

The Balkans Continued Fraction

David Naccache, Ofer Yifrach-Stav

▶ To cite this version:

David Naccache, Ofer Yifrach-Stav. The Balkans Continued Fraction. 2023. hal-04105623v5

HAL Id: hal-04105623 https://hal.science/hal-04105623v5

Preprint submitted on 3 Aug 2023 (v5), last revised 18 Apr 2024 (v15)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Public Domain

The Balkans Continued Fraction

David Naccache¹ and Ofer Yifrach-Stav¹

DIÉNS, ÉNS, CNRS, PSL University, Paris, France 45 rue d'Ulm, 75230, Paris cedex 05, France ofer.friedman@ens.fr, david.naccache@ens.fr

Abstract. In a previous article we gave a collection of continued fractions involving Catalan's constant. In this note we provide more general formulae governing those continued fractions. Having distinguished different cases associated to regions in the plan, we nickname those continued fractions "The Balkans" as they divide into areas which are related but still different in nature.

Because we do not provide formal proofs of those machine-constructed formulae we do not claim them to be theorems. Still, each and every proposed formula was extensively tested numerically.

1 Introduction

In a previous article [6] we gave a collection of continued fractions involving Catalan's constant. In this note we provide more general formulae governing those continued fractions. Having distinguished different cases associated to regions in the plan, we nickname those continued fractions "The Balkans" as they divide into areas which are related but still different in nature.

Because we do not provide formal proofs of those machine-constructed formulae we do not claim them to be theorems. Still, each and every proposed formula was extensively tested numerically.

All the programs included in this article are *self-contained*, i.e. any code snippet can be run independently of the others to fully illustrate the encoded formula. This renders the code longer but has the great advantage of allowing the reader to run and modify each snippet directly, by just cutting and pasting it into Mathematica without requiring any other module¹. The code was compacted for the sake of concision but loading it into Mathematica's editor re-indents it automatically.

2 Notations

We denote by *n*!! the semifactorial of, i.e. the product of all the integers from 1 up to *n* having the same parity as *n*:

¹ Each snippet ends by a ClearAll["Global`*"]; command whose purpose is to make Mathematica "forget" all passed history.

$$n!! = \prod_{k=0}^{\left\lceil \frac{n}{2} \right\rceil - 1} (n - 2k) = n(n - 2)(n - 4) \cdots$$

Because in all the following we will only apply semifactorials to odd numbers, this can simplified as:

$$n!! = \prod_{k=1}^{\frac{n+1}{2}} (2k-1) = n(n-2)(n-4)\cdots 3\cdot 1$$

We denote by Catalan's constant by G = 0.91596559... and let C_n be the *n*-th Catalan number:

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{(n+1)! \, n!} = \prod_{k=2}^n \frac{n+k}{k} \qquad \text{for } n \ge 0$$

The first Catalan numbers are:

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, ...

3 The target

We define for odd *j* and $\kappa, c \in \mathbb{N}$ the following quantity nicknamed "The Balkans" continued fraction:

$$Q_{j,\kappa,c} = j(2-j+2\kappa) + \bigwedge_{n=1}^{\infty} \left(\frac{-2n(c+n)(j+n-1)(1-j+2\kappa+n)}{j(2-j+2\kappa) + (3+4\kappa)n + 3n^2} \right)$$

The question asked is that of finding a general process allowing to compute $Q_{j,\kappa,c}$ while resorting as *little as possible* to numerical simulations or integer relation algorithms. The reason for this is that while integer relation algorithms allow us to "magically" discover relations, they do not provide *general information* about the underlying structure of the constants found.

3.1 How formulae were reverse-engineered

The process that allowed us to reverse-engineer the formulae given in this paper is interesting by its own right. A quick look at many examples of the three quantities a_0, a_1, a_2 forming the fractions:

$$Q_{j,\kappa,c} = \frac{a_0}{a_1 + a_2 G}$$
 where $a_0, a_1, a_2 \in \mathbb{Z}$

showed that the a_i s are products of small prime factors and a few large prime factors. This suggested that a_i s were initially² of some form:

² i.e., before simplification intervenes.

$$a_i = \operatorname{expression}(j, \kappa, c) = \frac{\prod_{i=0}^{u-1} \phi_i(j, \kappa, c)}{\prod_{i=0}^{v-1} \phi_i(j, \kappa, c)}$$

where the ϕ_i are functions such as (an+b)!, 2^{an+b} , (an+b)!!, C_{an+b} , Pochhammer symbols of linear combinations of the parameters j, κ, c etc. and a few unknown "mixing" functions causing the appearance of the large prime factors, e.g. polynomials or recurrence relations.

Fortunately, integer relation algorithms allow us to collect many instances of such forms for diverse j, κ, c values. Hence the problem at hand consists in inferring which ϕ_i s are compatible with the cancellations due to the division. If a given ϕ is present in the expression then it is reasonably assumed that when tried for many j, κ, c the new expression:

$$\operatorname{expression}_1(j,\kappa,c) = \frac{\operatorname{expression}(j,\kappa,c)}{\phi(j,\kappa,c)}$$

or

expression₁ (j, κ, c) = expression $(j, \kappa, c) \cdot \phi(j, \kappa, c)$

will feature less small factors.

The process can hence be repeated with proper back-tracking until all the combinatorial ϕ_i s were peeled-off. Then it remains to detect what the remaining "mixing" functions are which is done by monitoring the average growth rate of those surviving constants to emit hypotheses on the type of recurrence relation (or polynomial) at hand and by resorting to a variety of integer sequence recognition tools allowing to identify the hidden culprits.

- We started the exploration with the simplest case of Bosnia & Herzegovina where $a_2 = 0$.
- Having reverse-engineered Bosnia & Herzegovina we moved to Croatia where $a_2 = 0$ as well.
- The conjectured similarity between those \mathbb{Q} regions allowed to guide the software in the formula for Montenegro which is somewhat simpler that Kosovo and Serbia given that Montenegro is the first case involving *G* where j = 1.
- Having interred Montenegro we moved on to Kosovo whose symmetry with Serbia was quickly noted.

The present work demonstrates the interest of statistical classifiers such as Maximum Likelihood Estimation (MLE) and Support Vector Machines (SVM) in mathematical exploration.

As will be shown here, this "gradient descent" method proved itself very well, although it required a few thousands of computation hours on a very powerful cluster.

We estimate that 80% of the discovery effort was done by the machine, the remaining 20% are human guidance that, we are convinced, is at the reach of today's most powerful LLMs such as Gemini.

4 Kosovo, Serbia, Croatia, Montenegro, Bosnia & Herzegovina

As we will see, we distinguish are five cases that we call Kosovo, Serbia, Croatia, Montenegro and Bosnia & Herzegovina after the regions of interest in the (j, κ) -space shown in Figure 1. In each region *c* runs over the integers.

Area	Domain	$Q_{j,\kappa,c}$ is in
Croatia	$j \ge 2\kappa + 5$	Q
Bosnia & Herzegovina	$j = 2\kappa + 3$	Q
Serbia	$2\kappa + 1 \ge j \ge \kappa + 3$	R
Kosovo	$\kappa + 2 \ge j \ge 3$	R
Montenegro	<i>i</i> = 1	R

Table 1. Areas. We list fractions involving *G* as being in \mathbb{R} although it is currently unknown if $G \in \mathbb{Q}$ (this is a major open problem).

A first restriction of our study will be to focus on odd j that produce $Q_{j,\kappa,c}$ values involving G. Note that:

$$Q_{j,c,\kappa} = \begin{cases} \frac{a_0}{a_1 + a_2 G} & \text{if } j \text{ is odd} \\ \frac{a_0}{a_1 + a_2 \log 2} & \text{if } j \text{ is even} \end{cases}$$

Note as well that j,κ,c can be negative. In the examples given in the appendix we adopt the notation:

$$\frac{a_0}{a_1 + a_2 \cdot \text{constant}} = T(0) + \bigwedge_{n=1}^{\infty} \left(\frac{P(n)}{T(n)}\right)$$

This paper will not treat the even and negative j, κ, c cases (a follow-up paper dealing with those cases being underway).

5 The Montenegro Conjecture

We start with the first j,κ space called Montenegro. Montenegro corresponds to the case j = 1. In other words we consider:

$$Q_{1,\kappa,c} = 2\kappa + 1 + \bigwedge_{n=1}^{\infty} \left(\frac{-2n^2(n+2\kappa)(n+c)}{3n^2 + (3+4\kappa)n + 2\kappa + 1} \right)$$

Define the functions:

Fig. 1. The Five *j*, *k* Areas. The meaning of the arches connecting Kosovo, Serbia, and Montenegro will be clarified later.

Fig. 2. The areas of Figure 1, with the dimension *c* added.

$$\begin{split} \Delta_{\kappa,c}(\alpha,\beta) &= \begin{cases} \alpha + \beta c & \text{if } c < 2\\ -2c(2c-1)(2(c-\kappa)-1)^2 \Delta_{\kappa,c-2} & \text{if } c \geq 2\\ +(8c^2 + (2-8\kappa)c - 2\kappa + 1)\Delta_{\kappa,c-1} & \\ \\ \Gamma_{\kappa,c}(\alpha,\beta) &= (2c-1)!!^2 G + \Delta_{\kappa,c-1}(\alpha,\beta) \cdot \prod_{i=0}^{\kappa-1} (2(c-i)-1) \\ \delta_{\kappa} &= \frac{4^{\kappa-1}}{(2\kappa-1)C_{\kappa-1}} & \text{and } \rho_{\kappa} &= \frac{\delta_{\kappa}(-1)^{\kappa}(1-2\kappa)}{(2\kappa)!(2\kappa-3)!!} \\ \alpha_{\kappa} &= \rho_{\kappa} \Delta_{1,\kappa-1}(1,-2) & \text{and } \beta_{\kappa} &= -\rho_{\kappa}(2\kappa-3)^2 \Delta_{2,\kappa-1}(1,12) - \alpha_{\kappa} \\ & \text{Then } \forall \kappa, c \in \mathbb{N}^2, \ Q_{1,\kappa,c} &= \frac{\delta_{\kappa}(2c)!}{\Gamma_{\kappa,c}(\alpha_{\kappa},\beta_{\kappa})} \end{split}$$

 $Q_{1,\kappa,c}$ is hence an explicitly computable fraction of the form:

$$Q_{1,\kappa,c} = \frac{a_0}{a_1 + a_2 G}$$
 where $a_0, a_1, a_2 \in \mathbb{Z}$

The code snippet testing this formula over the square $1 \le \kappa, c \le 14$ is entitled "1. Montenegro".

In summery in Montenegro we do not need to resort to any integer relation algorithms to compute $Q_{1,\kappa,c}$ for all κ, c values.

Fig. 3. Functional dependency between the functions computing $Q_{1,\kappa,c}$

Remark 1. Note that, as described here, the complexity of $\Delta_{\kappa,c}$ is exponential in *c*, however, using classical Fibonacci memoization, this complexity can be reduced to O(c) thereby resulting in a very efficient algorithm for computing $Q_{1,\kappa,c}$.

6 The Bosnia & Herzegovina Conjecture

Bosnia & Herzegovina corresponds to the line $2\kappa = j - 3$, that is:

$$Q_{j,\frac{j-3}{2},c} = -j + \bigwedge_{n=1}^{\infty} \left(\frac{-2n(n-2)(n+c)(n+j-1)}{3n^2 + (2j-3)n-j} \right)$$

We start by defining:

$$\alpha_j = (-2)^{\frac{3j-11}{2}}$$
 and $\beta_j = \alpha_j (15 - 4j)$

And let:

$$\Delta_{j,c} = \begin{cases} \alpha_j + \beta_j c & \text{if } c < 2\\ -2c(2c-j)(2c+1)(2c-j+2)\Delta_{j,c-2} & \text{if } c \ge 2\\ + (8c^2 + (14-4j)c - 3(j-2))\Delta_{j,c-1} & \end{cases}$$

$$g(j,c) = (2c)! 2^{\frac{3j-13}{2}} \prod_{i=1}^{\frac{j-1}{2}} (2c-2i+1)(j-2-2i)$$

$$h(j,c) = (2c - j + 2) \prod_{i=1}^{\frac{j-5}{2}} (2c - 2i - 1)^2$$

Then:

$$Q_{j,\frac{j-3}{2},c} = \frac{g(j,c)}{\Delta_{j,c-1} \cdot h(j,c)}$$

Hence, in Bosnia & Herzegovina as well we do not need to resort to any integer relation algorithms to compute $Q_{j,\frac{j-3}{2},c}$ which is an explicitly computable fraction in Q.

The corresponding code snippet is "2. Bosnia". We conjecture that Bosnia & Herzegovina is actually a particular case of Croatia which values are also in \mathbb{Q} .

7 Roadmap

We are now ready to describe the general scheme that will govern the rest of this paper.

7.1 Areas governed by one running variable

As we have just seen, Montenegro and Bosnia & Herzegovina follow similar behaviors. This pattern revolves around the "magic" values α , β which are formally known for Montenegro and Bosnia & Herzegovina. Both regions are lines parameterized by a single running variable (κ for Montenegro and j for Bosnia & Herzegovina).

7.2 The *c*-level master formula for all Balkans except Montenegro

Except Montenegro (whose case was settled) all other areas obey a common *c*-level master formula that we will provide below. Computing $Q_{j,\kappa,c}$ for any *c* using this *c*-level master formula requires knowledge of two rational parameters: $\alpha_{j,\kappa}$ and $\beta_{j,\kappa}$.

The cornerstone of the rest of this paper is thus the quest for $\alpha_{j,\kappa}$ and $\beta_{j,\kappa}$ for all Balkan areas except Montenegro.

 $\alpha_{j,\kappa}, \beta_{j,\kappa}$ can always be inferred by computing numerically³ Q_{j,κ,c_1} and Q_{j,κ,c_2} for two values $c_1 \neq c_2$ and solving a system of two equations in the unknowns $\alpha_{j,\kappa}, \beta_{j,\kappa}$.

When $\alpha_{i,\kappa}$, $\beta_{i,\kappa}$ are found $Q_{i,\kappa,c}$ can be computed for any other $c \notin \{c_1, c_2\}$.

Using this process requires resorting twice to integer relation algorithms such as LLL [5], HJLS [4], PSOS [1,2] or PSLQ [3]. This works perfectly in practice but is not entirely satisfactory because the process has a "blind spot" which

³ i.e. using an integer relation algorithm.

is the integer relation oracle. We would like to avoid such blind spots as much as possible and dispose of a fully algebraic process for computing each $Q_{j,\kappa,c}$. The ideal situation being, of course, a direct algebraic computation of $Q_{j,\kappa,c}$ from the data j,κ,c alone.

While we do not achieve this goal completely, we grandly progress towards it by minimizing a lot the call to the integer relation oracle.

Fig. 4. *j*, κ and *c*-level master formulae. *j*-level master formulae (dotted) are only conjectured to exist. To date we have processes for inferring *c*-level and κ -level master formulae.

The snippet "3. Northern Balkans" illustrates the process with all areas except Montenegro. The snippet validates the *c*-level master formula on the 3D volume $3 \le j \le 13$, $1 \le \kappa \le 6$, $1 \le c \le 7$ (Figure 10) stretching over parts of Croatia, Bosnia & Herzegovina, Serbia and Kosovo. In each case the program derives the corresponding $\alpha_{j,\kappa}$, $\beta_{j,\kappa}$ and allows the computing of $Q_{j,\kappa,c}$ for any *c*. The formally computed results are then successfully compared to numerical ones.

As we will later see, for Serbia and Kosovo we have more powerful master formulae operating at the κ -level.

The *c*-level master formula⁴ is defined as follows, assuming that we are somehow given the magic constants $\alpha_{j,\kappa}$, $\beta_{j,\kappa}$.

Let:

$$\Delta_{j,\kappa,c}(\alpha_{j,\kappa},\beta_{j,\kappa}) = \begin{cases} \alpha_{j,\kappa} + \beta_{j,\kappa}c & \text{if } c < 2\\ -2c(2c-j)(2c-2\kappa+j-2)(2c-2\kappa-1)\Delta_{j,\kappa,c-2}(\alpha_{j,\kappa},\beta_{j,\kappa}) & \text{if } c \ge 2\\ +(8c^2+(2-8\kappa)c+(j-2)(2\kappa-j))\Delta_{j,\kappa,c-1}(\alpha_{j,\kappa},\beta_{j,\kappa}) & \text{if } c \ge 2 \end{cases}$$

$$f_{j,\kappa,c} = C_{\frac{j-3}{2}}C_{\kappa-1}(j-2)(2\kappa-1)(2c-1)!!^2 \prod_{i=1}^{\frac{j-1}{2}} (2c-2\kappa+2i-1)(\kappa-i+1)$$

⁴ valid for all areas except Montenegro whose case was anyhow previously settled.

$$g_{j,\kappa,c} = (2c)! 2^{\frac{j+4\kappa-7}{2}} \prod_{i=1}^{\frac{j-1}{2}} (2c-2i+1)(2\kappa-2i+1)$$
$$h_{j,\kappa,c} = \prod_{i=0}^{\frac{j-3}{2}} (2c-2i-1) \prod_{i=0}^{\kappa-1} (2c-2i-1)$$

Then:

$$Q_{j,\kappa,c} = \frac{g(j,\kappa,c)}{\Delta_{j,\kappa,c-1}(\alpha_{j,\kappa},\beta_{j,\kappa}) \cdot h(j,\kappa,c) + f(j,\kappa,c) \cdot G}$$

7.3 Symmetries

Montenegro, Kosovo and Serbia feature internal symmetries illustrated by the arches in Figures 1 where connected values are identical. We will also provide a formula connecting α , β values over the plan. This means that any formula applicable to Kosovo will also settle the case of Serbia (given that Montenegro is settled and given that Montenegro provides the values for the upper border line of Serbia). We will come to that later on.

8 The Kosovo Conjecture

Kosovo is very specific in that it has a κ -level master formula. This means that for each *j*, knowledge of four upper-level rational constants:

$$\{\overline{\alpha}_{j},\overline{\beta}_{j}\} = \left\{\{\stackrel{\alpha}{\alpha}_{j},\stackrel{\beta}{\alpha}_{j}\},\{\stackrel{\alpha}{\beta}_{j},\stackrel{\beta}{\beta}_{j}\}\right\}$$

allows to generate $\alpha_{j,\kappa}$, $\beta_{j,\kappa}$ for all κ values along a *j*-line within Kosovo.

Finding $\overline{\alpha}_j$, $\overline{\beta}_j$ for a given j requires solving a system of equations using four known α_{j,κ_1} , β_{j,κ_1} , α_{j,κ_2} , β_{j,κ_2} for some $\kappa_1 \neq \kappa_2$. To determine the two α_{j,κ_i} , β_{j,κ_i} pairs⁵ we can solve two systems of equations (each in two unknowns) using any Q_{j,κ_1,c_1} , Q_{j,κ_1,c_2} , Q_{j,κ_2,c_3} and Q_{j,κ_2,c_4} . Note that there is no opposition to take $c_1 = c_3$ and $c_2 = c_4$. This process is illustrated in Figure 5.

8.1 The Kosovo κ -level master formula

The κ -level master formula for Kosovo allows to infer $\alpha_{j,\kappa}$, $\beta_{j,\kappa}$ from $\overline{\alpha}_j$, $\overline{\beta}_j$ for a fixed j and a variable κ .

In other words, the Kosovo κ -level master formula generates for a fixed j and for a variable κ the data $\alpha_{j,\kappa}$, $\beta_{j,\kappa}$ necessary to operate the general *c*-level master formula given in subsection 7.2.

⁵ for $i \in \{1, 2\}$.

Fig. 5. *κ*-level resolution process for Kosovo.

Recall that the *c*-level master formula of subsection 7.2 generates for a fixed j, κ and a variable *c* a formal expression of the continued fraction $Q_{j,\kappa,c}$, given the auxiliary input $\alpha_{j,\kappa}, \beta_{j,\kappa}$.

Define:

$$\pi(j,\kappa) = \prod_{i=0}^{\frac{j-3}{2}} (\kappa-i)(2\kappa-2i-1)^2$$

$$\ell(n, j, \kappa) = \frac{(-1)^{\kappa+1} (2\kappa)!^2}{\kappa! 2^{3\kappa-2} (2\kappa-j)(2\kappa-1)(n((2\kappa-j-2)(3-2\kappa)-1)+1) \cdot \pi(j, \kappa))}$$

$$\eta(n, j, \kappa) = (2\kappa + 2j - 9 - 2n)(2\kappa + j - 8 - 2n)(-2\kappa + 5 - j)(2\kappa + j - 6)$$

$$\phi(n, j, \kappa) = 8\kappa^2 + \kappa(10j - 48 - 8n) + 3j^2 - (28 + 4n)j + 68 + 18n$$

$$\bar{\Delta}_{n,j,\kappa}(\alpha,\beta) = \begin{cases} \alpha + \beta\kappa & \text{if } \kappa < 2\\ \eta(n,j,\kappa) \cdot \bar{\Delta}_{n,j,\kappa-2} + \phi(n,j,\kappa) \cdot \bar{\Delta}_{n,j,\kappa-1} & \text{if } \kappa \ge 2 \end{cases}$$

We assume that we are given the four constants:

$$\{\overline{\alpha}_{j},\overline{\beta}_{j}\} = \left\{\{\stackrel{\alpha}{\alpha}_{j},\stackrel{\beta}{\alpha}_{j}\},\{\stackrel{\alpha}{\beta}_{j},\stackrel{\beta}{\beta}_{j}\}\right\}$$

Then:

$$\alpha_{j,\kappa} = \frac{\bar{\Delta}_{0,j,\kappa-j+2}(\overset{\alpha}{\alpha}_{j},\overset{\beta}{\alpha}_{j})}{\ell(0,j,\kappa)} \text{ and } \beta_{j,\kappa} = \frac{\bar{\Delta}_{1,j,\kappa-j+2}(\overset{\alpha}{\beta}_{j},\overset{\beta}{\beta}_{j})}{\ell(1,j,\kappa)} - \alpha_{j,\kappa}$$

The process is illustrated by the code snippet "4. Kosovo".

The computation of the "magic" lists of constants $\{\alpha_j, \beta_j\}$ hard-coded in the snippet "4. Kosovo" is done by resorting to integer relation resolution in snippet "5. resolution".

Remark 2. It is interesting to note that thanks to the inner symmetry within Kosovo, it is possible to determine $\overline{\alpha}_{j+2}, \overline{\beta}_{j+2}$ if $\overline{\alpha}_j, \overline{\beta}_j, \overline{\alpha}_{j+4}, \overline{\beta}_{j+4}$ are known. Taking as an example j = 5, Figure 1 shows that $Q_{5,3,c} = Q_{3,3,c}$. Hence knowledge of $\overline{\alpha}_3, \overline{\beta}_3$ will be used to compute $Q_{3,3,c}$ which is identical to $Q_{5,3,c}$.

Note that $Q_{5,5,c} = Q_{7,5,c}$. Hence knowledge of $\overline{\alpha}_7, \overline{\beta}_7$ will be used to compute $Q_{7,5,c}$ which is identical to $Q_{5,5,c}$. Finally, having in hand $Q_{5,3,c}, Q_{5,5,c}$ we can solve a system in two unknowns and determine $\overline{\alpha}_5, \overline{\beta}_5$. Unfortunately this process has an information flow that only operates in "sandwich mode" allowing to determine $\overline{\alpha}_{j+2}, \overline{\beta}_{j+2}$ from $\overline{\alpha}_j, \overline{\beta}_j, \overline{\alpha}_{j+4}, \overline{\beta}_{j+4}$. This information flow cannot be reversed into an "escalator" allowing to ascend to level j + 4 from levels j and j + 2. The situation is illustrated in Figure 6 where $x \longrightarrow y$ denotes the relation "y is computable from x".

Remark 3. It is also possible to directly infer the $\alpha_{j,\kappa}$, $\beta_{j,\kappa}$ through symmetry. Note that the relation below also works for negative *j*, κ values.

Define:

$$\zeta(j, u) = \frac{1}{2^{u}} \prod_{i=0}^{u-1} (2 + 2i - j)$$

$$\tau_{j,u} = \begin{cases} \frac{\zeta(j, u)}{|\zeta(j, u)|} \cdot (2j - 2u - 3)!!(2u - j)!!(-2)^{u} & \text{if } 2u > j - 1\\ \zeta(j, u) \cdot (-4)^{u} & \text{otherwise} \end{cases}$$

Then:

$$\frac{\alpha_{j,j-u-1}}{\alpha_{j-2u,j-u-1}} = \frac{\beta_{j,j-u-1}}{\beta_{j-2u,j-u-1}} = \tau_{j,u}$$

In particular $\tau_{j,j-1} = \frac{1}{2j-4}$. The code is snippet "6. symmetry".

9 The Croatia Conjecture

We suspect that Bosnia & Herzegovina is actually a particular border case of Croatia.

Our automated software detected the following stunning behavior providing a κ -level formula for Croatia.

Let:

$$\mu_{i,j} = -(-2)^{\frac{3j-11-4i}{2}} \prod_{q=1}^{i} (j-2q-2)$$

Fig. 6. Inferring $\overline{\alpha}_{j+2}$, $\overline{\beta}_{j+2}$ from $\overline{\alpha}_j$, $\overline{\beta}_j$ and $\overline{\alpha}_{j+4}$, $\overline{\beta}_{j+4}$. The $Q_{j,\kappa,c}$ in green boxes are determined using integer relation algorithms.

For every i = 0, 1, 2, ... there exist two polynomials in j, denoted $\phi_1(i, j)$ and $\phi_2(i, j)$ such that for $j \ge 2i + 5$ we have:

$$\alpha_{j,\frac{j-2i-3}{2}} = \frac{\psi_1 i, j}{\mu(i,j)}$$
 and $\beta_{j,\frac{j-2i-3}{2}} = \frac{\psi_2 i, j}{\mu(i,j)}$

Tables 2 and 3 provide the first values of the polynomials ψ_1, ψ_2 . See code snippet "7. Croatia".

i	$\psi_1(i,j)$
0	-1
1	14-j
2	$-464 + 58j - 3j^2$
3	$27936 - 4692j + 432j^2 - 15j^3$
4	$-2659968 + 542256j - 67836j^2 + 4260j^3 - 105j^4$
5	$367568640 - 86278560j + 13203480j^2 - 1139700j^3 + 51450j^4 - 945j^5$

Table 2. $\psi_1(i, j)$ for $0 \le i \le 5$.

i	$\psi_2(i,j)$				
0	-15 + 4j				
1	$306 - 95j + 4j^2$				
2	$-13360 + 4646j - 357j^2 + 12j^3$				
3	$999648 - 379692j + 40368j^2 - 2457j^3 + 60j^4$				
4	$-113885568 + 46449360 j - 6124164 j^2 + 513228 j^3 - 22935 j^4 + 420 j^5$				
5	$18333538560 - 7933530720 j + 1224286440 j^2 - 126833100 j^3 + 7864950 j^4 - 266175 j^5 + 3780 j^6$				
	T-11-2 (t, t) for $0 < t < 5$				

Table 3. $\psi_2(i, j)$ for $0 \le i \le 5$.

Remark 4.

The leading coefficients of $\psi_1(i, j)$ (i.e. 1, 1, 3, 15, 105, 945,...) are (2i-1)!! whereas the leading coefficients of $\psi_2(i, j)$ (i.e. 4, 4, 12, 60, 420, 3780,...) are 4(2i-1)!!.

Remark 5. The ψ polynomials can always be written under a nested form, e.g.:

$$\begin{split} \psi_1(j,6) &= -\,14487726825 - (104826150 + (452605725 \\ &+ (121200300 + (13697775 + (640710 \\ &+ 10395 \cdot (j-27))(j-25))(j-23))(j-21))(j-19))(j-17) \end{split}$$

$$\begin{split} \psi_2(j,6) = & 3198013886925 + (145296572850 + (5207427225 \\ &+ (4353102000 + (877052475 + (78210090 + (3023055 \\ &+ 41580 \cdot (j-29))(j-27))(j-25))(j-23))(j-21))(j-17)) \end{split}$$

Remark 6. The GCD between the *u*-th coefficient of $\psi_1(i, j)$ and the *u*-th coefficient of $\psi_2(i, j)$ is always smooth as illustrated in the code snippet "8. coefficients".

10 Balkans Knowledge Summary

In summary:

- For Kosovo and Croatia we have κ -level formulae⁶.
- Any $Q_{j,\kappa,c}$ value in Montenegro is algebraically computable.
- Any $Q_{i,\kappa,c}$ value in Bosnia & Herzegovina is algebraically computable.
- Serbia is fully determined by our knowledge of Montenegro and Kosovo.

Fig. 7. The axes along which the κ -level master formulae operate in each area. We hence see that a finite amount of "magic" information per one dimension allows to algebraically compute $Q_{j,\kappa,c}$ over the two remaining dimensions.

Area	j-level formula	κ -level formula	<i>c</i> -level formula
Kosovo+Serbia	unknown	\checkmark	\checkmark
Croatia	unknown	\checkmark	\checkmark
Montenegro	not needed	\checkmark	\checkmark
Bosnia & Herzegovina	not needed	\checkmark	\checkmark

Table 4. Knowledge Summary

⁶ This means that oracle knowledge of $\overline{\alpha}_j, \overline{\beta}_j$ is required to generate $Q_{j,\kappa,c}$ for all κ, c . $\overline{\alpha}_j, \overline{\beta}_j$ can be inferred from any four $Q_{j,\kappa_1,c_1}, Q_{j,\kappa_1,c_2}, Q_{j,\kappa_2,c_3}, Q_{j,\kappa_2,c_3}$ values.

We conjecture that there exists (possibly very complex) *j*-level master formulae for all regions allowing to algebraically access any $Q_{j,\kappa,c}$ value. Another challenge, on which the authors are currently working, is characterizing the case of even *j* values (that yield formulae involving log 2) and negative *j*, κ , *c* values.

As a motivational example let us unveil the simple log 2 example $Q_{2,\kappa,0}$. In this case:

$$Q_{2,\kappa,0} = \frac{(-1)^{\kappa+1} a_{\kappa}}{-b_{\kappa} + a_{\kappa} \log 2}$$

Where a_{κ} is the LCM of the list of κ integers starting with κ (in Mathematica: Table[Apply[LCM,Table[i,{i,k,2k-1}]],{k,1,100}]) while the b_{κ} are the numerators of the coefficients in the power series for $-\log(1+x)\log(1-x)$.

Evidently, providing formal proofs of the formulae provided in this paper is a challenge by its own right. To date, attempts to code automated substitutionsimplification-induction proofs were not successful.

The following observations are hints that may serve in future quests:

Remark 7. Denoting:

$$Q_{j,\kappa,c} = \frac{a_0}{a_1 + a_2 G} \text{ where } a_0, a_1, a_2 \in \mathbb{Z}$$

The following formula (code snippet "9. ratio") is valid all over areas:

$$\frac{a_0}{a_2} = \frac{(2c)! \cdot 2^{\lfloor 1/j \rfloor + 2\kappa} \cdot \prod_{i=1}^{\frac{j-1}{2}} \frac{(4c - 4i + 2) \cdot (2\kappa - 2i + 1)}{(\kappa - i + 1) \cdot (2c + 2i - 2\kappa - 1)}}{8 \cdot C_{\frac{j-3}{2}} \cdot (j - 2) \cdot (2c - 1)!!^2 \cdot (2\kappa - 1) \cdot C_{\kappa - 1}}$$

Where for j = 1 the value of the Π product is taken to be 1 by definition.

Remark 8. Although possibly unrelated, we note that low-degree continued fractions involving log 2 can be also obtained with lower degree polynomials, e.g. (See code snippet "10. log2-a".):

$$\frac{2}{L(\frac{1}{2},1,c-1)} = \frac{2}{\sum_{n=0}^{\infty} \frac{e^{\pi i n}}{(n+c-1)}} = \frac{1}{2^{c-2}\log(2) - \sum_{j=1}^{c-2} \frac{2^{c-j-2}}{j}} = c + \mathcal{K}_{n=1}^{\infty} \left(\frac{-2n^2}{3n+c}\right)$$

We get a similar behavior for:

$$R_c = c + \bigwedge_{n=1}^{\infty} \left(\frac{-2n^2 - 2n}{3n + c} \right)$$

where $2^{c-4} \cdot (c-3) \cdot a_0 = a_2$ and for which we provide numerical examples in Table 9.

See code snippet "11. log2-b".

	<i>a</i> 0	<i>a</i> ₁	<i>a</i> ₂	P(n)/(-2n)	$T(n) - 3n^2$
	-7351344	-32375839	46558512	n(3+n)(17+n)	72 + 43 <i>n</i>
ĺ	-2450448	-1768477	2450448	n(1+n)(17+n)	36 + 39 <i>n</i>
	-1081080	-16147379	23279256	n(5+n)(15+n)	96 + 43n
	-793800	-232217	322560	$(4+n)(9+n)^2$	100 + 39 <i>n</i>
	-504504	-16140515	23279256	n(7+n)(13+n)	112 + 43n
ĺ	-436590	7989199	-11531520	(3+n)(9+n)(11+n)	120 + 43n
ĺ	-180180	-1001393	1441440	(2+n)(5+n)(13+n)	84 + 39 <i>n</i>
	-174636	-8069449	11639628	n(9+n)(11+n)	120 + 43n
	-72072	-850133	1225224	n(5+n)(13+n)	84 + 39 <i>n</i>
	-72072	-251099	360360	n(3+n)(13+n)	56 + 35 <i>n</i>
	-72072	-52279	72072	n(1+n)(15+n)	32 + 35n
	-45045	124048	-180180	(1+n)(3+n)(13+n)	56 + 35 <i>n</i>
	-28028	-999391	1441440	(2+n)(7+n)(13+n)	112 + 43n
	-27720	-20417	27720	n(1+n)(11+n)	24 + 27n
	-22050	27649	-40320	(3+n)(7+n)(9+n)	80 + 35 <i>n</i>
	-19305	424423	-612612	(1+n)(5+n)(15+n)	96 + 43n
	-17640	-250007	360360	n(7+n)(9+n)	80 + 35n
	-14700	-153907	221760	(2+n)(7+n)(9+n)	80 + 35n
	-10395	124741	-180180	(1+n)(5+n)(11+n)	72 + 35n
	-9450	76691	-110880	(1+n)(5+n)(9+n)	60 + 31n
	-7350	-62563	90090	$n(7+n)^2$	64 + 31n
	-7007	424566	-612612	(1+n)(7+n)(13+n)	112 + 43n
	-6300	-14087	20160	(2+n)(5+n)(9+n)	60 + 31n
	-6006	99839	-144144	(1+n)(5+n)(13+n)	84 + 39 <i>n</i>
	-4900	-21043	30240	$(2+n)(7+n)^2$	64 + 31n
	-2520	-1879	2520	n(1+n)(9+n)	20 + 23n
	-2450	28781	-41580	$(1+n)(7+n)^2$	64 + 31n
	-1225	367	-560	$(3+n)(7+n)^2$	64 + 31 <i>n</i>
ĺ	-525	-2413	3465	n(5+n)(7+n)	48 + 27n
	-450	1151	-1680	$(1+n)(5+n)^2$	36 + 23 <i>n</i>
ĺ	-350	1739	-2520	(1+n)(5+n)(7+n)	48 + 27n
	-180	-299	420	n(3+n)(5+n)	24 + 19n
	-105	142	-210	(1+n)(3+n)(7+n)	32 + 23n
	-18	7	-12	$(1+n)(3+n)^2$	16 + 15n
ļ	-6	-5	6	n(1+n)(3+n)	8+11n

Table 5. Examples of convergence to $\frac{a_0}{a_1+a_2\log 2}$

a0	<i>a</i> ₁	a2	P(n)/(-2n)	$T(n) - 3n^2$
1	1	-1	$n(1+n)^2$	4 + 7n
9	11	-15	$n(3+n)^2$	16+15 <i>n</i>
50	147	-210	$n(5+n)^2$	36 + 23 <i>n</i>
60	47	-60	n(1+n)(5+n)	12+15n
90	-79	120	(1+n)(3+n)(5+n)	24 + 19n
420	319	-420	n(1+n)(7+n)	16+19n
420	887	-1260	n(3+n)(7+n)	32 + 23n
900	361	-480	$(2+n)(5+n)^2$	36 + 23n
1890	-3443	5040	(1+n)(3+n)(9+n)	40 + 27n
2100	2377	-3360	(2+n)(5+n)(7+n)	48 + 27 n
5544	50035	-72072	n(5+n)(11+n)	72 + 35 <i>n</i>
6468	-249713	360360	(1+n)(7+n)(11+n)	96 + 39n
7560	19409	-27720	n(3+n)(9+n)	40 + 27n
8316	-19031	27720	(1+n)(3+n)(11+n)	48 + 31 <i>n</i>
15444	-49705	72072	(1+n)(3+n)(15+n)	64 + 39 <i>n</i>
22050	-499279	720720	(1+n)(7+n)(9+n)	80 + 35 <i>n</i>
24255	-76586	110880	(3+n)(7+n)(11+n)	96 + 39 <i>n</i>
25740	200107	-288288	(2+n)(5+n)(15+n)	96 + 43n
37800	250427	-360360	n(5+n)(9+n)	60 + 31n
38808	849671	-1225224	n(7+n)(11+n)	96 + 39 <i>n</i>
39690	-1997851	2882880	$(1+n)(9+n)^2$	100 + 39n
41580	154327	-221760	(2+n)(5+n)(11+n)	72 + 35n
58212	3997025	-5765760	(2+n)(9+n)(11+n)	120 + 43n
79380	2123957	-3063060	$n(9+n)^2$	100 + 39n
83160	251561	-360360	n(3+n)(11+n)	48 + 31 <i>n</i>
87318	-8491859	12252240	(1+n)(9+n)(11+n)	120 + 43n
97020	1999321	-2882880	(2+n)(7+n)(11+n)	96 + 39 <i>n</i>
132300	3997907	-5765760	$(2+n)(9+n)^2$	100 + 39n
198450	-1227581	1774080	$(3+n)(9+n)^2$	100 + 39n
216216	852707	-1225224	n(3+n)(15+n)	64 + 39 <i>n</i>
360360	263111	-360360	n(1+n)(13+n)	28 + 31 n
630630	-3990557	5765760	(3+n)(7+n)(13+n)	112 + 43n
918918	-3383801	4900896	(1+n)(3+n)(17+n)	72 + 43n
1746360	2475007	-3548160	(4+n)(9+n)(11+n)	120 + 43n
46558512	33464927	-46558512	n(1+n)(19+n)	40 + 43n

Table 6. Examples of convergence to $\frac{a_0}{a_1+a_2\log 2}$. The entry in blue is the one reported by the Ramanujan Project.

<i>a</i> ₀	<i>a</i> ₁	a2	P(n)/(-2n)	$T(n) - 3n^2$
-80281600	-10675439	9459450	(2+n)(3+n)(14+n)	45 + 35n
-15728640	392683	-727650	$(4+n)^2(12+n)$	65 + 35 <i>n</i>
-13107200	-263867	-28350	(4+n)(5+n)(10+n)	55 + 31 <i>n</i>
-10485760	-93699	-103950	(4+n)(5+n)(12+n)	65 + 35 <i>n</i>
-7372800	-884203	727650	(2+n)(3+n)(12+n)	39 + 31 n
-6291456	149419	-257250	$(4+n)(8+n)^2$	81 + 35 <i>n</i>
-5242880	-86807	9450	(5+n)(6+n)(10+n)	77 + 35 <i>n</i>
-3932160	-116317	3150	(4+n)(5+n)(8+n)	45 + 27n
-3276800	-158859	22050	(2+n)(5+n)(10+n)	33 + 27 <i>n</i>
-2621440	-48609	-1050	(5+n)(6+n)(8+n)	63 + 31 <i>n</i>
-2359296	-168445	103950	(2+n)(4+n)(12+n)	39 + 31 <i>n</i>
-491520	50593	-66150	(3+n)(4+n)(10+n)	55 + 31 <i>n</i>
-327680	-21271	9450	(2+n)(4+n)(10+n)	33 + 27 <i>n</i>
-230400	-1909	-22050	$(2+n)^2(5+n)$	9 + 11 <i>n</i>
-196608	-184547	198450	(3+n)(6+n)(10+n)	77 + 35n
-163840	-4981	-22050	n(5+n)(8+n)	9 + 19n
-131072	-2951	-630	$(4+n)^2(8+n)$	45 + 27n
-122880	-13079	9450	(2+n)(3+n)(10+n)	33 + 27n
-61440	-2467	-3150	(2+n)(4+n)(5+n)	15+15n
-61440	791	-9450	n(5+n)(6+n)	7 + 15 <i>n</i>
-51200	2839	-9450	n(4+n)(5+n)	5+11 <i>n</i>
-49152	-1919	90	$(4+n)^2(6+n)$	35 + 23n
-36864	-2693	-450	(2+n)(4+n)(6+n)	21 + 19 <i>n</i>
-18432	-419	-3150	n(4+n)(6+n)	7 + 15 <i>n</i>
-18432	-419	-3150	n(3+n)(8+n)	9 + 19 <i>n</i>
-8192	-487	-54	$(4+n)^3$	25 + 19n
-3072	121	-630	$n(4+n)^2$	5+11n
-2048	-129	-90	$(2+n)(4+n)^2$	15 + 15n
-2048	-43	-30	(3+n)(4+n)(6+n)	35 + 23n
-768	-77	-18	(2+n)(3+n)(4+n)	15+15n
-288	31	-90	n(2+n)(3+n)	3 + 7 <i>n</i>

Table 7. Examples of convergence to $\frac{a_0}{a_1+a_2G}$

С	<i>a</i> ₀	<i>a</i> ₁	a2
3	2	1	0
4	1	1	-1
5	-1	-3	4
6	-2	-17	24
7	-3	-67	96
8	12	667	-960
9	5	666	-960
10	30	9319	-13440
11	-105	-74537	107520
12	-280	-447187	645120
13	126	447173	-645120
14	63	491884	-709632
15	231	3935051	-5677056
16	2772	102311095	-147603456
17	-1287	-102310996	147603456
18	-6006	-1023109531	1476034560
19	45045	16369749493	-23616552960
20	720720	556571437717	-802962800640

Table 9. Examples of convergence to $\frac{a_0}{a_1+a_2\log 2}$ for R_c

Table	8.	Exampl	es of	convergence	to	$\frac{a_0}{a_1+a_2G}$
-------	----	--------	-------	-------------	----	------------------------

<i>a</i> ₀	<i>a</i> ₁	a2	P(n)/(-2n)	$T(n) - 3n^2$
192	13	18	$(2+n)^2(3+n)$	9+11n
384	1	90	n(3+n)(4+n)	5+11n
2304	389	450	n(3+n)(6+n)	7 + 15n
3072	179	-18	$(3+n)(4+n)^2$	25+19n
4608	133	450	$(2+n)^2(4+n)$	9+11n
4608	383	-90	(2+n)(3+n)(6+n)	21 + 19n
11520	-1373	3150	n(2+n)(4+n)	3 + 7 <i>n</i>
12288	973	-750	$(3+n)(6+n)^2$	49 + 27 <i>n</i>
12288	1145	-630	(2+n)(3+n)(8+n)	27 + 23n
16384	-543	1050	(3+n)(4+n)(8+n)	45 + 27n
81920	3983	1350	$(4+n)^2(5+n)$	25 + 19n
89600	-10891	22050	n(2+n)(5+n)	3 + 7 <i>n</i>
98304	2263	150	$(4+n)(6+n)^2$	49 + 27n
98304	35389	-36750	(3+n)(6+n)(8+n)	63 + 31 n
122880	6563	3150	(2+n)(5+n)(6+n)	21 + 19n
147456	21365	22050	n(4+n)(8+n)	9+19n
163840	6789	450	(4+n)(5+n)(6+n)	35 + 23n
262144	710401	-771750	$(3+n)(8+n)^2$	81 + 35n
294912	18013	-3150	(2+n)(4+n)(8+n)	27 + 23n
524288	27787	-22050	(4+n)(6+n)(10+n)	77 + 35n
786432	19099	-5250	(4+n)(6+n)(8+n)	63 + 31n
983040	25979	-450	$(5+n)(6+n)^2$	49 + 27n
1310720	1723	28350	$(4+n)^2(10+n)$	55 + 31 n
2949120	168821	22050	(2+n)(5+n)(8+n)	27 + 23n
9830400	-1833409	2182950	(3+n)(4+n)(12+n)	65 + 35n
12582912	184025	-7350	$(5+n)(8+n)^2$	81 + 35 <i>n</i>
39321600	1965547	-727650	(2+n)(5+n)(12+n)	39 + 31n
165150720	12969199	-9459450	(2+n)(4+n)(14+n)	45 + 35n
330301440	17687791	-9459450	(2+n)(5+n)(14+n)	45 + 35n

A Mathematica Code

- 1 (* code snippet "1. Montenegro" *)
- 2 NumQ[k_,c_]:=2k+1+ContinuedFractionK[-2n^2(n+2k)(n+c),3n^2+(3+4k)n+2k+1,{n,1,5000}];
- 3 vD[a_,b_,k_,c_]:=If[c<2,a+b*c,-2c(2c-1)(2(c-k)-1)^2vD[a,b,k,c-2]+(8c^2+(2-8k)c-2k+1)vD[a,b,k,c-1]];</pre>
- 4 vG[a_,b_,k_,c_]:=((2c-1)!!)^2Catalan+Product[(2(c-j)-1), {j,0,k-1}]*vD[a,b,k,c-1];
- 5 vd[k_]:=4^(k-1)/(2k-1)/CatalanNumber[k-1];vr[k_]:=vd[k](-1)^(k)(1-2k)/((2k)!(2k-3)!!);
- 6 va[k_]:=vr[k]vD[1,-2,1,k-1];vb[k_]:=-vr[k](2k-3)^2vD[1,12,2,k-1]-va[k];
- 7 QFor[k_,c_]:=vd[k](2c)!/vG[va[k],vb[k],k,c];
- % Print[Union[Flatten[Table[N[QFor[k,c],200]==N[NumQ[k,c],200],{c,1,14},{k,1,14}]]][[1]]];ClearAll["Global'*"];

Fig. 8. The points on which Montenegro is tested for $1 \le c \le 14$ by the snippet "1. Montenegro" are shown in red.

- 1 (* code snippet "2. Bosnia" *)
- 2 NumQ[j_,c_]:=-j+ContinuedFractionK[-2n(n-2)(n+c)(n+j-1),3n²+(2j-3)n-j,{n,1,5000}];
- > vD[j_,c_]:=If[c<2,(-2)^((3j-11)/2)(1+(15-4j)c),-2c(2c-j)(2c+1)(2c-j+2)vD[j,c-2]+(8c^2+(14-4j)c-3(j-2))vD[j,c-1]];</pre>
- ${}_{4} g[j_{-},c_{-}]:=Product[(2c-2i+1)(j-2-2i), {i,1,(j-1)/2}](2c)!2^{((3j-13)/2)};$
- $h[j_{c_{1}}, c_{1}] := (2c_{j+2})Product[(2c_{2i-1})^{2}, \{i, 0, (j_{5})/2\}];$
- 6 Q[j_,c_]:=Simplify[g[j,c]/(vD[j,c-1]*h[j,c])];
- 7 Print[Union[Flatten[Table[N[NumQ[j,c]==Q[j,c],200],{j,5,13,2},{c,1,14}]]][[1]]];ClearAll["Global'*"];

Fig. 9. The points on which Bosnia & Herzegovina is tested for $1 \le c \le 14$ by the snippet "2. Bosnia" are shown in red.

- 2 NumQ[j_,k_,c_]:=j(2-j+2k)+ContinuedFractionK[-2n(c+n)(j+n-1)(1-j+2k+n),3n^2+(3+4k)n+j(2-j+2k),{n,1,15000}];
- 3 vD[ab_,j_,k_,c_]:=If[c<2,ab[[1]]+ab[[2]]c,-2c(2c-j)(2c-2k+j-2)(2c-2k-1)vD[ab,j,k,c-2]+(8c^2+(2-8k)c+(j-2)(2k-j))vD[ab,j ,k,c-1]];

^{1 (*} code snippet "3. Northern Balkans"*)

```
4 f[j_,k_,c_]:=Product[(2c-2k+2i-1)(k-i+1),{i,1,(j-1)/2}]CatalanNumber[(j-3)/2](j-2)(2k-1)*(2c-1)!!^2*CatalanNumber[k-1];
```

```
5 g[j_,k_,c_]:=Product[(2c-2i+1)(2k-2i+1),{i,1,(j-1)/2}](2c)!2^(2k+(j-7)/2);
```

6 h[j_,k_,c_]:=Product[2c-2i-1,{i,0,(j-3)/2}]Product[2c-2i-1,{i,0,k-1}];

7 Q[j_,k_,c_,ab_]:=Simplify[g[j,k,c]/(vD[ab,j,k,c-1]h[j,k,c]+f[j,k,c]Catalan)];

```
8 Ratio:=Function[{j,k,c},r=N[NumQ[j,k,c],2000];v=FindIntegerNullVector[{1,r,N[Catalan*r,2000]}];-v[[1]]/v[[2]]];
```

```
9 GenAB[j_]:=Table[({a,b}/.Solve[Table[{a,b}.{1,c-1}==g[j,k,c]/Ratio[j,k,c]/h[j,k,c],{c,1,2}],{a,b}])[[1]],{k,1,6}];
```

```
10 result={};For[j=3,j<=13,AB=GenAB[j];AppendTo[result,Union[Flatten[Table[N[Q[j,k,c,AB[[k]]]==NumQ[j,k,c],20],{k,1,6},{c</pre>
```

```
,1,7}]]];j+=2];Print[Union[Flatten[result]][[1]]];
```


Fig. 10. The points on which the *c*-level master formula is tested for $1 \le c \le 7$ by the snippet "3. Northern Balkans" are shown in red. Note that the Montenegro line does not obey that same *c*-level formula but was validated by snippet "1. Montenegro".

1 (* code snippet "4. Kosovo" *)

 $^{2 \}text{ NumQ[j_,k_,c_]:=j(2-j+2k)+ContinuedFractionK[-2n(c+n)(j+n-1)(1-j+2k+n), 3n^2+(3+4k)n+j(2-j+2k), \{n,1,15000\}];}$

- 3 vD:=Function[{ab,j,k,c},If[c<2,ab[[1]]+ab[[2]]c,-2c(2c-j)(2c-2k+j-2)(2c-2k-1)vD[ab,j,k,c-2]+(8c^2+(2-8k)c+(j-2)(2k-j)) vD[ab,j,k,c-1]]];
- 4 f[j_,k_,c_]:=Product[(2c-2k+2i-1)(k-i+1),{i,1,(j-1)/2}]CatalanNumber[(j-3)/2](j-2)(2k-1)*(2c-1)!!^2*CatalanNumber[k-1];
- 5 g[j_,k_,c_]:=Product[(2c-2i+1)(2k-2i+1),{i,1,(j-1)/2}](2c)!2^(2k+(j-7)/2);
- 6 h[j_,k_,c_]:=Product[2c-2i-1,{i,0,(j-3)/2}]Product[2c-2i-1,{i,0,k-1}];
- 7 Q[j_,k_,c_,ab_]:=Simplify[g[j,k,c]/(vD[ab,j,k,c-1]*h[j,k,c]+f[j,k,c]Catalan)];
- 8 l[n_,j_,k_]:=(-1)^(k+1)(2k)!^2/k!/2^(3*k-2)/Product[(k-i)(2k-2i-1)^2,{i,0,(j-3)/2}]/(2k-j)/(2k-1)/(n((2k-j-2)(3-2k)-1) +1);
- % kD:=Function[{n,ab,j,k},If[k<2,ab[[1]]+ab[[2]]k,(2k+2j-9-2n)(2k+j-8-2n)(-2k+5-j)(2k+j-6)*kD[n,ab,j,k-2]+(8k^2+k(10j -48-8n)+(3j^2-(28+4n)j+68+18n))kD[n,ab,j,k-1]]];
- 10 Descend:=Function[{j,k},abh[0]={{-1,4}, {19,234}, {5818/3,254456/3}, {667115,60003486}, {467946090,71121907440},
- 11 {554143204110,127451285438100}, {994115449382940,322092692148962160}, {2516347061651130075,1092094185270706446150},
- $12 \quad \{8546069024090201027250, 4785798287838257081935200\}, \{37508692924557081882027450, 26331102038134635548392485900\}, (37508692924557081882027450, 26331102038134635548392485900)\}, (37508692924557081882027450, 26331102038134635548392485900)\}, (37508692924557081882027450, 26331102038134635548392485900)\}$
- 13 {206659254109760483703789089700,177726957997323983116663150902000},
- 14 $\{1396637676485497608584841260027550, 1444123356588023432320434243315206700\},$
- 15 {11361110319787394788017568214856502500,13905999029609441333101619589964946580000},
- 16 {109509742351999832489255793094925601037500,156598931559029451368898717824937174831465000},
- 17 {1234320809247763942235545044494798498436195000,2039097976865181167119056627863149102390546140000},
- $18 = \{16085205915675471439195309128783843538512283666875, 30401039180587356456007967587920548312623820610393750\},$
- $19 \ \{239989379884263177615577263747245812249369757283461250, 514537230471714428505965482811829861362838523445500920000\}\};$
- 20 abh[1]={{-1/3,-14/3},{-17,-8},{-758,-27820},{-302117,-23010044},{-1091480994/5,-146282046156/5},
- 21 {-262476468810, -54596049230880}, {-475443072646380, -141682352738003640}, {-1211573031414907725, -489475664504671450500},
- 22 {-4135193781750207709650, -2175112041708995560914300}, {-18218507239728799899288030, -12097088912487772715204794320},
- 23 {-100680148628028059378172563700, -82356361704096372069838207986600},
- 24 {-682078864161239229949889893754850,-673893917980353010760236819146271800},
- 25 {-5559692282317104149119150499246482500, -6527078739785105011529098668023829975000},
- 26 {-53681246247288656939970174534335708392500, -73865394837022289182570623863734010339760000},
- 27 {-605939306349175124039948450466713432304279000,-965867254322525126192328035746702493817188406000},
- 28 {-7906287653442943862409767973858652552097126548125, -14452693830499521315903006473321900713406050369972500},
- $29 = -118090012323922699712409299094969252935070156336941250, -245391045609131483699190960852072336578359955374403917500\};$
- 30 ab=Table[kD[u,abh[u][[(j-1)/2]],j,k-j+2]/l[u,j,k],{u,0,1}];{ab[[1]],ab[[2]]-ab[[1]]}];

- 31 Q[j_,k_,c_,ab_]:=Simplify[g[j,k,c]/(vD[ab,j,k,c-1]*h[j,k,c]+f[j,k,c]Catalan)];
- 32 Print[Union[Flatten[Table[N[NumQ[j,k,c]==Q[j,k,c,Descend[j,k]],200],{j,3,11,2},{k,j-2,10},{c,1,7}]]][[1]]];ClearAll["
 Global'*"];

Fig. 11. The points on which Kosovo is tested for $1 \le c \le 7$ by the snippet "4. Kosovo" are shown in red.

^{1 (*} code snippet "5. resolution" *)

² NumQ[j_,k_,c_]:=j(2-j+2k)+ContinuedFractionK[-2n(c+n)(j+n-1)(1-j+2k+n),3n^2+(3+4k)n+j(2-j+2k),{n,1,10000}];

if[j_,k_,c_]:=Product[(2c-2k+2i-1)(k-i+1),{i,1,(j-1)/2}]CatalanNumber[(j-3)/2](j-2)(2k-1)*(2c-1)!!^2*CatalanNumber[k-1];

⁴ g[j_,k_,c_]:=Product[(2c-2i+1)(2k-2i+1),{i,1,(j-1)/2}](2c)!2^(2k+(j-7)/2);

⁵ h[j_,k_,c_]:=Product[2c-2i-1,{i,0,(j-3)/2}]Product[2c-2i-1,{i,0,k-1}];

 $⁼ Function[\{n, j, k\}, (-1)^{(k+1)}(2k)!^{2/k!/2^{(3k-2)}/Product[(k-i)(2k-2i-1)^{2}, \{i, 0, (j-3)/2\}]/(2k-j)/(2k-1)/(n((2k-j-2)(3-2k))))$

7 AB:=Function[{j,k},For[c=1,c<=2,r=N[NumQ[j,k,c],2000];v=FindIntegerNullVector[{1,r,N[Catalan*r,2000]}];d[c]=(-g[j,k,c](v[[3]]Catalan+v[[2]])/v[[1]]-f[j,k,c]Catalan)/h[j,k,c];c++];{d[1],d[2]-d[1]}];ABlists:=Function[lim,z[1]=z[0]={};

8 For[j=3,j<=lim,For[w=0,w<=1,e[w]=Table[AB[j,k].{1,w}l[w,j,k],{k,j-2,j-1}];</pre>

> ab[w]={a,b}/.Solve[Table[a+b(u-1)==e[w][[u]], {u,1,2}], {a,b}]; AppendTo[z[w], ab[w][[1]]]; w++]; j+=2]; {z[1], z[0]}];

- 10 Print[ABlists[15]];ClearAll["Global'*"];
- 1 (* code snippet "6. symmetry" *)

2 NumQ[j_,k_,c_]:=j(2-j+2k)+ContinuedFractionK[-2n(c+n)(j+n-1)(1-j+2k+n),3n^2+(3+4k)n+j(2-j+2k),{n,1,15000}];

- 3 g[j_,k_,c_]:=Product[(2c-2i+1)(2k-2i+1),{i,1,(j-1)/2}](2c)!2^(2k+(j-7)/2);
- $\label{eq:head} {}_{4} h[j_{k_{c}}, c_{l}] := Product[2c-2i-1, \{i, 0, (j-3)/2\}] Product[2c-2i-1, \{i, 0, k-1\}];$
- 5 zeta[j_,u_]:=Product[2+2i-j,{i,0,u-1}]/2^u;Ratio:=Function[{j,k,c},r=N[NumQ[j,k,c],2000];
- 6 v=FindIntegerNullVector[{1,r,N[Catalan*r,2000]}];-v[[1]]/v[[2]]];
- 7 GenAB[j_,k_]:=({a,b}/.Solve[Table[{a,b}.{1,c-1}==g[j,k,c]/Ratio[j,k,c]/h[j,k,c],{c,1,2}],{a,b}])[[1]];
- s tau[j_,u_]:=If[u>(j-1)/2,Sign[zeta[j,u]](2j-2u-3)!!(2u-j)!!(-2)^u,zeta[j,u](-4)^u];
- > For[j=3,j<=13,Print[MatrixForm[Table[{{j,j-u-1},{j-2u,j-u-1},(GenAB[j,j-u-1]/GenAB[j-2u,j-u-1])/tau[j,u]=={1,1}},{u,1,j +3}]]];j+=2];ClearAll["Global'*"];

- $\exists g[j_{-},k_{-},c_{-}]:=Product[(2c-2i+1)(2k-2i+1),\{i,1,(j-1)/2\}](2c)!2^{(2k+(j-7)/2)};$
- ${}_{4} h[j_{k_{c}}, c_{l}] := Product[2c-2i-1, \{i, 0, (j-3)/2\}]Product[2c-2i-1, \{i, 0, k-1\}];$
- s Ratio:=Function[{j,k,c},r=N[NumQ[j,k,c],4000];v=FindIntegerNullVector[{1,r,N[Catalan*r,4000]}];-v[[1]]/v[[2]]];
- 6 GenAB[j_,k_]:=({a,b}/.Solve[Table[{a,b}.{1,c-1}==g[j,k,c]/Ratio[j,k,c]/h[j,k,c],{c,1,2}],{a,b}])[[1]];
- 7 psil[i_,j_]:={-1,14-j,-464+58j-3j^2,27936-4692j+432j^2-15j^3,-2659968+542256j-67836j^2+4260j^3-105j ^4,367568640-86278560j+13203480j^2-1139700j^3+51450j^4-945j^5}[[i]];
- » psi2[i_,j_]:={4j-15,306-95j+4j^2,-13360+4646j-357j^2+12j^3,999648-379692j+40368j^2-2457j^3+60j^4,-113885568+
- 9 46449360j-6124164j^2+513228j^3-22935j^4+420j^5,18333538560-7933530720j+1224286440j^2-126833100j^3+7864950j^4-266175j ^5+3780j^6}[[i]];
- 10 $mu[i_, j_]:=-Product[j-2q-2, {q, 1, i}]/(-2)^{((3j-11-4i)/2)};$
- Print[Union[Table[Union[Table[GenAB[j,(j-3)/2-i]=={psil[1+i,j],psi2[1+i,j]}/mu[i,j],{j,5+2i,37,2}]][[1]],{i
 ,0,5}]][[1]];ClearAll["Global'*"];

^{1 (*} code snippet "7. Croatia" *)

² NumQ[j_,k_,c_]:=j(2-j+2k)+ContinuedFractionK[-2n(c+n)(j+n-1)(1-j+2k+n),3n^2+(3+4k)n+j(2-j+2k),{n,1,2000}];

Fig. 12. The points on which the Kosovo-Serbia symmetry is tested at the $(\alpha_{j,\kappa}, \beta_{j,\kappa})$ -level by the snippet "6. symmetry". Tested points are shown in red and their symmetrical correspondents in pink.

^{1 (*} code snippet "8. coefficients" *)

Fig. 13. The points on whichCroatia is tested. Note that the test is performed directly at the $(\alpha_{j,\kappa}, \beta_{j,\kappa})$ -level. Points tested by the snippet "7. Croatia" are shown in red. Points tested beyond the quadrant are not shown.

```
2 coef=CoefficientList[{3198013886925+(145296572850+(5207427225+(4353102000+(877052475+(78210090+(3023055+41580(X-29))(X
-27))(X-25))(X-23))(X-21))(X-17),-14487726825-(104826150+(452605725+(121200300+(13697775+(640710+10395(X
-27))(X-25))(X-23))(X-21))(X-19))(X-17)},X];
3 Print[Table[GCD[coef[[1, i]], coef[[2, i]]], {i, 1, 7}]];ClearAll["Global'*"];
```

1 (* code snippet "9. ratio" *)

 $2 \text{ NumQ[j_,k_,c_]:=j(2-j+2k)+ContinuedFractionK[-2n(c+n)(j+n-1)(1-j+2k+n), 3n^2+(3+4k)n+j(2-j+2k), {n,1,50000}];}$

> For[j=1,j<=7,For[k=Abs[j-2],k<=7,For[c=1,c<=7,r=N[NumQ[j,k,c],3000];v=FindIntegerNullVector[{1,r,N[Catalan*r,3000]}];</pre>

4 q=(-v[[1]]/v[[3]]==((2c)!2^(2k+(j-7)/2+Floor[1/j])/CatalanNumber[k-1]/(2k-1)/(2c-1)!!^2/(j-2)/Product[(2c-2k+2i-

5 1)(k-i+1)/(2c-2i+1)/(2k-2i+1),{i,1,(j-1)/2}]/CatalanNumber[(j-3)/2]));

6 Print[{j,k,c,q}];c++];k++];j+=2];ClearAll["Global'*"];

1 (* code snippet "10. log2-a" *)

Fig. 14. The points on which the ratio conjecture is tested for $1 \le c \le 7$ by the snippet "9. ratio" are shown in red.

- 2 Q[c_]:=c+ContinuedFractionK[-2n^2,3n+c,{n,1,2000}];
- 3 For[c=2,c<=25,r=N[Q[c],80];</pre>
- 4 v=FindIntegerNullVector[{1,r,N[Log[2]*r,80]}];
- 5 Print[{c,Simplify[2/LerchPhi[1/2,1,-1+c]==-v[[1]]/(v[[2]]+Log[2]v[[3]])==1/(Log[2]2^(c-2)-Sum[2^(c-j-2)/j,{j,c-2}])]}; c++];ClearAll["Global'*"];

1 (* code snippet "11. log2-b"*)

2 R[c_]:=c+ContinuedFractionK[-2n^2-2n,3n+c,{n,1,2000}];

3 For[c=3,c<=20,r=N[R[c],200];v=FindIntegerNullVector[{1,r,N[Log[2]*r,200]}];</pre>

4 Print[{c,2^(c-4)*(c-3)*v[[1]]==v[[3]],-v[[1]]/(v[[2]]+Log[2]v[[3]])}];c++];ClearAll["Global'*"];

References

- D. H. Bailey and H. R. P. Ferguson. Numerical Results on Relations Between Numerical Constants Using a New Algorithm. *Mathematics of Computation*, 53(188):649–656, 1989.
- H. R. P. Ferguson. PSOS: A New Integral Relation Finding Algorithm Involving Partial Sums of Squares and No Square Roots. *Abstracts of Papers Presented to the American Mathematical Society*, 9(56):88T–11–75, 214, March 1988.
- 3. H. R. P. Ferguson, D. H. Bailey, and S. Arno. Analysis of PSLQ, an Integer Relation Finding Algorithm. *Mathematics of Computation*, 68(227):351–369, 1999.
- 4. J. Håstad, B. Helfrich, J. Lagarias, and C. P. Schnorr. Polynomial Time Algorithms for Finding Integer Relations Among Real Numbers. In B. Monien and G. Vidal-Naquet, editors, *STACS 86*, pages 105–118, Berlin, Heidelberg, 1986. Springer Berlin Heidelberg.
- 5. A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring Polynomials with Rational Coefficients. *Mathematische Annalen*, 261(4):515–534, 1982.
- D. Naccache and O. Yifrach-Stav. On Catalan Constant Continued Fractions. In S. El Hajji, S. Mesnager, and E. M. Souidi, editors, *Codes, Cryptology and Information Security*, pages 43–54, Cham, 2023. Springer Nature Switzerland.