

# Explicit Formulae for Some Polynomial Continued Fractions

David Naccache, Ofer Yifrach-Stav

## ▶ To cite this version:

David Naccache, Ofer Yifrach-Stav. Explicit Formulae for Some Polynomial Continued Fractions. 2023. hal-04105623v2

# HAL Id: hal-04105623 https://hal.science/hal-04105623v2

Preprint submitted on 9 Jun 2023 (v2), last revised 18 Apr 2024 (v15)

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Public Domain

# Explicit Formulae for Some Polynomial Continued Fractions

David Naccache<sup>1</sup> and Ofer Yifrach-Stav<sup>1</sup>

DIÉNS, ÉNS, CNRS, PSL University, Paris, France 45 rue d'Ulm, 75230, Paris CEDEx 05, France ofer.friedman@ens.fr, david.naccache@ens.fr

**Abstract.** In a previous article we gave a collection of continued fractions involving Catalan's constant. In this note we provide the general formula governing those continued fractions.

We also show that a single formula involving log 2 discovered by the Ramanujan machine is part of a large family of which we provide examples.

#### 1 Introduction

In a previous article [2] we gave a collection of continued fractions involving Catalan's constant. In this note we provide the general formula governing those continued fractions.

We also show that a single formula involving log 2 discovered by the Ramanujan Machine Project [1, 3, 4] is part of a large family of which we provide examples.

#### 2 Notations

We denote by *n*!! the semifactorial of, i.e. the product of all the integers from 1 up to *n* having the same parity as *n*:

$$n!! = \prod_{k=0}^{\left\lceil \frac{n}{2} \right\rceil - 1} (n - 2k) = n(n - 2)(n - 4) \cdots$$

Because in all the following we will only apply semifactorials to odd numbers, this can simplified as:

$$n!! = \prod_{k=1}^{\frac{n+1}{2}} (2k-1) = n(n-2)(n-4)\cdots 3\cdot 1$$

We denote by Catalan's constant by G = 0.91596559... and let  $C_n$  be the *n*-th Catalan number:

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{(n+1)! \ n!} = \prod_{k=2}^n \frac{n+k}{k} \qquad \text{for } n \ge 0$$

The first Catalan numbers are:

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, ...

### 3 The Explicit Formulae

Consider:

$$Q_{c,\kappa} = 2\kappa + 1 + \bigwedge_{n=1}^{\infty} \left( \frac{-2n^2(n+2\kappa)(n+c)}{3n^2 + (3+4\kappa)n + 2\kappa + 1} \right)$$

Define the functions:

$$\begin{split} \Delta_{c,\kappa}(\alpha,\beta) &= \begin{cases} \alpha + \beta c & \text{if } c < 2\\ -2c(2c-1)(2(c-\kappa)-1)^2 \Delta_{c-2,\kappa} & \text{if } c \geq 2\\ +(8c^2 + (2-8\kappa)c - 2\kappa + 1)\Delta_{c-1,\kappa} \end{cases} \\ \Gamma_{c,\kappa}(\alpha,\beta) &= (2c-1)!!^2 G + \Delta_{c-1,\kappa}(\alpha,\beta) \cdot \prod_{i=0}^{\kappa} (2(c-i)-1) \\ \delta_{\kappa} &= \frac{4^{\kappa-1}}{(2\kappa-1)C_{\kappa-1}} \text{ and } \rho_{\kappa} &= \frac{\delta_{\kappa}(-1)^k (1-2k)}{(2k)!(2k-3)!!} \\ \alpha_{\kappa} &= \rho_{\kappa} \Delta_{k-1,1}(1,-2) \text{ and } \beta_{\kappa} &= -\rho_{\kappa}(2k-3)^2 \Delta_{k-1,2}(1,12) - \alpha_{\kappa} \\ \text{Then } \forall \kappa, c \in \mathbb{N}^2, \ Q_{c,\kappa} &= \frac{\delta_{\kappa}(2c)!}{\Gamma_{c,\kappa}(\alpha_{\kappa},\beta_{\kappa})} \end{split}$$

 $Q_{c,\kappa}$  is hence an explicitly computable fraction of the form:

$$Q_{c,\kappa} = \frac{a_0}{a_1 + a_2 G} \text{ where } a_0, a_1, a_2 \in \mathbb{Z}$$

```
1 QNum[c_, k_] :=
2 2 k + 1 +
    ContinuedFractionK[-2 n<sup>2</sup> (n + 2 k) (n + c), 3 n<sup>2</sup> + (3 + 4 k) n + 2 k +
3
         1, {n, 1, 2000}];
4
5 Del[a_, b_, c_, k_] := If[c < 2, a + b c,</pre>
    -2 c (2 c - 1) (2 (c - k) - 1)<sup>2</sup> Del[a, b, c - 2,
6
       k] + (8 c<sup>2</sup> + (2 - 8 k) c - 2 k + 1) Del[a, b, c - 1, k]];
9 Gam[a_, b_, c_, k_] := ((2 c - 1)!!)^2 Catalan +
    Product[(2 (c - j) - 1), {j, 0, k - 1}]*Del[a, b, c - 1, k];
10
11
12 d[k_] := 4^(k - 1)/(2 k - 1)/CatalanNumber[k - 1];
13
14 Rho[k_] := d[k] (-1)^{(k)} (1 - 2 k)/((2 k)! (2 k - 3)!!);
```



Fig. 1. Functional dependency between the functions computing  $Q_{c,k}$ 

Note that, as described, the complexity of  $\Delta_{c,k}$  is exponential in c, however, using classical Fibonacci memoization, this complexity can be reduced to O(c) thereby resulting in a very efficient algorithm for computing  $Q_{c,k}$ .

## 4 Low Degree Continued Fractions Involving log 2

Continued fractions involving log 2 can be also obtained with lower degree polynomials, e.g.:

$$\frac{2}{L(\frac{1}{2},1,c-1)} = \frac{2}{\sum_{n=0}^{\infty} \frac{e^{\pi i n}}{(n+c-1)}} = \frac{1}{2^{c-2}\log(2) - \sum_{j=1}^{c-2} \frac{2^{c-j-2}}{j}} = c + \mathcal{K}_{n=1}^{\infty} \left(\frac{-2n^2}{3n+c}\right)$$

1 Q[c\_] := c + ContinuedFractionK[-2 n^2, 3 n + c, {n, 1, 2000}]; 2 For[c = 2, c <= 25, 3 r = N[Q[c], 80]; 4 v = FindIntegerNullVector[{1, r, N[Log[2] r, 80]}]; 5 Print[{b, c, 6 Simplify[ 7 2/LerchPhi[1/2, 1, -1 + c] == -v[[1]]/(v[[2]] + Log[2] v[[3]]) == 8 1/(Log[2] 2^(c - 2) - Sum[2^(c - j - 2)/j, {j, c - 2}])]}; 9 c++];

We get a similar behavior for:

$$R_c = c + \mathcal{K}_{n=1}^{\infty} \Big( \frac{-2n^2 - 2n}{3n + c} \Big)$$

where  $2^{c-4} \cdot (c-3) \cdot a_0 = a_2$  and for which we provide numerical examples in Table 5.

### 5 Further Generalizations

 $Q_{c,k} = Q_{1,c,k}$  is a particular case j = 1 of a more general continued fraction:

$$Q_{j,c,k} = j(2-j+2\kappa) + \mathcal{K}_{n=1}^{\infty} \Big( \frac{-2n(c+n)(j+n-1)(1-j+2\kappa+n)}{j(2-j+2\kappa) + (3+4\kappa)n + 3n^2} \Big)$$

When  $Q_{i,c,k}$  is not a rational,  $Q_{i,c,k}$  converges to:

$$Q_{j,c,k} = \begin{cases} \frac{a_0}{a_1 + a_2 G} & \text{if } j \text{ is odd} \\ \frac{a_0}{a_1 + a_2 \log 2} & \text{if } j \text{ is even} \end{cases}$$

In the examples given in the appendix we adopt the notation:

$$\frac{a_0}{a_1 + a_2 \cdot \text{constant}} = T(0) + \bigwedge_{n=1}^{\infty} \left(\frac{P(n)}{T(n)}\right)$$

For odd *j*, we have (whenever there is no division by zero):

$$\frac{a_0}{a_2} = \frac{(2c)! \cdot 2^{\lfloor 1/j \rfloor + 2k} \cdot \prod_{i=1}^{\frac{j-1}{2}} \frac{(4c - 4i + 2) \cdot (2k - 2i + 1)}{(k - i + 1) \cdot (2c + 2i - 2k - 1)}}{8 \cdot C_{\frac{j-3}{2}} \cdot (j - 2) \cdot (2c - 1)!!^2 \cdot (2k - 1) \cdot C_{k-1}}$$

```
1 Num := Function[{j, c, k},
                                  j (2 - j + 2 k) +
                                         ContinuedFractionK[-2 n (c + n) (j + n - 1) (1 - j + 2 k + n),
                                              3 n^2 + (3 + 4 k) n + j (2 - j + 2 k), \{n, 1, 100000\}]];
   6 For[j = 1, j <= 7,
                    For [k = 1, k <= 7,
                            For[c = 1, c <= 7,</pre>
                                   r = N[Num[j, c, k], 3000];
   9
                                   v = FindIntegerNullVector[{1, r, N[Catalan r, 3000]}];
                                   q = \{-v[[1]]/
                                                          v[[3]] == ((2 c)! 2^{(2 k + (j - 7)/2 + Floor[1/j])})
                                                                                                    CatalanNumber[k - 1]/(2 k - 1)/(2 c - 1)!!^2/(j - 2)/
13
                                                                            Product[(2 c - 2 k + 2 i -
14
                                                                                                  1) (\mathbf{k} - \mathbf{i} + 1)/(2 \mathbf{c} - 2 \mathbf{i} + 1)/(2 \mathbf{k} - 2 \mathbf{i} + 1), \{\mathbf{i}, \mathbf{i}, \mathbf{i
15
                                                                                        1, (j - 1)/2}]/CatalanNumber[(j - 3)/2])};
16
                                   Print[{j, k, c, q}];
                                  c++];
18
                             k++];
19
                    j += 2]
 20
```

#### References

- 1. N. B. David, G. Nimri, U. Mendlovic, Y. Manor, and I. Kaminer. On the Connection Between Irrationality Measures and Polynomial Continued Fractions, 2021.
- D. Naccache and O. Yifrach-Stav. On catalan constant continued fractions. In S. El Hajji, S. Mesnager, and E. M. Souidi, editors, *Codes, Cryptology and Information Security*, pages 43–54, Cham, 2023. Springer Nature Switzerland.
- G. Raayoni, S. Gottlieb, Y. Manor, G. Pisha, Y. Harris, U. Mendlovic, D. Haviv, Y. Hadad, and I. Kaminer. Generating Conjectures on Fundamental Constants with the Ramanujan Machine. *Nature*, 590(7844):67–73, Feb 2021.
- 4. G. Raayoni, G. Pisha, Y. Manor, U. Mendlovic, D. Haviv, Y. Hadad, and I. Kaminer. The Ramanujan Machine: Automatically Generated Conjectures on Fundamental Constants. *CoRR*, abs/1907.00205, 2019.

|                       |                       |                        | $P(u)/(-2u) = T(u) - 2u^2$ |                   |
|-----------------------|-----------------------|------------------------|----------------------------|-------------------|
| <i>a</i> <sub>0</sub> | <i>a</i> <sub>1</sub> | a2                     | P(n)/(-2n)                 | $1(n) - 3n^{-1}$  |
| -7351344              | -32375839             | 46558512               | n(3+n)(17+n)               | 72 + 43n          |
| -2450448              | -1768477              | 2450448 $n(1+n)(17+n)$ |                            | 36 + 39 <i>n</i>  |
| -1081080              | -16147379             | 23279256               | 23279256 $n(5+n)(15+n)$    |                   |
| -793800               | -232217               | 322560                 | $(4+n)(9+n)^2$             | 100 + 39 <i>n</i> |
| -504504               | -16140515             | 23279256               | n(7+n)(13+n)               | 112 + 43n         |
| -436590               | 7989199               | -11531520              | (3+n)(9+n)(11+n)           | 120 + 43n         |
| -180180               | -1001393              | 1441440                | (2+n)(5+n)(13+n)           | 84 + 39 <i>n</i>  |
| -174636               | -8069449              | 11639628               | n(9+n)(11+n)               | 120 + 43n         |
| -72072                | -850133               | 1225224                | n(5+n)(13+n)               | 84 + 39 <i>n</i>  |
| -72072                | -251099               | 360360                 | n(3+n)(13+n)               | 56 + 35 <i>n</i>  |
| -72072                | -52279                | 72072                  | n(1+n)(15+n)               | 32 + 35n          |
| -45045                | 124048                | -180180                | (1+n)(3+n)(13+n)           | 56 + 35 <i>n</i>  |
| -28028                | -999391               | 1441440                | (2+n)(7+n)(13+n)           | 112 + 43n         |
| -27720                | -20417                | 27720                  | n(1+n)(11+n)               | 24 + 27n          |
| -22050                | 27649                 | -40320                 | (3+n)(7+n)(9+n)            | 80 + 35 <i>n</i>  |
| -19305                | 424423                | -612612                | (1+n)(5+n)(15+n)           | 96 + 43 <i>n</i>  |
| -17640                | -250007               | 360360                 | n(7+n)(9+n)                | 80 + 35 <i>n</i>  |
| -14700                | -153907               | 221760                 | (2+n)(7+n)(9+n)            | 80 + 35 <i>n</i>  |
| -10395                | 124741                | -180180                | (1+n)(5+n)(11+n)           | 72 + 35 <i>n</i>  |
| -9450                 | 76691                 | -110880                | (1+n)(5+n)(9+n)            | 60 + 31n          |
| -7350                 | -62563                | 90090                  | $n(7+n)^2$                 | 64 + 31 <i>n</i>  |
| -7007                 | 424566                | -612612                | (1+n)(7+n)(13+n)           | 112 + 43n         |
| -6300                 | -14087                | 20160                  | (2+n)(5+n)(9+n)            | 60 + 31 n         |
| -6006                 | 99839                 | -144144                | (1+n)(5+n)(13+n)           | 84 + 39 <i>n</i>  |
| -4900                 | -21043                | 30240                  | $(2+n)(7+n)^2$             | 64 + 31 <i>n</i>  |
| -2520                 | -1879                 | 2520                   | n(1+n)(9+n)                | 20 + 23n          |
| -2450                 | 28781                 | -41580                 | $(1+n)(7+n)^2$             | 64 + 31 <i>n</i>  |
| -1225                 | 367                   | -560                   | $(3+n)(7+n)^2$             | 64 + 31 <i>n</i>  |
| -525                  | -2413                 | 3465                   | n(5+n)(7+n)                | 48 + 27n          |
| -450                  | 1151                  | -1680                  | $(1+n)(5+n)^2$             | 36 + 23 <i>n</i>  |
| -350                  | 1739                  | -2520                  | (1+n)(5+n)(7+n)            | 48 + 27 <i>n</i>  |
| -180                  | -299                  | 420                    | n(3+n)(5+n)                | 24+19n            |
| -105                  | 142                   | -210                   | (1+n)(3+n)(7+n)            | 32 + 23 <i>n</i>  |
| -18                   | 7                     | -12                    | $(1+n)(3+n)^2$             | 16+15n            |
| -6                    | -5                    | 6                      | n(1+n)(3+n)                | 8+11n             |

**Table 1.** Examples of convergence to  $\frac{a_0}{a_1+a_2\log 2}$ 

| <i>a</i> <sub>0</sub> | <i>a</i> <sub>1</sub> | a2        | $P(n)/(-2n) \qquad T(n) - 3n$ |                   |
|-----------------------|-----------------------|-----------|-------------------------------|-------------------|
| 1                     | 1                     | -1        | $n(1+n)^2$                    | 4 + 7 <i>n</i>    |
| 9                     | 11                    | -15       | $n(3+n)^2$                    | 16 + 15n          |
| 50                    | 147                   | -210      | $n(5+n)^2$                    | 36 + 23 <i>n</i>  |
| 60                    | 47                    | -60       | n(1+n)(5+n)                   | 12 + 15n          |
| 90                    | -79                   | 120       | (1+n)(3+n)(5+n)               | 24 + 19n          |
| 420                   | 319                   | -420      | n(1+n)(7+n)                   | 16+19n            |
| 420                   | 887                   | -1260     | n(3+n)(7+n)                   | 32 + 23n          |
| 900                   | 361                   | -480      | $(2+n)(5+n)^2$                | 36 + 23 <i>n</i>  |
| 1890                  | -3443                 | 5040      | (1+n)(3+n)(9+n)               | 40 + 27n          |
| 2100                  | 2377                  | -3360     | (2+n)(5+n)(7+n)               | 48 + 27n          |
| 5544                  | 50035                 | -72072    | n(5+n)(11+n)                  | 72 + 35 <i>n</i>  |
| 6468                  | -249713               | 360360    | (1+n)(7+n)(11+n)              | 96 + 39n          |
| 7560                  | 19409                 | -27720    | n(3+n)(9+n)                   | 40 + 27n          |
| 8316                  | -19031                | 27720     | (1+n)(3+n)(11+n)              | 48 + 31n          |
| 15444                 | -49705                | 72072     | (1+n)(3+n)(15+n)              | 64 + 39 <i>n</i>  |
| 22050                 | -499279               | 720720    | (1+n)(7+n)(9+n)               | 80 + 35 <i>n</i>  |
| 24255                 | -76586                | 110880    | (3+n)(7+n)(11+n)              | 96 + 39 <i>n</i>  |
| 25740                 | 200107                | -288288   | (2+n)(5+n)(15+n)              | 96 + 43n          |
| 37800                 | 250427                | -360360   | n(5+n)(9+n)                   | 60 + 31 n         |
| 38808                 | 849671                | -1225224  | n(7+n)(11+n)                  | 96 + 39 <i>n</i>  |
| 39690                 | -1997851              | 2882880   | $(1+n)(9+n)^2$                | 100 + 39 <i>n</i> |
| 41580                 | 154327                | -221760   | (2+n)(5+n)(11+n)              | 72 + 35 <i>n</i>  |
| 58212                 | 3997025               | -5765760  | (2+n)(9+n)(11+n)              | 120 + 43n         |
| 79380                 | 2123957               | -3063060  | $n(9+n)^2$                    | 100 + 39 <i>n</i> |
| 83160                 | 251561                | -360360   | n(3+n)(11+n)                  | 48 + 31n          |
| 87318                 | -8491859              | 12252240  | (1+n)(9+n)(11+n)              | 120 + 43n         |
| 97020                 | 1999321               | -2882880  | (2+n)(7+n)(11+n)              | 96 + 39 <i>n</i>  |
| 132300                | 3997907               | -5765760  | $(2+n)(9+n)^2$                | 100 + 39 <i>n</i> |
| 198450                | -1227581              | 1774080   | $(3+n)(9+n)^2$                | 100 + 39n         |
| 216216                | 852707                | -1225224  | n(3+n)(15+n)                  | 64 + 39n          |
| 360360                | 263111                | -360360   | n(1+n)(13+n)                  | 28 + 31 n         |
| 630630                | -3990557              | 5765760   | (3+n)(7+n)(13+n)              | 112 + 43n         |
| 918918                | -3383801              | 4900896   | (1+n)(3+n)(17+n)              | 72 + 43n          |
| 1746360               | 2475007               | -3548160  | (4+n)(9+n)(11+n)              | 120 + 43n         |
| 46558512              | 33464927              | -46558512 | n(1+n)(19+n)                  | 40 + 43n          |

**Table 2.** Examples of convergence to  $\frac{a_0}{a_1+a_2\log 2}$ . The entry in blue is the one reported by the Ramanujan Project.

| <i>a</i> <sub>0</sub> | <i>a</i> <sub>1</sub> | <i>a</i> <sub>2</sub> | P(n)/(-2n)       | $T(n) - 3n^2$    |
|-----------------------|-----------------------|-----------------------|------------------|------------------|
| -80281600             | -10675439             | 9459450               | (2+n)(3+n)(14+n) | 45 + 35 <i>n</i> |
| -15728640             | 392683                | -727650               | $(4+n)^2(12+n)$  | 65 + 35 <i>n</i> |
| -13107200             | -263867               | -28350                | (4+n)(5+n)(10+n) | 55 + 31 <i>n</i> |
| -10485760             | -93699                | -103950               | (4+n)(5+n)(12+n) | 65 + 35 <i>n</i> |
| -7372800              | -884203               | 727650                | (2+n)(3+n)(12+n) | 39 + 31 n        |
| -6291456              | 149419                | -257250               | $(4+n)(8+n)^2$   | 81 + 35 <i>n</i> |
| -5242880              | -86807                | 9450                  | (5+n)(6+n)(10+n) | 77 + 35n         |
| -3932160              | -116317               | 3150                  | (4+n)(5+n)(8+n)  | 45 + 27n         |
| -3276800              | -158859               | 22050                 | (2+n)(5+n)(10+n) | 33 + 27 <i>n</i> |
| -2621440              | -48609                | -1050                 | (5+n)(6+n)(8+n)  | 63 + 31 n        |
| -2359296              | -168445               | 103950                | (2+n)(4+n)(12+n) | 39 + 31 <i>n</i> |
| -491520               | 50593                 | -66150                | (3+n)(4+n)(10+n) | 55 + 31 <i>n</i> |
| -327680               | -21271                | 9450                  | (2+n)(4+n)(10+n) | 33 + 27 <i>n</i> |
| -230400               | -1909                 | -22050                | $(2+n)^2(5+n)$   | 9 + 11 <i>n</i>  |
| -196608               | -184547               | 198450                | (3+n)(6+n)(10+n) | 77 + 35 <i>n</i> |
| -163840               | -4981                 | -22050                | n(5+n)(8+n)      | 9 + 19 <i>n</i>  |
| -131072               | -2951                 | -630                  | $(4+n)^2(8+n)$   | 45 + 27n         |
| -122880               | -13079                | 9450                  | (2+n)(3+n)(10+n) | 33 + 27 <i>n</i> |
| -61440                | -2467                 | -3150                 | (2+n)(4+n)(5+n)  | 15+15 <i>n</i>   |
| -61440                | 791                   | -9450                 | n(5+n)(6+n)      | 7 + 15n          |
| -51200                | 2839                  | -9450                 | n(4+n)(5+n)      | 5+11 <i>n</i>    |
| -49152                | -1919                 | 90                    | $(4+n)^2(6+n)$   | 35 + 23n         |
| -36864                | -2693                 | -450                  | (2+n)(4+n)(6+n)  | 21 + 19n         |
| -18432                | -419                  | -3150                 | n(4+n)(6+n)      | 7 + 15n          |
| -18432                | -419                  | -3150                 | n(3+n)(8+n)      | 9 + 19n          |
| -8192                 | -487                  | -54                   | $(4+n)^3$        | 25 + 19n         |
| -3072                 | 121                   | -630                  | $n(4+n)^2$       | 5+11n            |
| -2048                 | -129                  | -90                   | $(2+n)(4+n)^2$   | 15 + 15n         |
| -2048                 | -43                   | -30                   | (3+n)(4+n)(6+n)  | 35 + 23n         |
| -768                  | -77                   | -18                   | (2+n)(3+n)(4+n)  | 15+15n           |
| -288                  | 31                    | -90                   | n(2+n)(3+n)      | 3 + 7 <i>n</i>   |

**Table 3.** Examples of convergence to  $\frac{a_0}{a_1+a_2G}$ 

|   | <i>a</i> <sub>0</sub> | <i>a</i> <sub>1</sub> | a2       | P(n)/(-2n)       | $T(n) - 3n^2$    |
|---|-----------------------|-----------------------|----------|------------------|------------------|
| 1 | 192                   | 13                    | 18       | $(2+n)^2(3+n)$   | 9+11 <i>n</i>    |
| 1 | 384                   | 1                     | 90       | n(3+n)(4+n)      | 5 + 11n          |
| l | 2304                  | 389                   | 450      | n(3+n)(6+n)      | 7 + 15n          |
| Î | 3072                  | 179                   | -18      | $(3+n)(4+n)^2$   | 25 + 19n         |
|   | 4608                  | 133                   | 450      | $(2+n)^2(4+n)$   | 9+11n            |
| 1 | 4608                  | 383                   | -90      | (2+n)(3+n)(6+n)  | 21 + 19n         |
| 1 | 11520                 | -1373                 | 3150     | n(2+n)(4+n)      | 3 + 7 <i>n</i>   |
| 1 | 12288                 | 973                   | -750     | $(3+n)(6+n)^2$   | 49 + 27 <i>n</i> |
|   | 12288                 | 1145                  | -630     | (2+n)(3+n)(8+n)  | 27 + 23n         |
|   | 16384                 | -543                  | 1050     | (3+n)(4+n)(8+n)  | 45 + 27n         |
|   | 81920                 | 3983                  | 1350     | $(4+n)^2(5+n)$   | 25 + 19n         |
| 1 | 89600                 | -10891                | 22050    | n(2+n)(5+n)      | 3 + 7 <i>n</i>   |
| 1 | 98304                 | 2263                  | 150      | $(4+n)(6+n)^2$   | 49 + 27n         |
| ĺ | 98304                 | 35389                 | -36750   | (3+n)(6+n)(8+n)  | 63 + 31 n        |
| 1 | 122880                | 6563                  | 3150     | (2+n)(5+n)(6+n)  | 21 + 19n         |
| ĺ | 147456                | 21365                 | 22050    | n(4+n)(8+n)      | 9 + 19n          |
|   | 163840                | 6789                  | 450      | (4+n)(5+n)(6+n)  | 35 + 23n         |
|   | 262144                | 710401                | -771750  | $(3+n)(8+n)^2$   | 81 + 35 <i>n</i> |
|   | 294912                | 18013                 | -3150    | (2+n)(4+n)(8+n)  | 27 + 23 <i>n</i> |
|   | 524288                | 27787                 | -22050   | (4+n)(6+n)(10+n) | 77 + 35 <i>n</i> |
|   | 786432                | 19099                 | -5250    | (4+n)(6+n)(8+n)  | 63 + 31 n        |
|   | 983040                | 25979                 | -450     | $(5+n)(6+n)^2$   | 49 + 27n         |
|   | 1310720               | 1723                  | 28350    | $(4+n)^2(10+n)$  | 55 + 31 n        |
| 1 | 2949120               | 168821                | 22050    | (2+n)(5+n)(8+n)  | 27 + 23n         |
| 1 | 9830400               | -1833409              | 2182950  | (3+n)(4+n)(12+n) | 65 + 35 <i>n</i> |
|   | 12582912              | 184025                | -7350    | $(5+n)(8+n)^2$   | 81 + 35 <i>n</i> |
| 1 | 39321600              | 1965547               | -727650  | (2+n)(5+n)(12+n) | 39 + 31 n        |
| l | 165150720             | 12969199              | -9459450 | (2+n)(4+n)(14+n) | 45 + 35n         |
| j | 330301440             | 17687791              | -9459450 | (2+n)(5+n)(14+n) | 45 + 35n         |

**Table 4.** Examples of convergence to  $\frac{a_0}{a_1+a_2G}$ 

| С  | <i>a</i> <sub>0</sub> | <i>a</i> <sub>1</sub> | a2            |
|----|-----------------------|-----------------------|---------------|
| 3  | 2                     | 1                     | 0             |
| 4  | 1                     | 1                     | -1            |
| 5  | -1                    | -3                    | 4             |
| 6  | -2                    | -17                   | 24            |
| 7  | -3                    | -67                   | 96            |
| 8  | 12                    | 667                   | -960          |
| 9  | 5                     | 666                   | -960          |
| 10 | 30                    | 9319                  | -13440        |
| 11 | -105                  | -74537                | 107520        |
| 12 | -280                  | -447187               | 645120        |
| 13 | 126                   | 447173                | -645120       |
| 14 | 63                    | 491884                | -709632       |
| 15 | 231                   | 3935051               | -5677056      |
| 16 | 2772                  | 102311095             | -147603456    |
| 17 | -1287                 | -102310996            | 147603456     |
| 18 | -6006                 | -1023109531           | 1476034560    |
| 19 | 45045                 | 16369749493           | -23616552960  |
| 20 | 720720                | 556571437717          | -802962800640 |

**Table 5.** Examples of convergence to  $\frac{a_0}{a_1+a_2\log 2}$  for  $R_c$