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Abstract

We formulate a kinetic theory of quantum information scrambling in the context of a paradig-

matic model of interacting electrons in the vicinity of a superconducting phase transition.

We carefully derive a set of coupled partial differential equations that effectively govern the

dynamics of information spreading in generic dimensions. They exhibit traveling wave so-

lutions that are discontinuous at the boundary of the light cone, and have a perfectly causal

structure where the solutions do not spill outside of the light cone.

Contents

1 Introduction 2

2 Many-world formalism 4

2.1 Motivations and general idea 4
2.2 Interacting fermions 6
2.3 Green’s functions in the Keldysh basis 6
2.4 Inter-world kinetic equation 7

3 Superconducting fluctuations 9

3.1 Model 9
3.2 Inter-world collision integral 10

4 Inter-world kinetics in the near-critical regime 11

4.1 Partial-wave ansatz 11
4.2 Simplified kinetic equation: coupled PDEs 12
4.3 Validating the ansatz numerically 14

4.3.1 Early times 14
4.3.2 Late times and partial-wave truncation 15

5 Dynamics of information scrambling 16

5.1 Early-time exponential growth 17

1

http://arxiv.org/abs/2212.13265v1


SciPost Physics Submission

5.2 Late-time solutions and discontinuous front 18
5.2.1 Traveling front 18
5.2.2 Saturation inside the light cone 21

6 Discussion and conclusion 22

A Inter-world collision integral 23

A.1 Critical case 25
A.2 Away from criticality 25

B Discontinuous front for generic γ 6= 1 26

References 29

1 Introduction

Quantum information scrambling is the mechanism by which localized information in an extended
closed quantum many-body system with local interactions flows to non-local degrees of freedom,
becoming practically irretrievable. In practice, these information dynamics can be conveniently
probed by means of out-of-time-ordered correlators (OTOCs) such as squared commutators of op-
erators inserted at different space-time points, e.g. C(t, x ) := 〈[O(t, x ),O(0,0)]2〉. The effective
loss of information is characterized by (i) a ballistic spread of information, often dubbed as the
“quantum butterfly effect”, (ii) a growth regime, reminiscent of the exponential separation be-
tween nearby trajectories in classical chaotic systems, (iii) a purely quantum saturation regime
beyond a scrambling time t∗.

The ballistic spread of quantum information has been firmly established on the basis of the
Lieb-Robinson bound [1]. The causal light-cone structure, with a wavefront traveling at a model-
dependent butterfly velocity vB, was confirmed in a wide variety of models, from non-interacting
1d systems to holographic models. Inside the light cone, the existence of a clearly delineated
exponential growth regime is only expected for semiclassical or large-N models: C(t, x ) ∼
exp [λL(t − t∗ − |x |/vB)]where λL is the Lyapunov exponent. For truly quantum systems, the rapid
growth concentrated near the light-cone boundary is understood to be set by model-dependent mi-
croscopic scales and significant efforts were made to compute the particular shape of the butterfly
front in a variety of models.

Wavefronts described by power laws, sometimes oscillatory, were found in free and integrable
models [2,3]. Sharp wavefronts were found in interacting spin chains [4], non-integrable systems
with diffusive transport [5, 6], as well as large-N or semiclassical models [7, 8] and holographic
models [9, 10]. Interestingly, random unitary circuits without conserved quantities, i.e. in the
absence of diffusive transport, were found to develop broad fronts controlled by a diffusively
growing length scale [11–14]. Notably, several works [15–18] have pointed towards an effective
description of the front in terms of partial differential equations belonging to the class of the Fisher
Kolmogorov-Petrovsky–Piskunov (FKPP) equation [19, 20] which is known to exhibit traveling
wave solutions (see Ref. [21] and references therein).
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Figure 1: Butterfly effect: after a small and localized perturbation at time τ = 0, the
space-time dynamics of the inter-world distribution function Fdu defined in Eq. (15)
follows a causal light-cone structure with a front traveling at a constant butterfly velocity
vB set by the Fermi velocity. Here, we sketch φ(τ, X), the component of Fdu averaged
over the Fermi surface, to be introduced in Eq. (30). In the late-time limit, the traveling
front develops a distinct discontinuity followed by an exponential decay on the scale of
the mean free path ℓ.

In this manuscript, we address the dynamics and the geometry of the wavefront for a lo-
cally interacting system in the vicinity of a continuous classical phase transition corresponding to
the spontaneous breaking of the symmetry associated with a conserved quantity. Practically, we
consider a paradigmatic model of interacting electrons where the interactions are due to strong
superconducting fluctuations. The proximity to criticality produces a separation of energy scales
which we leverage to derive analytic results. How the results get modified on moving away from
criticality is transparent in our derivation and our approach can be systematized to address other
near-critical quantum many-body systems.

We compute the OTOCs by means of an augmented Keldysh formalism, the so-called many-
world formalism, which was originally proposed in Ref. [22] and recently used to derive kinetic
equations for the spreading of quantum information in fermionic interacting systems including
electron-phonon scattering, electrons-impurity scattering, as well as electron-electron scatter-
ing [15]. The augmented Keldysh formalism has also been adopted by others [23–26]. This
formalism can be conveniently harnessed to the standard field-theoretic concepts, tools, and ap-
proximation schemes that have been developed over the years in condensed matter theory. Here,
we treat the interaction between the electrons and the superconducting fluctuations by means of
the random-phase approximation (RPA) in the particle-particle channel.

We carefully derive an effective description of the spreading of quantum information in terms
of a set of coupled partial differential equations which do not belong to the FKPP class. Notably,
we find wavefronts that are discontinuous at the light-cone boundary and that do not feature
exponentially small tails ahead of the front. This strictly causal structure is unlike what is found
in evolutions of the FKPP class, and more generally of equations with diffusive terms.

Summary and main results

The paper is organized as follows. In Sect. 2, we quickly review the many-world formalism which is
used to compute OTOCs and access quantum chaotic features of many-body systems. It generalizes

3
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the standard Keldysh formalism by studying two replicas of the theory, the so-called worlds, which
are only correlated through their initial conditions. In particular, we introduce the inter-world
distribution function Fαβ (ω, k; t, x ), where α 6= β are the world indices, which quantifies the
amount of correlation between the two worlds.

In Sect. 3, we introduce a paradigmatic model describing interacting electrons close to a su-
perconducting transition. We avoid the technical challenges of approaching the critical point from
within the superconducting phase and work in the normal phase where no long-range order devel-
ops. We derive the corresponding kinetic equation for the inter-world distribution which is shown
to be of the form

∂t Fαβ + v k ·∇x Fαβ = Iαβ [Fαβ , Fβα],

with the non-linear collision integral Iαβ given in Eq. (29).
In Sect. 4, we propose and numerically validate an ansatz for Fαβ leading to a simplified set of

non-linear partial differential equations (PDEs) involving two fields φ(t, x ) and φ1(t, x ). These
are the first terms of the partial-wave expansion in momentum space of Fαβ (ω, k; t, x ) evaluated
on-shell and at the Fermi surface, i.e. at ω = εk and k→ kF. In terms of dimensionless quantities
X for space and τ for time, the PDEs read

¨
∂τφ +∇X ·φ1 = φ(φ

2 − 1),

∂τφ1 +∇Xφ = φ1(γφ
2 − 1),

where γ = 1 corresponds to the critical regime separating the superconducting phase from the
normal phase.

In Sect. 5, starting from a generic localized initial perturbation, we analytically solve for the
dynamics ofφ andφ1, in any dimension d , at criticality as well as away from criticality. The results
are sketched in Fig. 1. The relaxation of the inter-world distribution is found to strictly occur within
a light cone growing from the initial perturbation at a constant butterfly velocity vB = vF/

p
d

where vF is the Fermi velocity. We work out the initial exponential growth. Importantly, in the
late-time regime, we find a traveling wave that develops a discontinuous radial front of the form

Fαβ ∼ f+

�
|x |−vB t

ℓ/
p

d

�

which extends over a length scale set by the mean free path ℓ (related to

the scattering of the electrons by superconducting fluctuations). Inside the light cone, f+ dies off
exponentially away from its boundary (|x |−vBt < 0), f+ = 1 outside the light cone (|x |−vB t > 0),
and f+ is discontinuous precisely at the boundary |x | − vB t = 0. We also work out explicitly the
saturation regime, within the bulk of the light cone.

We conclude in Sect. 6 by discussing the relations of our results to previous works and by
giving future directions.

2 Many-world formalism

2.1 Motivations and general idea

Let us first motivate the use of the so-called many-world formalism and review its basic function-
ing. Dynamical signature of quantum chaos can be found in OTOCs of the type (we set ħh= 1)

Tr
�

ψ(0) eiHtψ(x )e−iHt ψ†(0) eiHt ′ψ†(x ′) e−iHt ′ρ0

�

, (1)
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Figure 2: Two-world Keldysh contour C: the theory is replicated into an “up” world
dynamics, marked by the index u, and the “down” world dynamics marked by d . The
location of the operators ψ and ψ† correspond to the OTOC in Eq. (1).

where ρ0 is the initial density matrix at time t = 0 which is normalized as Trρ0 = 1, H is the
Hamiltonian generating the dynamics, and ψ(x ) is a local operator at position x . We have in
mind fermionic annihilation/creation operators, but the discussion can be easily adapted to the
bosonic case. Here, the four operators ψ(0), ψ(x ), ψ†(0), and ψ†(x ′) are computed in a non-
ordered time sequence. Like many of the diagnostics of quantum chaos, the convoluted time
structure of OTOCs makes them computable objects which do not, however, directly correspond
to physical observables. This is in contrast to standard retarded correlators which correspond to
response functions to physical perturbations. Consequently, the computation of OTOCs requires
modifying the standard non-equilibrium Green’s function approach to cope with the out-of-time
ordering.

Here, we quickly review the many-world formalism which generalizes the standard
Schwinger-Keldysh formalism defined on the two-fold Baym-Kadanoff contour to a formalism on
a four-fold contour, suitable to compute four-point OTOCs. This was originally introduced in
Ref. [22] and we refer the reader to Ref. [15] for a detailed presentation which we simply follow.
The OTOC in Eq. (1) involves two forward and two backward time-evolution operators. Therefore,
following the standard Schwinger-Keldysh construction [27], this yields the four-fold time-ordered
contour C depicted in Fig. 2. The forward (backward) branches are labeled by an index a = +

(a = −). The first two branches are said to belong to the “up world” and are labeled by the
index α= u. The two other branches, posterior on the contour, correspond to the so-called “down
world”, and are labeled by α = d . Notably, the up and down worlds are identical replicas of the
same theory, involving the same Hamiltonian.

In that language, the OTOC in Eq. (1) can be rewritten as

〈TCψ−d (0,0)ψ+
d
(t, x )ψ−†

u (0,0)ψ+†
u (t

′, x
′)〉, (2)

where TC is the time-ordering operator on the contour C, the operators ψ andψ† are now written
in the Heisenberg picture, and 〈. . .〉 := Tr [. . .ρ0].

In our subsequent study of the quantum butterfly effect, we shall assume equilibrium condi-
tions: the system is initially prepared in thermal equilibrium at temperature T , i.e. with the Gibbs
state ρ0 ∼ e−H/T where we set kB = 1, and the subsequent evolution is unitarily generated by the
same Hamiltonian H as the one used in the initial preparation.

It is useful to introduce the following quantities:

iGab
αβ
(t, x ; t′, x

′) := 〈TCψa
α(t, x )ψb†

β
(t′, x

′)Ŝ0〉, (3)

5
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with the Keldysh indices a, b = +,−, the world indices α,β = u, d , and where the mixed operator
Ŝ0 := ψ−†

u (0,0)ψ−
d
(0,0) results from clubbing of the two operators in Eq. (2) that are both eval-

uated at time t = 0 but at disconnected locations on the time contour C. The OTOC in Eq. (1) is
recovered by taking α= d and β = u, while a = ± and b = ± can be chosen arbitrarily. If one is to
interpret iGab

αβ
(t, x ; t′, x

′) as a two-point function rather than a four-point function, Ŝ0 has to be
understood as a local modification of the initial condition which, a priori, acts differently on each
world: one particle is added to the up world at position x = 0 while one particle is removed from
the down world. Other choices of operator content are possible for Ŝ0 and we shall see that the
late-time inter-world dynamics depend very little on this choice. Later, we shall consider local per-
turbations around the identity: Ŝ0 = 1+ δφ0ψ

−†
u (0,0)ψ−

d
(0,0) with the infinitesimal parameter

|δφ0| ≪ 1.
Importantly, an inspection of Eq. (3) for Ŝ0 = 1 shows that the intra-world Green’s functions

(i.e. α = β) correspond to the standard (i.e. single-world) Schwinger-Keldysh two-point correla-
tors:

Gab
uu = Gab

dd
= Gab . (4)

From now on, given that the intra-world quantities are identical in both α = u, d worlds, we
simply drop the repeated world indices, e.g. Gαα → G, except when this obscures the meaning.
Furthermore, when using the indices αβ , we specifically mean α 6= β unless specified otherwise.

2.2 Interacting fermions

For concreteness, and to set the stage for the ensuing developments, we work in the context of
interacting fermions on a d-dimensional lattice. Naturally, this can be easily adapted to other
quantum systems. We consider the generic Hamiltonian

H = H0 +Hint , (5)

H0 =
∑

k∈BZ

∑

σ

εk c
†
kσ

ckσ , (6)

where H0 is the non-interacting part and the interaction in Hint depends on the specific problem
at hand, see Eq. (21). The fermionic operator c

†
kσ

creates a electrons with spin σ =↑ or ↓ (σ̄ =↓,
↑) and momentum k in the Brillouin zone (BZ). εk is the dispersion relation. The generalization
to multi-band cases is straightforward. For simplicity, we measure electronic energies relative
to the chemical potential, but a finite chemical potential µ can be included via the substitution
εk 7→ εk −µ. For simplicity, we shall assume that the Fermi surface is spherical, i.e. εk = 0 when
k→ kF. Whenever this does not harm the understanding, we shall simply drop the spin indices.

2.3 Green’s functions in the Keldysh basis

The 16 Green’s functions Gab
αβ

are not independent of each other and one may considerably reduce
the redundancies of the formalism. On the one hand, the causal structure of the contour C is such
that the inter-world Green’s functions (i.e. α 6= β) do not depend on the ± basis:

G++
αβ
= G−−

αβ
= G+−

αβ
= G−+

αβ
for α 6= β . (7)

On the other hand, the intra-world Green’s functions (i.e. α= β) are related via [27]

G+−
αβ
+ G−+

αβ
= G++

αβ
+ G−−

αβ
for α= β . (8)

6
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It is therefore customary to perform a rotation from the a = ± basis to the so-called Keldysh basis,
and work with retarded, advanced, and Keldysh Green’s functions:

GR
αβ
= G++

αβ
− G+−

αβ
, GA

αβ
= G++

αβ
− G−+

αβ
,

GK
αβ
= G++

αβ
+ G−−

αβ
,

(9)

where GA is simply the Hermitian conjugate of GR.
The intra-world Green’s functions are the standard Schwinger-Keldysh correlators, solutions

of the Schwinger-Dyson equations which, in thermal equilibrium and in Fourier space, read

GR(ω, k) =
�

ω− εk −ΣR(ω, k)
�−1

,

GK(ω, k) = 2i F(ω) Im GR(ω, k) .
(10)

Σ
R is the retarded component of the self-energy. It is due to the interaction in Hint and can be

computed diagrammatically within the standard Schwinger-Keldysh formalism. The last equality
is the expression of the fermionic fluctuation-dissipation theorem with
F(ω) := tanh (ω/2T ).

Concerning inter-world Green’s functions, the relation in Eq. (7) together with Eq. (9) imme-
diately implies

GR
ud
= GR

du
= 0 . (11)

This expresses the fact that while intra-world physics contributes to inter-world quantities, the op-
posite, namely that inter-world physics contributes to intra-world quantities, is strictly forbidden.

To summarize, given that we restrict ourselves to equilibrium physics, we are to deal with
only three independent Greens’ functions: the standard (intra-world) retarded Green’s function
GR which is uniquely specified by the Hamiltonian H and the temperature T , and the two inter-
world Keldysh Green’s functions GK

ud
and GK

du
which also depend on the choice of the operator

Ŝ0. For the choice Ŝ0 = 1, the two worlds have the same thermal initial conditions, and one may
check that GK

αβ
are space- and time-translational invariant and

GK
ud
(ω, k) = 2i[−1+ F(ω)] Im GR(ω, k) ,

GK
du
(ω, k) = 2i[+1+ F(ω)] Im GR(ω, k) .

(12)

However, for a generic choice of Ŝ0, GK
αβ

is not guaranteed to be space- and time-translational
invariant and it can be determined via the Schwinger-Dyson equation reading

GK
αβ
(t, x ; t′, x

′)=
∫

dx 1

∫

dx 2

∫

dt1

∫

dt2GR(t − t1, x − x 1)Σ
K
αβ
(t1, x 1; t2, x 2, )GA(t2 − t′, x 2 − x

′),

(13)

where ΣK
αβ

is the Keldysh component of the inter-world self-energy which can be computed dia-
grammatically in the many-world formalism.

2.4 Inter-world kinetic equation

It is useful to work in the Wigner representation

GK
αβ(ω, k; t, x ) :=

∫

dx
′
∫

dt′ ei(ωt ′−k·x ′) GK
αβ

�

t +
t′

2
, x +

x
′

2
; t − t′

2
, x − x

′

2

�

, (14)

7
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and parameterize GK
αβ

in terms of the real function Fαβ :

GK
αβ(ω, k; t, x ) = Fαβ(ω, k; t, x ) ⋆ GR(ω, k)− GA(ω, k) ⋆ Fαβ (ω, k; t, x ), (15)

where we introduced the Moyal product ⋆ := exp
h

i
2 (
←−
∂ω
−→
∂t −
←−
∇k ·

−→
∇x−

←−
∂t

−→
∂ω+
←−
∇x

−→
∇k)

i

where the

left (right) arrow designates a derivative operator acting on the left (right) of the star symbol. In
analogy to the standard (intra-world) electronic distribution function F , Fαβ is dubbed the inter-
world distribution function. One has Fud(ω, k; t, x ) ∈ [−2,0] and Fdu ∈ [0,2]. Assuming that the
variations of Fαβ occur on scales much larger than the microscopic scales involved in GR, we may
work in the so-called quasi-classical approximation which consists in truncating the derivative
expansion to its leading terms.

Massaging Eq. (15) by acting on both sides with the inverse of GR and GA, and using the
Dyson equations (10) and (13), one derives the kinetic equation on Fαβ which is analogous to the
standard (intra-world) kinetic equation:

[∂t + v k ·∇x ] Fαβ (ω, k) = Iαβ (ω, k) , (16)

where the LHS corresponds to the non-interacting physics set by H0, with the velocity v k :=∇kεk ,
and the RHS is the so-called collision integral which stems from Hint and reads

Iαβ (ω, k) = 2 ImΣR(ω, k) Fαβ (ω, k) + iΣK
αβ(ω, k) . (17)

Let us recall that Keldysh components and collision integrals depend on space and time through
the inter-world distribution functions. However, here and from now on, we simplify the notation
by dropping the explicit dependence on these objects.

As discussed above, the intra-world quantity ΣR cannot depend on Fαβ , however ΣK
αβ

is ex-
pected to be a non-linear functional of Fαβ . The inter-world kinetic equation in Eq. (16) is there-
fore a partial integrodifferential equation. It has a trivial steady-state solution

Funcorr
ud

(ω, k) = Funcorr
du

(ω, k) = 0, (18)

which reflects a total loss of coherence between the two replicated worlds, and which is dubbed
the “uncorrelated-world” solution. Additionally, one can easily check that the case of Ŝ0 = 1 in
Eq. (12), where both worlds evolve coherently, corresponds to another steady state characterized
by

F corr
ud
(ω, k) = [−1+ tanh (ω/2T )] ,

F corr
du
(ω, k) = [+1+ tanh (ω/2T )] ,

(19)

and which is dubbed the “correlated-world” solution. As we shall see explicitly later, the correlated-
world solution at Ŝ0 = 1 is expected to be unstable against small perturbations of Ŝ0 and the only
stable steady-state is the uncorrelated-world solution.

The aim of this manuscript is to derive and analyze the dynamics of the inter-world distribution
function of a near-critical system of interacting electrons when the initial condition is of the form

Fαβ (ω, k; t = 0, x ) = [1−δφ0(x )]F
corr
αβ
(ω, k), (20)

where 0 ≤ δφ0(x )≪ 1 is an initial perturbation to the correlated-world solution localized on a
compact support around x = 0. For simplicity, we consider a perturbation that is the same for
both Fud and Fdu.

8
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Σ = Π =

D

G

Figure 3: Superconducting self-energy Σ and polarization bubble Π of the model in
Eq. (21) treated in the RPA scheme in the particle-particle channel. The expressions in
the Keldysh formalism are given in Eqs. (24) and (23), respectively.

3 Superconducting fluctuations

3.1 Model

Concretely, we consider the standard Hubbard-like electron-electron interaction restricted to the
particle-particle (Cooper) channel. The interacting piece of the Hamiltonian in Eq. (5) reads

Hint = U
∑

kk
′
k
′′

∑

σ

c
†
kσ

c
†
−k+k

′σ̄
ck
′′+k

′σ̄c−k
′′σ , (21)

where U < 0 is an attractive interaction facilitating superconductivity. In dimensions d ≥ 2, this
model exhibits a finite-temperature phase transition towards a superconducting phase associated
with the spontaneous breaking of the U(1) symmetry. Here, we consider the near-critical regime,
above the critical temperature where the U(1) symmetry is not broken but the superconducting
fluctuations are sizable.

The (intra-world) physics of this model is well understood, and we rely on standard and well-
tested methods which we extend to the many-world formalism. In practice, we decouple the
Hubbard interaction in the Cooper channel and obtain a theory of fermions coupled to bosonic
fluctuations. The Cooperon Green’s functions within RPA in the particle-particle channel, are given
by [28–31]

DR(ω, k) =
�

U−1 −ΠR(ω, k)
�−1

,

DK(ω, k) = 2i P(ω) Im DR(ω, k) ,
(22)

where ΠR is the retarded Cooper bubble and the last equality is the bosonic fluctuation-dissipation
theorem with P(ω) := coth (ω/2T ). The retarded Cooper bubble and the electronic self-energies
within RPA, i.e. limiting ourselves to the one-loop diagrams depicted in Fig. 3 are:

ImΠR(ω, k) =
∑

k
′

∫

dω′

2π
iGK(ω′, k ′) Im GR(ω−ω′, k − k

′) ,

Π
K(ω, k) = 2i P(ω) ImΠR(ω, k) ,

(23)

and

ImΣR(ω, k) = −1

2

∑

k
′

∫

dω′

2π

§

Im DR(ω′, k ′)iGK (ω′ −ω, k ′ − k)

−iDK(ω′, k ′) Im GR(ω′ −ω, k ′ − k)

ª

,

Σ
K(ω, k) = 2i F(ω) ImΣR(ω, k) .

(24)

9
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The real parts of the retarded components can be recovered via the Kramers–Kronig relation. A
self-consistent treatment of Green’s functions, self-energies, and bubbles ensures that the RPA
scheme is a conserving approximation. It is known to be exact in the large N -limit, where N is the
number of electronic orbitals [28–31].

Close to criticality, the Cooperon propagator reads [28–32]

DR(ω, k) ≈ −1/ρF

r − iaω/T + ξ2k2 + . . .
, (25)

where ρF is the density of states at the Fermi energy, and the parameter r ∝ (T − Tc)/Tc is
the detuning from the critical point. In addition, the remaining parameters are all positive with
a ∼O(1), ξ2 ∼ v2

F/T
2, where vF is the Fermi velocity. At criticality r → 0, the Cooperon becomes

soft with diverging length scale l ∼ 1/rν and timescale ∼ lz (here ν = 1/2, z = 2), and the
propagator is singular at ω = k = 0.

3.2 Inter-world collision integral

Let us now discuss the expressions of inter-world quantities which are necessary to compute the
inter-world collision integral in Eq. (17). As we already noted, the inter-world retarded compo-
nents of the Green’s functions (fermionic and Cooperon), the bubbles and the self-energies simply
vanish as a consequence of the fact that intra-world physics can be expressed independently of
inter-world quantities: GR

αβ
= DR

αβ
= ΠR

αβ
= ΣR

αβ
= 0 for α 6= β . Within the RPA scheme, the

inter-world Keldysh components read

DK
αβ(ω, k) =
�
�DR(ω, k)
�
�
2
Π

K
αβ(ω, k) , (26)

Π
K
αβ (ω, k) =

i

2

∑

k
′

∫

dω′

2π
GK
αβ (ω

′, k ′)GK
αβ(ω−ω′, k − k

′) , (27)

Σ
K
αβ(ω, k) = − i

2

∑

k
′

∫

dω′

2π
DK
αβ(ω

′, k ′)GK
βα(ω

′ −ω, k ′ − k) . (28)

Altogether, this yields the inter-world kinetic equation (16) with the collision integral

Iαβ (ω, k) = 2
∑

k
′
k
′′

∫

dω′

2π

dω′′

2π
|DR(ω′, k ′)|2

× Im GR(ω′′, k ′′) Im GR(ω′ −ω′′, k ′ − k
′′) Im GR(ω′ −ω, k ′ − k)

×
§�

tanh
�
ω′′

2T

�

+ tanh
�
ω′ −ω′′

2T

���

coth
�
ω′

2T

�

+ tanh
�
ω−ω′

2T

��

Fαβ (ω, k)

+ Fαβ (ω
′′, k ′′)Fαβ (ω

′ −ω′′, k ′ − k
′′)Fβα(ω

′ −ω, k ′ − k)

ª

. (29)

We recall that we omitted the local space and time dependence of Iαβ and Fαβ to shorten the
notations. As a sanity check, one may verify that the collision integral, and more precisely the
term inside the curly brackets, vanishes at both the uncorrelated-world solution in Eq. (18) and
the correlated-world solution in Eq. (19).

It is worthwhile noting that, contrary to standard intra-world collision integrals, there are no
underlying conservation laws associated with the inter-world electronic distribution Fαβ (such as
number, energy, momentum conservation) that guarantee sum rules such as

10
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∫

dω
∑

k
I(ω, k) = 0. In turn, this lack of underlying conserved quantities has important conse-

quences on the relaxation dynamics of the inter-world distribution function. Indeed, the presence
of conservation laws implies a separation of timescales and is typically synonymous with diffusive
dynamics for perturbations that vary slowly enough.

4 Inter-world kinetics in the near-critical regime

In this Section, we propose and numerically validate an ansatz to the inter-world distribution Fαβ
which allows us to derive a much simpler version of the kinetic equation (16) with its collision
integral in Eq. (29). This is done in the vicinity of the superconducting transition where a clear
separation of energy scales can be made. The resulting effective description of the information
scrambling dynamics consists of a set of coupled PDEs that we solve analytically in Sect. 5.

4.1 Partial-wave ansatz

We start by making the quasi-particle approximation: In all practical instances, Fαβ (ω, k) appears
multiplied by the density of states Im GR(ω, k), see e.g. Eq. (29). When quasi-particles are well
defined, with a dispersion relation εk , the density of states is sharply peaked around ω = εk

and one may seamlessly exchange Fαβ (ω, k) with the on-shell quasi-particle distribution func-
tion F̃αβ (k) := Fαβ (ω = εk , k). From now on, we use the tilde notation to denote the on-shell
prescription ω = εk .

Furthermore, given that relaxation is dominated by the electronic states around the Fermi
level, at energy scales (e.g. temperature) that are much smaller than the Fermi energy, one may
focus on the distribution function close to the Fermi surface by subsequently setting k→ kF.

We now propose to simplify drastically the partial integrodifferential kinetic equation in Eq. (16)
with the following ansatz:

F̃ansatz
αβ

(t, x ; k) =
�

φ(t, x ) + uk ·φ1(t, x )
�

F̃ corr
αβ
(k), (30)

where the unit vector uk := k/k. The two fields φ and φ1 can be understood as the first terms of
a partial-wave expansion [27] of F̃αβ , accounting for its isotropic and anisotropic contributions in
momentum space:











φ(t, x ) =
1

Sd−1

∫

dΩk F̃αβ (t, x ; k)/F̃ corr
αβ
(k)

�
�
�
k→kF

,

φ1(t, x ) =
d

Sd−1

∫

dΩkuk F̃αβ (t, x ; k)/F̃ corr
αβ
(k)

�
�
�
k→kF

,
(31)

where Sd−1 :=
∫

dΩk is the surface area of the d − 1-sphere with unit radius and dΩk is the
elementary solid angle in the direction of k. We did not include higher-order terms in the ansatz,
e.g. of the form ui

k
u

j

k
φ

i j

2 .
Let us give the rationale behind the ansatz proposed in Eq. (30). Firstly, let us note that

standard (intra-world) approaches consist in perturbing the distribution function around its equi-
librium value, F = Feq+δF , and linearizing the collision integral accordingly. This approach relies
on the fact that the equilibrium distribution Feq(ω, k) = tanh(ω/2T ) is a stable steady state of
the (intra-world) kinetic equation, guaranteed by the H-theorem. The inter-world case is much
different as the initial condition set by F corr

αβ
is unstable and one cannot propose a perturbative

11



SciPost Physics Submission

ansatz. This explains why F̃ corr
αβ

appears multiplicatively in Eq. (30) and why the collision integral
cannot be, a priori, linearized. In that regard, it is similar to the ansatz used in Ref. [15].

Secondly, close to the Fermi surface which is assumed to be spherical, the solutions F̃ corr
αβ
(k)

and F̃uncorr
αβ

(k) do not depend on the direction of the momentum k, but only on its norm k ≈ kF.

This means that we aim at describing the dynamics of F̃αβ from a momentum-space isotropic and
real-space homogeneous (unstable) solution

F̃ corr(k; t = 0, x )←→
�

φ(t = 0, x ) = 1,
φ1(t = 0, x ) = 0,

(32)

to another momentum-space isotropic and real-space homogeneous (stable) solution

F̃uncorr(k; t = 0, x )←→
�

φ(t = 0, x ) = 0,
φ1(t = 0, x ) = 0 .

(33)

However, as will become clear below, these dynamics can only proceed by allowing anisotropy in
momentum space to develop in the transient regime towards the stable steady state. This explains
why we included the anisotropic term in φ1 which can be seen as the minimal ingredient to allow
for spatial relaxation.

Thirdly, let us note that F̃ansatz
αβ

(t, x ; k) depends on k only through F̃ corr
αβ
(k). If this is triv-

ially true at the correlated- and uncorrelated-world solutions, we shall see later that this is also
compatible with the dynamics which does not generate extra dependence on k.

Finally, let us note that the fields φ and φ1 are common to both F̃ud and F̃du. This stems from
our choice of initial perturbation in Eq. (20).

4.2 Simplified kinetic equation: coupled PDEs

We proceed by injecting the ansatz (30) in the inter-world collision integral in Eq. (29) and consis-
tently truncating its partial-wave expansion to the two lowest orders. Because this brings further
simplifications, we work in the near-critical regime of the symmetric (normal) phase where the
Cooperon becomes soft. In Eq. (29), this means that the term |DR(ω′, k ′)|2 diverges as ω′ ≈ 0
and k′ ≈ 0. The details of the computation are given in Appendix A. We obtain

Ĩαβ (k) = 2(1−φ2)
�

φ + (φ1 · uk)
�

F̃ corr
αβ
(k) ImΣ̃R(k) . (34)

Injecting the ansatz in the kinetic equation (16), dividing by F̃ corr
αβ
(k), we get

∂tφ + vk (uk ·∇x )φ + uk · ∂tφ1 + vk (uk ·∇x ) (uk ·φ1)

= 2(1−φ2)
�

φ + (φ1 · uk)
�

ImΣ̃R(k) . (35)

We now project on the momentum-space isotropic and first partial-wave contributions by acting
with 1

Sd−1

∫

dΩk and d
Sd−1

∫

dΩkuk on both sides of the above equation. We use
∫

dΩkui
k
u

j

k
=

δi j Sd−1/d . At the Fermi surface, i.e. eventually setting k → kF, we obtain the following set of
coupled partial differential equations (PDEs)

¨
∂tφ +

vF
d ∇x ·φ1 = φ(φ

2 − 1)/τF,

∂tφ1 + vF∇xφ = φ1(γφ
2 − 1)/τF ,

(36)

12
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where vF is the Fermi velocity and we defined the timescale which sets the fermionic lifetime as
(recalling that the self-energy only depends on the norm of k)

1

τF
:= −2 Im Σ̃R(kF) . (37)

γ is a dimensionless parameter that generalizes the computation performed at criticality, for which
γ= 1, to near critical regimes for which γ 6= 1 (see Appendix A.2). After an appropriate rescaling
of space and time,

τ := t/τF and X := x

p

d/(vFτF) , (38)

together with φ1 7→
p

dφ1, the coupled PDEs now only involve dimensionless quantities

¨
∂τφ +∇X ·φ1 = φ(φ

2 − 1),

∂τφ1 +∇Xφ = φ1(γφ
2 − 1) .

(39)

Importantly, the generic (d+1)-dimensional case can be reduced to an effective (1+1)-dimensional
case. Indeed, assuming spherically-symmetric initial conditions, we may work with the radial
coordinate r: φ(τ, r) and φ1 = φ1(τ, r)u r at all times. The coupled PDEs now read

¨
∂τφ + ∂rφ1 = − d−1

r φ1 +φ(φ
2 − 1),

∂τφ1 + ∂rφ = φ1(γφ
2 − 1) .

(40)

The set of PDEs in (36) and the following expressions in Eqs. (39), (40) are one of the main
results of this manuscript. Overall, this represents a considerable simplification from the orig-
inal partial integrodifferential kinetic equation (16) governing the dynamics of the inter-world
distribution function Fαβ (ω, k; t, x ) with the collision integral in Eq. (29).

To provide a first intuitive understanding of the previous set of PDEs, let us briefly neglect
spatial inhomogeneities of φ and φ1. The equation on φ(t) becomes an ‘autonomous’ first-order
ODE, reading

∂τφ = φ(φ
2 − 1) = −V ′(φ) . (41)

This is a gradient descent in the potential V (φ) = 1
2φ

2 − 1
4φ

4. Reinstating the original units, the
logarithmic rate of escape from the correlated-world solution at the unstable extremum φ = 1,
to the uncorrelated-world solution at the global minimum φ = 0 is t∗ ∼ −1

2τF logδφ0 where
δφ0 := 1−φ(0)≪ 1. At early times, the growth of the perturbation is exponential,

1−φ(t ≪ t∗) ∼ exp [2(t − t∗)/τF] , (42)

while it saturates at late times,

φ(t ≫ t∗) ∼ exp [−(t − t∗)/τF]→ 0 . (43)

Again, the decoupling of φ1 in such a spatially homogeneous setting is evidence that the momen-
tum anisotropy captured by φ1 is a minimal ingredient necessary to allow for spatial propagation
of the relaxation from the correlated-world solution to the uncorrelated-world solution. This will
be the topic of Sect. 5.

13



SciPost Physics Submission

In the general case, i.e. in the presence of spatial inhomogeneities, it is instructive to compare
the inter-world situation to the (standard) intra-world kinetic equations. When an intra-world dis-
tribution function F is associated with a conserved quantity (e.g. number of particles or energy),
the corresponding hydrodynamic equation is typically expected to display diffusive behavior. In-
deed, the timescale associated with the conserved quantity is much slower than the other modes:
those can be effectively replaced by their local-equilibrium value in a fixed background of F , typ-
ically resulting in a diffusive term of the type ∇2

X
F . Here, in the inter-world case, the distribution

function Fαβ is not associated with a conserved quantity (until proven otherwise) and there is
no clear separation of timescales in the PDEs (36) governing the dynamics of φ and φ1. Conse-
quently, one cannot a priori apply the standard hydrodynamic approach, and one must solve for
the dynamics φ and φ1 on an equal footing.

4.3 Validating the ansatz numerically

We perform two independent checks of the ansatz proposed in Eq. (30) by comparing, on the
one hand, the solutions of the inter-world kinetic equation in (16) computed with the full-fledged
collision integral in Eq. (29) with, on the other hand, the solutions of the coupled PDEs in (36).

Numerically solving the kinetic equation is a formidable task which we simplify as much as
possible by working in one dimension, d = 1, with a regular lattice dispersion εk = − cos(k) for
k ∈ [−π,π), and a point-like Fermi surface located at the wave-vector kF = π/2. We measure
energies in units of the half-bandwidth. Note that superconductivity in d = 1 is known to be quite
different from dimensions d ≥ 2, with the RPA treatment that we have set up in Section 3 not
suited for d = 1. However, the objective here is to put to test the ansatz in conditions that are
qualitatively similar to d ≥ 2, and not to correctly capture the peculiar one-dimensional physics.
This is the reason why we can afford to work in d = 1. We further simplify the computation by
working in a non-self-consistent scheme, with the quasi-particle retarded Green’s function reading

GR(ω, k) =
1

ω− εk + iΓ
, (44)

and where the Cooperon Green’s function DR(ω, k) is computed following Eq. (22). Γ > 0 sets a
bare fermionic inverse lifetime. In practice, Γ helps the numerical convergence of our algorithms
and we set it as the smallest energy scale in the problem. Finally, we further reduce the difficulty
by working with on-shell quantities: F̃αβ (k) := Fαβ (ω = εk, k).

4.3.1 Early times

The first test consists in numerically solving the kinetic equation (16) with the full-fledged collision
integral in Eq. (29) for as long as we can ensure numerical convergence of the solutions. In
practice, this is challenging and we can only access early times, i.e. on the order of fractions of
τF. Therefore, in order to benchmark the ansatz in both regimes φ ∼ 1 and φ ∼ 0, we work with
an initial condition that simultaneously spans those two regimes. We choose an initial condition
with a perturbation of F̃ corr

αβ
(k) in the shape of a Gaussian droplet of large amplitude δφ0 ® 1 and

width λ, and localized around X = 0. Explicitly, we take the following symmetric initial condition

F̃αβ (τ = 0, X ; k) = [1−δφ0(X )] F̃ corr
αβ
(k)←→
�

φ(τ = 0, X ) = 1−δφ0(X ),
φ1(τ = 0, X ) = 0 ,

(45a)

with δφ0(X ) = δφ0 exp[−X 2/(2λ2)]Θ(3λ− |X |) , (45b)
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Figure 4: (a) φ(τ, X ) extracted from the solution F̃du(τ, X ; kF) to the full-fledged 1D
kinetic equation and plotted at different times τ = 0,0.02,0.04, . . . , 0.3. The initial
condition is given in Eq. (45) with λ = 0.05 and δφ0 = 0.98. (b) Solution φ(τ, X )

to the coupled PDEs in (36) at γ = 1 and with the corresponding initial condition.
The parameters are U = −1, T = 0.1, and Γ = 0.01 (in units of the half-bandwidth),
corresponding to a small detuning from criticality r = −1/(ρFDR(ω = 0, k = 0)) ≈ 0.1.
Time and space have been rescaled according to Eq. (38). No adjustable parameters
were used.

and where Θ(X ) is the Heaviside step function. We found such a Gaussian-shaped droplet, defined
on the support [−3λ, 3λ], to be easier to time-evolve numerically than a semi-circular droplet
with sharp edges. The physical parameters are chosen such as to be close to criticality (on the
disordered side) and to obey the hierarchy |U |,εF≫ T ≫ Γ , where εF is the Fermi energy.

In Fig. 4, we compare the solutions φ(τ, X ) of the corresponding coupled PDEs with the solu-
tions F̃du(τ, X ; k) of the full-fledged kinetic equation. The comparison is made by extracting the
first partial-wave contributions according to Eq. (31) which, in 1D, simply reads

¨
φ(τ, X ) = 1

2

�

F̃du(τ, X ; kF) + F̃du(τ, X ;−kF)
�

,

φ1(τ, X ) = 1
2

�

F̃du(τ, X ; kF)− F̃du(τ, X ;−kF)
�

,
(46)

up to the time τ = 0.3. The qualitative agreement is excellent. Notice the splitting of the initial
central perturbation into both a left-moving and a right-moving front, typical of wave-like solutions
(as opposed to diffusive solutions). We repeated this analysis in a wide range of parameters
and initial conditions and consistently found excellent agreement, even at a finite distance from
criticality, in the presence of fast bosonic fluctuations. This validates the ansatz in Eq. (30) at early
times.

4.3.2 Late times and partial-wave truncation

Because of the difficulty to produce converged numerical solutions of the kinetic equation at larger
times, we resort to a simpler, yet non-trivial, benchmark for the ansatz. Let us consider the case of a
spatially homogeneous initial condition but with non-zero anisotropic components in momentum
space. Explicitly, we take the initial condition

F̃ab(τ = 0; k) =
�

φ0 +φ10sign(k)
�

F̃ corr
ab
(k), (47)
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Figure 5: (a)φ(τ) extracted from the solution F̃du(τ; kF) to the kinetic equation with the
spatially homogeneous and momentum anisotropic initial condition given by Eq. (47)
with φ0 = 0.9 and φ10 = 0.1, and compared with the solution φ(τ) to the coupled
PDEs in Eq. (49). (b) Same for the anisotropic component φ1(τ) where γ = 0.5 is the
only adjustable parameter. The physical parameters are U = −2, T = 0.6, and Γ = 0.2,
corresponding to a sizable detuning from criticality r = −1/(ρFDR(ω = 0, k = 0)) ≈ 3.9.
Time has been rescaled according to Eq. (38).

on the kinetic equation side and, correspondingly,

φ(τ = 0) = φ0 and φ1(τ = 0) = φ10, (48)

on the side of the coupled PDEs which now read
�

∂τφ = φ(φ
2 − 1),

∂τφ1 = φ1(γφ
2 − 1) .

(49)

Note that these coupled ordinary-differential equations correspond to the discussion around Eq. (41).
Notably, the Eq. (49) predicts that the relaxation dynamics of φ (but not those of φ1) are inde-
pendent of the distance to criticality, parameterized by γ. Therefore, and complementary to the
previous benchmark in Sect. 4.3.1, we test the ansatz at a finite distance from criticality (on the
disordered side) by choosing an off-critical set of physical parameters U , T , and Γ .

In Fig. 5, we compare the solutions φ(τ) and φ1(τ) to the corresponding coupled PDEs with
the solutions F̃du(τ, k) to the kinetic equation. The comparison is made by extracting the first
partial-wave contributions according to Eq. (46). The qualitative agreement is very good from
early times down to late times when the dynamics have converged to the uncorrelated world
solution. The agreement for the dynamics of φ1(τ) was made by manually adjusting the off-
critical value for γ given in the caption. This validates the partial-wave truncation which is made
in the ansatz.

5 Dynamics of information scrambling

In this Section, we solve the set of coupled PDEs (39) that effectively govern the dynamics of
information scrambling. We first discuss the early times, when a regime of exponential growth
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takes place. Later, we solve the geometry for the late-time traveling front. Finally, we address the
saturation regime in the bulk of the information light cone.

5.1 Early-time exponential growth

At early times, the solutions to the inter-world kinetic equation and to the simplified coupled PDEs
are expected to be strongly dependent on the system parameters and the initial conditions.

Here, we solve the coupled PDEs in the linear regime around the correlated-world solution,
φ ≈ 1 and φ1 ≈ 0. We expect this linear regime to be all the more valid as the initial perturbation
will be small, hence taking a longer time to reach the non-linear regime. To that end, we consider
the initial condition

�

φ(τ = 0, X) = 1−δφ0(X),
φ1(τ = 0, X) = 0 ,

(50)

where the perturbation 0 < δφ0(X) ≪ 1 is non-vanishing on a small compact support of linear
size λ around X = 0. Note that this is a different regime from the numerics presented in Sect. 4.3.1
where the initial condition was probing the non-linear regime. To simplify, we consider the case
d = 1. The linearized coupled PDEs on δφ := 1−φ and φ1 read

�

∂τδφ − ∂Xφ1 = 2δφ,
∂τφ1 − ∂Xδφ = 0 .

(51)

Note that the dependence on γ, the parameter quantifying the distance to criticality, has dropped.
This yields the following PDE on δφ(τ, X )

∂ 2
τ δφ − 2∂τδφ − ∂ 2

X δφ = 0 . (52)

Integrating the above equation once over the whole space and introducing the integrated pertur-
bation M(τ) :=

∫

dXδφ(τ, X ), we find an exponential growth of the perturbation, echoing the
onset of chaos:

M(τ≪ τ∗) = exp [2(τ−τ∗)] , (53)

with the typical timescale to escape from the unstable solution given by τ∗ ∼ −1
2 logδM0 where

δM0 :=
∫

dXδφ0(X ). A more sophisticated calculation restricted to λ≪ X ≪ τ≪ τ∗ yields

δφ(τ, X ) = e2τ

∫

dY δφ0(Y )
e−(X−Y )2/2τ

p
2πτ

≈ e2(τ−τ∗) e
−X 2/2τ

p
2πτ

. (54)

One may check, by direct substitution, that the above expression is indeed a solution to the
PDE (52), up to corrections on the order of e2(τ−τ∗)/τ5/2 which are vanishingly small in the linear
regime. The solution in (54) involves a diffusion kernel and an exponential growth. It is similar
to the one obtained in the context of the O(N ) model in Ref. [8] (see Eq. 1.13 therein). It can be
seen as the solution to the linearly-driven diffusion equation

∂τδφ −
1

2
∂ 2

X
δφ = 2δφ, (55)

that appears, notably, in the context of branching Brownian motion [33].
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Figure 6: (a) Solution φ(τ, X ) to the d = 1 coupled PDEs in Eq. (39) at γ = 1 for
the droplet initial perturbation in Eq. (74) with amplitude δφ0 = 0.02 and linear size
λ = 0.1. Different times τ = 0,2, . . . , 26,28 are plotted with different colors. (b) Lo-
cation of the front extracted from the data in (a) marked by crosses. The line is the
analytical prediction, with a constant butterfly velocity, X front = τ + λ. No adjustable
parameter was used.

5.2 Late-time solutions and discontinuous front

Here, we access the late-time inter-world distribution by analytically solving the coupled PDEs
(39) in generic spatial dimensions d , simply assuming a spherically-symmetric initial condition.
In particular, we shall show that a wavefront propagates at a constant butterfly velocity controlled
by the Fermi velocity. The wavefront acts as a light cone that separates two causally disjoint
regions: ahead of the front, the inter-world distribution is the correlated-world solution, while
behind the front the two worlds rapidly decohere to the uncorrelated-world solution. Notably, at
the front, the distribution function develops a discontinuity.

5.2.1 Traveling front

We assume that the solution develops a traveling front located on a sphere of increasing radius.
Our goal is to compute its velocity and steady-state shape.

The first step is to notice that the late-time position of the front is, by definition, far from the
origin and we may neglect the 1/r term in the RHS of Eq. (40). By doing so, we simply recover
the d = 1 equations. Indeed, given the large radius of the sphere where the front is located, the
problem is locally flat in the non-radial directions. Therefore, we only need to work out the d = 1
case. To simplify the presentation of the computation, we work out the critical case where γ = 1.
However, the generic case for γ 6= 1 can also be solved by similar techniques and we refer the
reader to Appendix B for the corresponding detailed computation. Introducing the fields

ϕ :=
φ +φ1

2
and ψ := φ −φ1 , (56)

the coupled PDEs can be cast as
�

∂τϕ + ∂Xϕ = ϕ (φ
2 − 1),

∂τψ− ∂Xψ=ψ (φ
2 − 1),

(57)
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Figure 7: Discontinuous late-time front: the solutionφ(τ, X−X front(τ)) is extracted from
the data of Fig. 6 (a) for τ = 28 (solid line), and compared to the analytical prediction
f+(X ) in Eq. (71) for the steady-state front, with a discontinuity at X = 0 from 0.5 to 1
(dashed line). No adjustable parameter was used.

with the initial conditions,
�

ϕ(τ = 0, X ) = φ0(X )/2,
ψ(τ = 0, X ) = φ0(X ) .

(58)

The method of characteristics gives the implicit solutions

¨

ϕ(τ, X ) = 1
2φ0(X −τ)e−

∫ τ

0 ds[1−φ2(X−τ+s,s)],

ψ(τ, X ) = φ0(X +τ)e
−
∫ τ

0 ds[1−φ2(X+τ−s,s)],
(59)

which yield

φ(τ, X ) =
1

2
φ0(X −τ)e−

∫ τ

0 ds[1−φ2(s,X−τ+s)] +
1

2
φ0(X +τ)e

−
∫ τ

0 ds[1−φ2(s,X+τ−s)] . (60)

Let us now assume that a right-moving front, traveling at velocity 1 (in units of vF/
p

d), develops
at late times, i.e.

φ+(τ, X ) := φ(τ, X +τ)
τ→∞→ f+(X ) , (61)

pointwise. Naturally, there is also a symmetrical left-moving front. We start from

φ+(τ, X ) =
1

2
φ0(X )e

−
∫ τ

0 ds[1−φ2
+
(s,X )] +

1

2
φ0(X + 2τ)e−

∫ τ

0 ds[1−φ2
+
(s,X+2τ−2s)] (62)

=
1

2
φ0(X )e

−
∫ τ

0 ds[1−φ2
+(s,X )] +

1

2
φ0(X + 2τ)e−

∫ τ

0 ds[1−φ2
+(τ−s,X+2s)] , (63)
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where in the second line we performed a change of dummy variable s → τ− s. In the long-time
limit τ→∞, we get

f+(X ) =
1

2
φ0(X )e

−
∫∞

0 ds[1−φ2
+(s,X )] +

1

2
e−
∫∞

0 ds[1− f 2
+ (X+2s)] , (64)

where we used the property φ0(X + 2τ)→ 1. We postulate1 that the front is such that

φ+(τ, X < λ)< 1 and φ+(τ, X > λ) = 1, (65)

at all times, and therefore

f+(X < λ)< 1 and f+(X > λ) = 1 . (66)

Let us now work with X < λ. Hence, 1−φ2
+
(X < λ) > 0, which nullifies the first term in Eq. (64).

We are left with

f+(X < λ) =
1

2
e−
∫∞

0 ds[1− f 2
+ (X+2s)] =

1

2
e−

1
2

∫ λ

X
du[1− f 2

+ (u)] . (67)

At X
X<λ−→ λ, this yields f+(λ) = 1/2. Given that we assume f+(X > λ) = 1, this signals a disconti-

nuity in f+(X ) at X = λ. Moreover, Eq. (67) implies that f+(X ) obeys

f ′+(X ) =
1

2

�

1− f 2
+ (X )
�

f+(X ), (68)

which can be solved by separation of variables, yielding the discontinuous right-moving front with
the shape

f+(X < λ) =
1
p

1+ 3eλ−X

X→λ−7→ 1

2
and f+(X > λ) = 1 . (69)

Note that, here, the information on the precise shape of the initial perturbation is lost. Except for
a trivial spatial offset in the shape of the front, λ drops out of the problem. This is expected for
generic initial conditions defined on a compact support |X | < λ. Indeed, one can show that the
first non-vanishing derivative ∂ (n)X φ0(X = λ

−)> 0 is responsible for the generation of a first-order
derivative f+(X = λ

−)> 0 which grows exponentially with time, therefore creating a discontinuity
at large times. This independence of the steady-state solution with respect to the initial condition
is the hallmark of a universal solution. Noteworthy, as previously discussed in Sec. 5.1, λ and the
precise shape of the initial perturbation are however controlling the timescale for the steady-state
front to form. Barring this point, the universal features of the steady state may be safely accessed
by sending λ→ 0+ after τ→∞. We obtain the right-moving steady-state front

¨
lim
τ→∞

φ(τ, X +τ) = f+(X ),

lim
τ→∞

φ1(τ, X +τ) = f1+(X ),
(70)

with






f+(X < 0) = 1p
1+3e−X

X→0−7→ 1
2 and f+(X > 0) = 1,

f1+(X < 0) = − 1p
1+3e−X

X→0−7→ −1
2 and f1+(X > 0) = 0 .

(71)

1This assumption can be rigorously proven to be true.
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The last equation above follows from φ1 = ϕ −ψ/2. As we discussed above, the velocity and the
precise shape of the late-time traveling front, f+(X ), and notably its discontinuity, generalize to
the radial front f+(r) in generic dimension d (assuming spherically-symmetric initial conditions).
In terms of the original inter-world distribution function, reinstating the original units of time and
space, the traveling front reads

lim
t→∞

F̃du(k; t, r + vB t)
�
�
k→kF

=

¨

f+

�
r
p

d
ℓ

�

[1− uk · u r ] if r < 0,

1 if r > 0,
(72)

with the butterfly velocity given by vB := vF/
p

d and the radial front shape f+ given by Eq. (71)
that spans over a length scale controlled by the mean free path ℓ := vFτF. We recall that vF is the
Fermi velocity and the scattering time τF was defined in Eq. (37).

This solution can also be generalized to cases away from criticality, i.e. for a generic γ 6= 1.
The qualitative features are found to be very similar to the critical case γ = 1. In the Appendix B,
we show that the discontinuity of the front is now from f+(X = 0−) = L(γ) to f+(X > 0) = 1 with

L(γ) =

p
5+ 4γ− 1

2(1+ γ)
. (73)

This quantity interpolates monotonically from L = 1 (no discontinuity) for γ = −1 to L = 1/2 for
γ= 1, going through L = 1/(golden ratio) for γ= 0.

The discontinuous traveling wavefronts in Eqs. (71), (72), and their generalization to non-
critical regimes in Eq. (73) are one of the main results of this manuscript. To illustrate the an-
alytical solution, we compare its predictions to the numerical solution of the coupled PDEs at
γ = 1 (critical regime). In Fig. 6, we display the numerical solution starting from the following
droplet-shaped initial perturbation of the correlated-world solution
�

φ(τ = 0, X ) = 1−δφ0(X ) with δφ0(X ) = δφ0

p

1− (x/λ)2Θ(λ− |X |),
φ1(τ = 0, X ) = 0 ,

(74)

where δφ0 sets the amplitude of the droplet, and λ sets its radius. This illustrates unambiguously
the spatial growth of the loss of quantum coherence as time goes on. The light cone structure of
this growth, with a front traveling at a constant velocity, is demonstrated by simply extracting the
location of the front as a function of time. In Fig. 7, we illustrate the discontinuous shape of the
steady-state front by superimposing the front extracted from the numerical solution of φ(τ, X ) at
the late-time τ = 28 to the exact result given by f+(X ) in Eq. (71).

5.2.2 Saturation inside the light cone

Inside the light cone and far enough from its boundaries, we have φ≪ 1 and we can neglect the
non-linearities in the RHS of the coupled PDEs (57). Working in the d = 1 case, the linearized
PDEs read

�

∂τφ + ∂Xφ1 = −φ,
∂τφ1 + ∂Xφ = −φ1 .

(75)

Assuming symmetric initial conditions, i.e.,

φ(τ = 0, X ) = φ(τ = 0,−X ) and φ1(τ = 0, X ) = −φ1(τ = 0,−X ) ,

21



SciPost Physics Submission

one can simply show that this symmetry is preserved by the entire time evolution (even in the
presence of the non-linear terms that were at play in the earlier regime). The solutions are of the
form

�

φ(τ, X ) = e−X fϕ(X −τ) + eX fϕ(−X −τ),
φ1(τ, X ) = e−X fϕ(X −τ)− eX fϕ(−X −τ), (76)

where the function fϕ(X ) should in principle be determined by solving the early-to-intermediate
time problem. In practice, we can determine the asymptotic behavior of the function fϕ(X ) at
large X by requiring a matching to the left side of the late-time front computed previously:

lim
τ→∞

φ(τ, X +τ)∼ f+(X ) for X < 0 , |X | ≫ 1, (77)

where f+(X ) was computed in Eq. (71). Using the late-time solution in Eq. (76), we have

lim
τ→∞

e−X−τ fϕ(X ) + eX+τ fϕ(−X − 2τ)∼ f+(X ) . (78)

The first term vanishes and we are left with

lim
τ→∞

eX+τ fϕ(−X − 2τ)∼ f+(X ) , (79)

which is solved as

fϕ(X ) ∼ eX/2 . (80)

This yields, at large times and far inside from the boundary of the light cone,
�

φ(τ, X < τ) ∼ 2e−τ/2 cosh (X/2),
φ1(τ, X < τ) ∼ −2e−τ/2 sinh (X/2) .

(81)

Note that these asymptotic solutions have already lost the information about the initial condition.
Moreover, they imply the relation φ1(τ, X < τ) = −2∂Xφ(τ, X < τ). Once re-injected in the
linearized PDEs, this yields the following linearly-driven diffusion equation for φ(τ, X ) only

∂τφ − 2∂ 2
X
φ = −φ , (82)

where the diffusive constant in front of the ∂ 2
Xφ term is D := 2v2

FτF once the original units of time
and space are reinstated. We note that the diffusive LHS of Eq. (82) is similar to the one of the
FKPP-like equation that was derived in Ref. [15] in a similar context.

6 Discussion and conclusion

Starting from the microscopic Hamiltonian of a (d + 1)-dimensional quantum many-body system
of interacting electrons close to a superconducting phase transition, we carefully derived the cor-
responding dynamics of quantum information scrambling.

Quite expectedly, we found a ballistic spread of information governed by a non-universal but-
terfly velocity vB. We presented analytical solutions in the different regimes relevant to quantum
chaotic dynamics: the early exponential growth, the geometry of the late-time front, and the
saturation within the light cone.
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What is perhaps the most striking result of our work is the fact that our traveling front solution
scrupulously respects causality: it does not leak outside of the light cone. Relatedly, our solution
presents a distinct discontinuity exactly at the boundary of the light cone. This is different from
the traveling front solutions computed in previous works in similar settings, which often exhib-
ited sharp but continuous fronts preceded by exponential tails, therefore surreptitiously breaking
causality. At a formal level, this difference arises from the fact that our effective dynamics are
governed by a set of coupled PDEs that does not belong to the reaction-diffusion class and does
not explicitly display second-order spatial derivatives, unlike the FKPP equations. While our full
solution does share strong similarities with the diffusive FKPP solutions in the linearized regimes
(at early times or deep in the bulk of the light cone), we attribute this explicit absence of a diffusive
term to the fact that information dynamics is not directly associated with a conserved quantity,
unlike usual transport which is associated with, say, number, energy, or momentum conservation.

Addressing the robustness of the finite spacetime discontinuity in the traveling front is perhaps
one of the most pressing questions raised by our results. The discontinuity is unlikely an artifact
of the one-loop RPA scheme (exact in the limit where the number of electronic orbitals is sent to
infinity), nor of our truncated partial-wave expansion in momentum space (key to the ensuing
strict causal structure, and likely to be a very good approximation in some geometries). How-
ever, higher-order terms in the Moyal product expansion that were neglected in the quasi-classical
approximation, or any source of noise could smoothen the front at the light-cone boundary.
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A Inter-world collision integral

We recall the collision integral, onshell:

Ĩαβ (k) = 2 ImΣ̃R(k) F̃αβ (k) + iΣ̃K
αβ
(k), (83)

where

2 ImΣ̃R(k) = 2
∑

k
′
k
′′

∫

dω′

2π

dω′′

2π
|DR(ω′, k ′)|2

× Im GR(ω′′, k ′′) Im GR(ω′ −ω′′, k ′ − k
′′) Im GR(ω′ − εk , k ′ − k)

×
�

tanh
�
ω′′

2T

�

+ tanh
�
ω′ −ω′′

2T

���

coth
�
ω′

2T

�

+ tanh
�
εk −ω′

2T

��

, (84)
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and

iΣ̃K
αβ
(k) = 2
∑

k
′
k
′′

∫

dω′

2π

dω′′

2π
|DR(ω′, k ′)|2 Im GR(ω′′, k ′′) Im GR(ω′ −ω′′, k ′ − k

′′)

× Im GR(ω′ − εk , k ′ − k)F̃αβ (k
′′)F̃αβ (k

′ − k
′′)F̃βα(k

′ − k). (85)

Now let us inject the following ansatz in Eq. (83),

F̃ansatz
αβ (k) =
�

φ + uk ·φ1

�

F̃ corr
αβ (k). (86)

The term in ImΣ̃R(k) is straight-forward:

2 ImΣ̃R(k)
�

φ + uk ·φ1

�

F̃ corr
αβ
(k). (87)

Let us treat the term iΣ̃K
αβ
(k) in Eq. (85). It produces terms in φ3, φ2φ1, φφ2

1 , and φ3
1 . In

practice, consistently with our choice of ansatz which consists of tracking only the two first mul-
tipolar contributions to F̃(k), we discard the terms of order φ2

1 and φ3
1 which yield higher-order

multipolar contributions to the collision integral. The term in φ3 reads

2φ3
∑

k
′
k
′′

∫

dω′

2π

dω′′

2π
|DR(ω′, k ′)|2 Im GR(ω′′, k ′′) Im GR(ω′ −ω′′, k ′ − k

′′)

× Im GR(ω′ − εk , k ′ − k)F̃ corr
αβ
(k ′′)F̃ corr

αβ
(k ′ − k

′′)F̃ corr
βα
(k′ − k)

= 2φ3 ImΣ̃R(k), (88)

where we used the trigonometric relation

F corr
αβ
(ω′′)F corr

αβ
(ω′ −ω′′)F corr

βα
(ω′ −ω)

+

�

tanh
�
ω′′

2T

�

+ tanh
�
ω′ −ω′′

2T

���

coth
�
ω′

2T

�

+ tanh
�
ω−ω′

2T

��

F corr
αβ
(ω) = 0. (89)

Let us now evaluate the term of order φ2φ1. We have

iΣ̃K
αβ(k) = −2φ3 ImΣ̃R(k)F corr

αβ (k)

+ 2φ2
∑

k
′
k
′′

∫

dω′

2π

dω′′

2π
|DR(ω′, k ′)|2 Im GR(ω′′, k ′′) Im GR(ω′ −ω′′, k ′ − k

′′)

× Im GR(ω′ − εk , k ′ − k)

§

φ1 · (uk
′′ + uk

′−k
′′ + uk

′−k)

ª

F corr
αβ
(ω′′)F corr

αβ
(ω′ −ω′′)F corr

βα
(ω′ −ω).

(90)

The expression can be simplified by use of Eq. (89), yielding

iΣ̃K
αβ(k) = −2φ3 ImΣ̃R(k)F̃ corr

αβ
(k)

− 2φ2 F̃ corr
αβ (k)
∑

k
′
k
′′

∫

dω′

2π

dω′′

2π
|DR(ω′, k′)|2 Im GR(ω′′, k ′′) Im GR(ω′ −ω′′, k ′ − k

′′)

× Im GR(ω′ − εk , k ′ − k)

�

tanh
�
ω′′

2T

�

+ tanh
�
ω′ −ω′′

2T

���

coth
�
ω′

2T

�

+ tanh
�
εk −ω′

2T

��

×
§

φ1 · (uk
′′ + uk

′−k
′′ + uk

′−k)

ª

. (91)
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A.1 Critical case

Close to criticality, the Cooperon propagator reads

DR(ω, k) ≈ −1/ρF

r − iaω/T + ξ2k2 + . . .
, (92)

with the positive parameters r ∝ (T − Tc)/Tc, a ∼ O(1), ξ2 ∼ v2
F/T

2. At criticality r → 0, the
Cooperon becomes soft with a diverging length scale l ∼ 1/rν (here ν = 1/2), and the propagator
is singular at ω= k = 0. In this case, we can approximate the term
uk

′′ + uk
′−k

′′ + uk
′−k ≈ −uk . Thus we have

iΣ̃K
αβ(k) = −2φ3 ImΣ̃R(k)F corr

αβ (k) (93)

+ 2φ2(φ1 · uk)F̃
corr
αβ
(k)
∑

k
′
k
′′

∫

dω′

2π

dω′′

2π
|DR(ω′, k ′)|2 Im GR(ω′′, k ′′) Im GR(ω′ −ω′′, k ′ − k

′′)

× Im GR(ω′ − εk , k ′ − k)

�

tanh
�
ω′′

2T

�

+ tanh
�
ω′ −ω′′

2T

���

coth
�
ω′

2T

�

+ tanh
�
εk −ω′

2T

��

.

Performing the sums on ω′′ and k
′′, we get

iΣ̃K
αβ (k) = −2φ3 ImΣ̃R(k)F corr

αβ (k)

+ 4φ2(φ1 · uk)
∑

k
′

∫

dω′

2π
|DR(ω′, k ′)|2ImΠR(ω′, k ′)

�

coth
�
ω′

2T

�

+ tanh
�
εk −ω′

2T

��

× Im GR(ω′ − εk , k ′ − k)F̃ corr
αβ
(k). (94)

The above can now be written as

iΣ̃K
αβ(k) = −2φ2
�

φ + (φ1 · uk)
�

F̃ corr
αβ (k)ImΣ̃

R(k). (95)

Altogether,

Ĩαβ (k) = 2(1−φ2)
�

φ + (φ1 · uk)
�

F̃ corr
αβ
(k)

︸ ︷︷ ︸

F̃ansatz
αβ

(k)

ImΣ̃R(k). (96)

A.2 Away from criticality

In the previous Subsection, we have treated the critical case which yields the following coupled
PDEs

¨
∂tφ +

vF
d ∇x ·φ1 = φ(φ

2 − 1)/τF,

∂tφ1 + vF∇xφ = φ1(φ
2 − 1)/τF,

(97)

where vF is the Fermi velocity and we defined the timescale τF as 1/τF := −2 Im Σ̃R(kF).
Away from criticality, we separate the expression of iΣ̃K

αβ
(k) in Eq. (91) into the critical ex-

pression computed in Eq. (95) and the rest, in particular, the term

uk
′′ + uk

′−k
′′ + uk + uk

′−k . (98)
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Explicitly, we have

iΣ̃K
αβ(k) = −2φ2
�

φ + (φ1 · uk)
�

F̃ corr
αβ (k)ImΣ̃

R(k)

− 2φ2 F̃ corr
αβ
(k)
∑

k
′
k
′′

∫

dω′

2π

dω′′

2π
|DR(ω′, k′)|2 Im GR(ω′′, k ′′) Im GR(ω′ −ω′′, k ′ − k

′′)

× Im GR(ω′ − εk , k ′ − k)

�

tanh
�
ω′′

2T

�

+ tanh
�
ω′ −ω′′

2T

���

coth
�
ω′

2T

�

+ tanh
�
εk −ω′

2T

��

×
§

φ1 ·
�

uk
′′ + uk

′−k
′′ + uk + uk

′−k

�
ª

, (99)

where the first term is the critical expression while the second term collects the rest. Assuming
that εk = ε−k , one may check that this second term is odd under k → −k and therefore cannot
contribute to the projection on the momentum-space isotropic contribution

∫

dΩk last term of Eq. (99) = 0. (100)

This guarantees that the RHS of the first equation in the coupled PDE in (97) is also valid away
from criticality. However, in the absence of a similar symmetry argument, we expect the projection
to the first partial wave to be non-vanishing, i.e.

∫

dΩk uk last term of Eq. (99) 6= 0, (101)

and therefore to give an extra contribution to the term in φ2φ1 in the RHS of the second equation
in (97). Now working at the Fermi surface, we can parameterize, without loss of generality, the
amplitude of this contribution relative to the critical case by use of the dimensionless quantity
γ > 0:

d

Sd−1

∫

dΩk uk iΣ̃K
αβ
(kFuk) = γφ1φ

2 F̃ corr
αβ
(kF)/τF. (102)

This justifies the RHS in the second line of the coupled PDEs in (36). γ = 1 corresponds to the
critical case and we expect the near-critical regime to be described by γ® 1.

B Discontinuous front for generic γ 6= 1

In this Section, we compute the late-time solution of the following coupled PDEs
�

∂τφ + ∂Xφ1 = φ(φ
2 − 1),

∂τφ1 + ∂Xφ = φ1(γφ
2 − 1),

(103)

for a generic value of the parameter γ. Let us assume that two symmetrical fronts, traveling at
velocity ±1, develop at late times. We work in the reference frame of the right-moving front by
using

¨

φ+(τ, X ) := φ(τ, X +τ)
τ→∞→ f+(X ),

φ1+(τ, X ) := φ1(τ, X +τ)
τ→∞→ f1+(X ).

(104)
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They obey the equations
�

∂τφ+ + ∂X (φ1+ −φ+) = φ+(φ2
+ − 1),

∂τφ1+ − ∂X (φ1+ −φ+) = φ1+(γφ
2
+ − 1).

(105)

As τ→∞, this leads to

∂X ( f1+ − f+) = − f+(1− f 2
+ ) = f1+(1− γ f 2

+ ). (106)

Hence

f1+ = − f+
1− f 2

+

1− γ f 2
+

, (107)

and

∂X

�

f+
1− f 2

+

1− γ f 2
+

+ f+

�

= f+(1− f 2
+
). (108)

This is a first-order ODE that can be integrated by means of decomposition into simple fractions.
Implicitly:

− 2

γ f 2
+ − 1

−
(γ+ 1) log(1− f 2

+ )

γ− 1
−
(γ− 3) log(1− γ f 2

+ )

γ− 1
+ 4 log f+ = 2X + C . (109)

The constant C can be determined by solving f+(λ
−) (i.e. the discontinuity). We may extract the

missing information from “the other side”, i.e. on the left-moving front. Introduce

φ−(τ, X ) = φ(τ, X −τ), φ1−(τ, X ) = φ1(τ, X −τ). (110)

Using ∂τφ− = ∂τφ − ∂Xφ, we have
�

∂τφ− + ∂X (φ1− +φ−) = −φ−(1−φ2
−),

∂τφ1− + ∂X (φ1− +φ−) = −φ1−(1− γφ2
−).

(111)

Then, integrating the first equation:

φ−(τ, X ) = e−
∫ τ

0 ds (1−φ−(s,X )2)
�

φ0(X )−
∫ τ

0

due
∫ u

0 ds (1−φ−(s,X )2)(∂Xφ1− + ∂Xφ−)(u, X )

�

(112)

= e−
∫ τ

0 ds (1−φ−(s,X )2)φ0(X )−
∫ τ

0

due−
∫ τ

u
ds (1−φ−(s,X )2)(∂Xφ1− + ∂Xφ−)(u, X ) (113)

= e−
∫ τ

0 ds (1−φ−(τ−s,X )2)φ0(X )

−
∫ τ

0

due−
∫ u

0 ds (1−φ−(τ−s,X )2)(∂Xφ1− + ∂Xφ−)(τ− u, X ). (114)

Add 2τ to X , and use φ−(τ, X + 2τ) = φ+(τ, X ):

φ+(τ, X ) = e−
∫ τ

0 ds (1−φ+(τ−s,X+2s)2)φ0(X + 2τ)

−
∫ τ

0

due−
∫ u

0 ds (1−φ+(τ−s,X+2s)2)(∂Xφ1+ + ∂Xφ+)(τ− u, X + 2u). (115)
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When X > λ, recalling that we postulate a solution such thatφ+(τ, X > λ) = 1, the above equation
trivially simplifies to 1= 1−0. When X < λ, we take τ > λ−X

2 . Then, since φ+(τ, X > λ) = 1, we
have:

φ+(τ, X ) = e−
∫ λ−X

2
0 ds (1−φ+(τ−s,X+2s)2)

−
∫ λ−X

2

0

due−
∫ u

0 ds (1−φ+(τ−s,X+2s)2)(∂Xφ+1 + ∂Xφ+)(τ− u, X + 2u). (116)

Before taking the limit τ→∞, one is to be careful because the spatial derivatives in the integrand
above are unbounded as we expect the discontinuity to develop: one cannot blindly replace φ+
by f+. Instead, write:

(∂Xφ1+ + ∂Xφ+)(τ− u, X + 2u) =
1

2

d

du

�

(φ1+ +φ+)(τ− u, X + 2u)
�

+
1

2
(∂τφ1+ + ∂τφ+)(τ− u, X + 2u)

=
1

2

d

du

�

(φ1+ +φ+)(τ− u, X + 2u)
�

− 1

2

�

φ+(1−φ2
+) +φ1+(1− γφ2

+)
�

(τ− u, X + 2u), (117)

using Eq. (105). Inserting Eq. (117) into Eq. (116) and integrate by parts:

φ+(τ, X ) = e−
∫ λ−X

2
0 ds (··· ) − 1

2
(φ1+ +φ+)

�

τ− λ− X

2
,λ
�

e−
∫ λ−X

2
0 ds(··· )

+
1

2
(φ1+ +φ+)(τ, X ) +

∫ λ−X
2

0

du (· · · ). (118)

Crucially, the terms collected in (· · · ) are bounded. Moreover, φ1+ and φ+ are continuous and
(φ1+ +φ+)(τ,λ) = 1 for any finite time τ. Therefore, we can replace (φ1+ +φ+)(τ− λ−X

2 ,λ) by
1 all times. Later sending τ→∞, we obtain

f+(X ) = e−
∫ λ−X

2
0 ds (··· ) − 1

2
e−
∫ λ−X

2
0 ds(··· ) +

1

2
( f1+ + f+)(X ) +

∫ λ−X
2

0

du (· · · ), (119)

and send X → λ−

f+(λ
−) =

1

2
+

1

2
( f1+ + f+)(λ

−) i.e. f1+(λ
−) = f+(λ

−)− 1. (120)

Let us call L := f+(λ
−). Using Eq. (107), we have

−L
1− L2

1− γL2
= L − 1. (121)

Simplifying by L − 1

(1+ γ)L2 + L − 1= 0. (122)

The positive solution is

L(γ) =

p
5+ 4γ− 1

2(1+ γ)
. (123)

This quantity monotonically interpolates from L = 1 for γ= −1 to L = 1
2 for γ= 1, going through

L = 1/(golden ratio) for γ = 0.
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