
HAL Id: hal-04105636
https://hal.science/hal-04105636v1

Preprint submitted on 30 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parameter-free projected gradient descent
Evgenii Chzhen, Christophe Giraud, Gilles Stoltz

To cite this version:
Evgenii Chzhen, Christophe Giraud, Gilles Stoltz. Parameter-free projected gradient descent. 2023.
�hal-04105636�

https://hal.science/hal-04105636v1
https://hal.archives-ouvertes.fr

Parameter-free projected gradient descent

Evgenii Chzhen Christophe Giraud Gilles Stoltz
Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay, 91405, Orsay, France

{evgenii.chzhen, christophe.giraud, gilles.stoltz}@universite-paris-saclay.fr

Abstract

We consider the problem of minimizing a convex function over a closed convex set,
with Projected Gradient Descent (PGD). We propose a fully parameter-free version
of AdaGrad, which is adaptive to the distance between the initialization and the
optimum, and to the sum of the square norm of the subgradients. Our algorithm
is able to handle projection steps, does not involve restarts, reweighing along the
trajectory or additional gradient evaluations compared to the classical PGD. It also
fulfills optimal rates of convergence for cumulative regret up to logarithmic factors.
We provide an extension of our approach to stochastic optimization and conduct
numerical experiments supporting the developed theory.

1 Introduction

In this work we study the problem of minimizing a convex function f over a closed, possibly
unbounded, convex set Θ ⊆ Rd. Our main goal is to provide a variant of AdaGrad [SM10, DHS11]
which is adaptive to the distance ‖x1 − x∗‖ between the initialization x1 ∈ Θ and a minimizer
x∗ ∈ Θ, which is assumed to exist. More precisely, we provide a Projected Gradient Descent (PGD)
algorithm of the form

xt+1 = ProjΘ (xt − ηtgt) with ηt =
2kt

H
(∑

s6t ‖gs‖2
) ,

where gt ∈ ∂f(xt) is a sub-gradient of f at xt, ProjΘ(·) is the Euclidean projection operator
onto closed convex Θ, H(x) =

√
(x+ 1) log(e(1 + x)) and kt is an automatically tuned sequence

by Algorithm 1. Unlike recent works on the subject [DM23, CH23], we provide bounds on the
cumulative regret of the form

RT :=

T∑

t=1

(
f(xt)− f(x∗)

)
,

where x∗ is any minimizer of f over Θ. Using standard online-to-batch conversion, we also have by
convexity f(x̄T)− f(x∗) 6 RT /T , for x̄T being the average of x1, . . . , xT .

In the classical case where f is assume to be L-Lipschitz, it is well known that setting ηt = ‖x1−x∗‖
L
√
T

gives the optimal rate of convergence [N+18]:

RT 6 ‖x1 − x∗‖L
√
T .

However, such a choice requires f to be Lipschitz, and the knowledge of three quantities: 1) distance to
the optimum ‖x1−x∗‖; 2) Lipschitz constantL; 3) optimization horizon T . Should the distance ‖x1−
x∗‖ be known, one could set ηt = ‖x1−x∗‖√∑t

s=1 ‖gs‖2
, resulting in ADAGRAD algorithm [SM10, DHS11].

Preprint. Under review.

Algorithm 1: FREE ADAGRAD

Input: x1 ∈ Rd,Θ ⊂ Rd, γ0 > 0
Initialization: Γ2

1 = 0, k0 = 1, S0 = 0, γk = γ02k for k > 1
1 for t > 1 do
2 gt ∈ ∂f(xt) // get subgradient
3 St = St−1 + ‖gt‖2 // cumulative grad-norm

4 ht =
√

(St + 1) log(e(1 + St)) // update ht > ht−1

5 Bt+1(k) =
2γk√
k

+
√

Γ2
t + γ2

k‖gt‖2/h2
t // define the threshold

6 x+
t (k) = ProjΘ

(
xt − γk

ht
gt

)
// probing step

7 kt = min
{
k > kt−1 : ‖x+

t (k)− x1‖ 6 Bt+1(k)
}

// find the step size
8 xt+1 = x+(kt) // make the step

9 Γ2
t+1 = Γ2

t + γ2
kt
‖gt‖2
h2
t

// update Γ2
t

10 end
Output :Trajectory (xt)t>1

For this choice of ηt, without Lipschitz assumption, we have the upper bound on the regret

RT 6 c‖x1 − x∗‖

√√√√
T∑

t=1

‖gt‖2 . (1)

In practice the distance ‖x1 − x∗‖ is unknown. When an upper bound D∗ on ‖x1 − x∗‖ is available,
typically the diameter of Θ when Θ is bounded, ‖x1 − x∗‖ can be replaced by D∗ in ηt. The
ADAGRAD algorithm then fulfills (1) with ‖x1 − x∗‖ replaced by D∗. This bound can be very
sub-optimal yet, when ‖x1 − x∗‖ is much smaller than D∗. Worse, when Θ is unbounded, no bound
D∗ on ‖x1 − x∗‖ is available, without additional information.

Our objective is to provide a variant of the ADAGRAD step-size tuning, not requiring f to be
Lipschitz, nor any knowledge on ‖x1 − x∗‖ or T , while still fulfilling the regret bound (1) up to a
log factor. Our contribution can be placed alongside the ever expanding literature of parameter-free
optimization algorithm [DM23, CH23, Cut19, MS12, MO14a, MK20, OP21, OT17, ZCP22, JC22,
OP16], discussed below Theorem 1.
Main contributions. Let us describe our three main contributions

1. we propose a simple tuning of PGD, we call FREE ADAGRAD, with no line-search, no cold-restart,
no gradient transformation, and no computations of extra gradients;

2. we handle any finite convex function f (no Lipschitz condition), over any possibly unbounded
constraint set Θ;

3. we provide regret bounds like RT = Õ
(
(‖x1 − x∗‖ + 1)

√
1 +

∑
t6T ‖gt‖2

)
, where Õ hides

log-factor, but no additional terms.

We also partially extend our results to the Stochastic Gradient Descent setting.

Notation. For any a, b ∈ R we denote by a∨ b (resp. a∧ b) the largest (resp. the smallest) of the two.
We denote by ‖ · ‖ the Euclidean norm and by 〈·, ·〉 the standard inner product in Rd. For Θ ⊂ Rd,
we denote by ProjΘ(·) the Euclidean projection operator onto Θ. We denote by log2(·) and log(·)
the base 2 and the natural logarithms respectively. The base of the natural logarithm is denoted by e.

2 Main result

We make the following assumption, which is necessary for the meaningful treatment of the problem.
Assumption 1. The set Θ ⊆ Rd is closed convex, D ⊆ Rd is open such that Θ ⊆ D. The function
f : D → R is convex on Θ and there exists a bounded minimizer x∗ ∈ arg minx∈Θ f(x).

Let us highlight that we do not assume that the subgradients gt are uniformly bounded, that is,
we do not require f to be globally Lipschitz. This stays in contrast with the literature on online

2

convex optimization (OCO). Indeed, OCO lower bounds imply that without any prior knowledge
a regret Õ(‖x1 − x∗‖(

∑
t6T ‖gt‖2)

1/2) is not achievable [CB17, Cut19, MK20] and higher order
terms either in T or in ‖x1 − x∗‖ are necessary. For example, we are able to handle Θ = [0,+∞)d

and f(x) =
∑n
i=1 exp(‖x− ai‖/σi) for some ai ∈ Rd and σi > 0.

The proposed method, that we call FREE ADAGRAD, is summarized in Algorithm 1. It consists in
simple projected gradient steps at every round t > 1, but with additional cheap condition on Line 7
that is checked on every iteration. If the condition on this line is satisfied for k = kt−1, then the
algorithm makes (almost) the usual ADAGRAD step, otherwise, the step size is doubled and the
condition is checked again. We underline that the sequence of integers {kt : t > 1} in Algorithm 1 is
non-decreasing, and we prove in Eq. (12) that it is upper-bounded by 2(log2(1 + ‖x1−x∗‖/γ0) + 1).
Thus, there are only a finite number of doublings in the sequence. The only input parameter of the
algorithm is γ0 that can be seen as an initial lower-bound guess for ‖x1 − x∗‖ and can be taken
arbitrary small only incurring additional

√
log(1/γ0) factor. Note that once the step-size is doubled

at some time t > 1, Algorithm 1 continues the optimization from xt without cold-restart.

Theorem 1. Let Assumption 1 be satisfied. Let ST =
∑T
t=1 ‖gt‖2. For any γ0 > 0, let Dγ0

:=
‖x1 − x∗‖ ∨ γ0 , Algorithm 1 satisfies for some universal c > 0

RT 6 cDγ0

√
(ST+1 + 1) log(1 + ST+1) log(1 +Dγ0

) log log(1 + ST) .

A large part of the literature on parameter-free optimization considers the context of on-
line convex optimization with L-Lipschitz functions. A series of papers [MO14a, ZCP22,
JC22, CO18] have produced algorithms, mainly based on coin betting, enjoying regret bounds
O(Dγ0

√
ST log(1 +Dγ0

ST /γ0)), up to lower order terms. Such a regret bound is not achiev-
able in online convex optimization when L is unknown as shown in [CB17]. Some pa-
pers [Cut19, MK20, JC22] consider yet the case where L is unknown, and provide regret bound
including additional terms depending on L and on higher order of Dγ0

.

If only the optimization error is of concern (and not the regret), bounds with log-factors replaced
by log-log factors have been produced by [CH23, DM23], breaking the barrier of online-to-batch
conversion, but still requiring some knowledge about the Lipschitz constant L. Relying on bi-
nary search, [CH23] construct an adaptive algorithm for the problem of stochastic optimization,
while [DM23] provide an adaptive version of dual averaging and gradient descent algorithms, without
allowing for projection step and requiring a careful weighted averaging along the trajectory to obtain
the final solution. In contrast, we do not require Lipschitz condition, we handle the projection step
and our bounds are valid for the usual average.

The closer to us, in a setting of online convex optimization with L-Lipschitz functions, [MS12]
propose a tuning of GD (without projection) which is based on a doubling trick with cold-restarts
and which requires the knowledge of L. This algorithm is shown to be adaptive to ‖x1 − x∗‖ at the
price of loosing a log factor log(Dγ0

T/γ0) in the regret bound. In Appendix D, we show that the
algorithm of [MS12] can be seen as a specific instantiation of Algorithm 1, with the major difference
that cold-restart are performed when doubling the step-size.

3 Warm-up: simple analysis and intuition

Before proceeding to the analysis of the FREE ADAGRAD algorithm 1, we explain the main ideas
behind our step-size scheme in the following simpler setup.

Simple warm-up setup
1) the norm of the subgradients are uniformly bounded by some known L, i.e. ‖gt‖ 6 L,
2) the optimization is unconstrained, i.e. Θ = Rd,
3) the time horizon T is fixed in advance.

In this case, we can replace (ht)t>1 set on Line 4 of Algorithm 1 by the constant sequence ht = L
√
T ,

and the choice γ = ‖x1 − x∗‖ is known to achieve the optimal rates for the regret ‖x1 − x∗‖L
√
T ,

see e.g. [N+18]. In this context, the overall strategy of Algorithm 1 is to start from a small value

3

xT1 = x1 xT2 xT3 xTkT−1
xTkT

xTkT+1
= xT

? ? ? ?

ηt = 2γ0

L
√
T

ηt = 4γ0

L
√
T

. . . ηt = 2kT γ0

L
√
T

ηt = 2kT−1γ0

L
√
T

ηt = 2kT−1γ0

L
√
T

‖x+
T3−1(2)− x∗‖ > BT3

(2) ‖x+
TkT−1(kT − 1)− x∗‖ > BTkT

(kT − 1)

Figure 1: Schematic illustration of the algorithm in the simplest case.

γ0 for γ, and then track ‖xt − x1‖ in order to detect if γ < ‖x1 − x∗‖. If so, γ is doubled. The
algorithm then increases the value γ until reaching the level ‖xt − x1‖.
In order to keep the analysis simple in this warm-up section, we replace the threshold Bt+1(k) Line 5
of Algorithm 1 by Bsimple

t+1 (k) = 3γk (recall that γk = γ02k), what eventually leads to a slightly worse
bound. The gradient step and the step-size choice are then simply

x+
t (k) = xt −

γk

L
√
T
gt and kt = min

{
k > kt−1 : ‖x+

t (k)− x1‖ 6 3γk
}
. (2)

Below, we sketch the main arguments, and we refer to Appendix A for all the details.
The first ingredient is the text-book decomposition using subgradient upper-bound: for any k > 1

0 6 f(xt)− f(x∗) 6 〈gt, xt − x∗〉 =
γk

2L
√
T
‖gt‖2 +

L
√
T

2γk

(
‖x∗ − xt‖2 − ‖x+

t (k)− x∗‖2
)

6
γkL

2
√
T

+
L
√
T

2γk

(
‖x∗ − xt‖2 − ‖x+

t (k)− x∗‖2
)
. (3)

It follows from this bound, a one-step deviation upper-bound

‖x+
t (k)− x∗‖2 6 ‖xt − x∗‖2 + γ2

k/T .

Summing this bound over t, we get a first important bound on the distance to optimum

‖x+
t (k)− x∗‖2 6 ‖x1 − x∗‖2 +

t−1∑

s=1

γ2
ks

T
+
γ2
k

T
6 ‖x1 − x∗‖2 + γ2

k, for all k > kt−1 , (4)

and then another important bound on the distance to initialization

‖x+
t (k)− x1‖ 6 ‖x1 − x∗‖+ ‖x+

t (k)− x∗‖ 6 2‖x1 − x∗‖+ γk, for all k > kt−1 , (5)

where the last inequality follows from (4) and the sub-additivity of square-root.

Controlling the number of phases. The bound (5) plays a central role in our step-size tuning.
Indeed, we observe that if ‖x+

t (kt−1)− x1‖ > 3γkt−1
, then it means that γkt−1

< ‖x1 − x∗‖, and
our step-size tuning then increases k until the condition ‖x+

t (k)− x1‖ 6 3γk is met. In addition, we
check below that the design of Bsimple

t+1 (k) ensures that we have kt 6 k∗ for all t 6 T , where k∗ > 1
is the integer defined by γk∗−1 6 Dγ0

:= ‖x∗ − x1‖ ∨ γ0 < γk∗ , and fulfilling

k∗ 6 1 + log2

(‖x∗ − x1‖
γ0

∨ 1

)
= log2

(
2Dγ0

γ0

)
, and γk∗ 6 2Dγ0 . (6)

Indeed, if kt−1 6 k∗, then (5) ensures that

‖x+
t (k∗)− x1‖ 6 2γk∗ + γk∗ = Bsimple

t+1 (k∗) ,

so kt 6 k∗, and by induction the property holds for all t 6 T .

Bounding the regret. Let us now upper-bound the regret. We denote by [Tk, Tk+1 − 1] the interval
where kt = k, with the convention Tk+1 = Tk if we never have kt = k, see Figure 1 for schematic

4

illustration. Summing the central equation (3), the regret can then be decomposed as follows

RT =

kT∑

k=1

Tk+1−1∑

t=Tk

(f(xt)− f(x∗))

6
k∗∑

k=1

(
γkL

2
√
T

(Tk+1 − Tk) +
L
√
T

2γk

(
‖xTk − x∗‖2 − ‖xTk+1

− x∗‖2
)
)

6
L
√
T

2

(
γk∗ +

k∗∑

k=1

1

γk

(
‖xTk − x∗‖2 − ‖xTk+1

− x∗‖2
)
)
. (7)

From the step-size rule, we have that ‖xTk+1
−x1‖ 6 BTk+1

(kTk+1−1) = 3γk, and from (4) we have
‖xTk − x∗‖2 6 ‖x1− x∗‖2 + γ2

k−1, so we can upper bound the last term in the right-hand side of (7)

‖xTk − x∗‖2 − ‖xTk+1
− x∗‖2 6 ‖x1 − x∗‖2 + γ2

k−1 −
[
‖x1 − x∗‖ − ‖xTk+1

− x1‖
]2
+

6 γ2
k−1 + ‖x1 − x∗‖2 − [‖x1 − x∗‖ − 3γk]

2
+

6
1

4
γ2
k + 6γk‖x1 − x∗‖ , (8)

where the last inequality follows from the basic inequality ∆2− [∆−B]2+ 6 2∆B, for all ∆, B > 0.
Substituting (8) in (7) and using the bound (6), we end with the upper-bound

RT 6
L
√
T

2

[
γk∗+

γk∗+1

4
+ 6k∗‖x1 − x∗‖

]
6 L
√
T

[
3‖x1 − x∗‖ log2

(
2Dγ0

γ0

)
+2Dγ0

]
. (9)

The bound (9) for Algorithm 1, then matches the optimal rate ‖x1 − x∗‖L
√
T obtained with the

oracle step size η = ‖x1 − x∗‖/(L
√
T), up to a factor log2 (Dγ0/γ0).

It turns out that, in this L-Lipschitz setting, it is possible to adapt to ‖x1 − x∗‖ with a bound
O
(
Dγ0

L
√
T log2 (Dγ0

/γ0)
)

on the regret, by, for example, using coin betting [MO14b, OP16].
We achieve such tighter bound with PGD with a better tuning of the threshold Bt+1(k) which is
explained in the next section.

3.1 Improving log factor by better tuning of Bt+1(k)

Previous section gave the basic intuition, explaining why such a doubling strategy works. Yet, our
choice of Bt+1 on Line 5 of Algorithm 1 differs from Bsimple

t+1 (k) = 3γk. Remaining in the simple
setup of warmup, let us explain two key ingredients, which eventually lead to our choice of Bt+1 on
Line 5 of Algorithm 1. The first ingredient is to track more tightly the upper-bound on ‖x+

t (k)− x1‖.
Indeed, we can improve the Bound (4) by keeping ‖x+

t (k)− x∗‖2 6 ‖x1(k)− x1‖2 + Γ2
t + γ2

k/T
instead of relying on the last bound in (4). Hence, we can replace (5) by

‖x+
t (k)− x1‖ 6 2‖x1 − x∗‖+

√
Γ2
t + γ2

k/T , (10)

in order to implicitly track the value ‖x1−x∗‖. This improved tracking alone is not enough in order to
improve the log factor. Indeed, choosing Bt+1(k) = 2γk +

√
Γ2
t + γ2

k/T , still introduces log(Dγ0
)

term. To improve the log factor, our second ingredient is to choose a slightly smaller threshold Bt+1,
at the price of possibly moderately increasing the number kT of doubling. In particular, setting

Bt+1(k) =
2γk√
k

+
√

Γ2
t + γ2

k/T , (11)

we get that kT 6 k∗ + 0.5 log2(k∗) + 1.25, and instead of log(Dγ0
) we have

√
log(Dγ0

) in the
regret bound (see Appendix A for details). Combining everything together, we get the bound

RT 6 10Dγ0L
√
T
√

2 log2 (2Dγ0/γ0) ,

for algorithm in (2) with 3γk replaced by Bt+1(k) in (11) (see Theorem 4 in Appendix A). While,
the above discussion was still assuming the simple setup of L-Lipschitz function f , known L and T ,
we are able to generalize the above argument to nearly arbitrary convex f and unknown T .

5

4 Meta theorem: a general case of Algorithm 1

In this section, we provide a unified analysis of Algorithm 1, that is valid under the minimal
Assumption 1, and for the choice of any positive non-decreasing sequence (ht)t>1 on Line 4 of
Algorithm 1. Our main result, stated in Theorem 1, is obtained as a consequence of this general result,
and is made precise in Corollary 1.
Theorem 2. Let Assumption 1 be satisfied. For any γ0 > 0, for any positive non-decreasing (ht)t>1

on Line 4 of Algorithm 1, Algorithm 1 satisfies

T∑

t=1

(f(xt)− f(x∗)) 6 hT+1

2 ‖x1 − x∗‖

√
kT

2+

√√√√1

3

T∑

t=1

‖gt‖2
h2
t

+ γkT

T∑

t=1

‖gt‖2
h2
t

 .

It is interesting to observe that the term
∑
t6T ‖gt‖2/ht, that often appears in the analysis of

ADAGRAD is absent in our bound. Instead, we have
∑
t6T ‖gt‖2/h2

t which behaves slightly worse
and hence requires additional correction of ht (extra log factor) to ensure convergence. The proof of
Theorem 2, which can be found in Appendix B, is based on the following general lemma.
Lemma 1. Let Assumption 1 be satisfied. Consider the following algorithm for t > 1

xt+1 = ProjΘ

(
xt −

γ

ht
gt

)
,

where gt ∈ ∂f(xt), (ht)t>1 is non-decreasing and positive, and x1 ∈ Rd. For all T > 1, and all
x1 ∈ Rd, we have

T∑

t=1

(f(xt)− f(x∗)) 6 hT+1

(
‖x1 − x∗‖2 − ‖xT+1 − x∗‖2

2γ
+
γ

2

T∑

t=1

‖gt‖2
h2
t

)
.

The above lemma replaces the key inequality (3) that was available for one step of PGD in the
simplest case. However, since the step-size in our case is time-varying, we rather need a variant of
this inequality over the whole trajectory. While simple to prove, it seems that this result is novel and
could be of independent interest.

Finally, to obtain the bound of Theorem 1, we only need to bound the number of phases kT . Note
that the intuition of the previous section still applies in this case, yet, the actual bound on kT is more
refined—it gives better constants and improves logarithmic factors.
Lemma 2. Let Assumption 1 be satisfied. For any γ0 > 0, and any non-decreasing positive (ht)t>1,
Algorithm 1 satisfies for T > 2

kT 6 k∗ +
1

2
log2(k∗) +

5

4
and γkT 6

5

2

√
k∗
(
γ02k

∗
)
.

where k∗ is such that γ02k
∗−1 6 ‖x1 − x∗‖ ∨ γ0 6 γ02k

∗
. Furthermore, kT = 1 if k∗ = 1.

As a direct consequence of the above lemma and recalling that Dγ0
= ‖x1 − x∗‖ ∨ γ0, we obtain

√
kT 6

√
2

√
log2

(
Dγ0

γ0

)
+ 1 and γkT 6 5Dγ0

√
log2

(
Dγ0

γ0

)
+ 1 , (12)

that is, kt takes at most 2(log2(Dγ0/γ0) + 1) values.

Proof of Lemma 2. Lemma 4 in Appendix, applied by phases, implies that for all t > 1 and k > 1
we have

∥∥x+
t (k)− x∗

∥∥2
6 ‖x1 − x∗‖2 + Γ2

t + γ2
k

‖gt‖2
h2
t

.

Thus, the triangle inequality, yields

∥∥x+
t (k)− x1

∥∥ 6 2 ‖x1 − x∗‖+

√
Γ2
t + γ2

k

‖gt‖2
h2
t

6 2Dγ0 +

√
Γ2
t + γ2

k

‖gt‖2
h2
t

,

6

where Dγ0
= ‖x1 − x∗‖ ∨ γ0. Let k̄ be the smallest integer such that 2k̄/

√
k̄ > 2k

∗
. Then, for any

k > 1 and any t > 1

∥∥x+
t (k)− x1

∥∥ 6
2γk̄√
k̄

+

√
Γ2
t + γ2

k

‖gt‖2
h2
t

.

In particular, the above implies that
∥∥x+

t (k̄)− x1

∥∥ 6 Bt+1(k̄) for all t > 1. Thus, once kt reaches k̄
on Line 7 of Algorithm 1, it never changes its value. That is, kT 6 k̄. Lemma 12 in Appendix shows
that k̄ 6 k∗ + 0.5 log2(k∗) + 1.25 and k̄ = 1 if k∗ = 1, which concludes the proof.

4.1 Applications of Theorem 2: specific choices of (ht)t>1

Theorem 2 and Lemma 2 yield the main result of this work—theorem announced in Section 2.

Corollary 1. Under assumptions of Theorem 2. Let H(x) =
√

(x+ 1) log(e(x+ 1)). Setting
ht = H(St) and Dγ0 = ‖x1 − x∗‖ ∨ γ0, Algorithm 1 satisfies

T∑

t=1

(f(xt)− f(x∗)) 6 Dγ0H(ST+1)

√
log2

(
2Dγ0

γ0

)[
6 log(log(e(1 + ST))) + 6.5

]
.

While the above choice of (ht)t>1 gives nearly optimal rates, it is not standard in the literature. Let
us highlight the usefulness of Theorem 2 by providing some instantiations which correspond to other,
more common, but less optimal, examples.

The standard ADAGRAD corresponds to ht =
√
St [SM10]. The main inconvenience of this choice, is

that the term
∑
t6T ‖gt‖2/St is not bounded uniformly by a non-decreasing function of ST . Indeed,

assume that ‖gt‖2 = 1/T for all t = 1, . . . , T , then St = t/T 6 1 and
∑
t6T ‖gt‖2/St ≈ log(T).

It is possible, however, to write
∑
t6T ‖gt‖2/St 6 1 + log(ST /‖g1‖2), which involves additional

dependency on the gradient at initialization. All in all, we can state the following corollary.
Corollary 2. Under assumptions of Theorem 2. Setting ht =

√
St and Dγ0

= ‖x1 − x∗‖ ∨ γ0,
Algorithm 1 satisfies

T∑

t=1

(f(xt)− f(x∗)) 6 Dγ0

√
ST+1 log2

(
2Dγ0

γ0

) [
6 log

(
eST
‖g1‖2

)
+ 6.5

]
.

An attractive feature of this bound is its scale-invariance—multiplying f by some constant, multiplies
the bound by the same constant.

The dependency on the initial gradient can be avoided setting ht =
√
ε+ St with arbitrary ε > 0, as

it is usually done in practice with ADAGRAD, and initially proposed in [DHS11].
Corollary 3. Under assumptions of Theorem 2. Let ht =

√
ε+ St , for some ε > 0. Setting

Dγ0
= ‖x1 − x∗‖ ∨ γ0, Algorithm 1 satisfies

T∑

t=1

(f(xt)− f(x∗)) 6 Dγ0

√
(ST+1 + ε) log2

(
2Dγ0

γ0

) [
6 log

(
1 +

ST
ε

)
+ 6.5

]
.

Note that compared to Corollary 1, the above bound contains an additional
√

log(1 + ST) multi-
plicative factor, but it improves upon that of Corollary 2. Finally, we can also recover the results
claimed in the end of Section 3, where f is assumed to be L-Lipschitz, see Appendix B.2 for details.

5 An extension to stochastic optimization

In this section we demonstrate that at least the warm-up analysis provided in Section 3 extends to the
setup of stochastic optimization (see Algorithm 2), where the objective function takes the form

f(x) = E[F (x, ξ)] ,

and where we only have access to gt ∈ ∂F (xt, ξt), for some i.i.d. (ξt)t>1. As in [CH23], we make
the following standard assumption on the regularity of F (·, ξ).

7

Algorithm 2: Stochastic case

Input: x1 ∈ Rd,Θ ⊂ Rd, γ0 > 0, L > 0, T, δ > 0
Initialization: Γ2

1 = 0, k0 = 1, S0 = 0, h : R→ R, γk = γ02k for k > 1, `T (δ) :=
1 ∨ log(log2(2T)/δ)

1 for t = 1, . . . , T do
2 gt ∈ ∂F (xt, ξt) // get subgradient

3 ht = L
√
T`T (δ/(1 + kt−1)2) // update ht

4 x+
t (k) = ProjΘ

(
xt − γk

ht
gt

)
// probing step

5 kt = min
{
k > kt−1 : ‖x+

t (k)− x1‖ 6 38γk
}

// find the step size
6 xt+1 = x+(kt) // make the step
7 end

Output :Trajectory (xt)
T
t=1

Assumption 2. The mapping x 7→ F (x, ξ) is L-Lipschitz almost surely.

In some applications (e.g., linear contextual bandits), L is actually known and the control of regret
is necessary. For example, in linear Contextual Bandits with Knapsacks (lin-CBwK), having PGD
strategy for unbounded Θ, while still controlling the regret is needed [see e.g., AD16]. Thus, our
Algorithm 2, could bring new results in CBwK and related contexts.

We can state the following result concerning Algorithm 2.
Theorem 3. Let Assumptions 1 and 2 be satisfied. Define `T (δ) = 1 ∨ log(log2(2T)/δ) and
Dγ0 = ‖x1 − x∗‖ ∨ γ0. For any γ0 > 0, Algorithm 2 satisfies with probability at least 1− δ

T∑

t=1

(f(xt)− f(x∗)) 6 3500Dγ0L
√
T log2

(
2Dγ0

γ0

)
`

1/2
T

(
δ/log

2
2(4Dγ0/γ0)

)
.

The above bound is of order O(LDγ0

√
T log(Dγ0) log log(TDγ0)). Note that if only the optimiza-

tion error is of concern, and one does not wish to control the regret, [CH23] provide a bound without
log2 (2Dγ0

/γ0) using bisection algorithm and several restarted runs of SGD.

6 Experiments

We have implemented our FREE ADAGRAD (with γ0 = 1 throughout) algorithm and compared
it to the ADAGRAD that requires the knowledge of ‖x1 − x∗‖ and to the Oracle choice of step
‖x1 − x∗‖/(L

√
T).

We consider three functions f(x) = ‖x‖p for p ∈ {1, 2} and f(x) = n−1
∑
i6n | 〈ai, x〉 | where

ai ∈ Rd are generated i.i.d. from standard multivariate Gaussian. The initialization point is picked
the same for the three algorithms and is sampled from uniform distribution on [−1, 1]d. For our
experiments, we set d = 625 and n = 1000. Note that in the first case, the considered function
is Lipschitz with L = 1 and for the second one L 6 1

n (‖a1‖ + . . . + ‖an‖). A subgradient at
x ∈ Rd in the second case is given by n−1

∑
i6n aisign(〈ai, x〉) and since ai’s are i.i.d. Gaussian,

it is expected that ‖g‖ � 1
n (‖a1‖+ . . . + ‖an‖)—algorithms that are adaptive to the norm of the

gradient should perform better in this case. For all three functions, a global minimizer is given by
x∗ = (0, . . . , 0)>. All the algorithms run for T = 10000 iterations.
All the plots are reported on log− log scale. The first results are reported on Figure 2. The second
column displays the step-sizes used by the three algorithms. As a sanity check, we observe that
the step size of ADAGRAD decreases over time and the step size of the ORACLE remains constant.
One can also observe the characteristic jumps of the proposed FREE ADAGRAD method—the step
size decreases withing a fixed phase and is doubled from one phase to the other. On the first row of
Figure 2 we display the regret, on initial stages our algorithm behaves similarly to the ORACLE one,
while surpassing the performance of the ADAGRAD on the later stages. The third row of Figure 2
displays the case of the averages. Note that in this case the ORACLE algorithm performs worse than
the other two, since it takes the worst-case Lipschitz constant and does not adapt to the actual norms
of the seen gradients.

8

100 101 102 103 104

Time: t

103

104

R
eg

re
t:
R
t

Regret: f(x) = ‖x‖1, ‖x1 − x∗‖ = 14.36

FREE ADAGRAD

ORACLE: η = ‖x1−x∗‖
L
√
T

ADAGRAD

100 101 102 103 104

Time: t

10−2

10−1

S
te

p
si

ze
:
η t

Step sizes: f(x) = ‖x‖1, ‖x1 − x∗‖ = 14.36

FREE ADAGRAD

ORACLE: η = ‖x1−x∗‖
L
√
T

ADAGRAD

100 101 102 103 104

Time: t

102

103

R
eg

re
t:
R
t

Regret: f(x) = ‖x‖2, ‖x1 − x∗‖ = 14.36

FREE ADAGRAD

ORACLE: η = ‖x1−x∗‖
L
√
T

ADAGRAD

100 101 102 103 104

Time: t

10−1

100

101

S
te

p
si

ze
:
η t

Step sizes: f(x) = ‖x‖2, ‖x1 − x∗‖ = 14.36

FREE ADAGRAD

ORACLE: η = ‖x1−x∗‖
L
√
T

ADAGRAD

100 101 102 103 104

Time: t

101

102

103

104

R
eg

re
t:
R
t

Regret: f(x) =
1

n

n∑

i=1

|〈ai, x〉|, ‖x1 − x∗‖ = 14.38

FREE ADAGRAD

ORACLE: η = ‖x1−x∗‖
L
√
T

ADAGRAD

100 101 102 103 104

Time: t

10−2

10−1

100

101

S
te

p
si

ze
:
η t

Step sizes: f(x) =
1

n

n∑

i=1

|〈ai, x〉|, ‖x1 − x∗‖ = 14.38

FREE ADAGRAD

ORACLE: η = ‖x1−x∗‖
L
√
T

ADAGRAD

Figure 2: Regret (left) and step-sizes (right) of three algorithms on log− log scale.

7 Discussion

We have introduced FREE ADAGRAD—a simple fully adaptive version of ADAGRAD, that does not
rely on any prior information about the objective function. Our bounds are optimal up to logarithmic
factors and are applicable to non-globally Lipschitz functions. We have extended our approach to
stochastic optimization in a Lipschitz context, at the cost of the knowledge of the Lipschitz constant
and sub-optimal logarithmic factors. Numerical illustrations suggest that FREE ADAGRAD performs
on par or outperforms ADAGRAD with knowledge of ‖x1 − x∗‖ and the ORACLE choice of step-size.
Limitations. Let us also list the main limitations and future directions of our work.

1) We are only dealing with batch optimization. The extension of our analysis to the case of Online
Convex Optimization (OCO) seems non-trivial, since the bounds that we obtain are known to be
unachievable without prior knowledge in the OCO context [CB17]. The investigation of FREE
ADAGRAD in the OCO setting is left for future work;

2) If f is assumed to be L-Lipschitz with known constant L, slightly better bounds—with improved
log-factors—can be obtained in OCO setting [see e.g., OP16, CO18]. It remains an open question
wether such bounds, can be obtained in batch optimization in the non-Lipschitz (or unknown L) and
unknown ‖x1 − x∗‖ case;

3) Concerning stochastic optimization, we require f to be L-Lipschitz for some known L. We note,
however, that even in the state-of-the-art bound of [CH23], the knowledge of L is required.

4) When translating our regret bound on a rate for the optimization error, using x̄T—average along
the trajectory—we have additional log-factors compared to [CH23, DM23], which is an artifact of
online-to-batch conversion [MS12, Theorem 7]. Contrary to us, the algorithms in [CH23, DM23]
require yet some knowledge about the Lipschitz constant L.

9

References
[AD16] Shipra Agrawal and Nikhil Devanur. Linear contextual bandits with knapsacks. Advances

in Neural Information Processing Systems, 29, 2016.

[CB17] Ashok Cutkosky and Kwabena Boahen. Online learning without prior information. In
Conference on learning theory, pages 643–677. PMLR, 2017.

[CBLS05] N. Cesa-Bianchi, G. Lugosi, and G. Stoltz. Minimizing regret with label-efficient predic-
tion. IEEE Transactions on Information Theory, 51:2152–2162, 2005.

[CH23] Yair Carmon and Oliver Hinder. Making sgd parameter-free, 2023.

[CO18] Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online
learning in banach spaces. In Conference On Learning Theory, pages 1493–1529. PMLR,
2018.

[Cut19] Ashok Cutkosky. Artificial constraints and hints for unbounded online learning. In
Alina Beygelzimer and Daniel Hsu, editors, Proceedings of the Thirty-Second Conference
on Learning Theory, volume 99 of Proceedings of Machine Learning Research, pages
874–894. PMLR, 25–28 Jun 2019.

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[DM23] Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by D-adaptation.
arXiv preprint arXiv:2301.07733, 2023.

[JC22] Andrew Jacobsen and Ashok Cutkosky. Parameter-free mirror descent. In Conference on
Learning Theory, pages 4160–4211. PMLR, 2022.

[MK20] Zakaria Mhammedi and Wouter M. Koolen. Lipschitz and comparator-norm adaptivity in
online learning. In Jacob Abernethy and Shivani Agarwal, editors, Proceedings of Thirty
Third Conference on Learning Theory, volume 125 of Proceedings of Machine Learning
Research, pages 2858–2887. PMLR, 09–12 Jul 2020.

[MO14a] H Brendan McMahan and Francesco Orabona. Unconstrained online linear learning
in hilbert spaces: Minimax algorithms and normal approximations. In Conference on
Learning Theory, pages 1020–1039. PMLR, 2014.

[MO14b] H. Brendan McMahan and Francesco Orabona. Unconstrained online linear learning in
hilbert spaces: Minimax algorithms and normal approximations. In Maria Florina Balcan,
Vitaly Feldman, and Csaba Szepesvári, editors, Proceedings of The 27th Conference
on Learning Theory, volume 35 of Proceedings of Machine Learning Research, pages
1020–1039, Barcelona, Spain, 13–15 Jun 2014. PMLR.

[MS12] Brendan Mcmahan and Matthew Streeter. No-regret algorithms for unconstrained online
convex optimization. Advances in neural information processing systems, 25, 2012.

[N+18] Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

[OP16] Francesco Orabona and Dávid Pál. Coin betting and parameter-free online learning.
Advances in Neural Information Processing Systems, 29, 2016.

[OP21] Francesco Orabona and Dávid Pál. Parameter-free stochastic optimization of variationally
coherent functions. arXiv preprint arXiv:2102.00236, 2021.

[OT17] Francesco Orabona and Tatiana Tommasi. Training deep networks without learning rates
through coin betting. Advances in Neural Information Processing Systems, 30, 2017.

[SM10] Matthew Streeter and H Brendan McMahan. Less regret via online conditioning. arXiv
preprint arXiv:1002.4862, 2010.

[ZCP22] Zhiyu Zhang, Ashok Cutkosky, and Ioannis Paschalidis. Pde-based optimal strategy for
unconstrained online learning. In International Conference on Machine Learning, pages
26085–26115. PMLR, 2022.

10

Supplementary material for
“Parameter-free projected gradient descent”

Appendix A provides details for the proof of Section 3 of the main body. Appendix B contains all
the proof for Theorem 2 and Lemma 1. Appendix B.2 provides proof for corollaries in Section 4.
Appendix C deals with stochastic version of our algorithm and contains the proof of Theorem 3.
Appendix D gives detailed connection with the reward doubling algorithm of [MS12]. Finally,
Appendix E contains auxiliary results that are used in different parts of the proofs.

Below we provide a basic python implementation of our FREE ADAGRAD.

import numpy as np

class ObjectiveFunction ():
"""

Class for objective function has get_subgradient method
"""

def get_subgradient(self , x):
To implement
pass

def step(x, eta , g):
return x - eta * g

def free_adagrad(stopping_criteria , obj_func , x1, gamma0=1.):
"""

x1: initialization
gamma0: initial guess for |x_1 - x_*|
stopping_criteria: stopping criteria (e.g., max_iter)
obj_func: objective function with get_subgrad () method

"""
S = 0.
Gamma = 0.
k = 1
gamma = gamma0

x = np.copy(x1)
trajectory = [x1]

while not stopping_criteria:
g = obj_func.get_subgrad(x)
norm_g = np.linalg.norm(g)
S += norm_g ** 2
h = np.sqrt((S + 1.) * (1. + np.log(1. + S)))
while True:

x_plus = step(x, gamma / h, g)
B = (2. / np.sqrt(k)) * gamma \

+ np.sqrt(Gamma + (gamma * norm_g / h) ** 2)
if np.linalg.norm(x_plus - x1) > B:

k += 1
gamma *= 2

else:
Gamma += (gamma * (norm_g / h)) ** 2
break

x = x_plus
trajectory.append(x.copy())

return trajectory

11

A Proofs of the results of the warm-up Section 3

We prove here with full details the results of the warm-up Section 3, in the setting where the norm of
the subgradients are bounded by a known constant L, and where the time horizon T is known. We set
ht = L

√
T , and we analyze simultaneously FREE ADAGRAD algorithm 1 with this choice of h, and

the simple variant, where we set Bsimple
t+1 (k) = 3γk for the threshold, as in Section 3.

Theorem 4. Assume that f is a convex L-Lipschitz function, such that there exists x∗ ∈
arg minx∈Θ f(x) bounded. Let γ0 > 0 and Dγ0

= ‖x1 − x∗‖ ∨ γ0. The FREE ADAGRAD

algorithm 1 with ht = L
√
T and Bt+1(k) = γk

(
2√
k

+ 1√
T

)
+ Γt fulfills

T∑

t=1

(f(xt)− f(x∗)) 6 10Dγ0
L
√
T

√
2 log2

(
2Dγ0

γ0

)
.

The simple variant with ht = L
√
T and Bsimple

t+1 (k) = 3γk fulfills

T∑

t=1

(f(xt)− f(x∗)) 6 3‖x1 − x∗‖L
√
T log2

(
2Dγ0

γ0

)
+ 2Dγ0L

√
T .

Proof of Theorem 4.

We start by emphasizing that the algorithm runs without diverging, in the sense that

kt := min
{
k > kt−1 such that ‖x+

t (k)− x1‖ 6 Bt+1(k)
}

(13)

is finite for any t. Indeed, we observe that ‖x+
t (k)− x1‖ grows at most like γk/

√
T when k goes

to infinity, while Bt+1(k) grows faster than γk
(

2/
√
k + 1/

√
T
)

and Bsimple
t+1 (k) grows like 3γk. In

fact, we will prove below that kt remains upper-bounded by a quantity independent of T .

The starting point of the proof is the classical analysis for a projected gradient step ProjΘ (xt − ηgt)

f(xt)− f(x∗) 6 〈gt, xt − x∗〉 =
η

2
‖gt‖2 +

1

2η

(
‖xt − x∗‖2 − ‖xt − ηgt − x∗‖2

)

6
η

2
L2 +

1

2η

(
‖xt − x∗‖2 − ‖ProjΘ (xt − ηgt)− x∗‖2

)
,

where the last inequality follows from the fact that x∗ ∈ Θ. Since x∗ is a minimizer of f in Θ, the
left hand side is non-negative, so the above inequality with η = γk/(L

√
T) gives that for any k > 1

0 6 f(xt)− f(x∗) 6 〈gt, xt − x∗〉 6
γkL

2
√
T

+
L
√
T

2γk

(
‖x∗ − xt‖2 − ‖x+

t (k)− x∗‖2
)
. (14)

It follows from this bound, a one-step deviation upper-bound

‖x+
t (k)− x∗‖2 6 ‖xt − x∗‖2 +

γ2
k

T
.

Summing this bound over t, we get a bound on the distance to optimum

‖x+
t (k)− x∗‖2 6 ‖x1 − x∗‖2 +

t−1∑

s=1

γ2
ks

T
+
γ2
k

T
= ‖x1 − x∗‖2 + Γ2

t +
γ2
k

T
, (15)

and then a bound on the distance to initialization

‖x+
t (k)− x1‖ 6 ‖x1 − x∗‖+ ‖x+

t (k)− x∗‖

6 ‖x1 − x∗‖+

√
‖x1 − x∗‖2 + Γ2

t +
γ2
k

T

6 2‖x1 − x∗‖+

√
Γ2
t +

γ2
k

T
, (16)

12

where the two inequalities follow from (15) and the sub-additivity of square-root.

Controlling the number kT of phases. The Inequality (16) is the key to get an upper-bound on kT =
max {kt : 1 6 t 6 T}. Let us define the integer k∗ > 1 by γk∗−1 6 Dγ0

:= ‖x∗ − x1‖ ∨ γ0 < γk∗ ,
which fulfills

k∗ 6 1 + log2

(‖x∗ − x1‖
γ0

∨ 1

)
= log

(
2Dγ0

γ0

)
, and γk∗ 6 2Dγ0

. (17)

To upper bound kT , we rely on the following estimate derived from (16)

‖x+
t (k)− x1‖ 6 2γk∗ +

√
Γ2
t +

γ2
k

T
. (18)

• Simple case: Bsimple
t+1 (k) = 3γk . A basic induction ensures that kt 6 k∗ for all t 6 T .

Indeed, if the property kt−1 6 k∗ holds, then, since Γ2
t 6

t−1
T γ2

kt−1
, we have

‖x+
t (k∗)− x1‖ 6 2γk∗ + γk∗ = Bsimple

t+1 (k∗) ,

which, in turn, ensures that kt 6 k∗. So k∗ is an upper-bound on kT =
max {kt : 1 6 t 6 T} in this case.

• FREE ADAGRAD case: Bt+1(k) = 2γk̄
k̄1/2 +

√
Γ2
t +

γ2
k̄

T . Let us define k̄ as the smallest
integer fulfilling k̄−1/2γk̄ > γk∗ . Then, from (18), we have

‖x+
t (k̄)− x1‖ 6

2γk̄
k̄1/2

+

√

Γ2
t +

γ2
k̄

T
= Bt+1(k̄) ,

so, by induction, we get kt 6 k̄ for all t 6 T . In addition, we prove in Lemma 12 page 27
that

k̄ 6 k∗ + 0.5 log2(k∗) + 1.25 . (19)

Bounding the regret on phase kt = k. We denote by [Tk, Tk+1− 1] the interval where kt = k, with
the convention Tk+1 = Tk if we never have kt = k. For t ∈ [Tk, Tk+1 − 1], we have xt+1 = x+

t (k).
So from (14), we get
Tk+1−1∑

t=Tk

(f(xt)− f(x∗)) 6
Tk+1−1∑

t=Tk

(
γkL

2
√
T

+
L
√
T

2γk

(
‖x∗ − xt‖2 − ‖xt+1 − x∗‖2

)
)

=
γkL

2
√
T

(Tk+1 − Tk) +
L
√
T

2γk

(
‖xTk − x∗‖2 − ‖xTk+1

− x∗‖2
)
, (20)

with the convention that
∑Tk−1
t=Tk

= 0. We bound the second term in the right-hand side of (20), with
(15)

‖xTk − x∗‖2 6 ‖x1 − x∗‖2 + Γ2
Tk−1 +

γk
T

= ‖x1 − x∗‖2 + Γ2
Tk
,

and for the third term, we combine (13) with a triangular inequality to get

‖xTk+1
− x∗‖2 >

[
‖x1 − x∗‖ − ‖xTk+1

− x1‖
]2
+
>
[
‖x1 − x∗‖ −BTk+1

]2
+
,

where we used the condensed notation BTk+1
:= BTk+1

(kTk+1−1) = BTk+1
(k). Plugging these two

upper and lower bounds in (20), and applying the simple inequality

∆2 − [∆−B]2+ 6 2∆B, for all ∆, B > 0, (21)

we get
Tk+1−1∑

t=Tk

(f(xt)− f(x∗)) 6
γkL

2
√
T

(Tk+1 − Tk) +
L
√
T

2γk

(
‖x1 − x∗‖2 + Γ2

Tk
−
[
‖x1 − x∗‖ −BTk+1

]2
+

)

6
L
√
T

2

(
γk
Tk+1 − Tk

T
+

Γ2
Tk

γk
+

2BTk+1

γk
‖x1 − x∗‖

)
,

13

using Γ2
Tk

6 γ2
k−1Tk/T/ 6 γk−1γk/2 for k > 1, we get

Tk+1−1∑

t=Tk

(f(xt)− f(x∗)) 6
L
√
T

2

(
γk
Tk+1 − Tk

T
+
γk−1

2
+

2BTk+1

γk
‖x1 − x∗‖

)
.

Bounding the total regret. Summing the above inequality over k, we get the upper-bound on the
total regret

T∑

t=1

(f(xt)− f(x∗)) 6
L
√
T

2

∑

16k6kT

(
γkT

Tk+1 − Tk
T

+
γk−1

2
+

2BTk+1

γk
‖x1 − x∗‖

)

6
L
√
T

2

3γkT

2
+

∑

16k6kT

2BTk+1

γk
‖x1 − x∗‖

 . (22)

We point out that the bound (22) is valid for any choice of Bt+1(k). Let us treat apart the two cases.

• Simple case: Bsimple
t+1 (k) = 3γk . Using that kT 6 k∗ in this case,

BTk+1
= BTk+1

(k) = 3γk ,

and recalling the upper bound (17) on k∗ and γk∗ , we get from (22)

T∑

t=1

(f(xt)− f(x∗)) 6
L
√
T

2

3

2
γk∗ +

∑

16k6k∗

6‖x1 − x∗‖

=
L
√
T

2

(
3

2
γk∗ + 6k∗‖x1 − x∗‖

)

6 L
√
T

(
3‖x1 − x∗‖ log2

(
2Dγ0

γ0

)
+ 2Dγ0

)
.

• FREE ADAGRAD case: Bt+1(k) = 2γk
k1/2 +

√
Γ2
t +

γ2
k

T . We have proved in this case that
kT 6 k̄ with k̄ upper bounded by (19). Combining (19) and (17), the first term in the
right-hand side of (22) can be readily bounded by

3

4
γk̄ 6

3

4
γk∗+0.5 log2(k∗)+1.25 6 4Dγ0

√
log2

(
2Dγ0

γ0

)
.

The last term in the right-hand side of (22), can be bounded as follows. We notice that

Γ2
Tk+1−1 +

γ2
kTk+1−1

T
= Γ2

Tk+1
,

so we have
∑

16k6k̄

BTk+1

γk
=

∑

16k6k̄

(
2√
k

+
ΓTk+1

γk

)
6 4
√
k̄ +

∑

16k6k̄

ΓTk+1

γk
.

For the last term, we observe that
∑

16k6k̄

ΓTk+1

γk
=

∑

16k6k̄

γ−1
k

√∑

j6k

γ2
j∆Tj/T 6

∑

16k6k̄

∑

j6k

γ−1
k γj

√
∆Tj/T

6
∑

16j6k̄

γj

√
∆Tj/T

∑

k:k>j

γ−1
k = 2

∑

16j6k̄

√
∆Tj/T 6 2

√
k̄ ,

14

where the last inequality follows from Cauchy Schwarz. Then, plugging these bounds in
(22), and using that k̄ = 1 when k∗ = 1, and

k̄ 6 k∗ + 0.5 log2(k∗) + 1.25 6 2k∗, for k∗ > 2 ,

we get from (17)

T∑

t=1

(f(xt)− f(x∗)) 6 L
√
T

[
3

4
γk̄ + 6‖x1 − x∗‖

√
k̄

]

6 10Dγ0
L
√
T

√
2 log2

(
2Dγ0

γ0

)
.

which concludes the proof of Theorem 4.

15

B Proofs for Section 4

Proof of Theorem 2. First of all, observe that the algorithm in question can be written as

xt+1 = ProjΘ

(
xt −

γkt
ht
gt

)
,

where we recall that (ht)t>1 is assumed to be non-decreasing and positive. As before, we denote by
[Tk, Tk+1−1] the interval where kt = k. In particular, TkT+1−1 = T . On the interval [Tk, Tk+1−1],
the algorithm is simply AdaGrad (slightly modified) started from the point xTk and with the final
point at xTk+1

. Thus, within each phase, we can apply the analysis of the AdaGrad that we recall
and slightly adapt in Appendix B.1, page 18. The proof closely follows that of the warm-up setup:
observing that

T∑

t=1

(f(xt)− f(x∗)) =

kT∑

k=1

Tk+1−1∑

t=Tk

(f(xt)− f(x∗)) ,

1. We start with one phase analysis, using the results of Appendix B.1, page 18, which contains
Lemma 1 displayed in the main body;

2. Then, we sum-up the total regret over kT phases, using the previous analysis, and bound the
key quantities;

One phase analysis. Fix some k 6 kT and assume that the the kth phase is non-empty, that is,
Tk+1 > Tk. Thus, in view of the above discussion, Lemma 5, page 18, yields

Tk+1−1∑

t=Tk

(f(xt)− f(x∗)) 6 hTk+1

(
‖xTk − x∗‖2−

∥∥xTk+1
− x∗

∥∥2

2γk
+
γk
2

Tk+1−1∑

t=Tk

‖gt‖2
h2
t

︸ ︷︷ ︸
=

Γ2
Tk+1

−Γ2
Tk

γ2
k

)

= hTk+1

(
‖xTk − x∗‖2 −

∥∥xTk+1
− x∗

∥∥2

2γk
+

Γ2
Tk+1
−Γ2

Tk

2γk

)
.

(23)

Note that by design
∥∥xTk+1

− x∗
∥∥ >

[
‖x1 − x∗‖ −BTk+1

(k)
]
+

. Furthermore, iteratively applying
Lemma 4 by phases, we deduce that

‖xTk − x∗‖2 6 ‖x1 − x∗‖2 + Γ2
Tk
.

That is, we have

‖xTk − x∗‖2 −
∥∥xTk+1

− x∗
∥∥2

2γk
6
‖x1 − x∗‖2 −

[
‖x1 − x∗‖ −BTk+1

(k)
]2
+

2γk
+

Γ2
Tk

2γk
.

Furthermore, recalling that ∆2 − [∆−B]2+ 6 2∆B, the above can be further bounded as

‖xTk − x∗‖2 −
∥∥xTk+1

− x∗
∥∥2

2γk
6 ‖x1 − x∗‖

BTk+1
(k)

γk
+

Γ2
Tk

2γk
. (24)

Substitution of (24) into (23), yields
Tk+1−1∑

t=Tk

(f(xt)− f(x∗)) 6 hTk+1
‖x1 − x∗‖

BTk+1
(k)

γk
+ hTk+1

Γ2
Tk+1

2γk
. (25)

Summing up over phases. Summing up all the inequalities (25) for kT phases, we obtain
T∑

t=1

(f(xt)− f(x∗)) 6 ‖x1 − x∗‖
∑

k6kT

(
hTk+1

BTk+1
(k)

γk

)

︸ ︷︷ ︸
=:I

+
∑

k6kT

hTk+1

Γ2
Tk+1

2γk
︸ ︷︷ ︸

=:II

. (26)

16

Bounding the sum of h Γ
2γ terms (I). Observe that, by definition of thereof,

Γ2
Tk+1

=
∑

j6k

γ2
j

Tj+1−1∑

t=Tj

‖gt‖2
h2
t

 . (27)

Hence, using trivial bound hTk+1
6 hT+1, we deduce

I =
∑

k6kT

hTk+1

Γ2
Tk+1

2γk
6
hT+1

2

∑

k6kT

Γ2
Tk+1

γk

=
hT+1

2

∑

k6kT

∑

j6k

γ−1
k γ2

j

Tj+1−1∑

t=Tj

‖gt‖2
h2
t

=
hT+1

2

∑

j6kT

∑

k>j

γ−1
k γ2

j

Tj+1−1∑

t=Tj

‖gt‖2
h2
t

6 hT+1

∑

j6kT

γj

Tj+1−1∑

t=Tj

‖gt‖2
h2
t

6 hT+1γkT

T∑

t=1

‖gt‖2
h2
t

,

(28)

where the penultimate inequality is due to the fact that
∑
k>j 2−k 6 2−j+1 and the last one holds

since γk 6 γkT .

Bounding the sum of B terms (II). We observe that by definition of Bt(k), we have

BTk+1
(k) = BTk+1−1+1(k) =

2γk√
k

+ Γ2
Tk+1

.

Hence, the term of interest is bounded as

II =
∑

k6kT

hTk+1

BTk+1
(k)

γk
= 2

∑

k6kT

hTk+1√
k

+
∑

k6kT

hTk+1
γ−1
k ΓTk+1

6 4hT+1

√
kT + hT+1

∑

k6kT

γ−1
k ΓTk+1

.

For the third term, similarly to the previous paragraph, but additionally invoking Jensen’s inequality,
we can write

∑

k6kT

γ−1
k ΓTk+1

= kT
∑

k6kT

1

kT

√√√√√
∑

j6k

γ2
j γ
−2
k

Tj+1−1∑

t=Tj

‖gt‖2
h2
t

6
√
kT

√√√√√
∑

j6kT

∑

k>j

γ2
j γ
−2
k

Tj+1−1∑

t=Tj

‖gt‖2
h2
t

6
2
√
kT√
3

√√√√
T∑

t=1

‖gt‖2
h2
t

,

where in the last inequality we used the fact that
∑b
k=a 2−2k 6 4

32−2a. Thus, overall, we have

II =
∑

k6kT

hTk+1

BTk+1
(k)

γk
6 2hT+1

√
kT

2 +

√√√√1

3

T∑

t=1

‖gt‖2
h2
t

 (29)

17

The end (combining bounds for I and II). Substituting (28) and (29) into (26), we deduce that for
any non-decreasing (ht)t>1

T∑

t=1

(f(xt)−f(x∗)) 6 hT+1

2 ‖x1 − x∗‖

√
kT

2 +

√√√√1

3

T∑

t=1

‖gt‖2
h2
t

+ γkT

T∑

t=1

‖gt‖2
h2
t

 .

B.1 Basic analysis for AdaGrad and Proof of Lemma 1

In this section we extend the standard analysis of ADAGRAD for our purposes and prove Lemma 1
restated below. Throughout, we consider the following algorithm for t > 1

xt+1 = ProjΘ

(
xt −

γ

ht
gt

)
, (30)

where gt ∈ ∂f(xt), St =
∑t
s=1 ‖gs‖

2 and (ht)t>1 is non-decreasing and positive, and x1 ∈ Rd.

We start with some elementary results.
Lemma 3. For all t > 1 and all x1 ∈ R

0 6
2γ

ht
(f(xt)− f(x∗)) 6 ‖xt − x∗‖2 − ‖xt+1 − x∗‖2 +

γ2

h2
t

‖gt‖2 .

Proof. By the property of projection

‖xt+1 − x∗‖2 6 ‖xt − x∗‖2 −
2γ

ht
〈xt − x∗, gt〉+

γ2

h2
t

‖gt‖2

6 ‖xt − x∗‖2 −
2γ

ht
(f(xt)− f(x∗)) +

γ2

h2
t

‖gt‖2 , (31)

where we used the fact that f is convex. The result follows after re-arranging.

Lemma 3 applied iteratively yields the following result.
Lemma 4. For all T > 1, γ̄ > 0 and all x1 ∈ R, Algorithm (30) satisfies

∥∥∥∥ProjΘ

(
xT −

γ̄

hT
gT

)
− x∗

∥∥∥∥
2

6 ‖x1 − x∗‖2 + γ2
T−1∑

t=1

‖gt‖2
h2
t

+ γ̄2 ‖gT ‖2
h2
T

.

Finally, we are in position to prove Lemma 1 brought up in the main body of the paper.
Lemma 5 (Restated Lemma 1 from Section 4). For all T > 1 and all x1 ∈ Rd we have

T−1∑

t=1

(f(xt)− f(x∗)) 6 hT

(
‖x1 − x∗‖2 − ‖xT − x∗‖2

2γ
+
γ

2

T−1∑

t=1

‖gt‖2
h2
t

)
.

Proof. Using Lemma 3, we deduce that

T−1∑

t=1

(f(xt)− f(x∗)) 6
1

2γ

T−1∑

t=1

ht

(
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

)
+
γ

2

T−1∑

t=1

‖gt‖2
ht

. (32)

Let us bound the first sum on the right hand side, adding and subtracting ht+1 ‖xt+1 − x∗‖2 and
using telescoping summation, we obtain

T−1∑

t=1

ht

(
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

)
= h1‖x1 − x∗‖2 − hT ‖xT − x∗‖2

+

T−1∑

t=1

(ht+1 − ht) ‖xt+1 − x∗‖2 .
(33)

18

Furthermore, by Lemma 4 with γ̄ = γ and the fact that (ht)t>1 is non-decreasing, we get

T−1∑

t=1

(ht+1 − ht) ‖xt+1 − x∗‖2 6
T−1∑

t=1

(ht+1 − ht)
(
‖x1 − x∗‖2 + γ2

t∑

s=1

‖gs‖2
h2
s

)

6 (hT − h1) ‖x1 − x∗‖2 + γ2
T−1∑

t=1

(ht+1 − ht)
t∑

s=1

‖gs‖2
h2
s

.

For the second term in the above bound, we can write

T−1∑

t=1

(ht+1 − ht)
t∑

s=1

‖gs‖2
h2
s

=

T−1∑

s=1

‖gs‖2
h2
s

T−1∑

t=s

(ht+1 − ht)

=

T−1∑

s=1

‖gs‖2
h2
s

(hT − hs)

= hT

T−1∑

t=1

‖gt‖2
h2
t

−
T−1∑

t=1

‖gt‖2
ht

.

Substitution of the above into the penultimate inequality yields

T−1∑

t=1

(ht+1−ht) ‖xt+1 − x∗‖2 6 (hT−h1)‖x1 − x∗‖2+γ2

(
hT

T−1∑

t=1

‖gt‖2
h2
t

−
T−1∑

t=1

‖gt‖2
ht

)
, (34)

Substituting (34) into (33), we deduce that

T−1∑

t=1

ht

(
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

)
6 hT

(
‖x1 − x∗‖2 − ‖xT − x∗‖2

)

+ γ2hT

T−1∑

t=1

‖gt‖2
h2
t

− γ2
T−1∑

t=1

‖gt‖2
ht

.

Combination of the above with (32) concludes the proof.

B.2 Proofs of corollaries in Section 4

In this section we provide proofs of four corollaries presented in Section 4.

Proof of Corollary 1. Substituting our choice of ht into Theorem 2, we prove in Lemma 9 in Ap-
pendix E, page 27, that

T∑

t=1

‖gt‖2
h2
t

6 log(log(e(1 + ST))) .

Substituting the above into Theorem 2 and using (12), we deduce that

RT 6
√

(ST+1 + 1) log(e(ST+1 + 1))

[√
8 ‖x1 − x∗‖

√
log2

(
Dγ0

γ0

)
+ 1

(
2+

√
1

3
log(log(e(1 + ST)))

)

+ 5Dγ0
log(log(e(1 + ST)))

√
log2

(
Dγ0

γ0

)
+ 1

]
.

The proof is concluded after re-arranging and using 2ab 6 a2 + b2.

19

Proof of Corollary 2. Theorem 2 and Lemma 2 (rather Eq. (12)) and Lemma 10 give

T∑

t=1

(f(xt)− f(x∗)) 6

√
ST+1 log2

(
2Dγ0

γ0

)[
2 ‖x1 − x∗‖

√
2

(
2+

√
1

3
log

(
e

(
ST
‖g1‖2

)))

+ 5Dγ0
log

(
e

(
ST
‖g1‖2

))]

6 Dγ0

√
ST+1 log2

(
2Dγ0

γ0

)[
2
√

2

(
2+

√
1

3
log

(
e

(
ST
‖g1‖2

)))

+ 5 log

(
e

(
ST
‖g1‖2

))]
.

The proof is concluded after re-arranging and using 2ab 6 a2 + b2.

Proof of Corollary 3. From Lemma 11 we have

T∑

t=1

‖gt‖2
ε+ St

6 log

(
1 +

ST
ε

)
.

Hence, substituting the above into Theorem 2 and using (12), we obtain

RT 6
√
ε+ ST+1

√
log2

(
Dγ0

γ0

)
+ 1

[
√

8 ‖x1 − x∗‖
(

2+

√
1

3
log

(
1 +

ST
ε

))
+ 5Dγ0 log

(
1 +

ST
ε

)]
.

The proof is concluded after re-arranging and using 2ab 6 a2 + b2.

As promised in Section 4, Theorem 4 of Appendix A can be obtained as a corollary of Theorem 2.

Corollary 4. Under assumptions of Theorem 2, with f an L-Lipschitz function. Setting ht = L
√
T

and Dγ0 = ‖x1 − x∗‖ ∨ γ0, Algorithm 1 satisfies

T∑

t=1

(f(xt)− f(x∗)) 6 12.3Dγ0
L

√
T log2

(
2Dγ0

γ0

)
.

Proof of Corollary 4. Substituting h ≡ L
√
T into Theorem 2 gives

RT 6 L
√
T

(
2 ‖x1 − x∗‖

√
kT

(
2+

√
1

3

)
+ γkT

)
+ L
√
T
γkT
2

,

Eq. (12) applied to the above, yields

RT 6 L
√
T

[
√

8 ‖x1 − x∗‖
√

log2

(
Dγ0

γ0

)
+ 1

(
2+

√
1

3

)
+ 5Dγ0

√
log2

(
Dγ0

γ0

)
+ 1

]

6 L
√
T

[
√

8

(
2+

√
1

3

)
+ 5

︸ ︷︷ ︸
612.3

]
Dγ0

√
log2

(
Dγ0

γ0

)
+ 1 .

The proof is concluded.

20

C Analysis for stochastic PGD in Section 5: proof of Theorem 3

Proof of Theorem 3. We recall that `(δ) = 1 ∨ log(log2(T)/δ). As in all the previous sections, we
denote by [Tk, Tk+1 − 1], the interval where kt = k. The regret of the algorithm can be expressed as

T∑

t=1

(f(xt)− f(x∗)) =

kT∑

k=1

(f(xTk)− f(x∗))

︸ ︷︷ ︸
=:T1(k)

+

kT∑

k=1

Tk+1−1∑

t=Tk+1

(f(xt)− f(x∗))

︸ ︷︷ ︸
=:T2(k)

.

We are going to apply Lemma 7 of Appendix C.1 on page 23, to the second term and provide
deterministic bound on the first one. First let us explain the reason of such separation of terms.
Observe that for t = Tk

xt+1 = ProjΘ

(
xt −

γkt

L
√
T`(δ/(1 + kt−1)2)

gt

)
.

Meanwhile, for t ∈ [Tk + 1, Tk+1 − 1] we have

xt+1 = ProjΘ

(
xt −

γkt

L
√
T`(δ/(1 + kt)2)

gt

)
.

That is, the xTk+1 step is outside the pattern and requires additional splitting. The proof proceeds as
follows

1. First we give deterministic bound on T1(k) terms using Lipschitzness of the objective
function f ;

2. Then we use Lemma 7 to bound each T2(k);

3. Finally, we show that kT is still bounded by k∗ as in the warmup analysis.

Analysis for T1(k). Since f is assumed to be Lipschitz, we can write

T1(k) 6 L ‖xTk − x∗‖ .
Then, simply by the triangle inequality and property of the Euclidean projection, we deduce that for
all k > 2

‖xTk − x∗‖ 6
∥∥xTk−1+1 − xTk−1

∥∥+
∥∥xTk−1

− x∗
∥∥+ (Tk − Tk−1 − 1)

γk−1√
T`(δ/k2)

6
∥∥xTk−1+1 − xTk−1

∥∥+
∥∥xTk−1

− x∗
∥∥+ (Tk − Tk−1 − 1)

γkT−1√
T`(δ)

.

Furthermore, we have
∥∥xTk−1+1 − xTk−1

∥∥ 6
γk−1√

T`(δ/(k − 1)2)
6

γkT−1√
T`(δ)

.

Hence, we have

‖xTk − x∗‖ 6
∥∥xTk−1

− x∗
∥∥+ (Tk − Tk−1)

γkT−1√
T`(δ)

.

Unfolding the above recursion, we deduce that

‖xTk − x∗‖ 6 ‖xT1 − x∗‖+ Tk
γkT−1√
T`(δ)

6 ‖x1 − x∗‖+ 0.5γkT
√
T .

We conclude that
kT∑

k=1

(f(xTk)− f(x∗)) 6 LkT

(
‖x1 − x∗‖+ 0.5γkT

√
T
)

6 L
√
T`T (δ/(1 + kT)2)kT (‖x1 − x∗‖+ 0.5γkT) .

(35)

21

Analysis for T2(k). Let us first fix the high-probability event on which we are going to work. Note
that ρ = Tk + 1 is a stopping time and Tk+1 − 1− ρ 6 T . Thus, by Lemma 7 with probability at
least 1− δ/(1 + k)2, it holds that

T2(k) 6 L
√
T`T (δ/(1 + k)2)

(
γk
2

+
‖xTk+1 − x∗‖2 − ‖xTk+1

− x∗‖2
2γk

+ 10‖xTk+1 − x∗‖+ 68γk

)
.

We observe that
‖xTk+1 − x∗‖2 − ‖xTk+1

− x∗‖2 6 ‖xTk+1 − x∗‖2 −
[
‖xTk+1 − x∗‖ − ‖xTk+1 − xTk+1

‖
]2
+

6 2‖xTk+1 − x∗‖‖xTk+1 − xTk+1
‖ .

Let us bound each term of the product. By the design of the rule,
‖xTk+1 − xTk+1

‖ 6 ‖xTk+1 − x1‖+ ‖x1 − xTk+1
‖ 6 38γk + 38γk 6 76γk ,

where B = 28. Furthermore, by Lemma 7 and the fact that the ‖xTk+1 − xTk‖ 6 γk for all k > 1

‖xTk+1 − x∗‖ 6 ‖xTk − x∗‖+ 2γk−1

6 ‖xTk−1+1 − x∗‖+ 18γk−1

6 ‖x2 − x∗‖+ 18

k−1∑

j=1

γj

6 ‖x2 − x∗‖+ 18γk
6 ‖x1 − x∗‖+ 18γk + γ1

6 ‖x1 − x∗‖+ 19γk .

(36)

Thus, we have shown that with probability at least 1− δ/(1 + k)2

T2(k) 6 L
√
T`T (δ/(1 + k)2)

(γk
2

+ 76 (‖x1 − x∗‖+ 19γk) + 10(‖x1 − x∗‖+ 19γk) + 68γk

)

6 L
√
T`T (δ/(1 + kT)2)

(
86‖x1 − x∗‖+ (259 + 382)γk

)

6 L
√
T`T (δ/(1 + kT)2) (86‖x1 − x∗‖+ 1703γkT) .

Overall, by the union bound, we have with probability at least 1−∑∞k=1 δ/(1 + k)2 > 1− δ
kT∑

k=1

T2(k) 6 L
√
T`T (δ/(1 + kT)2)kT (86‖x1 − x∗‖+ 1703γkT) (37)

Regret bound Putting together (35) and (37), we obtain with probability 1− δ
T∑

t=1

(f(xt)− f(x∗)) 6 L
√
T`T (δ/(1 + kT)2)kT (87‖x1 − x∗‖+ 1704γkT) . (38)

Bounding the number of phases It remains to bound the number of phases kT . Fix some t > 1
and k > kt−1. Observe that for any k > 1, ‖x+

t (k) − xt‖ 6 γk. Then thanks to Lemma 7 and
Eq. (36) (which hold on exact same event that we consider in (38)), we have

‖x+
t (k)− x∗‖ 6 ‖xt − x∗‖+ γk 6 ‖xTkt+1 − x∗‖+ 16γkt + γk

6 ‖x1 − x∗‖+ 35γkt + γk 6 ‖x1 − x∗‖+ 36γk .

Hence, for all k > kt−1

‖x+
t (k)− x1‖ 6 2‖x1 − x∗‖+ 36γk 6 2γk∗ + 36γk .

Implying that kT 6 k∗.

Concluding In view of the bound kT 6 k∗ 6 log2(2Dγ0
/γ0) and γk∗ 6 2Dγ0

, we conclude that
with probability at least 1− δ

T∑

t=1

(f(xt)− f(x∗)) 6 3500LDγ0

√
T`T (δ/(1 + k∗)2) log2(2Dγ0/γ0) .

Note that the constant 3500 is certainly extremely pessimistic as we did not attempt to optimize it.

22

C.1 High probability bound

We slightly adapt a version of the Bernstein-Freedman inequality, derived in [CBLS05, Corolary 16],
improving log(T) dependency to log log(T).
Lemma 6 (a version of the Bernstein-Freedman inequality by [CBLS05]). Let X1, X2, . . . be a
martingale difference with respect to the filtration F = (Fs)s>0 and with increments bounded in
absolute values by K. For all t > 1, let

S2
t =

t∑

τ=1

E
[
X2
τ

∣∣Fτ−1

]

denote the sum of the conditional variances of the first t increments. Then, for all δ ∈ (0, 1) and
T > 1, with probability at least 1− δ,

max
t6T

t∑

τ=1

Xτ 6 2ST

√
ln

(
log2(2T)

δ

)
+ 3K ln

(
log2(2T)

δ

)
.

Proof. Let X∗T = maxt6T
∑t
s=1Xs. For k > 1 we have

P
[
X∗T >

√
4(S2

T +K2)`+
√

2K`/3; K−2S2
T ∈ [2k−1 − 1, 2k]

]

6 P
[
X∗T >

√
2k+1K2`+

√
2K`/3; K−2S2

T ∈ [2k−1 − 1, 2k]
]

6 P
[
X∗T >

√
2k+1K2`+

√
2K`/3; K−2S2

T 6 2k
]
6 e−`,

where the last inequality follows from Lemma 15 in [CBLS05]. Since 0 6 K−2S2
T 6 T , we take a

union bound over k = 1, . . . , dlog2(T)e and notice that
√

4(S2
T +K2)`+

√
2K`/3 6 2

√
S2
T `+ 3K` .

The next result is a version of Lemma 1, that was used to analyze deterministic setup, which accounts
for the stochasticity.
Lemma 7. Let ρ be a bounded stopping time with respect to the filtration F of the stochastic
gradients. Let δ ∈ (0, 1), T > 1, x′1 ∈ Fρ and consider `T (δ) := 1 ∨ log(log2(2T)/δ),

x′t+1 = x′t −
γ

L
√
T`T (δ)

gρ+t .

Assume that T, δ are such that T > 1, then with probability at least 1− δ we have for all τ 6 T

‖x′τ − x∗‖ 6 ‖x′1 − x∗‖+ 16γ ,
τ∑

t=1

(f(x′t)− f∗) 6 L
√
T`T (δ)

(
γ

2
+
‖x′1 − x∗‖2 − ‖x′τ+1 − x∗‖2

2γ
+ 10‖x′1 − x∗‖+ 68γ

)

simultaneously.

Proof. To simplify the expressions, we drop the primes, writing xt for x′t, and we set η = γ

L
√
T`T (δ)

.

Using classical analysis of projected gradient descent, we obtain
∑

t6τ

〈gρ+t, xt − x∗〉 6
ηL2

2
+
‖x1 − x∗‖2 − ‖xτ+1 − x∗‖2

2η
. (39)

Introducing the following martingale difference

Xt = 〈∇f(xt)− gt+ρ, xt − x∗〉 ,
we deduce from the above, and the fact that τ 6 T

τ∑

t=1

(f(xt)− f(x∗)) 6
ηL2T

2
+

1

2η

(
‖x1 − x∗‖2 − ‖xτ+1 − x∗‖2

)
+

τ∑

t=1

Xt . (40)

23

Dealing with randomness. Now we are in position to apply Freedman-Bernstein inequality recalled
in Lemma 6.

To this end, we need to bound Xt and get an appropriate expression for St. First observe that each
martingale difference satisfies

|Xt| 6 2L‖xt − x∗‖ almost surely . (41)

Furthermore, by the triangle inequality, property of projection and the fact that ‖gt‖ 6 L almost
surely, we obtain

‖xt − x∗‖ 6 ‖xt−1 − ηgρ+t−1 − x∗‖ 6 ‖xt−1 − x∗‖+ ηL 6 ‖x1 − x∗‖+ ηLT, ∀t 6 T + 1 .

Hence,

|Xt| 6 K := 2L ‖x1 − x∗‖+ 2L2Tη, ∀t 6 T + 1.

The conditional variance S2
T can be bounded using (41) as

ST 6 2L

√√√√
T∑

t=1

‖xt − x∗‖2 6 2L
√
T max

t6T
‖xt − x∗‖ almost surely .

Thus, invoking Lemma 6, for any δ ∈ (0, 1) with probability at least 1− δ,

max
τ6T

τ∑

t=1

Xt 64Lmax
t6T
‖xt − x∗‖

√
T`T (δ) + 6L(‖x1 − x∗‖+ LηT)`T (δ) . (42)

From now on, we work on this event which holds with probability at least 1− δ.

Substituting (42) into (40), we get for all τ 6 T

τ∑

t=1

(f(xt)− f(x∗)) 6
ηL2T

2
+
‖x1 − x∗‖2 − ‖xτ+1 − x∗‖2

2η
+ 4LΦT

√
T`T (δ)

+ 6L(‖x1 − x∗‖+ LηT)`T (δ) ,

(43)

where ΦT = maxt6T ‖xt − x∗‖.

Bounding the trajectory. Observing that the left hand side of (43) is non-negative and that it holds
for all τ 6 T , we deduce

max
06τ6T

‖xτ+1 − x∗‖2 6
(
‖x1 − x∗‖2 + 12Lη`T (δ)‖x1 − x∗‖

)
+ (1 + 12`T (δ)) η2L2T

+ 8LηΦT
√
T`T (δ) .

Solving the above inequality, we deduce that

ΦT 6
√

(‖x1 − x∗‖+ 6Lη`T (δ))2 + (1 + 28`T (δ)) η2L2T + 4Lη
√
T`T (δ)

6 ‖x1 − x∗‖+ 6Lη`T (δ) + ηL
√

(1 + 28`T (δ))T + 4Lη
√
T`T (δ) .

Substituting the value of η, we further deduce that

max
t6T
‖xt − x∗‖ 6 ‖x1 − x∗‖+ γ

(√
1 + 28`T (δ)

`T (δ)
+ 4 + 6

√
`T (δ)

T

)

6 ‖x1 − x∗‖+ γ
(√

29 + 4 + 6
)

︸ ︷︷ ︸
615.5

.
(44)

24

Bounding the regret On the other hand, substituting (42) into (40), we obtain
τ∑

t=1

(f(xt)− f∗) 6
ηL2T

2
+
‖x1 − x∗‖2 − ‖xτ+1 − x∗‖2

2η

+ 4Lmax
t6T
‖xt − x∗‖

√
T`T (δ) + 6(L‖x1 − x∗‖+ L2ηT)`T (δ) .

Substitution of (44) into the above inequality, yields
τ∑

t=1

(f(xt)− f∗) 6
ηL2T

2
+
‖x1 − x∗‖2 − ‖xτ+1 − x∗‖2

2η

+ 4L (‖x1 − x∗‖+ 15.5γ)
√
T`T (δ) + 6(L‖x1 − x∗‖+ L2ηT)`T (δ) .

Recalling that η = γ/(L
√
T`T (δ)) and using some rough bounds, we deduce that

τ∑

t=1

(f(xt)− f∗) 6L
√
T`T (δ)

γ

2
+
‖x1 − x∗‖2 − ‖xτ+1 − x∗‖2

2γ
+ (4 + 6)︸ ︷︷ ︸

=10

‖x1 − x∗‖+ (4× 15.5 + 6)︸ ︷︷ ︸
=68

γ

 .

The proof is complete.

25

D On a relation with [MS12]

In case where there exists a known bound ‖gt‖ 6 L on the norms of the subgradients, MacMahan
and Streeter [MS12] propose to tune the step size of gradient descent with a scheme based on a
reward doubling argument and cold-restart. Their theory works in a setup of unconstrained online
convex optimization with L-bounded subgradients. Since we do not require Lipschitz functions, and
we additionally handle the projection step, the two results cannot be directly compared. Nevertheless,
there are some similarities and, in a specific instantiation of our Algorithm 1, we recover that
of [MS12].

Below, we sketch the relation between the two, considering the setting of MacMahan and
Streeter [MS12], where the norms of the subgradients are bounded by some known L and the
optimization is unconstrained, i.e. Θ = Rd. We also assume that the time horizon T is known,
since unknown T is handled in MacMahan and Streeter [MS12] by a time-doubling trick. Using our
notation, their analysis starts with a simple bound

T∑

t=1

(ft(xt)− ft(x∗)) 6
T∑

t=1

〈gt, xt − x∗〉 =

T∑

t=1

〈gt, x1 − x∗〉+

T∑

t=1

〈gt, xt − x1〉

6 ‖
T∑

t=1

gt

︸ ︷︷ ︸
=:GT

‖‖x1 − x∗‖ −
T∑

t=1

〈gt, x1 − xt〉
︸ ︷︷ ︸

=:QT

= ‖GT ‖‖x1 − x∗‖ −QT .

They observe, using a duality argument, that it is sufficient to show that

QT > a−1 exp
(
‖GT ‖/(bL

√
T)
)
− c, (45)

in order to derive
T∑

t=1

(ft(xt)− ft(x∗)) 6 b‖x1 − x∗‖L
√
T log

(
ab‖x1 − x∗‖L

√
T
)

+ c .

The principle of their algorithm is to perform gradient descent by phases and, during a phase, to
track the reward Qt relative to this phase, and restart with a doubled step-size when the condition
Qt > ηL2t is met. This step-size doubling ensures that the Condition (45) is met at the time horizon
T .

Let us relate this algorithm with a specific instantiation of our Algorithm 1. When the algorithm is the
simple Gradient Descent (GD), that does not involve the projection step, we have xT+1−x1 = −ηGT
for the GD with a fixed step size η. Hence, it holds that

QT =

T∑

t=1

〈gt, x1 − xt〉 = η

T∑

t=1

〈gt, Gt−1〉 =
η

2

T∑

t=1

(
‖Gt‖2 − ‖Gt−1‖2 − ‖gt‖2

)

=
η

2

(
‖GT ‖2 −

T∑

1

‖gt‖2
)

=
1

2η
‖xT+1 − x1‖2 −

1

2η
Γ̃2
T+1

where Γ̃2
T+1 =

∑T
1 η

2‖gt‖2. Thus, if in Algorithm 1 we allow cold restarts (the exact thing that we
want to avoid), then the condition

‖x+
T (η)− x1‖2 6 2η2L2T + Γ̃2

T + η2‖gT ‖2
is equivalent to their doubling condition

QT 6 ηL2T .

In our notation, the algorithm of MacMahan and Streeter [MS12] corresponds to a variant of
Algorithm 1 with

B̃t+1(k) =

√(
2 +
‖gt‖2
L2T

)
γ2
k + Γ2

t − Γ2
Tk−1 ,

with the major difference that a cold-restart is performed when kt is increased, and the minor
difference that step-size doubling happens after (and not before) the condition

∥∥x+
t (k)− x1

∥∥ 6
B̃t+1(k) is broken.

26

E Auxiliary results

Let (at)t>1 be a non-negative sequence, and St =
∑t
τ=1 aτ . For any concave function F on [0,+∞),

we have
T∑

t=1

atF
′(St) 6

T∑

t=1

(F (St)− F (St−1)) = F (ST)− F (0). (46)

Applying (46) with F (x) = 2
√
x, F ′(x) = 1/

√
x, we get the following bound.

Lemma 8. Let (at)t>1 be a non-negative sequence and St =
∑t
τ=1 aτ , then for all ε > 0

T∑

t=1

at√
St

6 2
√
ST .

The inequality (46) with F (x) = log(log(e(1 + x))), F ′(x) = ((1 + x) log(e(1 + x)))−1 gives the
next lemma (the first inequality follows directly from Lemma 8).

Lemma 9. Let (at)t>1 be a non-negative sequence and St =
∑t
τ=1 aτ , then for all ε > 0

T∑

t=1

at√
(St + 1) log(e(1 + St))

6 2
√
ST ,

T∑

t=1

at
(St + 1) log(e(1 + St))

6 log(log(e(1 + ST))) .

Using (46), with F (x) = log(x), we deduce that

Lemma 10. Let (at)t>1 be a non-negative sequence and St =
∑t
τ=1 aτ , then

T∑

t=1

at
St

= 1 +

T∑

t=2

at
St

6 1 + log(ST /S1) . (47)

Using (46), with F (x) = log(ε+ x), we deduce that

Lemma 11. Let (at)t>1 be a non-negative sequence and St =
∑t
τ=1 aτ , then

T∑

t=1

at
ε+ St

6 log(1 + ST /ε) . (48)

Lemma 12. Let us define k̄ as the smallest integer fulfilling k̄−1/22k̄ > 2k
∗
. Then

k̄ 6 k∗ + 0.5 log2(k∗) + 1.25 .

Proof. We observe that k̄ = 1 for k∗ = 1. We will prove that

k̄ 6 dk∗ + 0.5 log2(k∗) + 0.25e 6 k∗ + 0.5 log2(k∗) + 1.25 .

For proving the first inequality, we only need to prove that 2y/
√
y > 2k

∗
for y = k∗+ 0.5 log2(k∗) +

0.25. Plugging the value of y and taking the square, we get

2y√
y
> 2k

∗ ⇔ 21/42k
∗√
k∗√

k∗ + 0.5 log2(k∗) + 0.25
> 2k

∗ ⇔
√

2 k∗ > k∗ + 0.5 log2(k∗) + 0.25 .

So, all we need is to prove by induction that
√

2 k∗ > k∗ + 0.5 log2(k∗) + 0.25 .

For k∗ = 2, the inequality holds. By induction hypothesis, for k∗ > 2

√
2(k∗ + 1) > (k∗ + 1) +

1

2
log2(k∗) +

1

4
+
√

2− 1 .

27

Thus, it suffices to show that

1

2
log2(k∗) +

√
2− 1 >

1

2
log2(k∗ + 1), for all k∗ > 2 ,

or equivalently

1

2
log2

(
1 +

1

k∗

)
+ 1 6

√
2, for all k∗ > 2 ,

to prove the induction. The concavity of log2 ensures that log2(1 + x) 6 x/ ln(2) for all x > −1.
Thus, for all k∗ > 2

1

2
log2

(
1 +

1

k∗

)
+ 1 6

1

2 ln(2)k∗
+ 1 6

1

4 ln(2)
+ 1 6

√
2 ,

which concludes the proof of Lemma 12.

28

	Introduction
	Main result
	Warm-up: simple analysis and intuition
	Improving log factor by better tuning of Bt+1(k)

	Meta theorem: a general case of Algorithm 1
	Applications of Theorem 2: specific choices of (ht)t 1

	An extension to stochastic optimization
	Experiments
	Discussion
	Proofs of the results of the warm-up Section 3
	Proofs for Section 4
	Basic analysis for AdaGrad and Proof of Lemma 1
	Proofs of corollaries in Section 4

	Analysis for stochastic PGD in Section 5: proof of Theorem 3
	High probability bound

	On a relation with mcmahan2012no
	Auxiliary results

