viscous1115

fluid. Phys. Fluids 30 (8), 2339–2342.1116
Le Bars, M. & Le Dizès, S. 2006 Thermo-elliptical instability in a rotating cylindrical shell. J. Fluid. Mech.1117

563, 189–198.1118



37

Lebovitz, N. R. & Zweibel, E. 2004 Magnetoelliptic instabilities. Astrophys. J. 609, 301–312.1119
Le Reun, T., Favier, B., & Le Bars, M. 2019 Experimental study of the nonlinear saturation of the elliptical1120

instability: inertial wave turbulence versus geostrophic turbulence. J. Fluid Mech., 879, 296-326.1121
Lesur, G. & Papaloizou, J. C. B. 2009 On the stability of elliptical vortices in accretion discs. Astron.1122

Astrophys. 498, 1–12.1123
Leweke, T., Le Dizes, S., & Williamson, C. H. 2016 Dynamics and instabilities of vortex pairs. Annu. Rev.1124

Fluid Mech., 48, 507-541.1125
Lifschitz, A., & Hameiri, E. 1991 Local stability conditions in fluid dynamics. Phys. Fluids A: 3 (11),1126

2644-2651.1127
Lifschitz A. 1994 On the stability of certain motions of an ideal incompressible fluid. Adv. Appl. Math.1128

15:404–36.1129
Malkus, W. V. R. 1989 An experimental study of the global instabilities due to the tidal (ellip- tical) distortion1130

of a rotating elastic cylinder. Geophys. Astrophys. Fluid Dyn. 48:123– 34.1131
McKeown, R., Ostilla-Mónico, R., Pumir, A., Brenner, M. P., & Rubinstein, S. M. 2020 Turbulence1132

generation through an iterative cascade of the elliptical instability. Science advances, 6 (9), eaaz2717.1133
Mizerski, K. A. & Bajer, K. 2009 The magnetoelliptic instability of rotating systems. J. Fluid Mech. 6321134

(1), 401–430.1135
Mizerski, K. A., & Lyra, W. 2012 On the connection between the magneto-elliptic and magneto-rotational1136

instabilities. J. Fluid Mech., 698, 358-373.1137
Miyazaki, T. 1993 Elliptical instability in a stably stratified rotating fluid. Phys. Fluids A 5 (11), 2702–2709.1138
Miyazaki, T. & Fukumoto, Y. 1992 Three-dimensional instability of strained vortices in a stably stratified1139

fluid. Phys. Fluids A 4 (11), 2515–2522.1140
Moffatt, H. K. 2010. Note on the suppression of transient shear-flow instability by a spanwise magnetic field.1141

J. Eng. Math. 68, 263-268.1142
Moore, D.W. & Saffman, P.G. 1975 The instability of a straight vortex filament in a strain field. Proc. R.1143

Soc. Lond. A 346, 413–425.1144
Nornberg, M. D., Ji, H., Schartman, E., Roach, A., & Goodman, J. 2010 Observation of magnetocoriolis1145

waves in a liquid metal Taylor-Couette experiment. Phys. Rev. Lett., 104 (7), 074501.1146
Ogilvie, G. I. 2014 Tidal dissipation in stars and giant planets. Annu. Rev. Astron. Astrophys, 52, 171-210.1147
Otheguy, P., Chomaz, J. M., & Billant, P. 2006 Elliptic and zigzag instabilities on co-rotating vertical vortices1148

in a stratified fluid. J. Fluid Mech., 553, 253-272.1149
J. Pedlosky, J. 2013 Geophysical Fluid Dynamics. Springer Science & Business Media, Berlin.1150
Pierrehumbert, R. T. 1986 Universal short-wave instability of two-dimensional eddies in an inviscid fluid.1151

Phys. Rev. Lett. 57 (17), 2157–2159.1152
Sagaut, P., & Cambon, C. 2008 Homogeneous turbulence dynamics. First Edition, CUP Cambridge 2008,1153

Second Edition, Springer Cham, 2018.1154
Schecter, D. A., Boyd, J. F., & Gilman, P. A. 2001 “Shallow-water” magnetohydrodynamic waves in the1155

Solar tachocline. Astrophys. J., 551 (2), L185.1156
Salhi, A., & Cambon, C. 1997 An analysis of rotating shear flow using linear theory and DNS and LES1157

results. J. Fluid Mech., 347, 171-195.1158
Salhi, A., & Cambon, C. 2009 Precessing rotating flows with additional shear: Stability analysis. Phys. Rev.1159

E, 79(3), 036303.1160
Salhi, A., Lehner, T., & Cambon, C. 2010 Magnetohydrodynamic instabilities in rotating and precessing1161

sheared flows: An asymptotic analysis. Phys. Rev. E, 82 (1), 016315.1162
Salhi, A., Lehner, T., Godeferd, F., & Cambon, C. 2012 Magnetized stratified rotating shear waves. Phys.1163

Rev. E, 85 (2), 026301.1164
Salhi, A., Baklouti, F. S., Godeferd, F., Lehner, T., & Cambon, C. 2017 Energy partition, scale by scale, in1165

magnetic Archimedes Coriolis weak wave turbulence. Phys. Rev. E, 95 (2), 023112.1166
Salhi, A., Khlifi, A., & Cambon, C. 2020. Nonlinear effects on the precessional instability in magnetised1167

turbulence. Atmosphere, 11(1), 14.1168
Singh, S., & Mathur, M. 2019 Effects of Schmidt number on the short-wavelength instabilities in stratified1169

vortices. J. Fluid Mech., 867, 765-803.1170
Sipp, D., Lauga, E., & Jacquin, L. 1999. Vortices in rotating systems: centrifugal, elliptic and hyperbolic1171

type instabilities. Phys. Fluids, 11 (12), 3716-3728.1172
Sipp, D. & Jacquin, L. 2003 Widnall instabilities in vortex pairs. Phys. Fluids 15, 1861-1874..1173



38

Slane, J., & Tragesser, S. 2011 Analysis of periodic nonautonomous inhomogeneous systems. Nonlinear1174
Dyn. Syst. Theory, 11 (2), 183-198.1175

Suzuki, S., Hirota, M., & Hattori, Y. 2018 Strato-hyperbolic instability: a new mechanism of instability in1176
stably stratified vortices. J. Fluid Mech., 854, 293-323.1177

Tsai, C. Y., & Widnall, S. E. 1976 The stability of short waves on a straight vortex filament in a weak1178
externally imposed strain field. J. Fluid Mech., 73 (4), 721-733.1179

Waleffe, F. 1989 The 3−𝐷 instability of a strained vortex and its relation to turblence (Doctoral dissertation,1180
PhD thesis MT).1181

Waleffe, F. 1990 On the three-dimensional instability of strained vortices. Phys. Fluids A 2 (1), 76–80.1182
Waleffe, F. 1992 The nature of triad interactions in homogeneous turbulence. Phys. Fluids A, 4(2), 350-363.1183
Wang, Y., Gilson, E. P., Ebrahimi, F., Goodman, J., & Ji, H. 2022 Observation of axisymmetric standard1184

magnetorotational instability in the laboratory. Phys. Rev. Lett., 129 (11), 115001.1185
Wilczyński, F., Hughes, D. W., & Kersalé, E. 2022. Magnetic buoyancy instability and the anelastic1186

approximation: regime of validity and relationship with compressible and Boussinesq descriptions.1187
J. Fluid Mech., 942, A46.1188

Zwirner, L., Tilgner, A., & Shishkina, O. 2020 Elliptical instability and multiple-roll flow modes of the1189
large-scale circulation in confined turbulent Rayleigh-Bénard convection. Phys. Rev. Lett., 125 (5),1190
054502.1191


	Introduction
	MHD Boussinesq's equations
	Base flow
	Perturbed system
	Homogeneous Floquet system

	Destabilised resonances of MIG waves
	Dispersion relation of MIG waves
	Resonant cases of MIG waves
	Destabilising resonance between two fast modes
	Destabilising resonances between two slow modes
	Destabilising resonances between a fast mode and a slow mode

	Numerical results
	Identification of instabilities
	Comparison between the asymptotic formulae and the numerical results
	 Accounting for diffusivity, in the simplest case

	Concluding remarks
	Appendix A
	Expansion in Taylor series of the Floquet multiplier matrix
	Expansion of the characteristic polynomial
	Maximal growth rates of subharmonic instabilities


