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Abstract. In social sciences, studies are often based on questionnaires asking par-
ticipants to express ordered responses several times over a study period. We present a
model-based clustering algorithm for such longitudinal ordinal data. Assuming that an
ordinal variable is the discretization of a underlying latent continuous variable, the model
relies on a mixture of matrix-variate normal distributions, accounting simultaneously for
within- and between-time dependence structures. The model is thus able to concurrently
model the heterogeneity, the association among the responses and the temporal depen-
dence structure. An EM algorithm is developed and presented for parameters estimation.
An evaluation of the model through synthetic data shows its estimation abilities and its
advantages when compared to competitors. A real-world application concerning changes
in eating behaviours during the Covid-19 pandemic period in France will be presented.

Keywords. Model-based Clustering. Ordinal longitudinal data. Three-way data.
Mixture models. Matrix-variate Gaussians.

1 Context
In many areas of humanities and social sciences, the studies are based on questionnaires.
The most common kind of questions, and therefore collected data, are ordinal, as for
instance in marketing studies where people are asked to evaluate some products or services
on an ordinal scale (Dillon et al., 1994). Ordinal data occur when the categories are
ordered (Agresti, 2010). Ordinality is a characteristic of the meaning of measurements
(Stevens, 1946), and distinct levels of an ordinal variable differ in degree of dissimilarity
more than in quantity (Agresti, 2010).

Often, these questionnaires are completed by participants several times over the study
period. The researchers then analyse these questionnaires to determine typical behaviours
within the studied population, being especially interested in their time evolution. Nonethe-
less, modelling temporal evolution is far from trivial. The most basic approach consists in
performing analyses independently at each temporal phase, and then trying a posteriori
to find links between these different analyses, by seeking from one phase to the other to

1



find similar or different typical behaviours. An example is Selosse, Jacques, Biernacki,
and Cousson-Glie, 2019, clustering of ordinal data for an application in psychology. The
ideal way to cluster temporal data would be to account for the temporal evolution, mod-
elling all the responses to the questionnaires at the same time. We propose a model-based
clustering technique aiming at facilitate such temporal analysis, by grouping together the
units behaving similarly in time.

Over the decades, research has produced a vast number of different approaches to
clustering. From our prospective, probabilistic (or model-based) clustering offers the
advantage of clearly stating the assumptions behind the clustering algorithm, and allows
cluster analysis to benefit from the inferential framework of statistics to address some
of the practical questions arising when performing clustering: determine the number of
clusters, detecting and treating outliers, assessing uncertainty in the clustering (Bouveyron
et al., 2019).

Our model proposes to cluster all the ordinal responses at the same time, grouping
together the units behaving similarly in time. Moreover, it also aims at being easily
understandable and interpretable by practitioners with non-statistical background.

1.1 Related works
Although ordinal data are certainly the type most encountered in questionnaires, they
are either transformed according to a Likert scale (Likert, 1932) into quantitative data
(Lewis et al., 2005), or transformed into nominal data by ignoring the order (Vermunt et
al., 2005). In the first case, even if there is a whole literature on the construction of Likert
scales, the introduction of a notion of distance between categories necessarily brings a
bias in the analysis (Liddell et al., 2018). In the second case, less often used nevertheless,
one loses essential information by not taking into account the notion of order within the
categories.
Ordinal data do not have metric information. One classical model to treat ordinal data
as in a ordinal-scale model are the traditional ordered-probit models (McKelvey et al.,
1975, Winship et al., 1984, Becker et al., 1992). This model describes the probability of
a ordinal response as the cumulative normal probability between two thresholds on an
underlying latent continuous distribution, generally chosen to be Gaussian. This model is
generally regarded as one of the standards in both frequentist and Bayesian frameworks
(Lynch, 2007, Kruschke, 2015).
More recently, other approaches to deal with such kind of data has been developed. In the
clustering context we are interested in, the examples spans from D’Elia et al., 2005, that
introduces the CUB model, later developed through the R package CUB (Iannario et al.,
2016), to Giordan et al., 2011 and more recently Ranalli et al., 2016; Fernandez et al., 2016.
In a co-clustering context, the R package ordinalClust (Selosse, Jacques, and Biernacki,
2021) makes use of the BOS (Binary Ordinal Search) distribution introduced by Biernacki
et al., 2016 and extended for co-clustering by Jacques et al., 2018. A mixture of item
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response models was developed to for ordinal response data in the Bayesian framework by
McParland et al., 2013, to be later expanded in the frequentist paradigm and to handle
mixed data in McParland et al., 2016. More recently, Corneli et al., 2020 proposed a new
model that relies on latent continuous random variables to perform co-clustering.

Similarly, several approaches to clustering longitudinal data were developed. In Mc-
Nicholas et al., 2010 the authors developed a model-based clustering framework for lon-
gitudinal continuous data by using Gaussian mixture models and applying the modified
Cholesky decomposition to the group covariance matrices. Doing this, the new derived
elements can be interpreted as generalized auto-regressive parameters and innovation
variances. Moreover, a series of possible constraints are presented in order to give rise
to more parsimonious models. In the context of generalized linear latent variable models
(GLLVMs), Cagnone et al., 2018 introduced a methodological framework that includes
two levels of latent variables: one continuous hidden variable for dimension reduction and
clustering and a discrete random variable accounting for the dynamics modelled through
a latent Markov model. In the R package mixAK (Komrek et al., 2014) the basis for clus-
tering is a mixture of multivariate generalized linear mixed models. In Vvra et al., 2023
a mixture distribution is additionally assumed for random effects.

An other approach to clustering longitudinal data consists in arranging the data in
a three-way format and modelling them through a matrix-variate mixture model. This
approach offers the advantage of accounting for the overall time-behavior, grouping to-
gether the units that have a similar pattern across and within time. While not being
new (Basford et al., 1985), matrix-variate distributions have recently gained attention,
and mixtures of matrix-normals (MMN) have been developed and applied both in a fre-
quentist framework in Viroli, 2011a and within a Bayesian one by Viroli, 2011b, where it
was used to cluster Italian provinces based on a longitudinal crime-related score. From a
frequentist point of view, these models represent a natural extension of the multivariate
normal mixtures to account for temporal (or even spatial) dependencies, and have the
advantage of being also relatively easy to estimate by means of EM algorithm (a nice
short description of the EM application to MNN is provided in §2.1 of Wang et al., 2020).
Anderlucci et al., 2015 extends on the work of McNicholas et al., 2010 and incorporates
the idea of the modified Cholesky decomposition in the matrix-variate regression model
developed by Viroli, 2012, elaborating a family of more parsimonious models. More re-
cently, in Doğru et al., 2016, Gallaugher et al., 2018 and Melnykov et al., 2018, 2019
extensions for non-normal skewed matrix-variate mixture model have been proposed and
applied. An attempt to generalize the class of parsimonious models derived by the de-
composition of the covariance matrices in a mixture of matrix-normal model has been
carried out (Sarkar et al., 2020). A new comprehensive R package to apply this family to
clustering continuous three-way data (Zhu et al., 2022) has been proposed, endeavoring
the creation of a mclust (Scrucca et al., 2016) for three-way continuous data.
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1.2 Our idea
As we aims at develop a model easily understandable and interpretable by practitioners
with non-statistical background, we found matrix-variate distributions particularly fit, as
shown in Alaimo et al., 2023. Moreover, as noticed in Anderlucci et al., 2015, the use
of matrix-variate distributions allow to drop the conditional independence assumption,
frequently implied in longitudinal latent variable models.

Despite the efficacy of matrix-variate distributions, up to now these methods have only
been applied to continuous data. We introduce a Mixture for Ordinal Matrices (MOM)
model, aiming at expanding the use to matrix-variate mixtures to ordinal data in an
unsupervised learning context.

In the following Sections 2 and 3 we will detail our model and the EM algorithm to
perform inference. In Section 4 the results on synthetic data are presented to assess the
performance of the model. Finally, in Section 5 an application on real data concerning
grocery shopping preferences by a French sample during the Covid-19 pandemic period is
outlined.

2 Model

2.1 Preliminaries
Let Z ∼ MN (J×T )(M,Φ,Σ), that is a matrix-variate normal distribution where M ∈
RJ×T is the matrix of means, Φ ∈ RT×T is a covariance matrix containing the variances
and covariances between the T occasions or times and Σ ∈ RJ×J is the covariance matrix
containing the variance and covariances of the J variables. The matrix-normal probability
density function (pdf) is given by

f(Z|M,Φ,Σ) = (2π)−
TJ
2 |Φ|−

J
2 |Σ|−

T
2 exp

{
−1

2
tr[Σ−1(Z −M)Φ−1(Z −M)ᵀ]

}
. (1)

The matrix-normal distribution represents a natural extension of the multivariate normal
distribution, since if Z ∼ MN (J×T )(M,Φ,Σ), then vec(Z) ∼ MVN JT (vec(M),Φ ⊗ Σ),
where vec(.) is the vectorization operator and ⊗ denotes the Kronecker product. The
property of rewriting the general covariance matrix Ψ ∈ RJT×TJ as Ψ = Φ ⊗ Σ is called
separability condition. Then, the mean and the variance of the matrix-normal distribution
are:

E(vec(Z)|M,Φ,Σ) = vec(M) and V(vec(Z)|M,Φ,Σ) = Σ⊗ Φ. (2)

Being a special case of the multivariate normal distribution, the matrix-normal distribu-
tion shares the same various properties, like, for instance, closure under marginalization,
conditioning and linear transformations (Gupta et al., 2000). The separability condition
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of the covariance matrix has two advantages. First, it allows the modeling of the temporal
pattern of interest directly on the covariance matrix Φ. Second, it represents a more parsi-
monious solution than that of the unrestricted Φ⊗Σ. Indeed, for that case the number of
independent elements to compute would be JT (JT+1)/2, against J(J+1)/2+T (T+1)/2
for the matrix-variate one. For example, setting J = T = 5, one would have to estimate
325 elements in the multivariate case against 30 elements in the matrix-variate one.

Introduced by Viroli, 2011a, the pdf of the finite Mixture of Matrix-Normals (MMN)
model is given by

f(Z|π,Θ) =
K∑
k=1

πkφ
(J×T )(Z|Mk,Φk,Σk),

where φ(J×T ) represents the density function of a J×T -dimensional matrix-variate normal,
K is the number of mixture components, π = {πk}Kk=1 is the vector of mixing proportions,
subject to constraint

∑K
k=1 πk = 1 and Θ = {Θk}Kk=1 is the set of component-specific

parameters with Θk = {Mk,Φk,Σk}.

2.2 Our model
Let denote by yi,j,t the observation of the j-th variable for the i-th unit at time t (i =
1, . . . , N ; j = 1, .., J and t = 1, . . . , T ), that is: imagine to observe N units and measuring
J different ordinal variables T times throughout the course of the study. Let us reorganize
this data in a random-matrix form such that Y = {Yi}Ni=1 is a sample of J × T -variate
matrix observations Yi = (yi,j,t) ∈ NJ×T . The ordered classes are coded by non-negative
integers such that each ordinal variable J the ordinal levels are {1, 2, . . . , Cj}.
Then, we can assume that each variable yi,j,t is the manifestation of an underlying latent
continuous variable zi,j,t which follows a Gaussian distribution, as done in the clustMD
model (McParland et al., 2016). At this point, we can assume that each observed ordinal
matrix Yi is indeed the manifestation of a latent continuous random matrix Zi, which
follows a matrix-normal distribution.

NJ×T 3 Yi =


yi,1,1 · · · yi,1,t · · · yi,1,T

... . . . ... · · · ...
yi,j,1 · · · yi,j,t · · · yi,j,T

... · · · ... . . . ...
yi,J,1 · · · yi,J,t · · · yi,J,T

←− Zi =


zi,1,1 · · · zi,1,t · · · zi,1,T

... . . . ... · · · ...
zi,j,1 · · · zi,j,t · · · zi,j,T

... · · · ... . . . ...
zi,J,1 · · · zi,J,t · · · zi,J,T

 ∈ RJ×T

To map from Yi to Zi, let γj denote a Cj + 1 -dimensional vector of thresholds that
partition the real line for the j-th ordinal variable that has Cj levels and let the threshold
parameters be constrained such that −∞ = γj,0 ≤ γj,1 ≤ . . . ≤ γj,Cj

= ∞. If the latent
zi,j,t is such that γj,c−1 < zi,j,t < γj,c then the observed ordinal response, yi,j,t = c.
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So, by assuming that each Zi follows a matrix-normal distribution, we can then cluster
our data by means of finite Mixture of Matrix-Normals. In addition to Zi, we introduce
a latent binary K-dimensional vector that indicate whether the unit i belongs to the k-th
cluster, `i = (`i1, . . . , `iK), such that `ik = 1 if the i-th unit belongs to the k-th cluster.

Moreover, let define OJ×T the set of ordinal matrices of size J × T whose row j takes
values in {1, . . . , Cj}. Each element of OJ×T is called a response pattern. Let R be the
cardinality of OJ×T . Each response pattern Yr ∈ OJ×T is generated by a portion Ωr

of the latent space RJ×T according to thresholds γ := {γj}Jj=1. Let the binary vector
Ỹi = (Ỹi1, . . . , ỸiR) be one-hot encoding of Yi such that if the r-th pattern is observed then
Ỹir = 1 and any other entry in the vector equals zero. We can derive the joint density of
Zi, Ỹi, `i as:

f(Ỹi, Zi, `i) = f(Ỹi|Zi, `i)f(Zi|`i)f(`i).

Assuming that:

`i ∼M(1,π), π := (π1, . . . , πK)

Zi|`ik = 1 ∼MN (J×T )(Zi|Θk), Θk := {Mk,Φk,Σk},
Ỹi|Zi, `ik = 1 ∼M(1, ξi), ξi := (1Ω1(Zi), . . . ,1ΩR

(Zi))

we get:

f(`i) =
K∏
k=1

π`ik
k ; f(Zi|`i) =

K∏
k=1

[
φ(J×T )(Zi|Θk)

]`ik
; f(Y R

i |Zi, `i) =
R∏

r=1

1Ωr(Zi)
Ỹir ,

where M indicate the multinomial distribution and 1Ωr(Zi) is the indicator function
that equals 1 when the elements in Zi have values that determine the r-th pattern. Hence,
when Ỹir = 1, the vector ξi is a vector whose r-th element equals 1 and all the others
equal 0. In the following, Z := {Zi}Ni=1, ` := {`i}Ni=1 and Θ := {Θk, πk}Kk=1 will indicate
the ensembles of Zi, `i and of the parameters, respectively. Finally, let Ỹ := {Ỹi}Ni=1 be
the collection of the observed response pattern vectors Yi.

3 Inference

3.1 Thresholds
A key point is of course the choice of the thresholds γ. It is clear that either the thresholds
or the parameters Θ need to be fixed for the model to be identifiable. Imagine to observe
a sample of ordinal categories c = 1, . . . , Cj for variable j and to work in the same frame-
work as Section 2. Let consider each variable separately in an univariate case for sake of
simplicity. Then, assume that each observation derive from the discetization of an under-
lying continuous variable following a normal distribution with parameters (µj, σ

2
j ), and
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consider the Cj − 1 dimensional thresholds vector γj as parameters to estimate together
with the ones of the ones of the underlying normal. Then, the parameters set would be
θ = (µj, σ

2
j , γj), the parameter space Θ = (R,R+,R), and our model P = {pθ; θ ∈ Θ},

with pθ(y = c) = p(γj,c−1 ≤ z ≤ γ,jc), z ∼ N(µj, σ
2
j ). It is clear that such a model would

not be indentifiable as there is no bijecton θ 7→ pθ. For instance, for a number of ordinal
categories Cj = 2, θ1 = (1.5, 1, 1.5) and θ2 = (0, 1, 0) would yield the same distribution
(pθ1 = pθ2).

Clearly, being the parameters of the mixture the quantities of interest, we need to
decide which strategy to follow for fixing the thresholds.
As written in Section 1.1, assuming underlying continuous variables categorized according
to some thresholds is not new and there are several ways of specifying such thresholds.
In McParland et al., 2016 the thresholds γ = {γj}Jj=1 are fixed at the very beginning
relying on data, by setting them as γj,c = ϕ−1(δj,c), where δj,c is the proportion of variable j
which are less than or equal to level c and ϕ is the standard normal cumulative distribution
function. With this assumption, the ordinal distribution of clusters will have the sale
global shape, not necessarily uni-modal, which makes clusters interpretation harder.
On the other hand, in Corneli et al., 2020 thresholds are fixed in advance arbitrarily
(keeping equidistant the classes) as γj = (1.5, 2.5, . . . , Cj − 0.5) and Cj is assumed to
be equal for all variables, proposing a scale conversion pre-processing algorithm (Gilula
et al., 2019) for cases when this does not hold true. The advantages of such an approach
is that a underlying space is related with the range of the ordinal entries, leading to
easily interpretable results. Another result of equidistant thresholds is that it produces
monotonicity around the mode, creating more separated and interpretable clusters. In
the following work this approach will be followed.
It is important to remark that this choice of thresholds does not impose any constraint
on the distribution of the ordinal levels, but the monotonic behaviour around the mode.

3.2 EM-algorithm
The EM algorithm (Dempster et al., 1977) is an iterative algorithm alternates two steps:
the expectation step (E-step) and the maximization step (M-step). It start from an ini-
tialization Θ̂

(0)
of the parameters. Then, let denote with the superscript (s+ 1) the

parameters estimated in the current step and with (s) the ones computed in the previous
step.
The E-step consists of evaluating Q(Θ, Θ̂

(s)
) := E(logLC(Θ; Ỹ,Z, `)|Θ̂

(s)
, Ỹ), that is

the expectation of the complete log-likelihood conditioned on the parameters computed
in the previous step and on the observed data. In the M-step the parameters are up-
dated by maximizing the expected log-likelihood found on the E step, that is Θ̂

(s+1)
:=

argmax
Θ

Q(Θ, Θ̂
(s)
).
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The iteration process is repeated until convergence on the log-likelihood is met.

3.3 Complete Likelihood
The complete log-likelihood can be written as

logLC(Θ; Ỹ,Z, `) =
N∑
i=1

{
R∑

r=1

Ỹir1Ωr(Zi)+
K∑
k=1

`ik

[
log(πk)−

TJ

2
log(2π)− J

2
log(|Φk|)−

T

2
log(|Σk|)−

1

2
tr[Σ−1

k (Zi −Mk)Φ
−1
k (Zi −Mk)

ᵀ]

]}
.

3.4 E-step computation
Conditioning on the parameters computed in the step (s), at the step (s+1) the value of
Q(Θ,Θ(s)) is:

Q(Θ,Θ(s)) := E(logLC(Θ; Ỹ,Z, `)|Θ̂
(s)
, Ỹ) =

E

(
N∑
i=1

{
R∑

r=1

Y R
ir 1Ωr(Zi) +

K∑
k=1

`ik

[
log(π̂

(s)
k )− TJ

2
log(2π)− J

2
log(|Φ̂(s)

k |)−

T

2
log(|Σ̂(s)

k |)−
1

2
tr[Σ̂

−1(s)
k (Zi − M̂

(s)
k )Φ̂

−1(s)
k (Zi − M̂

(s)
k )ᵀ]

]}∣∣∣∣∣Θ̂(s)
, Ỹ

)
=

(3)

N∑
i=1

R∑
r=1

Y R
ir E(1Ωr(Zi)|π̂(s), Θ̂

(s)
,YR)+ (4)

N∑
i=1

K∑
k=1

E(`ik|π̂(s), Θ̂
(s)
,YR)

[
log(π̂

(s)
k )− TJ

2
log(2π)− J

2
log(|Φ̂(s)

k |)−
T

2
log(|Σ̂(s)

k |)

]
−

(5)
N∑
i=1

K∑
k=1

1

2
E(`ik tr[Σ̂−1(s)

k (Zi − M̂
(s)
k )Φ̂

−1(s)
k (Zi − M̂

(s)
k )ᵀ]|Θ̂

(s)
,YR) (6)

We can treat each of the three expectations separately, and we get for (4)

E(1Ωr(Zi)|Θ̂
(s)
, Ỹ) = P(Zi ∈ Ωr|Θ̂

(s)
, Ỹi).

Since we are conditioning on Ỹi, the observed response pattern is known and therefore
the probability of Zi belonging to Ωr is equal to 1 when Ỹir = 1 and 0 otherwise.
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By similar reasoning, for (5), since the only unknown quantity is `ik:

E(`ik|Ỹir = 1, Θ̂
(s)
) = P(`ik = 1|Ỹir = 1, Θ̂

(s)
) =

=
P(`ik = 1|Θ̂

(s)
)P(Y R

ir = 1|`ik = 1, Θ̂
(s)
)

P(Y R
ir = 1|π̂(s), Θ̂

(s)
)

=

=
π
(s)
k

∫
Ωr

f(Z|Θ(s)
k )dZ∑K

k=1 π
(s)
k

∫
Ωr

f(Z|Θ(s)
k )dZ

=: τ
(s+1)
ik ,

where the integral can be approximated through a Monte-Carlo approach applied on the
vectorized reparametrization of the matrix-variate distribution.

On the other hand, (6) is less straightforward, and we will need some tricks to deal
with it. As done in McParland et al., 2016, we can break down as

P(`ik = 1|Θ̂
(s)
, Ỹ)×

E(tr[Σ̂−1(s)
k (Zi − M̂

(s)
k )Φ̂

−1(s)
k (Zi − M̂

(s)
k )ᵀ]|`ik = 1, Ỹ, Θ̂

(s)
).

(7)

By opening the matrix product in the second term we get:

Σ̂
−1(s)
k (Zi − M̂

(s)
k )Φ̂

−1(s)
k (Zi − M̂

(s)
k )ᵀ = (8)

= Σ̂
−1(s)
k ZiΦ̂

−1(s)
k Zᵀ

i − Σ̂
−1(s)
k ZiΦ̂

−1(s)
k M̂ᵀ

k − Σ̂
−1(s)
k M̂

(s)
k Φ̂

−1(s)
k Zᵀ

i + Σ̂
−1(s)
k M̂kΦ̂

−1(s)
k M̂ᵀ

k .
(9)

It is easy to realize that its solution requires the computation of E(Zi|`ik = 1, Θ̂
(s)
, Ỹir =

1) and of the expectation of a matrix quadratic forms, specifically for E(ZiΦ̂
−1(s)
k Zᵀ

i |`ik =
1, Θ̂

(s)
, Ỹir = 1). As we will in Section 3.5, we will also need to compute E(Zᵀ

i Σ̂
−1(s+1)
k Zi|`ik =

1, Θ̂
(s)
, Ỹir = 1) for the M-step. The computation of the expectation of Zi and of such

quadratic form necessitates in turn to compute the moments of a truncated matrix-variate
Gaussian. However, that is a complex task, so we will need to work the issue around.

We can bypass the problem concerning the expectation of Zi by defining with zi ∈
RJT×1 the vectorized version of Zi and computing

E(zi|`ik = 1, Ỹir = 1, Θ̂
(s)
) =: m

(s+1)
ik (10)

through the use of a Monte Carlo approach and specifically the use of a Gibbs sampler
to sample from a truncated multivariate normal distribution. Moreover, the samples
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generated to calculate the first moment m
(s+1)
ik can be reused to compute the matrix

S
(s+1)
ik := E(zizᵀi |`ik = 1, Ỹir = 1, Θ̂

(s)
) ∈ RJT×JT , that can be approximated by calculat-

ing the inner product of the vectors used to compute m
(s+1)
ik then calculating the sample

mean of these inner products.

Subsequently, we can find E(ZiΦ̂
−1(s+1)
k Zᵀ

i |`ik = 1, Θ̂
(s)
, Ỹir = 1) by computing it

element-by-element. In order to do that, we can define D
(s)
ik := E(ZiΦ̂

−1(s+1)
k Zᵀ

i |`ik =

1, Θ̂
(s)
, Ỹir = 1)), ϕ̂

(s)
k,gd as the (g, d)th element of Φ̂

−1(s)
k . Then, the (h, t)th element of

Zᵀ
i Φ̂

−1(s)
k Zi would be

∑T
d=1

∑T
g=1 zi,hgϕ̂

(s)
k,gdzi,td and we would get

D
(s)
ik := E(ZiΦ̂

−1(s+1)
k Zᵀ

i |`ik = 1, Θ̂
(s)
, Ỹir = 1)) = (11)

= E

(( T∑
d=1

T∑
g=1

zi,hgϕ̂
(s)
k,gdzi,td

)
h,t
|`ik = 1, Θ̂

(s)
, Ỹir = 1

)
(12)

= E

(( T∑
d=1

T∑
g=1

zi,hgzi,tdϕ̂
(s)
k,gd

)
h,t
|`ik = 1, Θ̂

(s)
, Ỹir = 1

)

= E

(( T∑
d=1

T∑
g=1

Sik,[(g−1)J+h,(d−1)J+t]ϕ̂
(s)
k,gd

)
h,t
|Θ̂

(s)
, Ỹir = 1

)
, (13)

where in Equation 13 we make use of the the elements of Sik.

As written above, we would also need to compute E(Zᵀ
i Σ̂

−1(s+1)
k Zi|`ik = 1, Θ̂

(s)
, Ỹir =

1), which we can do by following the same reasoning. By defining C
(s+1)
ik := E(Zᵀ

i Σ̂
−1(s+1)
k Zi|`ik =

1, Θ̂
(s)
, Ỹir = 1) and by denoting by σ̂

(s+1)
k,gd the (g, d)th element of Σ̂

−1(s+1)
k . Then, the

(h, t)th element of Zᵀ
i Σ̂

−1(s)
k Zi is

∑J
d=1

∑J
g=1 zi,ghσ̂

(s+1)
k,gd zi,dt, and we get

C
(s+1)
ik := E(Zᵀ

i Σ̂
−1(s+1)
k Zi|`ik = 1, Θ̂

(s)
, Ỹir = 1) = (14)

= E

(( J∑
d=1

J∑
g=1

zi,ghσ̂
(s+1)
k,gd zi,dt

)
h,t
|`ik = 1, Θ̂

(s)
, Ỹir = 1

)
(15)

= E

(( J∑
d=1

J∑
g=1

zi,ghzi,dtσ̂
(s+1)
k,gd

)
h,t
|`ik = 1, Θ̂

(s)
, Ỹir = 1

)
(16)

= E

(( T∑
d=1

T∑
g=1

Sik,[(h−1)J+g,(t−1)J+d]σ̂
(s+1)
k,gd

)
h,t
|Θ̂

(s)
, Ỹir = 1

)
. (17)

Finally, this means that computing Q(Θ, Θ̂
(s)
) requires to compute:
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• E(`ik|Ỹir = 1, Θ̂
(s)
) =

π
(s)
k

∫
Ωr

f(Z|Θ(s)
k )dZ∑K

k=1 π
(s)
k

∫
Ωr

f(Z|Θ(s)
k )dZ

=: τ
(s+1)
ik ,

• E(zi|`ik = 1, Ỹir = 1, Θ̂
(s)
) =: m

(s+1)
ik ,

• E(zizᵀi |`ik = 1, Ỹir = 1, Θ̂
(s)
) =: S

(s+1)
ik , whose elements are required for the compu-

tation of D(s+1)
ik and C

(s+1)
ik .

3.5 M-step
By taking the first derivatives of Equation 3, the maximum likelihood estimators of the
parameters are given by

π̂
(s+1)
k =

∑N
i=1 τ̂

(s+1)
ik

N
, M̂

(s+1)
k =

∑N
i=1 τ̂

(s+1)
ik M̂

(s+1)
ik∑N

i=1 τ̂
(s+1)
ik

, (18)

where M̂
(s+1)
ik := E(Zi|`ik = 1, Ỹir = 1, Θ̂

(s)
) = E(vec−1

J×T (zi)|`ik = 1, Ỹir = 1, Θ̂
(s)
) =

vec−1
J×T (mik), and vec−1

J×T is the inverse of the vectorization function, i.e. the function
mapping from a JT -dimensional vector to a J × T matrix. The two covariance matrices
are interdependent and require the computation of C

(s+1)
ik and D

(s+1)
ik to be done using

the parameters updated

Σ̂
(s+1)
k =

∑N
i=1 τ

(s+1)
ik [D

(s+1)
ik − M̂

(s+1)
k Φ̂

−1(s)
k M

ᵀ(s+1)
ik −M

(s+1)
ik Φ̂

−1(s)
k M̂

ᵀ(s+1)
k + M̂

(s+1)
k Φ̂

−1(s)
k M̂

ᵀ(s+1)
k ]

T
∑N

i=1 τ
(s+1)
ik

,

(19)

Φ̂
(s+1)
k =

∑N
i=1 τ

(s+1)
ik [C

(s+1)
ik − M̂

ᵀ(s+1)
k Σ̂

−1(s+1)
k M

(s+1)
ik −M

ᵀ(s+1)
ik Σ

−1(s+1)
k M̂

(s+1)
k + M̂

ᵀ(s+1)
k Σ̂

−1(s+1)
k M̂

(s+1)
k ]

J
∑N

i=1 τ
(s+1)
ik

.

(20)

We remark the invariance of the order, but it is important to use the updated parame-
ters coherently, so that if Φ̂(s+1)

k is computed before Σ̂
(s+1)
k , then D

(s+1)
ik will need to be

computed using the new Φ̂
(s+1)
k .

3.6 Initialization
To find the initial values of Θ̂

(0)
mentioned in Section 3.2, our proposal is the following.

Identity matrices are chosen for the initialization of the covariance matrices Φk and Σk,
while πk = 1/K. For the initialization of Mk, two solutions are proposed and tested
in Section 4.2. The first is a Kmeans++ (Arthur et al., 2007) initialization, that is
performed on the vectorized data. The second is a multiple random initialization: the
mean matrices Mk are chosen by uniform sampling K matrices among the N observed
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data matrices. Since the EM algorithm is not guaranteed to converge toward a global
optimum, the algorithm is applied multiple times and the results with the highest log-
likelihood is selected. For simulations in Section 4.2, 5 random initializations proved to
be enough, but for more complex setting a higher number might be needed.

3.7 Selection of the number of cluster K

The number of cluster K is selected by minimizing the BIC (Schwarz, 1978) criterion.
The BIC for a number of cluster k is defined as

BICk := −2 logLO(Θ; Ỹ ) + νk log(N),

where νk is the total number of model parameters:

νk := k[1 + JT + J(J + 1)/2 + T (T + 1)/2]− 1,

and LO(Θ; Ỹ ) is the observed likelihood of the model, that is

LO(Θ; Ỹ ) :=
N∏
i=1

R∏
r=1

(
K∑
k=1

πk

∫
Ωr

f(Z|Θk)dZ

)Ỹir

,

since Ỹi would still have multinomial distribution but, not conditioning on Zi and `ik, ξi
is not deterministic.
To select the model with the optimal K, the algorithm needs to be executed for every
k = 1, ..., K and the model with with the lowest BICk is chosen.

4 Evaluation
This section presents numerical experiments on simulated data in order to illustrate the
behavior of the proposed model regarding the influence of the initialization procedure and
sample size, the robustness to different noise ratio in the data, the model selection and
in comparison with its continuous counterpart when used on ordinal data treated like
quantitative data.

4.1 Simulation Setup
20 different samples have been simulated for increasing number of units N ∈ {300, 1500, 3000},
with K = 3, J = 5, T = 5, π = (0.3, 0.4, 0.3) and Cj = 5 levels ∀j = 1, . . . , J . Each
sample has been drawn from a matrix-variate Gaussian and then discretized according
to the thresholds chosen in Section 3.1. The distributions parameters were chosen as
following: identity covariance matrices Φ and Σ and mean matrices M chosen such that
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the estimated the optimal Adjusted Rand Index (ARI) (Rand, 1971), computed by per-
forming one step of the clustering algorithm using the true parameters, would be around
0.85. This setting led to the choice three mean matrices M1 = 1.75 ·151

>
5 ,M2 = 2.5 ·151

>
5

and M3 = 3.25 · 151
>
5 , where 15 is a 5-dimensional vector whose elements are all 1.

Moreover, three scenarios are derived from this setting by adding some noise fraction
within the clusters by simulating a percentage τ of units using a uniform distribution on
levels Cj, allocated to the three clusters proportionally to the clusters’ size: 0% (scenario
1), 10% (scenario 2), 20% (scenario 3).
The two different kinds of initialization described in Section 3.6 have been tested.

Finally, in our case we use a double stopping rule: either the difference between
observed log-likelihood at step (s+1) and (s) is lower than 0.001, or a maximum number
of steps is reached. We fixed the number of maximum steps to 200.

Regarding the algorithm setup, we set to 100 iterations as the burn-in period of Gibbs
sampler in the E-step, and a thinning equal to 2 to prevent too correlated samples. The
number of simulated samples is set to 100. Computation time for one iteration on 2.40
GHz 11th Gen Intel Core i5-1135G7 with 16 Go RAM for one step of the algorithm
with Kmeans++ initialization is about 8 seconds for N = 300 and about 80 second for
N = 3000.

4.2 Influence of initialization & sample size
This first experiment aims at studying the ability of MOM to recover the simulated model
depending on the type of initialization of the EM algorithm. Figure 1 shows the quality
of estimated partitions assessed by means of ARI. We recall that an ARI of 1 indicates
that the partition provided by the algorithm is perfectly aligned with the simulated one.
Conversely, an ARI of 0 indicates that the two partitions could as well be some random
matches. On the graph, the optimal ARI (≈ 0.85) according to the simulation scheme
is represented by a horizontal line. The boxplots do not seem to show any significant
difference in the median values of the ARI measurements between the two initialization
methods, but for sample size equal to 300 there seems to be a greater variability in the
results for Kmeans++, probably indicating that good results for this initialization could
be better than good results of the other, but that bad results tend to be worse as well.

Overall, from a partitioning point of view, the two initialization techniques do not seem
to produce significantly different results. We decided to measure their performance also
by computing the Mean Absolute Percentage Error (MAPE) on their estimation of the
distribution parameters. The MAPE calculates the average percentage difference between
the actual and predicted values of a variable, therefore providing a relative measure of
error. For a sample of N units, for a generic parameter θ it is expressed through the
formula:
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Figure 1: Influence of initialization. The horizontal line represents the estimated Bayesian
error.

MAPE =
100

N

N∑
i=1

∣∣∣∣∣θi − θ̂i
θi

∣∣∣∣∣ ,
where θ̂i is the estimated parameter and θi is the true parameter. MAPE has some

limitations, such as the fact that it cannot be used when actual values are zero or close to
zero. This is why for the covariance matrices only the diagonal elements are considered.

Results are shown in Figure 2. While for N = 300 there not seems to be a clear
difference, the random initialization appears to have lower median values for the two
covariance matrices for N = 1500. The difference appears even more evident for increasing
sample sizes.
Concerning overall the influence of the sample size, the model behaves as expected: as
the sample size increases, the partitioning capabilities improve and tend towards the
optimal error. The same happens when we observe the errors concerning the parameter
estimations for both the initialization procedures, even if the median MAPE values appear
to reach a stable value already for N = 1500 for the Kmeans++ initialization, while the
values improve further for N = 3000 for a random initialization.
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Figure 2: MAPE for increasing N

Globally, there not seems to be a significant difference in terms of performance results
for the two initialization procedures regarding the partitioning capabilities. However, as
the sample size increases, parameters estimation quality improves more with a random
initialization than with a Kmeans++ one. Nonetheless, it is worth noticing that the
random initialization is to some extent a greedy procedure which requires to compute
the algorithm several times with the purpose of selecting the best result, and therefore,
depending on the number of random initializations chosen, it can easily become time-
consuming and computationally costly.
In the following, given the similarities in performance and the computationally advantages,
we will carry out most of the analysis using only the Kmeans++ initialization.

4.3 Robustness to noise
As written in Section 4.1, we also simulated some noisy data to study the behaviour of
MOM when the underlying normality assumption is not fully respected. ARI for different
noise proportions were measured and the results are visible in Figure 3. We decided
to measure two quantities: the overall ARI for all the units and the ARI just for the
non-noisy ones.

As we would expect, the overall quality of partitioning estimates decreases as the level
of noise increases, indicating that MOM is actually disturbed by the noise.

Interestingly, for N large enough, the model proofs itself robust and it classes perfectly
non-noisy data, reaching the optimal ARI, represented by the horizonalt black line in the
graph. For N = 300, the noise disturbs the model estimate, and we do not get a good
ARI, even for non-noisy data. The clustering therefore seems well disturbed by outliers
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Figure 3: ARI for increasing noise proportions and increasing N.
In red the ARI for non-noisy units, in black for all of them.

when N is small, but it corrects when N increases.

4.4 Model Selection
Following the setup described in Section 4.1, by varying N ∈ {300, 1500, 3000} and adding
increasing noise ratios τ ∈ {0, 0.1, 0.2}, 9 different scenarios have derived for testing the
model selection capabilities. We recall that for each scenario and each N , 20 data sets have
been drawn. Model selection has been performed through BIC, as described in Section
3.7. The results are shown in Table 1.

For N = 300 and τ = 0, 70% of the simulated data sets have a lower BIC for K equal
to 2 than 3. However, for larger sample sizes, the model with K = 3 is selected for each
synthetic data sets in each scenario. The model seems therefore sensitive to sample sizes
as small as 300, and seems prone to select a value for K smaller than the actual one for
small samples. Probably, this is due to the higher number of parameters that the true
value of K requires to estimate compared to a lower one, making N = 300 not sufficient
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to effectively compute them.

Scenario τ = 0 Scenario τ = 0.1 Scenario τ = 0.2
N/K 1 2 3 4 5 6 N/K 1 2 3 4 5 6 N/K 1 2 3 4 5 6
300 0 14 6 0 0 0 300 0 20 0 0 0 0 300 0 20 0 0 0 0

1500 0 0 20 0 0 0 1500 0 0 20 0 0 0 1500 0 0 20 0 0 0
3000 0 0 20 0 0 0 3000 0 0 20 0 0 0 3000 0 0 20 0 0 0

Table 1: Frequency of selection of each model K by MOM through BIC among the 20
simulated data sets, for increasing N. The actual value for K is 3. Kmeans++ initializa-
tion.

Looking at the performances in selecting the right K in presence of noise, we can
say that overall the model seems able to handle well some noise in the data, provided
a sufficient number of remaining non-noisy units to draw its inference from is given. It
keeps optimal classification results for units which follow the distributional assumption
and selects the correct model even for τ = 0.2.
At the same time, the presence of noise makes more extreme the problem of selection of
K for small sample size described in the previous paragraph, as the model has even fewer
non-noisy units to compute the parameters from.

Finally, the reader should acknowledge that the same experiment for N = 300 with
random multistart initialization was performed, and it yielded the same result as for the
Kmeans++ initialization.

4.5 Comparison with Continuous Model
Finally, we compared the results obtained for our model MOM to the ones we given by its
continuous version MMN, by treating our ordinal data as continuous ones, as frequently
done by practitioners.

In Figure 4 the results for the partitioning task are shown. The difference in the ARI
measurement is bigger for smaller number of units, and decreases as the N increases.
However, MOM outperforms MMN consistently.

The difference is clearer when comparing the MAPE values for the parameters estima-
tion. As shown in Figure 5, the distance in error increases as N increases for M and Σ,
especially for the latter. On the other hand, the same does not happens for the diagonal
of Φ, for which not only the difference in error is less pronounced, but for N = 3000 the
two methods seem equivalent in that regard.
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Figure 4: ARI for MOM and MMN. Kmeans++ initialization.

5 Real Data

5.1 Data
After the evaluation of the model through simulations, a real data application concern-
ing preferences for grocery shopping during the Covid-19 pandemic in France (Franois-
Lecompte et al., 2020) has been performed. The surveys consists of 78 questions for the
first survey (T1), 73 questions for the second (T2) and 55 questions for the remaining
three surveys (T3, T4, T5). The answers are mainly on an ordinal scale, and has been
conduced at 5 period during the two years of pandemic’s intermittent lockdowns to a
French sample. The five period at which the surveys has been conduced are: March 26
- April 5, 2020 (beginning of the 1st lockdown); April 30 - May 11, 2020 (end of the 1st

lockdown); June 9 - June 16, 2020 (post-lockdown); October 28 - November 9, 2020 (be-
ginning of the 2nd lockdown); March 5 - March 25, 2021 (just before the 3rd lockdown). As
part of a preliminary analysis on the data, we have selected 11 questions coming from 3
macro-area of questioning (quoted as Q5, Q8 and Q12). The total number of participants
answering for these 11 questions at each of the 5 surveys is 337. Translated to English,
the questions are the following:
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Figure 5: MAPE results for parameter matrices. MOM vs MMN. Kmeans++ init.
Note the difference in the scales.

• Q5: In the last month, you would say that you have preferred in your purchases…

– (1) Seasonal products
– (2) Products ”Bio”
– (3) Local products
– (4) Fair trade products
– (5) Bulk products (excluding fruit and vegetables)

• Q8: Choose the appropriate answer for each item

– (1) About the foods, you have the impression of wasting
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– (2) You have paid attention to the expiration dates
– (3) You have prepared anti-waste cooking recipes

• Q12: Would you say

– (1) This period is ideal to rethink our way of consuming
– (2) This period is ideal to test more environmentally responsible ways of living
– (3) This period is ideal to learn how to consume less

For each question, the participant have to answer on an ordinal scale 7 levels: for the
macro-group Q5 and Q8 the range is from 1 for ”much less than before confinement” to
7 for ”much more than before confinement”, while for the macro-group Q12 from 1 for
”high disagreement” to 7 for ”high agreement”. In all of the cases the 4th level express
some form of ”neutrality”.
It is worth noticing that the item Q8(1) is an inverse item. As we will see, this will not
impact our clustering, as our model is able to handle such items without the need to reverse
them, but it is necessary to keep in mind their nature at the moment of interpretation,
as it would impact the direction of the correlation with the other items.

So, to sum up, we have N = 337 units for J = 11 variables (questions) and T = 5
times.

5.2 Results
After performing our clustering algorithm with a number of clusters K ranging from 1 to 6
using Kmeans++ initialization, the model with the lowest BIC is with K = 3 (Figure 10).
The number of units in first cluster is 124, in the second one they are 149 and in the third
64. The estimated parameters are reported in Table 2 for the mean M , Table 5 for the
time covariances Φ and in Table 6 for the variable covariances Σ. To gain interpretability,
covariances matrices have been transformed in correlation matrices in Table 3 for Φ and
in Table 4 for Σ. In the tables the questions are named using their codes. Moreover,
the correlation matrices Φ and Σ are represented by correlation plots in Figures 8 and 9,
respectively.

Figure 6 represents the 337 units (individuals) using a non-metric MDS (Venables
et al., 2002), specifically through the function isoMDS of the R package MASS. In non-
metric MDS only the order of dissimilarities is important rather than the amount of
dissimilarities, that makes it suitable to be used for ordinal data, as in our case. For
this representation, the temporal structure has been discarded and we have transformed
our units from 11× 5-dimensional matrices to 55-dimensional vectors. Each individual is
represented by a circle whose color depends on its cluster.

Figure 7 plots, using the same non-metric MDS, the cluster means at each of the 5
times. Such plot allows to visualize the time evolution of each cluster.
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Figure 6: Units represented through isoMDS and colored by cluster allocation.

5.3 Interpretation
Even if data are represented by means of a dimensionality reduction technique, discarding
the temporal structure of data, we can see on Figure 6 that the clusters are well separated.
In particular, Cluster 2 is between Cluster 1 and Cluster 3. This fact can be confirmed
by looking more finely at Table 2.
Moreover, from Figure 7 it is possible to visualize the comprehensive evolution in time
for the clusters means. Indeed, one can see that Cluster 2 and Cluster 3 starts relatively
close to one another, but Cluster 2 then evolves and approaches Cluster 1 in T3, to then
stabilizing on a more intermediate space. Cluster 1 appears to be the most stable one,
moving itself on a confined area of the graph. Cluster 3, despite starting on values close
to Cluster 2, evolves differently from the others.

In the following, we give a summary description for each cluster and we will try to draw
some interpretations. We will start by interpreting Clusters 1 and Cluster 3, which are the
most characteristic, to finish with the Cluster 2, which could be seen as an intermediary
cluster between the other two.
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Figure 7: Evolution in time of cluster means. Representation through isoMDS.
Numbers represent the time intervals and the colors the clusters.

• Cluster 1: 124 units.

– Correlation in time: the cluster is characterized by a fading correlation of
T1 with other times and by generally higher correlations than other clusters,
with the exception of just a small rift between T2 and T4.

– Means: this is the cluster with overall lowest and most stable mean values,
around neutrality level. The only values lower than neutrality are for Q8(1),
an inverse item.

– Correlation among questions: generally positive correlations or feeble
ones, the cluster is mainly characterized by some positive correlations between
macro-area Q5 and Q12, and some negative correlations between those areas
and Q8(1).

We can characterize Cluster 1 as the cluster with overall neutrality-level and stable
means. Indeed, considering that levels range from 1 to 7 as detailed in Section 5.1,
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the values tend to be around the “neutrality” level, the level coded as 4. Therefore,
the cluster is actually a cluster composed by people who were generally neutral
with respect to the questions, and did not evolve on this neutrality much during
the study period.
Looking at Table 2, it is evident that the questions that discriminate the most
among the clusters in terms of average level of response are the ones in Q12, the
ones regarding rethinking our lifestyle, as they show different average levels for each
cluster. For cluster 1, the average response shows neutrality even in that regard.
This cluster is also the ones that has the highest correlations between Q8(3), anti-
wasting recipes, and questions in Q5 group. Overall, observing the behaviour of the
correlations, seems clear that Cluster 1, despite being the most neutral cluster in
terms of average responses, could be defined as the most consistent cluster, since
responses that regarding preferences for sustainable grocery shopping are positively
correlated with preparations anti-waste recipes and rethinking our way of life.
The generally positive correlations among some of the other questions may indicate a
certain coherence around the neutrality, given that preference for a more sustainable
grocery shopping is positively correlated to the anti-wasting behaviours and the
belief that the pandemic period should inspire a change in the life habits. This
signals that the subjects’ responses to those topics move likewise within the cluster.
In other words, Cluster 1 did not really change its habits (as level 4 means ”as
before”) and appears not to have felt very impacted by the health crisis, as the
neutral level on rethinking its way of life may indicate.

• Cluster 3: 64 units.

– Correlation in time: Cluster 3 seems defined by two correlations blocks; one
composed by T1 and T2 and the second by T3,T4 and T5.

– Means: with respect to the other clusters, this cluster is characterized by the
highest levels for the macro-area Q12 and the lowest values for Q8(1), coherent
with the inverse item.

– Correlation among questions: the cluster is the most varied one compared
to the other clusters. Intra-macro-area correlations are weaker as well. Some
noteworthy negative correlation between Q8(2) and Q5(2) and between Q12(3)
and Q5(3).

Cluster 3 also has generally neutrality-level values for most of questions belonging
to Q5 and Q8 macro-groups throughout the study period, as Cluster 1, despite
having some lower values for Q8(1) and some higher ones for Q5(3). The main
difference is however in the Q12 macro group, the one we can define as composed
by the “rethinking-way-of-life” questions. Cluster 3 has remarkably high values
here, meaning that this group of people really found that the pandemic period was

23



stimulating a reflection on our lifestyle. As it turns out, this opinion fades as we
advance towards T3 to then re-approach higher levels. It is interesting to observe
that T3 corresponds to the beginning of June 2020, that is after the end of the
first lockdown, while T4 is at the end of October and beginning of November 2020,
after the summer and at the beginning of the second lockdown, and that T5 is in
March 2021, when the country was approaching a third lockdown. So, apparently,
the second lockdown brings back a reflection on how to live. It seems that people
need crises to reflect on their lifestyle.
In this cluster we also observe some negative correlations between question Q12(3),
concerning less consumption, and Q5(3), which measures the preference for local
products, and also between Q8(2), paying attention to expiring dates, and Q5(2)
and Q5(4), the preference for ”bio” products and fair trade ones. This may signal
that the people composing this cluster who pay more attention to buy ”local” (such
as going to the local markets), ”bio” and sustainable fair product may also be the
ones who tend to be less concerned regarding consuming less, probably because
they already satisfy their concerns by orienting their grocery shopping to more
sustainable products. They satisfy their concerns for consuming less by consuming
better.

• Cluster 2: 149 units.

– Correlation in time: cluster 2 presents notably overall fading correlations
in time.

– Means: responses for macro-areas Q5 and Q8 show levels around neutrality,
while for macro-area Q12 the levels are middle-high, intermediary between the
other two clusters.

– Correlation among questions: cluster characterized by generally low cor-
relations among questions of different macro-areas. Some weak negative cor-
relations among Q12(3) and Q5(5) and Q8(2).

Cluster 2, as already said, seems composed by subjects whose answers to the ques-
tionnaires can be seen as intermediate between the Cluster 1 and Cluster 3. Levels
for questions in the Q5 group tend to be lower at the beginning of the inquiry to
then have a slight increase over the study period. Questions of the macro-group
Q12, that we saw characterized cluster 3 for their high levels in the answers, have
an high level for this cluster at the beginning as well, even if not as high as cluster
3. Yet, their value tend towards the ”neutrality” approaching T3, to then have a
slight increase. We can think of these subjects as people that highly agreed with
changing their way of life at the beginning of the inquiry, to then become more
and more disaffected as the strict lockdown period gives way to reestablish a more
’ordinary’ way of life.
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One characteristic of Cluster 2 is that there are not clearly strong correlations out-
side macro-area blocks, ans even for block Q8 they are not as strong as other clusters.
This may indicate heterogeneity in the answers’ patterns to the questioners outside
the blocks, giving rise not so strong correlations.
Some weak negative correlations between Q12(3) and Q5(2) and between Q8(2)
and Q5(2) may signal a similar behaviours as in Cluster 3 regarding satisfying their
concerns for consuming less by consuming better, even if less pronounced.

Finally, overall, there are some comments to be made about Q8(1) and intra-group
correlations. Question Q8(1) has indeed negative correlations with other questions. The
question asks whether the respondent has the impression to waste. Its negative correla-
tion with questions in Q5 and Q12 group, even if only slightly sometimes, means that
people that in general have the impression of wasting food are the ones that report lower
values regarding preferences for ”sustainable” grocery shopping and rethinking our way
of consuming, while, vice-versa, subjects whose responses have higher values regarding
buying local and seasonal product, like people who go to local markets, tend to have a
lower impression of wasting, probably because they actively try not to. This indeed con-
nects to the general negative correlation that question Q8(1) and Q8(3) have: as Q8(3)
asks whether the respondent has prepared anti-wasting recipes, the negative correlation
seems natural.
On a final note, it is worth pointing out that the cluster that has the lowest correlations
for Q8(1) is Cluster 2, as maybe it contains people that try to buy locally and seasonal
but do not arrive at making the effort to prepare anti-waste recipes.
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(a) Cluster 1 (b) Cluster 2

(c) Cluster 3

Figure 8: Clusters’ corr-plots among time.
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(a) Cluster 1 (b) Cluster 2

(c) Cluster 3

Figure 9: Clusters’ corr-plots among variables.
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6 Conclusions
In this work we have presented a novel approach for modeling longitudinal ordinal data
with unobserved heterogeneity. The model presented does not require the conditional
independence assumption and respects the the true nature of ordinal data. The matrix-
variate structure allows for a more parsimonious modelling. Also, it can explicitly model
the temporal structure and the association among the responses, that can vary among
clusters. An EM algorithm to perform inference has been proposed and described. The
efficacy of the algorithm has been tested on synthetic data under different sample sizes and
different noise ratios. We proved the goodness of this framework to cluster longitudinal
ordinal data and to get cluster that are easy to interpret and to work with even by
non-statisticians.

However, the proposed model has some limitations. In this paper we focused only
on the simplest structure of matrix-normal distribution. While considerably more parsi-
monious than a mixture of multivariate normal distributions, the model seems sensitive
to small sample sizes, as seen in Section 4.4, since, as the number of clusters increases,
the number of parameters to estimate can still became troublesome. To improve this
aspect,the covariance matrices can be further decomposed to obtain more flexible and
parsimonious models, as done for example in Anderlucci et al., 2015 and in Sarkar et
al., 2020. Moreover, EM algorithm can be leveraged to extend the model to deal with
incomplete data under the missing at random (MAR).

Furthermore, typically the data collected in questionnaires are not just ordinal, but
rather mixed. Consequently, our final aim is to extend the proposed model to handle
longitudinal mixed data, following the frame proposed by McParland et al., 2016.
Moreover, one could as well think of implying, with proper adjustments, different un-
derlying continuous distributions, such as heavy-tailed (Tomarchio et al., 2020), skewed
(Gallaugher et al., 2018, Melnykov et al., 2018) or t-student (Doğru et al., 2016) distri-
butions to endow the clustering model with different desired properties.
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Appendices
A Tables

Table 2: Clusters’ means over time. The estimated parameter π̂ = (0.37,0.44,0.19)

Cluster 1 T1 T2 T3 T4 T5
Q5(1) 3.99 4.16 4.20 4.22 4.17
Q5(2) 3.60 3.77 4.02 4.02 4.15
Q5(3) 3.89 4.22 4.19 4.42 4.35
Q5(4) 3.51 3.78 3.95 3.98 4.03
Q5(5) 3.32 3.64 3.86 4.14 4.03
Q8(1) 3.36 3.42 3.61 3.66 3.64
Q8(2) 4.06 4.17 4.08 4.10 4.03
Q8(3) 4.12 4.16 4.15 4.19 4.09
Q12(1) 4.30 4.53 3.73 4.10 4.23
Q12(2) 4.13 4.50 3.53 3.94 4.15
Q12(3) 4.38 4.41 3.67 4.10 4.02

Cluster 2 T1 T2 T3 T4 T5
Q5(1) 3.80 4.08 4.22 4.21 4.18
Q5(2) 3.72 3.79 4.10 4.07 4.13
Q5(3) 3.73 4.03 4.35 4.30 4.25
Q5(4) 3.49 3.78 3.99 3.97 3.98
Q5(5) 3.37 3.61 3.96 4.00 4.11
Q8(1) 3.30 3.49 3.70 3.70 3.57
Q8(2) 4.04 4.23 3.99 4.05 3.97
Q8(3) 4.05 4.27 4.07 4.14 4.08
Q12(1) 6.69 6.15 4.66 5.14 4.92
Q12(2) 6.69 6.38 4.49 5.56 5.18
Q12(3) 6.49 6.07 4.70 5.69 5.29

Cluster 3 T1 T2 T3 T4 T5
Q5(1) 4.27 5.04 4.92 4.59 4.85
Q5(2) 3.83 4.36 4.48 4.35 4.47
Q5(3) 4.49 5.43 5.16 5.23 5.28
Q5(4) 3.53 4.08 4.26 4.34 4.44
Q5(5) 3.69 3.78 4.21 4.30 4.39
Q8(1) 2.15 2.26 2.55 3.03 2.74
Q8(2) 4.12 4.00 4.06 4.15 4.11
Q8(3) 4.35 4.76 4.53 4.49 4.64
Q12(1) 7.20 7.10 6.36 6.76 6.59
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Q12(2) 7.22 6.93 6.08 6.61 6.65
Q12(3) 7.32 6.72 6.04 6.48 6.24

Table 3: Clusters’ time correlation

Cluster 1 T1 T2 T3 T4 T5
T1 1.00 0.28 0.18 0.16 0.09
T2 0.28 1.00 0.23 0.17 0.25
T3 0.18 0.23 1.00 0.25 0.27
T4 0.16 0.17 0.25 1.00 0.25
T5 0.09 0.25 0.27 0.25 1.00

Cluster 2 T1 T2 T3 T4 T5
T1 1.00 0.25 0.09 0.11 0.12
T2 0.25 1.00 0.21 0.19 0.11
T3 0.09 0.21 1.00 0.21 0.16
T4 0.11 0.19 0.21 1.00 0.17
T5 0.12 0.11 0.16 0.17 1.00

Cluster 3 T1 T2 T3 T4 T5
T1 1.00 0.20 0.19 0.09 0.09
T2 0.20 1.00 0.25 0.12 0.17
T3 0.19 0.25 1.00 0.19 0.23
T4 0.09 0.12 0.19 1.00 0.33
T5 0.09 0.17 0.23 0.33 1.00

Table 4: Clusters’ variables correlation

Cluster 1 Q5(1) Q5(2) Q5(3) Q5(4) Q5(5) Q8(1) Q8(2) Q8(3) Q12(1) Q12(2) Q12(3)
Q5(1) 1.00 0.23 0.45 0.18 0.15 -0.10 0.01 0.16 0.15 0.08 0.07
Q5(2) 0.23 1.00 0.31 0.47 0.34 0.01 0.06 0.05 0.11 0.10 0.01
Q5(3) 0.45 0.31 1.00 0.29 0.22 -0.11 0.02 0.16 0.16 0.09 0.09
Q5(4) 0.18 0.47 0.29 1.00 0.32 0.03 0.07 -0.00 0.08 0.07 0.02
Q5(5) 0.15 0.34 0.22 0.32 1.00 -0.01 0.04 -0.00 0.01 0.06 -0.02
Q8(1) -0.10 0.01 -0.11 0.03 -0.01 1.00 -0.05 -0.17 -0.09 -0.07 -0.05
Q8(2) 0.01 0.06 0.02 0.07 0.04 -0.05 1.00 0.19 0.07 0.09 0.04
Q8(3) 0.16 0.05 0.16 -0.00 -0.00 -0.17 0.19 1.00 0.09 0.05 0.07
Q12(1) 0.15 0.11 0.16 0.08 0.01 -0.09 0.07 0.09 1.00 0.58 0.50
Q12(2) 0.08 0.10 0.09 0.07 0.06 -0.07 0.09 0.05 0.58 1.00 0.48
Q12(3) 0.07 0.01 0.09 0.02 -0.02 -0.05 0.04 0.07 0.50 0.48 1.00

Cluster 2 Q5(1) Q5(2) Q5(3) Q5(4) Q5(5) Q8(1) Q8(2) Q8(3) Q12(1) Q12(2) Q12(3)
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Q5(1) 1.00 0.24 0.43 0.22 0.24 -0.05 0.06 0.02 0.04 0.03 -0.02
Q5(2) 0.24 1.00 0.35 0.41 0.33 -0.08 -0.05 0.01 -0.01 -0.03 -0.01
Q5(3) 0.43 0.35 1.00 0.33 0.31 -0.05 -0.02 -0.02 -0.01 0.02 -0.02
Q5(4) 0.22 0.41 0.33 1.00 0.37 -0.02 0.00 0.04 -0.04 -0.03 -0.03
Q5(5) 0.24 0.33 0.31 0.37 1.00 -0.02 -0.00 -0.00 -0.02 -0.04 -0.07
Q8(1) -0.05 -0.08 -0.05 -0.02 -0.02 1.00 0.02 -0.09 -0.06 -0.01 0.00
Q8(2) 0.06 -0.05 -0.02 0.00 -0.00 0.02 1.00 0.13 -0.02 0.01 -0.08
Q8(3) 0.02 0.01 -0.02 0.04 -0.00 -0.09 0.13 1.00 0.03 -0.03 0.02
Q12(1) 0.04 -0.01 -0.01 -0.04 -0.02 -0.06 -0.02 0.03 1.00 0.48 0.37
Q12(2) 0.03 -0.03 0.02 -0.03 -0.04 -0.01 0.01 -0.03 0.48 1.00 0.42
Q12(3) -0.02 -0.01 -0.02 -0.03 -0.07 0.00 -0.08 0.02 0.37 0.42 1.00

Cluster 3 Q5(1) Q5(2) Q5(3) Q5(4) Q5(5) Q8(1) Q8(2) Q8(3) Q12(1) Q12(2) Q12(3)
Q5(1) 1.00 0.32 0.44 0.16 0.18 -0.15 -0.00 0.13 0.02 0.09 -0.05
Q5(2) 0.32 1.00 0.38 0.34 0.20 -0.00 -0.12 -0.01 -0.06 0.02 -0.05
Q5(3) 0.44 0.38 1.00 0.29 0.16 -0.12 0.01 0.10 0.01 0.11 -0.17
Q5(4) 0.16 0.34 0.29 1.00 0.25 -0.01 -0.08 0.07 0.06 0.03 -0.06
Q5(5) 0.18 0.20 0.16 0.25 1.00 -0.02 0.02 0.01 0.06 0.08 0.05
Q8(1) -0.15 -0.00 -0.12 -0.01 -0.02 1.00 0.00 -0.19 -0.08 -0.08 -0.01
Q8(2) -0.00 -0.12 0.01 -0.08 0.02 0.00 1.00 0.08 0.02 -0.02 -0.02
Q8(3) 0.13 -0.01 0.10 0.07 0.01 -0.19 0.08 1.00 0.07 0.07 0.01
Q12(1) 0.02 -0.06 0.01 0.06 0.06 -0.08 0.02 0.07 1.00 0.44 0.26
Q12(2) 0.09 0.02 0.11 0.03 0.08 -0.08 -0.02 0.07 0.44 1.00 0.21
Q12(3) -0.05 -0.05 -0.17 -0.06 0.05 -0.01 -0.02 0.01 0.26 0.21 1.00

Table 5: Clusters’ time covariances

Cluster 1 T1 T2 T3 T4 T5
T1 1.34 0.36 0.20 0.17 0.09
T2 0.36 1.25 0.25 0.18 0.26
T3 0.20 0.25 0.88 0.21 0.23
T4 0.17 0.18 0.21 0.87 0.22
T5 0.09 0.26 0.23 0.22 0.85

Cluster 2 T1 T2 T3 T4 T5
T1 1.17 0.30 0.09 0.10 0.12
T2 0.30 1.22 0.21 0.19 0.11
T3 0.09 0.21 0.84 0.17 0.13
T4 0.10 0.19 0.17 0.81 0.14
T5 0.12 0.11 0.13 0.14 0.86

Cluster 3 T1 T2 T3 T4 T5
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T1 1.50 0.32 0.27 0.13 0.14
T2 0.32 1.78 0.38 0.19 0.28
T3 0.27 0.38 1.33 0.26 0.33
T4 0.13 0.19 0.26 1.42 0.49
T5 0.14 0.28 0.33 0.49 1.48

Table 6: Clusters’ variables covariances

Cluster 1 Q5(1) Q5(2) Q5(3) Q5(4) Q5(5) Q8(1) Q8(2) Q8(3) Q12(1) Q12(2) Q12(3)
Q5(1) 0.58 0.14 0.31 0.10 0.10 -0.06 0.00 0.08 0.15 0.08 0.07
Q5(2) 0.14 0.62 0.22 0.28 0.25 0.01 0.03 0.03 0.11 0.10 0.01
Q5(3) 0.31 0.22 0.84 0.20 0.18 -0.08 0.01 0.09 0.19 0.11 0.12
Q5(4) 0.10 0.28 0.20 0.56 0.22 0.02 0.03 -0.00 0.08 0.07 0.02
Q5(5) 0.10 0.25 0.18 0.22 0.83 -0.01 0.02 -0.00 0.01 0.08 -0.02
Q8(1) -0.06 0.01 -0.08 0.02 -0.01 0.62 -0.03 -0.09 -0.09 -0.08 -0.06
Q8(2) 0.00 0.03 0.01 0.03 0.02 -0.03 0.45 0.09 0.06 0.08 0.03
Q8(3) 0.08 0.03 0.09 -0.00 -0.00 -0.09 0.09 0.43 0.08 0.05 0.07
Q12(1) 0.15 0.11 0.19 0.08 0.01 -0.09 0.06 0.08 1.66 1.01 0.91
Q12(2) 0.08 0.10 0.11 0.07 0.08 -0.08 0.08 0.05 1.01 1.79 0.91
Q12(3) 0.07 0.01 0.12 0.02 -0.02 -0.06 0.03 0.07 0.91 0.91 2.00

Cluster 2 Q5(1) Q5(2) Q5(3) Q5(4) Q5(5) Q8(1) Q8(2) Q8(3) Q12(1) Q12(2) Q12(3)
Q5(1) 0.55 0.13 0.30 0.12 0.16 -0.03 0.03 0.01 0.04 0.03 -0.02
Q5(2) 0.13 0.58 0.25 0.23 0.23 -0.05 -0.02 0.01 -0.01 -0.02 -0.01
Q5(3) 0.30 0.25 0.89 0.23 0.27 -0.04 -0.01 -0.01 -0.01 0.03 -0.03
Q5(4) 0.12 0.23 0.23 0.56 0.25 -0.01 0.00 0.02 -0.03 -0.03 -0.03
Q5(5) 0.16 0.23 0.27 0.25 0.83 -0.01 -0.00 -0.00 -0.02 -0.04 -0.09
Q8(1) -0.03 -0.05 -0.04 -0.01 -0.01 0.79 0.01 -0.05 -0.07 -0.01 0.00
Q8(2) 0.03 -0.02 -0.01 0.00 -0.00 0.01 0.42 0.06 -0.02 0.01 -0.07
Q8(3) 0.01 0.01 -0.01 0.02 -0.00 -0.05 0.06 0.44 0.02 -0.03 0.02
Q12(1) 0.04 -0.01 -0.01 -0.03 -0.02 -0.07 -0.02 0.02 1.52 0.73 0.63
Q12(2) 0.03 -0.02 0.03 -0.03 -0.04 -0.01 0.01 -0.03 0.73 1.53 0.71
Q12(3) -0.02 -0.01 -0.03 -0.03 -0.09 0.00 -0.07 0.02 0.63 0.71 1.87

Cluster 3 Q5(1) Q5(2) Q5(3) Q5(4) Q5(5) Q8(1) Q8(2) Q8(3) Q12(1) Q12(2) Q12(3)
Q5(1) 0.90 0.26 0.42 0.13 0.16 -0.14 -0.00 0.12 0.02 0.08 -0.05
Q5(2) 0.26 0.74 0.33 0.24 0.16 -0.00 -0.09 -0.00 -0.05 0.02 -0.05
Q5(3) 0.42 0.33 1.01 0.24 0.15 -0.12 0.01 0.10 0.01 0.11 -0.19
Q5(4) 0.13 0.24 0.24 0.68 0.19 -0.00 -0.06 0.06 0.05 0.03 -0.06
Q5(5) 0.16 0.16 0.15 0.19 0.84 -0.02 0.01 0.01 0.06 0.08 0.05
Q8(1) -0.14 -0.00 -0.12 -0.00 -0.02 1.00 0.00 -0.18 -0.08 -0.08 -0.01
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Q8(2) -0.00 -0.09 0.01 -0.06 0.01 0.00 0.87 0.08 0.02 -0.02 -0.02
Q8(3) 0.12 -0.00 0.10 0.06 0.01 -0.18 0.08 0.91 0.07 0.06 0.01
Q12(1) 0.02 -0.05 0.01 0.05 0.06 -0.08 0.02 0.07 1.05 0.46 0.30
Q12(2) 0.08 0.02 0.11 0.03 0.08 -0.08 -0.02 0.06 0.46 1.00 0.24
Q12(3) -0.05 -0.05 -0.19 -0.06 0.05 -0.01 -0.02 0.01 0.30 0.24 1.26
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Figure 10: Visualization of BIC for K as results of application on real data. Kmeans++
initialization.
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