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Quenched disorder slows down the scrambling of quantum information. We formulate a kinetic
theory of scrambling in a d-dimensional strongly-correlated metal in the vicinity of a superconduct-
ing phase, following the scrambling dynamics as the impurity scattering rate is increased. Within
this framework, we rigorously show that the butterfly velocity v is bounded by the light cone velocity
vlc = vF/

√
d where vF is the Fermi velocity. We analytically identify a disorder-driven dynamical

transition occurring at small but finite disorder strength between a spreading of information char-
acterized at late times by a discontinuous shock wave propagating at the maximum velocity vlc,
and a smooth traveling wave belonging to the Fisher or Kolmogorov-Petrovsky-Piskunov (FKPP)
class and propagating at a slower, if not considerably slower, velocity. In the diffusive regime, we
establish the relation v2/λFKPP ∼ Del where λFKPP is the Lyapunov exponent set by the inelastic
scattering rate and Del is the elastic diffusion constant.

Information scrambling refers to the efficient spreading
and loss of information throughout an extended many-
body system. Its characterization is fundamental to the
foundations of quantum chaos and has implications in
the development of quantum technologies such as quan-
tum cryptography and quantum computing. The pic-
ture that has emerged from the exact or numerical so-
lutions to a variety of classical and quantum thermal-
izing models with local interactions is a spreading of
information where a scrambling front propagates bal-
listically throughout the system at a so-called butter-
fly velocity. In dual-unitary circuits, the information
scrambling occurs precisely on the light rays propagat-
ing at the maximum velocity allowed by causality [1, 2].
In random quantum circuits made of Haar-distributed
unitaries, scrambling dynamics was related to classical
growth processes with slower ballistic fronts that broaden
either diffusively in d = 1, or according to fluctuations
governed by the Kardar-Parisi-Zhang universality class
in d = 2 and d = 3 [3, 4].

Alongside these minimal models, as well as classical [5–
8], semi-classical, large N or holographic models [9–12],
it is essential to address those questions in realistic sit-
uations where exact or numerical solutions are out of
reach. Aleiner, Faoro and Ioffe have shown how to ar-
ticulate those questions in the larger framework of elec-
tronic transport [13]. Their approach is based on a quan-
tum kinetic equation for out-of-time-ordered correlators
(OTOCs) which is derived within a so-called many-world
Keldysh formalism. They argued that the scrambling
dynamics in metals with either phonon or Coulomb in-
teractions are governed by FKPP equations, resulting in
smooth non-broadening fronts propagating at a butterfly
velocity set by the Fermi velocity, vF. Interestingly, it
was argued that the presence of disorder would signifi-

cantly reduce this butterfly velocity [13–15].

Building on the formalism of Ref. [13], employing no-
tably a partial-wave expansion of the OTOC, we worked
out the kinetics of quantum scrambling in a paradigmatic
model of clean interacting metals in the vicinity of a su-
perconducting phase transition, where electron-electron
interactions are dominated by superconducting fluctua-
tions [16]. We found scrambling fronts that travel at vF
but do not belong to the FKPP universality class. Re-
markably, their late-time spatial profiles develop a shock-
wave discontinuity at the boundary of the light cone.

In this Letter, we investigate the impact of impurity
scattering on the dynamics of the scrambling front. Mo-
mentum relaxation is indeed significant in metals with
an elastic timescale typically in the tens of femtoseconds,
i.e. much shorter than the scattering time due to elec-
tronic interactions, especially at low temperatures. We
first derive an effective set of two coupled partial differen-
tial equations (PDEs) governing the scrambling dynam-
ics at large scales. Then, we analytically elucidate how
the traveling-wave solutions that develop at late times
are affected by the presence of disorder, from the clean
case to the diffusive regime. We find that the shock-wave
phenomenology found in the clean case is robust against
weak disorder. However, we unravel a dynamical phase
transition that causes the quantum information scram-
bling kinetics to abruptly conform to the FKPP class
when the disorder strength exceeds a critical value. We
work out the smooth profiles of the resulting traveling
fronts and their corresponding butterfly velocities which
we find parametrically slower than vF, see Fig. 1.

Model. We consider a system of interacting electrons
in d ≥ 2 dimensions that are subject to both elastic and
inelastic scattering. The former is due to static non-
magnetic impurities and defects. The latter is due to
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FIG. 1. Quantum butterfly velocity v as a function of the
disorder strength κ. For κ < κ∗, the front propagates at the
light cone velocity vlc = 1 in units of vF/

√
d. For κ > κ∗, the

solid line is the FKPP prediction made in Eq. (12). The red
marks are numerical results obtained by solving Eqs. (5) for
d = 1 up to times τ = 3000 (γ = 1 i.e. κ∗ := 1 + γ = 2).

electron-electron interaction in the Cooper channel. This
choice is guided by the relative simplicity with which su-
perconducting fluctuations can be treated within the ran-
dom phase approximation. However, our approach can
be extended to other models with different interactions
as long as a quasi-particle description is valid. For con-
creteness, we have in mind the following Hamiltonian:

H =
∑

k, σ

ǫkc
†
kσckσ +

∑

kk′, σ

Vk−k′c†
kσck′σ

+ U
∑

kk′k′′, σ

c†
kσc

†
−k+k′σ̄ck′′+k′σ̄c−k′′σ. (1)

The operator c†
kσ creates a fermion with spin σ =↑ or ↓

(σ̄ =↓, ↑) and momentum k in the Brillouin zone. ǫk is
the dispersion relation. Electronic energies are measured
relative to the chemical potential and EF is the Fermi
energy. For simplicity, we shall assume a spherical Fermi
surface, i.e. ǫk = 0 when k → kF. We set ~ = kB = 1.
U < 0 is an attractive interaction facilitating super-

conductivity. In dimensions d > 2, this model exhibits a
finite-temperature phase transition towards a supercon-
ducting phase associated with the spontaneous breaking
of the U(1) symmetry. In d = 2, it is replaced by a
BKT transition with quasi-long-range order [17]. Here,
we work at a finite temperature T above the critical tem-
perature, where the U(1) symmetry is not broken but the
superconducting fluctuations are sizable.
The disordered potential V (x) is assumed to be

short-ranged and Gaussian-distributed, with covariance
〈V (x)V (x′)〉 − 〈V (x)〉2 = gδ(x − x′) with g > 0 [18].
We work far from localization regimes, g ≪ EF, where
the disorder can be treated in a classical fashion, i.e. not
accounting for coherent effects between scattering trajec-
tories. In practice, the impurity scattering is treated with

the Born approximation to second order in g [19].
We formulate the kinetic theory of quantum infor-

mation scrambling by starting from the quantum ki-
netic equation on the many-world distribution functions
Fαβ(t,x;ω,k), where the indices α, β ∈ {u, d} span two
replicated worlds (up and down) [13, 16]. The intraworld
components α = β correspond to the standard electronic
distribution functions. We concentrate on the interworld
components Fα6=β which are directly related to four-point
OTOCs and to the growth of operators. In the gradient
approximation, when the microscopic scales set by 1/EF

and 1/kF are much shorter than the spatiotemporal vari-
ations of Fαβ , the dynamics of the latter are governed by
a non-linear partial-integrodifferential equation reading

[∂t + vk ·∇x]Fαβ = Iαβ , (2)

with the velocity vk := ∇kǫk and where the collision inte-
gral Iαβ is a non-linear functional of the Fαβ ’s collecting
contributions from the disordered potential and the elec-
tronic interactions. The kinetic theory is considerably
simplified by working (i) in terms of the first two compo-
nents of a partial-wave expansion in k, (ii) on-shell, i.e.
ω → ǫk, and (iii) near the Fermi surface, i.e. k → kF.
This amounts to working with the ansatz

Fαβ(t,x;ω,k) 7→ ǫαβ [φ(t,x) + uk · φ1(t,x)] , (3)

with ǫdu = −ǫud = 1, the unit vector uk := k/k, and
where the fields φ(t,x) and φ1(t,x) are the isotropic
and first anisotropic corrections, respectively, to the on-
shell interworld distribution function. The validity of the
above ansatz is discussed for the clean case in Ref. [16],
and the partial-wave truncation is all the more accurate
in the presence of impurity scattering which tends to re-
duce momentum anisotropy. In this framework, following
the steps detailed in App. A, the kinetic equation can be
brought to a set of coupled non-linear PDEs reading

{

∂tφ+ vF
d ∇x · φ1= φ(φ2 − 1)/τsc

∂tφ1 + vF∇xφ= φ1(γφ
2 − 1)/τsc − φ1/τel.

(4)

The dimensionless parameter γ tunes the distance to the
superconducting transition: γ = 1 corresponds to criti-
cality and 0 < γ < 1 to off-critical regimes in the normal
phase. τel ∝ 1/g is the elastic timescale due to scattering
on the disordered potential and τsc is the timescale set
by the inelastic scattering on the superconducting fluc-
tuations (Cooperons). These parameters of the model
have to be understood as renormalized quantities result-
ing from a complex cross-feed. For example, disorder is
known to enhance the inelastic scattering rate 1/τsc at
low temperatures [20]. The PDEs (4) have a “correlated-
world” solution, φ = 1 and φ1 = 0, corresponding to both
replicated worlds evolving coherently and is expected to
be unstable for chaotic systems. φ = φ1 = 0 is the
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“uncorrelated-world” solution, corresponding to a total
loss of coherence between worlds.
At τel → ∞, we recover the clean model studied in

Ref. [16]. In the non-interacting limit, τsc → ∞, and in
the diffusive regime (at late times) where ∂tφ1 can be
neglected relative to φ1/τel, the above coupled PDEs re-
duce to a simple diffusion equation: ∂tφ − Del∇

2
x φ = 0

with the elastic diffusion coefficient Del := v2Fτel/d. In
this Drude limit, the correlated-world solution φ = 1
is stable against local perturbations, expressing the ab-
sence of quantum information scrambling when only dis-
order is present. In the generic case with both elastic
and inelastic scattering, we study how the scrambling
dynamics evolve as the dimensionless disorder coupling
constant κ := τsc/τel ≥ 0 is increased from the clean
to the diffusive metal [21]. The analysis is simplified by
rescaling time and space, τ := t/τsc and X := x/ℓsc with
ℓsc := vFτsc/

√
d, together with φ1 7→

√
dφ1. The above

PDEs become
{

∂τφ+∇X · φ1= φ(φ2 − 1)

∂τφ1 +∇Xφ= φ1(γφ
2 − 1)− κφ1.

(5)

The initial conditions are taken as local and spherically
symmetric perturbations to the correlated-world solu-
tion:

{

φ(τ = 0,X) = 1− δφ0(X)
φ1(τ = 0,X) = 0,

(6)

with the radial coordinate X := ‖X‖ and a perturba-
tion 0 ≤ δφ0(X) ≪ 1 which is non-vanishing on small
support of radius R0 and δφ0(X > R0) = 0. This guar-
antees that subsequent dynamics reduce to an effective
one-dimensional problem for φ(τ,X) and φ1(τ,X) along
the radial direction. The late-time dynamics marginally
depend on the choice of δφ0(X).
The instability of the correlated-world solution against

local perturbations is expected to generate a transient
state where both solutions (φ ≃ 1 and φ ≃ 0) are sepa-
rated by a domain wall, a front, located on a sphere of
growing radius. The profile and the motion of this front
determine the dynamics of the scrambling of quantum
information. At late times, the front is located far from
the origin and it is governed by the d = 1 version of the
PDEs (5) where X is now the radial coordinate and φ1 is
the radial component of φ1 [16]. In App. B, we provide
rigorous proof that this growth is bounded by a maximal
velocity set by the Fermi velocity, vlc = 1 (i.e. vF/

√
d

in the original units). This strict light-cone structure of
the solution ensures that vlc effectively acts as a speed
of light and that the related causality is never violated.
This motivates us to look for traveling fronts propagating
at a constant velocity v ≤ vlc and located at mτ ∼ vτ by
assuming

{

φ(τ,mτ + z)
τ→∞−→ f(z)

φ1(τ,mτ + z)
τ→∞−→ f1(z).

(7)

0

0.5

1
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κ ≤ κ∗

f

z = (x− vlct)/ℓsc −R0

κ = 0
κ = κ∗/2
κ = κ∗

FIG. 2. Radial profiles f(z) of the late-time Fermi shock wave
traveling at the maximal velocity vlc, computed exactly from
the coupled PDEs (5) for κ = 0, κ∗/2 and κ∗ (γ = 1 i.e.
κ∗ = 2.) The offset R0 is the size of the initial condition.

The front thickness is of the order of ℓsc := vFτsc/
√
d in the

original units.

Fermi shock-wave dynamics. In the spirit of Ref. [16],
we first look for traveling-wave solutions propagating at
the maximum velocity v = vlc = 1 and that are discontin-
uous at the boundary of the light cone. We leave the full
computation of the front profile to App. B. Here, we sim-
ply focus on extracting the discontinuity by parametriz-
ing the near-front geometry as

{

f(z < 0, |z| ≪ 1) ≃ L+ z/ξ, f(z > 0) = 1
f1(z < 0, |z| ≪ 1) ≃ −M − z/ξ1, f1(z > 0) = 0,

where L, M , ξ, and ξ1 are positive parameters to be
determined, and mτ = τ+R0. We find a critical disorder
strength

κ∗ = 1 + γ (8)

separating two distinct solutions. For κ < κ∗, we find a
solution of Eqs. (5) with a traveling discontinuity from
f(0−) = L to f(0+) = 1, with

L(κ < κ∗) =

√

1 + 4κ∗(1 + κ)− 1

2κ∗
(9)

and M = 1 − L. We find finite values of ξ, indicating
that the thickness of the front is controlled by ℓsc. This
generalizes the Fermi shock-wave dynamics identified in
Ref. [16] to the weakly-disordered case. We illustrate
this shock-wave profile in Fig. 2. When κ → κ∗ from
below, the discontinuity closes continuously, L → 1, but
the slope remains discontinuous. For κ > κ∗, L = 1 is
the only solution and the finite slope left of the front
brutally vanishes, f ′(0) = 0, signaling the sudden death
of the Fermi shock wave.
FKKP dynamics. Inspired by the FKPP equation

proposed in Ref. [13], we look for smooth traveling-wave
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solutions that belong to the FKPP class, with exponen-
tial tails ahead of the front of the form

{

f(z ≫ 1) ≃ 1−Az exp(−µz)
f1(z ≫ 1) ≃ −Bz exp(−µz), (10)

where A, B, and the spatial decay rate µ are positive
parameters. To reveal the hidden FKPP nature of the
PDEs (5), we reformulate them in terms of δφ := 1 − φ
and φ1 which are expected to be small and slowly varying
ahead of the front, as per Eq. (10). Standard algebra
detailed in App. D yields, for any κ ≥ 0,

[

∂2τ + (κ−κ∗)∂τ −∇
2
X

]

δφ=2(2+κ−κ∗) δφ−NL, (11)

where we collected the non-linear terms under the symbol
NL. The term in ∂τ δφ is odd under time reversal and its
prefactor changes sign at κ = κ∗. When κ > κ∗, it
can be loosely interpreted as a dissipative term, bringing
Eq. (11) to a standard FKPP fashion, whereas it acts as a
drive when κ < κ∗. The term ∂2τ δφ can be interpreted as
inertia which, to the best of our knowledge, has not been
discussed in the broader context of FKPP. Following a
standard FKPP analysis detailed in App. D 2, we find
that there are no traveling-wave solutions of the form
(10) when κ < κ∗. However, for κ > κ∗, we now find a
front propagating at the velocity

v(κ > κ∗) = 2
√
2

√
2 + κ− κ∗
4 + κ− κ∗ ≤ vlc. (12)

In the limit κ → κ∗, we recover v → vlc, consistently
with the Fermi shock wave. v decreases monotonously
with increasing disorder strength, and v ∝ 1/

√
κ → 0

when κ→∞. In Fig. 1, we compare the front velocities
extracted from the numerical solutions of the PDEs (5)
to the FKPP prediction in Eq. (12). The agreement is ex-
cellent. In App. D 4, we provide a meticulous numerical
analysis that further demonstrates, beyond any reason-
able doubt, the FKPP nature of the front dynamics as
soon as κ > κ∗.
Interestingly, the early-time dynamics governed by the

linearized version of Eq. (11) are characterized by an ex-
ponential growth of the spatially-integrated perturbation
M(τ) :=

∫

dXδφ(τ,X) = M(0) exp(2τ) where the Lya-
punov exponent λ = 2 does not depend on whether the
shock-wave or the FKPP regime is governing the scram-
bling dynamics. In the FKPP regime, the growth of δφ
ahead of the front is also exponential, as per Eq. (10),
and the scrambling dynamics can be characterized by an
exponent λFKPP = vµ = 4 + 8/(κ− κ∗) where µ is com-
puted in App. D 2.
Diffusive regime. We now delve into the overdamped

regime κ ≫ 1 where the inertial term of Eq. (11) may
be neglected. Keeping only the leading-order terms the
RHS (see the details in App. D 3), the scrambling dy-
namics are now governed by, back in terms of φ and in

0

0.5

1

−10 0 10

κ≫ κ∗

f̂

y = (x−mt)/ℓdiff

FIG. 3. Radial profile of the late-time FKPP front at κ≫ 1,
solution of Eq. (13) traveling at the butterfly velocity v given
in Eq. (14). mt ∼ vt is the location of the front. The dashed
line is the numerical result obtained by solving Eqs. (5) with
κ = 60 and γ = 1 up to time τ = 30. The front thickness is
of the order of ℓdiff := vF

√

τscτel/2d ≪ ℓsc.

the original units,

∂tφ−Del∇
2
x
φ = φ(φ2 − 1)/τsc, (13)

where 1/τsc is the scattering rate on superconducting
fluctuations and Del := v2Fτel/d is the elastic diffusion
coefficient. The dependence on both φ1 and γ has
dropped. This FKPP equation is the non-integrable
Newell-Whitehead equation which was first studied in
the context of non-linear fluid mechanics [22]. Similar
equations with diffusive terms were recently put forward
to describe the dynamics of scrambling of quantum infor-
mation [10, 13, 23–25]. The traveling-wave solutions of
Eq. (13) propagate at a butterfly velocity, in the original
units,

v = 2

√

2

d

√

τel
τsc
vF ≪ vF. (14)

Incidentally, this relates scrambling and transport quan-
tities as v2/λFKPP = 2Del [9, 26–28]. The corresponding
front profile is conveniently computed by now measur-
ing space in units of ldiff := vF

√

τscτel/2d ≪ ℓsc. The

rescaled front profile f̂(y) := f(y ldiff) is the solution to

2f̂ ′′ + 4f̂ ′ = f̂(1 − f̂2) with f̂(−∞) = 0, f̂(∞) = 1, and

we can require f̂(0) = 1/2. It is a smooth monotonous
function that we represent in Fig. 3. The agreement with
the numerical solutions of the PDEs (5) computed in the
diffusive regime (κ = 60) is excellent.
Discussion. In the Fermi shock-wave regime, κ < κ∗,

it is still to be clarified whether the scrambling front dis-
continuity could be smoothened by corrections to the gra-
dient approximation. In the FKPP regime, κ > κ∗, we
found that disorder can considerably reduce the butter-
fly velocity, corroborating the results of Refs. [14, 15]:
a realistic ratio at room temperatures κ ≈ 104 yields
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v ∼ 10−2vF ∼ 104 m/s, on par with the typical phonon-
mediated sound velocity in metals. Contrary to the
shock-wave velocity, it cannot strictly be seen a (slower)
effective speed of light since the small tail ahead of the
front, while providing a quantum-chaotic exponential
regime controlled by the inelastic scattering rate, sur-
reptitiously undermines the causality of the light-cone
structure.
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FIG. 4. Two-world Keldysh contour C: the theory is replicated into an “up” world dynamics, marked by the in-
dex u, and the “down” world dynamics marked by d. In blue: the insertion points of the OTOC A(t,x; t′,x′) :=

〈TC ψ
−†
d (0, 0)ψ+

d (t,x)ψ−
u (0, 0)ψ+†

u (t′,x′)〉.

Appendix A: Kinetic equations of scrambling in a disordered interacting metal

In this Appendix, we derive the set of kinetic equations (4) that govern the dynamics of quantum information
scrambling in the disordered interacting metal given by the Hamiltonian in Eq. (1). More information on the procedure
for the clean case can be found in Ref. [16].

1. Many-world formalism

We work within the many-world formalism, sometimes referred to as the augmented Keldysh formalism. We refer
the reader to Ref. [13] for a pedagogical introduction, see also Ref. [29]. Two-point correlators are defined as

iGab
αβ(t,x; t

′,x′) := 〈TCψ
a
α(t,x)ψ

b†
β (t′,x′)〉, (A1)

with the Keldysh indices a, b = +,−, and the world indices α, β = u, d. We set ~ = 1. TC is the time-ordering
operator on the two-world contour C represented in Fig. 4. The fermionic operators ψ and ψ† are written in the
Heisenberg picture, and 〈. . .〉 := Tr [. . . ρ0] where ρ0 is the initial density matrix with Tr ρ0 = 1. The system is
prepared in thermal equilibrium with the Gibbs state ρ0 ∼ e−H/T where we set kB = 1. The equilibrium dynamics
ensure that, in the absence of an external perturbation explicitly breaking this invariance, the intraworld dynamics
is translational invariant in space and time, and one may work in Fourier space. This is not the case for interworld
quantities (α 6= β) since we are precisely probing their response with respect to local perturbations. Therefore, we
use the Wigner representation for the interworld components, e.g.

Gab
αβ(ω,k; t,x) :=

∫

dx′

∫

dt′ ei(ωt′−k·x′)Gab
αβ

(

t+
t′

2
,x+

x′

2
; t− t′

2
,x− x′

2

)

. (A2)

To alleviate the notations, we drop the intraworld indices, e.g. Guu = Gdd = G, and we reserve the double indices αβ
to interworld quantities, i.e. by αβ we mean α 6= β specifically. We work in the Keldysh basis with the retarded (R)
and Keldysh (K) Green’s functions which, after using the properties of the contour C, read

{

GR = G++ −G+−

GK = G++ +G−− and

{

GR
αβ = 0

GK
αβ = 2G−+

αβ .
(A3)

The intraworld Schwinger-Dyson equations yield the standard (single-world) theory

{

GR(ω,k) =
[

ω − ǫ(k)− ΣR(ω,k)
]−1

GK(ω,k) = |GR(ω,k)|2ΣK(ω,k).
(A4)

The interworld Schwinger-Dyson equations read
{

GR
αβ(ω,k; t,x) = 0

GK
αβ(ω,k; t,x) = GR(ω,k; t,x) ⋆ ΣK

αβ(ω,k; t,x) ⋆ G
R(ω,k; t,x)∗,

(A5)

where we introduced the Moyal product ⋆ := exp
[

i
2 (
←−
∂ω
−→
∂t−
←−
∇k ·
−→
∇x−

←−
∂t
−→
∂ω+

←−
∇x ·
−→
∇k)

]

where the left (right) arrow

designates a derivative operator acting on the left (right) of the star symbol. The self-energies (the Σ’s) entering the
Schwinger-Dyson equations (A4) and (A5) will be discussed below in App. A 2.
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Connection to scrambling.

Let us briefly outline the connection between the interworld two-point Green’s functions and the four-point OTOCs
which are commonly used to probe the dynamical signatures of quantum chaos. An example of such an OTOC is

A(t,x; t′,x′) :=Tr
[

ψ†(0) eiHtψ(x)e−iHt ψ(0) eiHt′ψ†(x′) e−iHt′ρ0

]

=〈TC ψ
−†
d (0, 0)ψ+

d (t,x)ψ
−
u (0, 0)ψ

+†
u (t′,x′)〉.

(A6)

(A7)

At late times, we expect the decoupling

A(t,x; t′,x′) ≃ n0 iG
++
du (t,x; t′,x′) ∝ GK

du(t,x; t
′,x′), (A8)

with n0 := Tr
[

ψ†(0)ψ(0)ρ0
]

and where the interworld Green’s function is computed as the solution of the interworld
Schwinger-Dyson equations in the presence of a local perturbation to the correlated world solution at x = 0 and time
t = 0.

2. Self-energy contributions

There are two contributions to the electronic self-energy: elastic scattering on the disordered potential and inelastic
scattering on the Cooperons. We refer the reader to Chap. 8 in Ref. [30], specifically around Eqs (8.180) and (8.181),
for a detailed discussion of the self-energy contributions to the (intraworld) kinetic equations in a very similar setting.
We follow the same approach for the interworld theory and

{

ΣR = ΣR
dis +ΣR

U

ΣK = ΣK
dis +ΣK

U

and

{

ΣR
αβ = ΣR

ΣK
αβ = ΣK

disαβ +ΣK
U αβ ,

(A9)

where the disorder contribution Σdis and the interacting contribution ΣU are detailed below. It is to be noted that
both contributions to the self-energy feed each other. In particular, the interacting contribution depends implicitly
on the disorder strength.

Disorder contribution.

Expanding to the second order in the coupling to the disordered potential, we obtain the self-energy contribution
{

Σ
R/K
dis (ω,k) = g

∑

k′ GR/K(ω,k′)

ΣK
disαβ(ω,k; t,x) = g

∑

k′ GK
αβ(ω,k

′; t,x),
(A10)

where gδ(x− x′) := 〈V (x)V (x′)〉 − 〈V (x)〉2.

Interaction contribution.

We treat the finite electronic interaction in the Cooper channel by means of the random phase approximation
(RPA). The intraworld self-energy contributions (α = β) read







ImΣR
U (ω,k)= −

1

2

∑

k′

∫

dω′

2π

{

ImDR(ω′,k′)iGK(ω′ − ω,k′ − k)− iDK(ω′,k′) ImGR(ω′ − ω,k′ − k)

}

ΣK
U (ω,k)= 2iF (ω) ImΣR(ω,k),

(A11)

where F (ω) := tanh(βω/2) is dictated by the (fermionic) fluctuation-dissipation theorem. Within the RPA in the
particle-particle channel, the Cooperon propagators are given by

{

DR(ω,k) =
[

U−1 −ΠR(ω,k)
]−1

DK(ω,k) = 2iP (ω) ImDR(ω,k),
(A12)

where P (ω) := coth(βω/2) is dictated by the (bosonic) fluctuation-dissipation theorem and with the polarization
bubbles read







ImΠR(ω,k)=
∑

k′

∫

dω′

2π
iGK(ω′,k′) ImGR(ω − ω′,k − k′)

ΠK(ω,k)= 2iP (ω) ImΠR(ω,k),

(A13)
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Close to the superconducting transition, the near-critical Cooperon propagator reads

DR(ω,k) ≈ −1/ρF
r − iaω/T + ξ2k2 + . . .

, (A14)

where ρF is the density of states at the Fermi energy, and the parameter r ∝ (T − Tc)/Tc is the detuning from the
critical point. In addition, the remaining parameters are all positive with a ∼ O(1), ξ2 ∼ v2F/T

2, where vF is the
Fermi velocity. At criticality r → 0, the Cooperon becomes soft with diverging length scale l ∼ 1/rν and timescale
∼ lz (here ν = 1/2, z = 2), and the propagator is singular at ω = k = 0.

The interworld components read

ΣK
U αβ(ω,k; t,x) = −

i

2

∑

k′

∫

dω′

2π
DK

αβ(ω
′,k′; t,x)GK

βα(ω
′ − ω,k′ − k; t,x), (A15)

with

DK
αβ(ω,k; t,x) = DR(ω,k) ⋆ΠK

αβ(ω,k; t,x) ⋆ D
R(ω,k)∗,

ΠK
αβ(ω,k; t,x) =

i

2

∑

k′

∫

dω′

2π
GK

αβ(ω
′,k′; t,x)GK

αβ(ω − ω′,k − k′; t,x).

(A16)

(A17)

3. Interworld kinetics

We start from the quantum kinetic equation which is a rewrite of the Schwinger-Dyson equations (A5). See, e.g.,
a standard derivation in Ref [29]. The interworld Keldysh Green’s function (α 6= β) is parametrized in terms of the
interworld distribution function Fαβ :

GK
αβ(ω,k; t,x) = GR(ω,k) ⋆ Fαβ(ω,k; t,x)− Fαβ(ω,k; t,x) ⋆ G

A(ω,k), (A18)

To alleviate the notations, we now drop the explicit dependence of x and t except when this obscures the meaning.
Gradient approximation. Expanding the Moyal products to first non-trivial orders, the interworld quantum kinetic

equation reads

[∂t + vk ·∇x]Fαβ(ω,k) = Iαβ(ω,k), (A19)

with the collision integral

Iαβ(ω,k) = 2 ImΣR(ω,k)Fαβ(ω,k) + iΣK
αβ(ω,k). (A20)

Using the expressions for the self-energies in App. A 2, we have

Iαβ(ω,k) = 2
∑

k′

g(k − k′)ImGR(ω,k′) [Fαβ(ω,k)− Fαβ(ω,k
′)]

+ 2
∑

k′k′′

∫

dω′

2π

dω′′

2π
|DR(ω′,k′)|2

× ImGR(ω′′,k′′) ImGR(ω′ − ω′′,k′ − k′′) ImGR(ω′ − ω,k′ − k)

×
{[

tanh

(

ω′′

2T

)

+ tanh

(

ω′ − ω′′

2T

)][

coth

(

ω′

2T

)

+ tanh

(

ω − ω′

2T

)]

Fαβ(ω,k)

+ Fαβ(ω
′′,k′′)Fαβ(ω

′ − ω′′,k′ − k′′)Fβα(ω
′ − ω,k′ − k)

}

. (A21)

One may check that the collision integral vanishes identically at the uncorrelated world solution

F uncorr
αβ (ω,k) = 0, (A22)
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as well as at the correlated world solution

F corr
αβ (ω,k) = ǫαβ + tanh (ω/2T ) , (A23)

with ǫdu = 1 and ǫud = −1.

Quasi-particle approximation. In all practical instances, Fαβ(ω,k) appears multiplied by the density of states
ImGR(ω,k), see e.g. Eq. (A21). When quasi-particles are well defined, with a dispersion relation ǫk, the density of
states is sharply peaked around ω = ǫk and one may seamlessly exchange Fαβ(ω,k) with the on-shell quasi-particle

distribution function F̃αβ(k) := Fαβ(ω = ǫk,k). From now on, we use the tilde notation to denote the on-shell
prescription ω = ǫk.

Partial-wave ansatz. The kinetic equation in (A19), with its collision integral in Eq. (A21), is considerably sim-
plified by working with the following ansatz which implements, altogether, the truncation to the first terms of a
partial-wave expansion in the momentum space, the quasi-particle approximation, and the focusing on the physics at
the Fermi surface. Restoring the explicit dependence on x and t, it reads

F̃ ansatz
αβ (t,x;uk) = [φ(t,x) + uk · φ1(t,x)] F̃

corr
αβ (k)|k→kF

= ǫαβ [φ(t,x) + uk · φ1(t,x)] ,

(A24)

(A25)

with the unit vector uk := k/k and where φ and φ1 are real scalar and vector fields coding, respectively, for
the isotropic component and the first anisotropic corrections to the interworld distribution function F̃αβ(k)

∣

∣

k→kF
.

Conversely, this amounts to performing a projection on the first two terms of a partial-wave expansion:











φ(t,x)=
1

Sd−1
ǫαβ

∫

dΩkFαβ(t,x; ǫk,k)
∣

∣

∣

k→kF

φ1(t,x)=
d

Sd−1
ǫαβ

∫

dΩkukFαβ(t,x; ǫk,k)
∣

∣

∣

k→kF

,
(A26)

where dΩk is the elementary solid angle in the direction of k, and Sd−1 :=
∫

dΩk is the surface area of the d−1-sphere

with unit radius. One has
∫

dΩku
i
k
uj
k
= δij Sd−1/d. From Eq. (A19), we obtain

[∂tφ+ uk · ∂tφ1 + vF (uk ·∇x) (φ+ uk · φ1)] ǫαβ = Ĩdisαβ(k)|k→kF
+ĨU αβ(k)|k→kF

, (A27)

with

Ĩdisαβ(k) = gφ1 ·
∑

k′

ImGR(ǫk,k
′)
[

ukF̃
corr
αβ (k)− uk′F̃ corr

αβ (k′)
]

. (A28)

At the Fermi surface, k → kF, the term ImGR(ǫk,k
′) selects momenta k′ which also live at the Fermi surface. We

obtain

Ĩdisαβ(k)|k→kF
= −ǫαβπgρF φ1 · uk

= −ǫαβφ1 · uk/τel,

(A29)

(A30)

where we made use of F̃αβ(k)|k→kF
= ǫαβ with ǫdu = −ǫud = 1, and ρF is the total density of states at the Fermi

energy. In the last line, we introduced the elastic scattering rate

1

τel
:= πgρF. (A31)

On the interaction side, using the results of Ref. [16], we have

ĨU αβ(k)|k→kF
= ǫαβφ(φ

2 − 1)/τsc + ǫαβ(φ1 · uk)(γφ
2 − 1)/τsc + . . . (A32)

where the . . . stand for higher-order spherical harmonics and we introduced the (temperature and disorder dependent)
inelastic scattering rate

1

τsc
:= −2 Im Σ̃R(kF), (A33)
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with, explicitly,

Im Σ̃R
U (k) =

∑

k′k′′

∫

dω′

2π

dω′′

2π
|DR(ω′,k′)|2 ImGR(ω′′,k′′) ImGR(ω′ − ω′′,k′ − k′′) ImGR(ω′ − ǫk,k′ − k)

×
[

tanh

(

ω′′

2T

)

+ tanh

(

ω′ − ω′′

2T

)][

coth

(

ω′

2T

)

+ tanh

(

ǫk − ω′

2T

)]

, (A34)

and where the parameter 0 < γ ≤ 1 quantifies the distance to criticality (γ = 1 at criticality).
We now project Eq. (A27) onto the first two terms of the partial-wave expansion, using






∫

dΩkĨdisαβ(k)|k→kF
= 0

d
Sd−1

∫

dΩkukĨdisαβ(k)|k→kF
= −ǫαβφ1/τel

and







∫

dΩkĨU αβ(k)|k→kF
= ǫαβφ(φ

2 − 1)/τsc

d
Sd−1

∫

dΩkukĨU αβ(k)|k→kF
= ǫαβφ1(γφ

2 − 1)/τsc.

(A35)

Finally, we obtain the set of coupled PDEs (4) which govern the kinetics of quantum information scrambling,

{

∂tφ+ vF
d ∇x · φ1= φ(φ2 − 1)/τsc

∂tφ1 + vF∇xφ= φ1(γφ
2 − 1)/τsc − φ1/τel.

(A36)

Appendix B: Light-cone structure of scrambling dynamics

Here below, we carefully demonstrate that the solutions of the coupled PDEs (5) in d = 1 are strictly causal in the
sense that they are bounded by a light cone which propagates at velocity vlc = 1 (i.e. vlc = vF/

√
d in the original

units). In other words, for any X and any τ > 0, the values of φ(τ,X) and φ1(τ,X) depend only on the initial
conditions φ0(z) and φ10(z) in the range z ∈ [X − τ,X + τ ]. Then, with initial conditions such that φ0(X) = 1 and
φ10(X) = 0 for all |X | > R0, as studied in the paper, the solution strictly satisfies

φ(τ,X) = 1 and φ1(τ,X) = 0 for |X | > R0 + τ. (B1)

Let us first recall the system of equations (5) in dimension d = 1:

{

∂τφ+ ∂Xφ1 = φ(φ2 − 1)
∂τφ1 + ∂Xφ = φ1

(

γφ2 − 1− κ
)

.
(B2)

where 0 ≤ γ ≤ 1 and κ ≥ 0. More generally, the light cone property can be proved to hold for any system of the form
∂τφ + ∂Xφ1 = f(φ, φ1), ∂τφ1 + ∂Xφ = g(φ, φ1) with “reasonable” (say, polynomial) functions f and g, and for any
bounded initial condition. However, in order to simplify the discussion, we only consider the specific case (B2) and
initial conditions such that

0 ≤ φ0(X) ≤ 1, φ10(X) = 0. (B3)

For such an initial condition, we also show that the solution satisfies the following properties:

• 0 ≤ φ(τ,X) ≤ 1 for all X and τ ≥ 0,

• if φ0(X) and φ̃0(X) are two initial conditions satisfying Eq. (B3) such that φ0(X) ≤ φ̃0(X) for all X , then the
corresponding solutions satisfy φ(τ,X) ≤ φ̃(τ,X) for all τ > 0 and all X .

1. A construction of the solutions φ and φ1

To show these properties, we rewrite Eq. (B2) in terms of ϕ := φ+ φ1 and ψ := φ− φ1:
{

∂τϕ+ ∂Xϕ = ϕ(γφ2 − 1− κ) + (1 − γ)φ3 + κφ

∂τψ − ∂Xψ = ψ(γφ2 − 1− κ) + (1− γ)φ3 + κφ.
(B4)
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Going respectively into the X = z + τ and the X = z − τ frame, this is equivalent to














d

dτ
ϕ(τ, z + τ) =

[

ϕ(γφ2 − 1− κ) + (1− γ)φ3 + κφ
]

X=z+τ

d

dτ
ψ(τ, z − τ) =

[

ψ(γφ2 − 1− κ) + (1 − γ)φ3 + κφ
]

X=z−τ
.

(B5)

Then, this is also equivalent to the integral equations














ϕ(τ, z + τ) = e
∫

τ

0
ds [γφ2(s,z+s)−1−κ]ϕ0(z) +

∫ τ

0

du e
∫

τ

u
ds [γφ2(s,z+s)−1−κ]

[

(1− γ)φ(u, z + u)3 + κφ(u, z + u)
]

ψ(τ, z − τ) = e
∫

τ

0
ds [γφ2(s,z−s)−1−κ]ψ0(z) +

∫ τ

0

du e
∫

τ

u
ds [γφ2(s,z−s)−1−κ]

[

(1− γ)φ(u, z − u)3 + κφ(u, z − u)
]

,
(B6)

where ϕ0(z) = φ0(z) + φ10(z) and ψ0(z) = φ0(z)− φ10(z). Note that, from Eq. (B3), ϕ0(z) = ψ0(z) = φ0(z), but we
only need to assume that ϕ0 and ψ0 are both in [0, 1], i.e. that φ0 ± φ10 ∈ [0, 1].
Now, define recursively ϕn(τ,X) and ψn(τ,X) by

{

ϕ1(τ,X) := 0

ψ1(τ,X) := 0,
(B7)

and














ϕn+1(τ, z + τ) := e
∫

τ

0
ds [γφ2

n
(s,z+s)−1−κ]ϕ0(z) +

∫ τ

0

du e
∫

τ

u
ds [γφ2

n
(s,z+s)−1−κ]

[

(1− γ)φn(u, z + u)3 + κφn(u, z + u)
]

ψn+1(τ, z − τ) := e
∫

τ

0
ds [γφ2

n
(s,z−s)−1−κ]ψ0(z) +

∫ τ

0

du e
∫

τ

u
ds [γφ2

n
(s,z−s)−1−κ]

[

(1− γ)φn(u, z − u)3 + κφn(u, z − u)
]

,
(B8)

where φn(τ,X) := 1
2

[

ϕn(τ,X) + ψn(τ,X)
]

. We shall show in App. B 3 that, for any choice of T > 0, the series of
functions ϕn and ψn converge uniformly over all X and all τ ∈ [0, T ] as n→∞. The limits ϕ and ψ of these convergent
series must then satisfy Eq. (B6) for all X and all τ , which means that they are the solution to the system (B4).

2. Properties of the solution

Once the convergence of ϕn and ψn is proved, we have a construction of the solution {ϕ, ψ} to the system (B4).
This construction allows us to prove all the properties we claimed:

Light cone property: We observe by recursion that ϕn and ψn satisfy the light cone property. Indeed, it is obvious
for n = 1; assume now that the property holds for ϕn and ψn, then φn(u, z + u) (and, similarly, φn(s, z + s))
in the right hand side of Eq. (B8) only depends on the initial condition in the interval [z, 2u] ∈ [z, 2τ ]. This
implies that ϕn+1(τ, z+ τ) only depends on the initial condition in the interval [z, 2τ ], and this is the light cone
property for ϕn+1 (and, similarly, for ψn+1).

Then, going to the limit n→∞, we obtain that ϕ and ψ, and then φ and φ1, satisfy the light cone property.

Comparison property: Let us consider two initial conditions {ϕ0(z), ψ0(z)} and {ϕ̃0(z), ψ̃0(z)}, as well as
{ϕn, ψn, φn = 1

2 (ϕn + ψn)} and {ϕ̃n, ψ̃n, φ̃n = 1
2 (ϕ̃n + ψ̃n)}, the functions respectively obtained from these

initial conditions with the recursion (B8). If ϕ0 ≤ ϕ̃0 and ψ0 ≤ ψ̃0, it is clear by recursion from Eq. (B8) that,
for all n, one has ϕn ≤ ϕ̃n, ψn ≤ ψ̃n, and then φn ≤ φ̃n. Note that argument makes use of 0 ≤ γ ≤ 1 and κ ≥ 0.

Going to the limit n→∞, we obtain that ϕ ≤ ϕ̃, ψ ≤ ψ̃, and then φ ≤ φ̃.
Bounds on φ : If ϕ0 ≥ 0 and ψ0 ≥ 0, it is immediately clear that, by recursion, ϕn ≥ 0 and ψn ≥ 0, which of course

also implies that φn ≥ 0. With slightly more work, it is also clear that if ϕ0 ≤ 1 and ψ0 ≤ 1, then by recursion
ϕn ≤ 1 and ψn ≤ 1 (and φn ≤ 1). Note that argument makes use of 0 ≤ γ ≤ 1 and κ ≥ 0.

Taking the limit n → ∞, we obtain that 0 ≤ ϕ ≤ 1 and 0 ≤ ψ ≤ 1 (and then 0 ≤ φ ≤ 1) if 0 ≤ ϕ0 ≤ 1 and
0 ≤ ψ0 ≤ 1.

Another way to obtain the same result would be to use the comparison property: observing that {ϕ = 0, ψ = 0}
and {ϕ = 1, ψ = 1} are two solutions of (B4), then any initial condition “in between” must lead to a solution
remaining between 0 and 1.
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3. Convergence of ϕn and ψn

Let us now explain why the series ϕn and ψn converge as n → ∞. To simplify the argument, let us assume that
the initial condition satisfies 0 ≤ ϕ0 ≤ 1 and 0 ≤ ψ0 ≤ 1; this implies from App. B2 that for all n, 0 ≤ ϕn ≤ 1,
0 ≤ ψn ≤ 1, and therefore 0 ≤ φn ≤ 1. Let us introduce

∆n(τ) = sup
X∈R

∣

∣ϕn+1(τ,X)− ϕn(τ,X)
∣

∣+ sup
X∈R

∣

∣ψn+1(τ,X)− ψn(τ,X)
∣

∣. (B9)

Below, we shall show that ∆n(τ) → 0 sufficiently quickly as n → ∞ to ensure it is summable; specifically, we shall
show that, for every T > 0, one has

∑

n≥1

sup
τ∈[0,T ]

∆n(τ) <∞. (B10)

Then, writing

ϕn(τ,X) =

n−1
∑

p=1

[ϕp+1(τ,X)− ϕp(τ,X)], (B11)

(remember that ϕ1(τ,X) = 0), we see that the series is convergent, as the running term is bounded by ∆p(τ). This
proves that ϕn (and, similarly, ψn) converges uniformly over all X and all τ ∈ [0, T ] to a limiting ϕ, as required.
To prove Eq. (B10), we use Eq. (B8) to bound ϕn+2 −ϕn+1 and ψn+2 −ψn+1 in terms of φn+1 − φn. To do so, we

use extensively 0 ≤ γ ≤ 1, κ ≥ 0 and 0 ≤ φn ≤ 1. In particular, one has γφ2n − 1− κ ≤ 0.

The mean-value theorem gives the bounds

∣

∣eXn+1 − eXn

∣

∣ ≤ |Xn+1 −Xn| if X ≤ 0, |Y α
n+1 − Y α

n | ≤ α|Yn+1 − Yn| if |Y | ≤ 1. (B12)

Furthermore, as can be seen from writing the left-hand side as
∣

∣(eXn+1 − eXn)Yn+1 + eXn(Yn+1 − Yn)
∣

∣,

∣

∣eXn+1Yn+1 − eXnYn
∣

∣ ≤ |Xn+1 −Xn|+ |Yn+1 − Yn| if X ≤ 0 and |Y | ≤ 1. (B13)

Then, we write ϕn+2 − ϕn+1 using Eq. (B8) and bound the different terms arising in this difference using the
relations (B12) and (B13). In practice, we need (for α = 0, 1, 3)

∣

∣

∣
e
∫

τ

u
ds[γφn+1(s,z+s)2−1−κ]φn+1(u, z + u)α − e

∫
τ

u
ds[γφn(s,z+s)2−1−κ]φn(u, z + u)α

∣

∣

∣

≤
∫ τ

u

ds γ
∣

∣φn+1(s, z + s)2 − φn(s, z + s)2
∣

∣+
∣

∣φn+1(u, z + u)α − φn(u, z + u)α
∣

∣

≤ 2γ

∫ τ

u

ds
∣

∣φn+1(s, z + s)− φn(s, z + s)
∣

∣+ α
∣

∣φn+1(u, z + u)− φn(u, z + u)
∣

∣

≤ γ
∫ τ

u

ds∆n(s) +
α
2∆n(u).

(B14)

In the last line, we used |φn+1 − φn| = 1
2 |ϕn+1 + ψn+1 − ϕn − ψn| ≤ 1

2∆n. Then, from Eq. (B8),

|ϕn+2(τ, z + τ)− ϕn+1(τ, z + τ)| ≤ ϕ0(z)γ

∫ τ

0

ds∆n(s)

+

∫ τ

0

du

[

(1− γ)
(

γ

∫ τ

u

ds∆n(s) +
3
2∆n(u)

)

+ κ
(

γ

∫ τ

u

ds∆n(s) +
1
2∆n(u)

)

]

.

(B15)

We already used that ϕ0(z) ≥ 0. Recalling that ϕ0(z) ≤ 1, we obtain

|ϕn+2(τ, z + τ)− ϕn+1(τ, z + τ)| ≤ a
2

∫ τ

0

ds∆n(s) +
b
2

∫ τ

0

du

∫ τ

u

ds∆n(s) =
1
2

∫ τ

0

ds (a+ bs)∆n(s), (B16)
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with a = 2γ + 3(1− γ) + κ and b = 2(1− γ + κ)γ. The exact same bound also holds, obviously, for ψn+2(τ, z − τ) −
ψn+1(τ, z − τ)|. Altogether, we finally obtain

∆n+1(τ) ≤
∫ τ

0

ds (a+ bs)∆n(s). (B17)

Obviously, from its definition, ∆0(τ) ≤ 2. Furthermore, we have the relation

(

aτ + 1
2bτ

2)n+1

(n+ 1)!
=

∫ τ

0

ds (a+ bs)

(

as+ 1
2bs

2)n

n!
. (B18)

Indeed, as functions of τ , both sides have the same derivative and the same value (zero) at τ = 0. Then, by recursion,
one obtains

∆n(τ) ≤ 2

(

aτ + 1
2bτ

2)n

n!
. (B19)

Clearly, Eq. (B10) holds, and the proof is complete.
Note that, in practice, we have shown that the system (B2) admits a solution when the initial conditions sat-

isfy Eq. (B3). The same methods can be used to show that the solution is unique.

Appendix C: Profile of the Fermi shock wave

In this Appendix, we compute the discontinuity of the Fermi shock wave that develops at the boundary of the light
cone and we derive the implicit equation which determines the complete shock wave profile. We work in the reference
frame of the right-moving front by using







φ+(τ, z) := φ(τ, z +R0 + τ) −−−−−→
τ→+∞

f(z)

φ1+(τ, z) := φ1(τ, z +R0 + τ) −−−−−→
τ→+∞

f1(z),
(C1)

where we recall that R0 is the extension of the initial condition. The light cone property implies that, at all times,
φ+(τ, z) = 1 and φ1+(τ, z) = 0 for z > 0. Then the limiting shapes also satisfy f(z) = 1 and f1(z) = 0 for z > 0.
From the coupled PDEs (5), one obtains the evolution equations for φ+ and φ1+:

{

∂τφ+ + ∂z(φ1+ − φ+) = φ+(φ
2
+ − 1)

∂τφ1+ − ∂z(φ1+ − φ+) = φ1+(γφ
2
+ − 1− κ).

(C2)

As τ →∞, requiring that ∂τφ+ → 0 and ∂τφ1+ → 0 leads to the relations

∂z(f1 − f) = f(f2 − 1) = f1[1 + κ− γf2]. (C3)

Hence,

f1 = f
f2 − 1

1 + κ− γf2
, (C4)

and

∂z

(

f
f2 − 1

1 + κ− γf2
− f

)

= f(f2 − 1). (C5)

Let us now introduce

L := f(0−), M := −f1(0−). (C6)

From Eq. (C4), we have

M = L
1− L2

1 + κ− γL2
. (C7)
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Now, integrating the first line of Eq. (C2) over z ∈ [−ǫ, ǫ] yields

∂τ

∫ ǫ

−ǫ

dz φ+(τ, z)− 1− φ1+(τ,−ǫ) + φ+(τ,−ǫ) =
∫ ǫ

−ǫ

dz φ+(τ, z)[φ+(τ, z)
2 − 1], (C8)

where we used φ+(τ, ǫ) = 1 and φ1+(τ, ǫ) = 0. Taking τ → ∞, and then ǫ → 0 leads to the relation M + L = 1.
Combining with Eq. (C7) gives two solutions for L and M (assuming L > 0):

{

L = 1

M = 0
and







L =

√
1+4κ∗(1+κ)−1

2κ∗

M = 1−
√

1+4κ∗(1+κ)−1

2κ∗
,

(C9)

where we recall that κ∗ = γ + 1. The expression for L in the second solution is Eq. (9).
For κ > κ∗, the second solution in Eq. (C9) leads to L > 1 which cannot be correct, see App. B. This implies

that one must have L = 1 and M = 0: for κ > κ∗, there is no front at late times at position X ≃ τ . As is shown
in App. D, the actual front propagates at a velocity vκ < 1 and has all the properties of an FKPP front.
For κ < κ∗, the second solution in Eq. (C9) satisfies L < 1; this corresponds to a discontinuous profile where f(z)

jumps from L to 1 across the light cone boundary at z = 0. Numerically, this is the solution towards which the
system converges for κ < κ∗. We can now solve Eq. (C5) for z < 0 when κ < κ∗, using f(0−) = L as boundary
condition. This is a first-order ordinary differential equation (ODE) that can be integrated by means of decomposition
into simple fractions. Implicitly,

2

1 + κ− γf2
− 2

1 + κ− γL2
+

2 + κ

1 + κ
log

f2

L2
+

1− κ+ γ

1 + κ− γ log
1− f2

1− L2
− 3 + 3κ− γ

(1 + κ)(1 + κ− γ) log
1 + κ− γf2

1 + κ− γL2
= 2z.

(C10)

For κ = 0 and γ = 1, the solution explicitly reads L = M = 1/2, f(z < 0) = 1/
√
1 + 3e−z [16]. As κ → κ∗ from

below, the discontinuity closes continuously as L→ 1. However, the front does not converge to a flat profile. Indeed,
linearizing Eq. (C10) close to z = 0− with f(z < 0) ≃ L+ z/ξ where L is taken from the second solution in Eq. (C9)
and 1/ξ := f ′(0−), we obtain a finite ξ(κ→ κ∗, κ < κ∗) = 1/4 + κ∗/2.
Exactly at the critical disorder κ = κ∗, the implicit equation reads

2

2 + γ − γf2
+

3 + γ

2 + γ

[

log f2 − log
(

2 + γ − γf2
)]

= 2z + 1− 3 + γ

2 + γ
log 2 (C11)

and a linearization close to z = 0− with f(z < 0) ≃ 1 + z/ξ yields ξ(κ = κ∗) = 1/2 + κ∗. The factor of two between
ξ(κ → κ∗, κ < κ∗) = limκ→κ∗− limz→0− 1/f ′(z) = 1/4 + κ∗/2 and ξ(κ = κ∗) = limz→0− limκ→κ∗− 1/f ′(z) = 1/2 + κ∗

stems from the existence of a vanishing lengthscale ∝ κ− κ∗ which separates two regimes: f(|z| ≪ κ− κ∗ ≪ 1) and
f(κ− κ∗ ≪ |z| ≪ 1). However, further analysis or input on the model is required to determine which of the solutions
in Eq. (C9) is selected at κ = κ∗.

Appendix D: FKPP dynamics

In this Appendix, we discuss how the set of coupled PDEs (5) can exhibit solutions belonging to the FKPP
class [31, 32] for κ > κ∗. First, in App. D 1, we reformulate these equations to better reveal the backbone of the
underlying FKPP physics. Then, in App. D 2, we recall the standard properties of the solutions to an FKPP equation,
and we derive the expression Eq. (12) of the front velocity. This FKPP prediction is tested at κ > κ∗ in Fig. 1 of the
main manuscript. Later, in App. D 3, we show that the set of coupled PDEs (5) converges to the actual FKPP equation
for κ ≫ 1 (the diffusive limit). Finally in App. D 4, we shall show by means of extensive numerical simulations that
the solutions to the coupled PDEs (5) have all the expected properties of an FKPP front as soon as κ > κ∗, and not
only in the diffusive limit.

1. Hidden FKPP equation

In this Appendix, we carefully derive Eq. (11) which results from the coupled PDEs (5). The latter read
{

∂τφ+∇X · φ1= φ(φ2 − 1)

∂τφ1 +∇Xφ= φ1(γφ
2 − 1)− κφ1.

(D1)
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Taking the time derivative of the first one and the spatial derivative of the second one, we have

{

∂2τφ+∇X · ∂τφ1= (3φ2 − 1)∂τφ

∇X · ∂τφ1 +∇
2
X
φ= ∇X · φ1[γφ

2 − 1− κ] + 2γφ∇Xφ · φ1.
(D2)

Using the second equation to eliminate the mixed derivative term in the first one, this yields

∂2τφ−∇
2
X
φ+∇X · φ1[γφ

2 − 1− κ] + 2γφ∇Xφ · φ1 = (3φ2 − 1)∂τφ. (D3)

Now, ∇X · φ1 can be expressed in terms of φ using the first equation in (D1), yielding

∂2τφ−∇
2
Xφ+ [−∂τφ+ φ(φ2 − 1)][γφ2 − 1− κ] + 2γφ∇Xφ · φ1 = (3φ2 − 1)∂τφ. (D4)

We switch to the parameter κ∗ := 1 + γ and reorganize to only have on the lhs derivative terms with a constant
prefactor.







∂2τφ+ (κ− κ∗)∂τφ−∇
2
X
φ = φ(φ2 − 1)[(2 + κ− κ∗) + (1 − κ∗)(φ2 − 1)]

+(2 + κ∗)(φ2 − 1)∂τφ− 2(κ∗ − 1)φφ1 ·∇Xφ

∂τφ1 +∇Xφ = φ1[(κ
∗ − 1)φ2 − 1− κ].

(D5)

The derivative terms on a rhs cancel when φ→ 1 and φ1 → 0. Finally, we switch to the field δφ := 1−φ and obtain
the following set of coupled PDEs







∂2τ δφ+ (κ− κ∗)∂τ δφ−∇
2
X
δφ = δφ(1 − δφ)(2 − δφ)[(2 + κ− κ∗)− (1 − κ∗)δφ(2 − δφ)]

−(2 + κ∗)δφ(2 − δφ)∂τ δφ− 2(κ∗ − 1)(1− δφ)φ1 ·∇Xδφ

∂τφ1 −∇Xδφ = −(2 + κ− κ∗)φ1 − (κ∗ − 1)φ1δφ(2− δφ).
(D6)

We now re-express the rhs of both equations above by collecting the non-linear terms under the symbols NL and
NL1. This yields

{

∂2τ δφ+ (κ− κ∗)∂τ δφ−∇
2
X
δφ = 2(2 + κ− κ∗)δφ−NL

∂τφ1 −∇Xδφ = −(2 + κ− κ∗)φ1 −NL1.
(D7)

The initial conditions are δφ(τ = 0,X) = δφ0(X), φ1(τ = 0,X) = 0, and ∂τ δφ(τ = 0,X) ≃ 2δφ0(X). Notice the
dependence on φ1 in the first equation which has not been fully eliminated but is now entering at a non-linear level.
Naturally, one may check that rhs vanishes at the correlated- and uncorrelated-world solutions given by (δφ = φ1 = 0)
and (δφ = 1, φ1 = 0), respectively. This concludes the derivation of Eq. (11).

2. Properties of the FKPP solutions – Short introduction to FKKP-ology

The FKPP equation was introduced independently in 1937 by Fisher [31] and Kolmogorov-Petrouvsky-
Piscounov [32] to describe problems in biology related to evolution. It has been the subject of many works and
studies since. An extensive review was published in 2003 [33, 34]. We only consider the one-dimensional d = 1 case,
and focus on φ(τ,X) only, regarding φ1 as an intermediate calculation step. We begin by giving a list of defining
characteristics that an evolution equation for φ(τ,X) should satisfy in order to belong to the FKPP class. By evolu-
tion equation, here we mean the actual equation for times τ > 0, without the input of the specific initial condition at
time τ = 0.

1. The equation admits a stable uniform solution and an unstable uniform solution.

In our case, φ = 1 is an unstable solution (also called the unstable phase), while φ = 0 is a stable solution. (In
both phases, we also need to take φ1 = 0 but, as already mentioned, we focus on φ only.)

2. The equation admits traveling wave solutions for all velocities larger or equal than a critical velocity v∗.
This means that, for all v ≥ v∗, there exists functions fv(z) with fv(∞) = 1 and fv(−∞) = 0 such that
fv(X−vτ) is a solution. Depending on the initial condition, the front φ(τ,X) properly centered might converge
to any of these traveling waves.
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3. The traveling wave solutions decay exponentially towards the unstable phase 1, with a linear prefactor for the

critical traveling wave only.

This means that, there is a spatial decay rate µ = µ(v) > 0 and µ∗ := µ(v∗) such that

1− fv(z) ∝ exp(−µz) as z →∞ for v > v∗, and 1− fv∗(z) ≃ Az exp(−µ∗z) as z →∞. (D8)

Nota: in the main manuscript, we wrote µ and v instead µ∗ and v∗ as there was no possible ambiguity. The
traveling waves are defined up to translation: if fv∗(z) is a traveling wave at velocity v∗, then so is fv∗(z − δ).
In this Appendix, we choose the particular critical traveling wave such that fv∗(z) = 1− [Az+ ǫ(z)] exp(−µ∗z),
where ǫ(z)→ 0 as z →∞. The quantity A can be measured numerically.

4. When δφ0(X) := 1 − φ(0, X) decays faster than exp(−µ∗X) for large X, then the front φ(τ,X) propagates

asymptotically at velocity v∗ and its shape converges to the critical traveling wave.

If we call mτ the position of the front at time τ , this means that mτ ∼ v∗τ as τ →∞ and that

φ(τ,mτ + δ + z)→ fv∗(z) as τ →∞, (D9)

where δ is a constant offset depending on the initial condition and on the precise definition of mτ .

5. Still assuming that δφ0(X) := 1 − φ(0, X) decays faster than exp(−µ∗X) for large X, the asymptotic position

of the front is

mτ = v∗τ −B log τ + a− E√
τ
+O

( log τ

τ

)

as τ →∞. (D10)

The quantities B and E are known (see below) and independent of the initial condition. The terms −B log τ and
−E/√τ are respectively known as the Bramson term [35, 36] (see also Refs. [37, 38]) and the Ebert-van Saarloos
term [39] (see also Refs. [40, 41]). The next term, of order (log τ)/τ , has also a known coefficient [42–44]. The
constant offset a depends on the initial condition and on the precise definitions of mτ .

6. Still assuming that δφ0(X) := 1 − φ(0, X) decays faster than exp(−µ∗X) for large X, one has for the shape of

the front:

1− φ(τ,mτ + δ + z) ≃ Az exp
(

−µ∗z − C z
2

τ

)

as τ →∞ and z ∝
√
τ , (D11)

where A and δ are the same as in (D8) and (D9). The quantity C can be computed (see below).

In our problem, the initial conditions δφ0(X) are defined on a finite support of radius R0 and thus do decay faster
than exp(−µ∗X) for large X . This implies that points 4., 5., and 6. above do apply. In practice, in order to identify
v∗, the first step is to look for solutions satisfying

1− φ(τ,X) = fv(X − vτ) ∝ exp (−µ(X − vτ)) for large z := X − vτ . (D12)

For that purpose, we can consider the equation linearized around φ = 1, in the unstable phase. This leads to a relation
between v and µ, which we can write v = v(µ). A necessary condition to have an FKPP equation (see point 2. above)
is that v(µ) reaches a minimum when µ = µ∗ for some finite value µ∗:

v∗ := min
µ
v(µ) = v(µ∗). (D13)

For the problem at hand, we inject Eq. (D12) into Eq. (D7), where we recall that δφ := 1−φ. Neglecting non-linear
terms, this leads to

(µv)2 + (κ− κ∗)µv − µ2 = 2(2 + κ− κ∗). (D14)

The solution with v > 0 is

v(µ) =

√

(4 + κ− κ∗)2 + 4µ2 − (κ− κ∗)
2µ

. (D15)
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For κ > κ∗, one can see that v(µ) reaches a minimum at a finite µ∗. Conversely, for κ ≤ κ∗, v(µ) is always decreasing
and, thus, does not reach a minimum. This indicates that the problem cannot be FKPP if κ ≤ κ∗, and that it might
be FKPP if κ > κ∗.
From now on, let us assume that κ > κ∗. A simple computation from Eq. (D15) yields the selected front velocity

and spatial decay rate

v∗ =
2
√

4 + 2(κ− κ∗)
4 + κ− κ∗ , µ∗ =

4 + κ− κ∗
κ− κ∗

√

4 + 2(κ− κ∗). (D16)

This is the solution announced in Eq. (12) of the main manuscript. For an FKPP front, the behavior of v(µ) around
µ = µ∗ controls many properties of the propagating front. In particular, the quantities B and E appearing in (D10),
and the quantity C appearing in (D11) are given by

B =
3

2µ∗
, E = 3

√

2π

µ∗5 v′′(µ∗)
, C =

1

2µ∗v′′(µ∗)
. (D17)

See for instance Ref. [36] for B, and Ref. [39] for E. The above expression for C can be obtained with the methods
developed in Ref. [45].

3. FKPP equation in the diffusive regime, κ≫ 1.

Here, we derive the asymptotic FKPP theory when the disorder strength is very large, κ ≫ 1. We start from the
re-formulation of the coupled PDEs in Eqs. (D5) which, we recall, read







∂2τφ+ (κ− κ∗)∂τφ−∇
2
X
φ = φ(φ2 − 1)[(2 + κ− κ∗) + (1 − κ∗)(φ2 − 1)]

+(2 + κ∗)(φ2 − 1)∂τφ− 2(κ∗ − 1)φφ1 ·∇Xφ

∂τφ1 +∇Xφ = φ1[(κ
∗ − 1)φ2 − 1− κ].

When κ is large, the exponential spatial decay rate µ∗ is of order
√
κ, see Eq. (D16). This indicates that the width

of the front is small, of order 1/
√
κ. This suggests rescaling space by working with

Y :=
√
2κX. (D18)

Keeping only the terms of order κ, we see that the rescaled equation for φ converges as κ→∞ to

∂τφ− 2∇2
Y φ = φ(φ2 − 1), (D19)

which is the FKPP equation. Notice that the dependence on γ, the distance to the superconducting transition, has
dropped. A standard analysis of the above FKPP equation, following the steps in App. D 2, yields a front traveling at
the velocity 4 on the Y scale, and thus with a velocity of order 2

√

2/κ on the X scale, in agreement with Eq. (D16).
The radial profile of the critical traveling wave corresponding to Eq. (D19) must satisfy the ODE

2f̂ ′′ + 4f̂ ′ + f̂(f̂2 − 1) = 0. (D20)

The prediction is that the late-time shape of the front, fv∗(z) defined in Eq. (D9), converges after rescaling to

fv∗(Y/
√
2κ)→ f̂(Y ) as κ→∞. (D21)

This is numerically confirmed in Fig. 3 of the main manuscript. (Nota: the solutions to Eq. (D20) are defined up to
translation.)

4. Numerical evidence of FKPP dynamics at κ > κ∗ – FKPP-ometry

Here, we present numerical simulations in d = 1 that demonstrate that φ(τ,X) behaves as an FKPP front as soon
as κ > κ∗, and not only when κ≫ κ∗ where we showed in App. D 3 that the equations for φ were converging to the
actual FKPP equation. Specifically, we show that although the equations for φ look quite different from the FKPP
equation at finite κ > κ∗, the FKPP properties listed in Eqs. (D9), (D10) and (D11) hold. This is in addition to
the numerical results presented in Fig. 1 of the main manuscript where we tested the FKPP prediction for the front
velocity when κ > κ∗.
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Discretization and integration schemes

Checking that the late-time Eq. (D10) holds requires a very accurate prediction for the velocity of the front.
However, as shown below, the discretization scheme of the equations as well as their integration scheme slightly
impact the value of that velocity. This implies that the analytical prediction for the velocity must take into account
the specific numerical integration scheme that is used. Another difficulty is that FKPP fronts are extremely sensitive
to the exponential tail ahead of the front, at a distance on the order of

√
τ ahead of the front, where φ(τ,X) is very

close to 1. This requires a numerical solver that remains very accurate in that region. For these reasons, we found it
easier to write our own solver, which we now describe.
Taking the sum and difference of the two coupled PDEs (5), we obtain

∂τ (φ± φ1)± ∂X(φ± φ1) = g±(φ, φ1). (D22)

with the functions g±(φ, φ1) := φ(φ2−1)±φ1[γφ2−1−κ]. This is equivalent to the following set of coupled first-order
ODEs,

d

dτ

[

(φ± φ1)(τ,±τ + z)
]

= g± (φ(τ,±τ + z), φ1(τ,±τ + z)) . (D23)

We discretize them with a simple Euler scheme, using a common discretization step a for both space and time. This
reads

(φ± φ1)(τ + a,±(τ + a) + z) = (φ± φ1)(τ,±τ + z) + ag± (φ(τ,±τ + z), φ1(τ,±τ + z)) , (D24)

or, writing X = ±(τ + a) + z,

(φ± φ1)(τ + a,X) = (φ± φ1)(τ,X ∓ a) + ag± (φ(τ,X ∓ a), φ1(τ,X ∓ a)) , (D25)

Finally, solving for φ and φ1,






φ(τ + a,X) = φ(τ,X−a)+φ(τ,X+a)
2 + φ1(τ,X−a)−φ1(τ,X+a)

2 + a g+(φ(τ,X−a),φ1(τ,X−a))+g−(φ(τ,X+a),φ1(τ,X+a))
2

φ1(τ + a,X) = φ(τ,X−a)−φ(τ,X+a)
2 + φ1(τ,X−a)+φ1(τ,X+a)

2 + a g+(φ(τ,X−a),φ1(τ,X−a))−g−(φ(τ,X+a),φ1(τ,X+a))
2 .

(D26)

These equations allow efficient numerical computation of φ(na, pa) for any n ∈ N and p ∈ Z as a function of the
discretized initial condition φ(0, pa) for p ∈ Z. Let us make a few practical remarks:

• In this scheme, the discretization step a is the same for space and time. This guarantees a strict light-cone
structure: if the initial condition is zero for X > R0, then φ(τ,X) = 0 for X > R0 + τ .

• At a given time step, the values on even lattice sites only depend on the values on odd lattice sites at the previous
time step, and vice versa. In other words, the even and odd lattice sites at a given time step are independent
realizations with slightly different initial conditions. Unless the initial conditions are extremely fine-tuned, this
leads to a front shape that is not smooth. To avoid this issue, we only display even lattice sites at even time
steps.

• FKPP equations are very sensitive to what happens in the region where the front is close to the unstable phase,
here φ = 1. As the default representation of reals in a computer (we use the “long double” type) is much better
at handling numbers close to 0 rather than numbers close to 1, we simulate δφ := 1− φ rather than φ directly.

• To save computation time and to avoid instabilities due to loss of precision for numbers too close to 0 or 1, we
truncate values at each time step, setting to 0 any value of δφ smaller than 10−2000, and setting to 1 any value
larger than 1− 10−16.

The discretized equations (D26) lead to a front that propagates at a velocity slightly different from the one predicted
by the continuous equations. In fact, we can redo the analysis of App. D 2, looking for a traveling wave solution with
an exponential decay 1− φ(τ,X) ∝ e−µ(X−vτ). This predicts a relation

v(µ) =
log cosh(µa)

µa
+

1

µa
log

[

1 +
a

2

(
√

(4 + κ− κ∗)2 + 4
tanh(µa)2

a2

(

1− a(κ− κ∗)− 2a2(2 + κ− κ∗)
)

−(κ− κ∗)
)]

,

(D27)

which reduces to Eq. (D15) when a→ 0.
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Numerical tests of the FKPP predictions

We computed φ(τ,X) for γ = 1 (i.e. κ∗ = 2) and κ = 3 up to times τ = 105 starting from the C1 initial condition

δφ0(X) := 1− φ(0, X) = 0.2(1−X2)2 Θ(1− |X |), (D28)

where Θ(X) is the Heaviside step function. We took a discretization step a = 10−3 for which the minimum of Eq. (D27)
predicts

v∗ ≈ 0.979 551 163, µ∗ ≈ 12.1774, v′′(µ∗) ≈ 2.674 10−4. (D29)

These predicted values are to be compared with v∗ = 2
5

√
6 ≈ 0.979 796, µ∗ = 5

√
6 ≈ 12.2474 and v′′(µ∗) = 5−5

√

2/3 ≈
2.613 10−4 obtained from the continuous equations, see Eq. (D16).
In practice, we locate the front using the following definition:

mτ := 2a
∑

n≥0

[1− φ(τ, 2an)] ≃
∫ ∞

0

dX [1− φ(τ,X)]. (D30)

This definition of the position only takes into account even lattice sites, as per the discussion above. As can be seen
in Fig. 5 below, it turns out that Eq. (D30) is nearly equivalent to defining mτ as the position where the front is equal
to 0.6.
In Fig. 5, we plot the shape of the front at early times (up to τ = 10), and we observe that, to the eye, it converges

quite quickly to the limiting shape, as per point 4. of App. D 2. The velocity of the front seems already to be smaller
than 1. In Fig. 6, we plot the shape of the front at larger times (up to τ = 105), appropriately rescaled such as
to check point 6. of App. D 2. Finally, in Fig. 7, we compare mτ obtained from the program with the asymptotic
prediction (D10) given in point 5.
The data in these three figures unambiguously demonstrate that the function φ(τ,X) has all the properties expected

for an FKPP front.
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FIG. 5. δφ(τ,X) := 1 − φ(τ,X) as a function of X, for τ = 0, 1, . . . , 10. The initial condition at τ = 0 is given in Eq. (D28)
and extends to R0 = 1. On each curve, we placed a black dot at the coordinate corresponding to the front position mτ defined
in Eq. (D30). To test the convergence of the overall front shape at τ = 10, we superimposed in a dashed line the (yellow) curve
for τ = 9 shifted by m10 −m9 ≃ 0.96945. To the eye, the shape of the front has already converged. The quantity m10 −m9

gives an estimate for the velocity which is smaller than the predicted velocity v∗ from Eq. (D29); this is due to the sublinear
terms in Eq. (D10). The curve for a given τ stops at X = τ +R0 (and is implicitly equal to 0 after that point). This is a direct
consequence of the light cone property. The inset shows a zoom of the bottom-right corner of the main plot. (γ = 1, κ = 3.)
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FIG. 6. Test of the prediction (D11) for the shape of the front. (left)
[

1−φ(τ,mτ +δ+z)]e
µ∗z as a function of z = X−mτ −δ,

i.e. the fronts are centered around their positions and the predicted exponential decay has been expunged in order to study
δφ := 1 − φ in the region where it is small. (right) The same quantity with both axis now rescaled by

√
τ converges to

Ay exp(−Cy2) (dashed line) as τ → ∞. The values of δ and A were adjusted manually and the value of C was computed
from Eq. (D17). (γ = 1, κ = 3.)
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FIG. 7. Test of the prediction (D10) for the position of the front as a function of time. In blue, we plot the position mτ minus the
first two terms of the expansion (D10), which are known, as a function of 1/

√
τ , for τ up to 105. The result should asymptotically

be given by a−E/
√
τ , where E is known, but not a. The data is compared to the function a−E/

√
τ +(b log τ + c)/τ (dashed

line), using the known value of E and fitting for a, b and c. The dotted line is the simpler asymptotic expansion a − E/
√
τ .

To illustrate the precision of this test, the position of the front is equal to mτ ≃ 9793.6719 at τ = 104; the plotted value is
mτ − (v∗τ −B log τ ) ≃ −0.7052 while a− E/

√
τ ≃ −0.7058. Notably, all the digits of the value of v∗ given in Eq. (D29) are

needed to produce this figure. (γ = 1, κ = 3.)


