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The Balkans Continued Fraction
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DIÉNS, ÉNS, CNRS, PSL University, Paris, France
45 rue d’Ulm, 75230, Paris cedex 05, France

ofer.friedman@ens.fr, david.naccache@ens.fr

Abstract. In a previous escapade we gave a collection of continued frac-
tions involving Catalan’s constant. This paper provides more general for-
mulae governing those continued fractions. Having distinguished differ-
ent cases associated to regions in the plan, we nickname those continued
fractions “The Balkans” as they divide into areas which are related but
still different in nature.
Because we do not provide formal proofs of those machine-constructed
formulae we do not claim them to be theorems. Still, each and every pro-
posed formula was extensively tested numerically.

1 Introduction

In a previous escapade [12] we gave a collection of continued fractions involv-
ing Catalan’s constant. This paper provides more general formulae governing
those continued fractions. Having distinguished different cases associated to
regions in the plan, we nickname those continued fractions “The Balkans” as
they divide into areas which are related but still different in nature.

Because we do not provide formal proofs of those machine-constructed for-
mulae we do not claim them to be theorems. Still, each and every proposed
formula was extensively tested numerically.

All the programs included in this article are self-contained, i.e. any code
snippet can be run independently of the others to fully illustrate the encoded
formula. This renders the code longer but has the great advantage of allowing
the reader to run and modify each snippet directly by just cutting and past-
ing it into Mathematica without requiring any other module1. The code was
compacted for the sake of concision but loading it into Mathematica’s editor
re-indents it automatically.

2 Notations

We denote by n!! the semifactorial of, i.e. the product of all the integers from 1
up to n having the same parity as n:

1 Each snippet ends by a ClearAll["Global‘*"]; command whose purpose is to make
Mathematica “forget” all passed history.
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n!! =

⌈
n
2

⌉
−1∏

k=0

(n− 2k) = n(n− 2)(n− 4) · · ·

Because in all the following we will only apply semifactorials to odd num-
bers, this can simplified as:

n!! =

n+1
2∏
k=1

(2k − 1) = n(n− 2)(n− 4) · · ·3 · 1

We denote by Catalan’s constant byG = 0.91596559 . . . and let Cn be the n-th
Catalan number:

Cn =
1

n+1

(
2n
n

)
=

(2n)!
(n+1)!n!

=
n∏
k=2

n+ k
k

for n ≥ 0

The first Catalan numbers are:

1,1,2,5,14,42,132,429,1430,4862,16796,58786, . . .

3 The target

Wedefine for odd j and κ,c ∈N the following quantity nicknamed “The Balkans
continued fraction”:

Qj,κ,c = j(2− j +2κ) +
∞

K
n=1

(−2n(c+n)(j +n− 1)(1− j +2κ+n)
j(2− j +2κ) + (3 + 4κ)n+3n2

)
The question asked is that of finding a general process allowing to compute

Qj,κ,c while resorting as little as possible to numerical simulations or integer re-
lation algorithms. The reason for this is that while integer relation algorithms
allow us to “magically” discover relations, they do not provide general infor-
mation about the underlying structure of the constants found. Why? Because
we’re in it for the thrill of discovery, not just the magic of shortcuts.

3.1 Why this formula in particular?

The Ramanjuan Machine Project [14,5], lists a few continued fractions involv-
ingG detected in 2020.We do not knowwhy the project did not resort to (rather
basic) integer relation algorithms to discover more relations. We hence we de-
cided to play detective and launched a code that found a few hundreds of con-
tinued fractions involving G in a few intensive calculations days. All continued
fractions were of the form:



ε+
∞

K
n=1

(−2n(n+ τ)(n+ η)(n+µ)
ε+ δn+3n2

)
=

a0
a1 + a2G

where a0, a1, a2 ∈Z

We performed two natural tests on the coefficient vectors (δ,ε,τ,η,µ): a PCA
to determine if the coefficients can be expressed as linear combinations of less
than 5 variables and a Hough transform to detect affine relations in the dataset.

PCA revealed that, when projected on (δ,τ,η,µ), nearly all data was gov-
erned by three linear dimensions 2. We hence understood that we were facing
a linear behavior in a large region (Balkans) plus some sporadic cases (see Re-
mark 13). This was also confirmed by the Hough transform that detected sev-
eral parallel plans in the 3D-space. We thus decided to focus our efforts on the
main plan in the 3D-space and understand it.

3.2 How formulae were reverse-engineered

Now comes the real adventure. The process that allowed us to reverse-engineer
the formulae given in this paper is interesting by its own right. A quick look at
many examples of the three quantities a0, a1, a2 forming the fractions:

Qj,κ,c =
a0

a1 + a2G
where a0, a1, a2 ∈Z

showed that the ais are products of small prime factors and a few large
prime factors. This suggested that ais were initially3 of some form:

ai = expression(j,κ,c) =
∏u−1
i=0 φi(j,κ,c)∏v−1
i=0 φi(j,κ,c)

where the φi are functions such as (an+b)!, 2an+b, (an+b)!!, Can+b, Pochham-
mer symbols of linear combinations of the parameters j,κ,c etc. and a few un-
known “mixing” functions causing the appearance of the large prime factors,
e.g. polynomials or recurrence relations.

Fortunately, integer relation algorithms allow us to collect many instances
of such forms for diverse j,κ,c values. Hence the problem at hand consists in
identifying which φis are compatible with the cancellations due to the division.
If a givenφ is present in the expression then it is reasonably assumed that when
tried for many j,κ,c the new expression:

expression1(j,κ,c) =
expression(j,κ,c)

φ(j,κ,c)
or

expression1(j,κ,c) = expression(j,κ,c) ·φ(j,κ,c)
2 To which we gave the names j,κ,c.
3 i.e., before simplification intervenes.



will feature less small factors and hence stand-out as an outlier.
The process can hence be repeated with proper backtracking until all the

combinatorial φis were peeled-off. Then it remains to detect what the remain-
ing “mixing” functions are which is done by monitoring the average growth
rate of those surviving constants to emit hypotheses on the type of recurrence
relations (or polynomials) at hand or resorting to a variety of integer sequence
recognition tools to identify the hidden culprits.

– We started our exploration with the simplest case of Bosnia & Herzegovina
where a2 = 0.

– Having reverse-engineered Bosnia & Herzegovina we moved to Croatia for
which a2 = 0 as well.

– The conjectured similarity between those two Q regions guided our soft-
ware to the formula forMontenegro which is somewhat simpler than Kosovo
and Serbia given that Montenegro corresponds to j = 1.

– Having inferred Montenegro we moved on to Kosovo whose symmetry4

with Serbia was quickly noted.

This work demonstrates the interest of statistical classifiers such as Max-
imum Likelihood Estimation (MLE) and Support Vector Machines (SVM) in
mathematical exploration.

As will be shown, this “gradient descent” method proved itself very well,
although it required a few thousands of computation hours on a very powerful
cluster.

We estimate that 80% of the discovery effort was done by the machine. The
remaining 20% being human “piloting” that, we are convinced, is already at
the reach of today’s most powerful LLMs, such as Gemini.

It appears much better to read the coming sections first to understand what
prey we are stalking and then refer to Section 11 describing the hunting pro-
cess.

4 Kosovo, Serbia, Croatia, Montenegro, Bosnia & Herzegovina

.
As we will see, we distinguish five cases that we call Kosovo, Serbia, Croatia,

Montenegro and Bosnia & Herzegovina after the regions of interest in the (j,κ)-
space shown in Figure 1. In each region c runs over the integers.

A first restriction of our study will be to focus on odd j that produce Qj,κ,c
values involving G. Note that:

Qj,c,κ =


a0

a1 + a2G
if j is odd

a0
a1 + a2 log2

if j is even

4 This symmetry simply comes from the fact that the equation j(2−2j +2κ) = x(2−2x+
2κ) has the two solutions x = j and x = κ − j +1.



j = 1

j = 3

j = 5

j = 7

j = 9

j = 11

j = 13
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Fig. 1. The Five j,k Areas. The meaning of the arches connecting Kosovo, Serbia, and
Montenegro will be clarified later.



Fig. 2. The areas of Figure 1, with the dimension c added. Each point in space corre-
sponds to a Qj,κ,c value.

Area Domain Qj,κ,c is in

Croatia j ≥ 2κ+5 Q

Bosnia & Herzegovina j = 2κ+3 Q

Serbia 2κ+1 ≥ j ≥ κ+3 R

Kosovo κ+2 ≥ j ≥ 3 R

Montenegro j = 1 R

Table 1. Areas. We list fractions involving G as being in R although it is currently un-
known if G ∈Q (this is a major open question).



Note as well that j,κ,c can be negative. In the examples given in the ap-
pendix we adopt the notation:

a0
a1 + a2 · constant

= T (0) +
∞

K
n=1

( P (n)
T (n)

)
This paper does not treat the even and negative j,κ,c cases (a follow-up

paper dealing with those cases being underway).

5 The Montenegro Conjecture

We start with the first j,κ space called Montenegro. Montenegro corresponds
to the case j = 1. In other words:

Q1,κ,c = 2κ+1+
∞

K
n=1

( −2n2(n+2κ)(n+ c)
3n2 + (3+4κ)n+2κ+1

)
Define the functions:

∆κ,c(α,β) =


α + βc if c < 2
−2c(2c − 1)(2(c −κ)− 1)2∆κ,c−2(α,β) if c ≥ 2

+ (8c2 + (2− 8κ)c − 2κ+1)∆κ,c−1(α,β)

Γκ,c(α,β) = (2c − 1)!!2G+∆κ,c−1(α,β) ·
κ−1∏
i=0

(2(c − i)− 1)

δκ =
4κ−1

(2κ − 1)Cκ−1
and ρκ =

δκ(−1)κ(1− 2κ)
(2κ)!(2κ − 3)!!

ακ = ρκ∆1,κ−1(1,−2) and βκ = −ρκ(2κ − 3)2∆2,κ−1(1,12)−ακ

Then ∀κ,c ∈N2, Q1,κ,c =
δκ(2c)!

Γκ,c(ακ,βκ)

Q1,κ,c is hence an explicitly computable fraction of the form:

Q1,κ,c =
a0

a1 + a2G
where a0, a1, a2 ∈Z

The code snippet testing this formula over the square 1 ≤ κ,c ≤ 14 is entitled
"1. Montenegro".

In summery in Montenegro we do not need to resort to any integer relation
algorithms to compute Q1,κ,c for all κ,c values.

Remark 1. Note that, as described here, the complexity of ∆κ,c is exponential in
c, however, using classical Fibonacci memoization, this complexity can be re-
duced toO(c logc) thereby resulting in a very efficient algorithm for computing
Q1,κ,c.
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Fig. 3. Functional dependency between the functions computing Q1,κ,c

6 The Bosnia & Herzegovina Conjecture

Bosnia & Herzegovina corresponds to the line 2κ = j − 3, that is:

Q
j, j−32 ,c

= −j +
∞

K
n=1

(−2n(n− 2)(n+ c)(n+ j − 1)
3n2 + (2j − 3)n− j

)
We start by defining:

αj = (−2)
3j−11

2 and βj = αj (15− 4j)

And let:

∆j,c(αj ,βj ) =


αj + βjc if c < 2
−2c(2c − j)(2c+1)(2c − j +2)∆j,c−2(αj ,βj ) if c ≥ 2

+ (8c2 + (14− 4j)c − 3(j − 2))∆j,c−1(αj ,βj )

g(j, c) = (2c)!2
3j−13

2

j−1
2∏
i=1

(2c − 2i +1)(j − 2− 2i)

h(j, c) = (2c − j +2)

j−5
2∏
i=1

(2c − 2i − 1)2

Then:



Q
j, j−32 ,c

=
g(j, c)

∆j,c−1(αj ,βj ) · h(j, c)
∈Q

Hence, in Bosnia & Herzegovina as well we do not need to resort to any in-
teger relation algorithms to compute Q

j, j−32 ,c
which is an explicitly computable

fraction in Q.
The corresponding code snippet is "2. Bosnia". We conjecture that Bosnia

& Herzegovina is actually a particular case of Croatia which values are also in
Q.

7 Roadmap

We are now ready to describe the general scheme that will govern the rest of
this paper.

7.1 Areas governed by one running variable

As we have just seen, Montenegro and Bosnia & Herzegovina follow similar
behaviors. This pattern revolves around the “magic” values α,β which are for-
mally known for Montenegro and Bosnia & Herzegovina. Both regions are lines
parameterized by a single running variable (κ for Montenegro and j for Bosnia
& Herzegovina).

7.2 The c-level master formula for all Balkans except Montenegro

Except Montenegro (whose case was settled) all other areas obey a common c-
level master formula that we will provide below. Computing Qj,κ,c for any c
using this c-level master formula requires knowledge of two rational parame-
ters: αj,κ and βj,κ.

The cornerstone of the rest of this paper is thus the quest for αj,κ and βj,κ
for all Balkan areas except Montenegro.

αj,κ,βj,κ can always be inferred by computing numerically5 Qj,κ,c1 andQj,κ,c2
for two values c1 , c2 and solving a system of two equations in the unknowns
αj,κ,βj,κ.

When αj,κ,βj,κ are found Qj,κ,c can be computed for any other c < {c1, c2}.
Using this process requires resorting twice to integer relation algorithms

such as LLL [11], HJLS [10], PSOS [1,7] or PSLQ [8]. This works perfectly in
practice but is not entirely satisfactory because the process has a “blind spot”
which is the integer relation oracle. We would like to avoid such blind spots as
much as possible and dispose of a fully algebraic process for computing each
Qj,κ,c. The ideal situation being, of course, a direct algebraic computation of
Qj,κ,c from the data j,κ,c alone.



j-level
master formula

j

κ-level
master formula

κ

c-level
master formula

c

Qj,κ,c

αj ,βj αj,κ,βj,κ

Fig. 4. j, κ and c-level master formulae. j-level master formulae (dotted) are only con-
jectured to exist. To date we have processes for inferring c-level and κ-level master for-
mulae.

While we do not achieve this goal completely, we grandly progress towards
it by minimizing a lot the call to the integer relation oracle.

The snippet "3. Northern Balkans" illustrates the process with all areas
except Montenegro. The snippet validates the c-level master formula on the 3D
volume 3 ≤ j ≤ 13, 1 ≤ κ ≤ 6, 1 ≤ c ≤ 7 (Figure 16) stretching over parts of
Croatia, Bosnia & Herzegovina, Serbia and Kosovo. In each case the program
derives the corresponding αj,κ,βj,κ and allows the computing of Qj,κ,c for any
c. The formally computed results are then successfully compared to numerical
ones.

As we will later see, for Serbia and Kosovo we have more powerful master
formulae operating at the κ-level.

The c-level master formula6 is defined as follows, assuming that we are
somehow given the magic constants αj,κ,βj,κ.

Let:

∆j,κ,c(αj,κ,βj,κ) =


αj,κ + βj,κc if c < 2
−2c(2c − j)(2c − 2κ+ j − 2)(2c − 2κ − 1)∆j,κ,c−2(αj,κ,βj,κ) if c ≥ 2

+ (8c2 + (2− 8κ)c+ (j − 2)(2κ − j))∆j,κ,c−1(αj,κ,βj,κ)

fj,κ,c = C j−3
2
Cκ−1(j − 2)(2κ − 1)(2c − 1)!!2

j−1
2∏
i=1

(2c − 2κ+2i − 1)(κ − i +1)

gj,κ,c = (2c)!2
j+4κ−7

2

j−1
2∏
i=1

(2c − 2i +1)(2κ − 2i +1)

hj,κ,c =

j−3
2∏
i=0

(2c − 2i − 1)
κ−1∏
i=0

(2c − 2i − 1)

5 i.e. using an integer relation algorithm.
6 valid for all areas except Montenegro whose case was anyhow previously settled.



Then:

Qj,κ,c =
g(j,κ,c)

∆j,κ,c−1(αj,κ,βj,κ) · h(j,κ,c) + f (j,κ,c) ·G

Remark 2. For Croatia fj,κ,c = 0. This happens automatically given the defini-
tion of fj,κ,c.

7.3 Symmetries

Montenegro, Kosovo and Serbia feature internal symmetries illustrated by the
arches in Figures 1 where connected values are identical. We will also provide a
formula connecting their α,β values over the plan. This means that any formula
applicable to Kosovo will also settle the case of Serbia (given that Montenegro
is settled and given that Montenegro provides the values for the upper border
line of Serbia). We will come to that later on.

8 The Kosovo Conjecture

Kosovo is very specific in that it has a κ-level master formula. This means that
for each j, knowledge of four upper-level rational constants7:

{αj ,βj } =
{
{
α

αj ,
β

αj }, {
α

βj ,
β

βj }
}

allows to generate αj,κ,βj,κ for all κ values along a j-line within Kosovo.
Finding αj ,βj for a given j requires solving a system of equations using four

known αj,κ1 ,βj,κ1 ,αj,κ2 ,βj,κ2 for some κ1 , κ2. To determine the two αj,κi ,βj,κi
pairs8 we can solve two systems of equations (each in two unknowns) using
any Qj,κ1,c1 ,Qj,κ1,c2 ,Qj,κ2,c3 and Qj,κ2,c4 . Note that there is no opposition to take
c1 = c3 and c2 = c4. This process is illustrated in Figure 5.

8.1 The Kosovo κ-level master formula

The κ-level master formula for Kosovo allows to infer αj,κ,βj,κ from αj ,βj for a
fixed j and a variable κ.

In other words, the Kosovo κ-level master formula generates for a fixed j
and for a variable κ the data αj,κ,βj,κ necessary to operate the general c-level
master formula given in subsection 7.2.

Recall that the c-level master formula of subsection 7.2 generates for a fixed
j,κ and a variable c a formal expression of the continued fraction Qj,κ,c, given
the auxiliary input αj,κ,βj,κ.

7 This somewhat unusual notation is used to note the “α of α”, the “β of α” etc, as the
same type of formula is applied at both c and κ levels.

8 for i ∈ {1,2}.



αj ,βj

any αj,κ,βj,κ

any Qj,κ,c

αj,κ1 ,βj,κ1

Qj,κ1,c1 Qj,κ1,c2

αj,κ2 ,βj,κ2

Qj,κ2,c3 Qj,κ2,c4

computed using an integer relation algorithm

Fig. 5. κ-level resolution process for Kosovo.

Define:

π(j,κ) =

j−3
2∏
i=0

(κ − i)(2κ − 2i − 1)2

`(n,j,κ) =
(−1)κ+1(2κ)!2

κ!23κ−2(2κ − j)(2κ − 1)(n((2κ − j − 2)(3− 2κ)− 1) + 1) ·π(j,κ)

η(n,j,κ) = (2κ+2j − 9− 2n)(2κ+ j − 8− 2n)(−2κ+5− j)(2κ+ j − 6)

φ(n,j,κ) = 8κ2 +κ(10j − 48− 8n) + 3j2 − (28+ 4n)j +68+18n

∆̄n,j,κ(α,β) =

α + βκ if κ < 2
η(n,j,κ) · ∆̄n,j,κ−2(α,β) +φ(n,j,κ) · ∆̄n,j,κ−1(α,β) if κ ≥ 2

We assume that we are given the four constants:

{αj ,βj } =
{
{
α

αj ,
β

αj }, {
α

βj ,
β

βj }
}
∈Q4

Then:

αj,κ =
∆̄0,j,κ−j+2(

α

αj ,
β

αj )

`(0, j,κ)
and βj,κ =

∆̄1,j,κ−j+2(
α

βj ,
β

βj )

`(1, j,κ)
−αj,κ

The process is illustrated by the code snippet "4. Kosovo".



The computation of the “magic” lists of constants {αj ,βj } hard-coded in the
snippet "4. Kosovo" is done by resorting to integer relation resolution in snip-
pet "5. resolution".

Remark 3. It is interesting to note that thanks to the inner symmetry within
Kosovo, it is possible to determine αj+2,βj+2 if αj ,βj ,αj+4,βj+4 are known. Tak-
ing as an example j = 5, Figure 1 shows that Q5,3,c = Q3,3,c. Hence knowledge
of α3,β3 will be used to compute Q3,3,c which is identical to Q5,3,c.

Note thatQ5,5,c =Q7,5,c. Hence knowledge of α7,β7 will be used to compute
Q7,5,c which is identical to Q5,5,c. Finally, having in hand Q5,3,c,Q5,5,c we can
solve a system in two unknowns and determine α5,β5. Unfortunately this pro-
cess has an information flow that only operates in “sandwich mode” allowing
to determine αj+2,βj+2 from αj ,βj ,αj+4,βj+4. This information flow cannot be
reversed into an “escalator” allowing to ascend to level j + 4 from levels j and
j + 2. The situation is illustrated in Figure 6 where x −→ y denotes the relation
“y is computable from x”.

Remark 4. It is also possible to directly infer the αj,κ,βj,κ through symmetry.
Note that the relation below also works for negative j,κ values.

Define:

ζ(j,u) =
1
2u

u−1∏
i=0

(2 + 2i − j)

τj,u =


ζ(j,u)
|ζ(j,u)|

· (2j − 2u − 3)!!(2u − j)!!(−2)u if 2u > j − 1

ζ(j,u) · (−4)u otherwise

Then:
αj,j−u−1
αj−2u,j−u−1

=
βj,j−u−1
βj−2u,j−u−1

= τj,u

In particular τj,j−1 =
1

2j−4 . The code is snippet "6. symmetry".

9 The Croatia Conjecture

We suspect that Bosnia & Herzegovina is a particular border case of Croatia.
Our automated software detected the following stunning behavior provid-

ing a κ-level formula for Croatia.
Let:

µi,j = −(−2)
3j−11−4i

2

i∏
q=1

(j − 2q − 2)

For every i = 0,1,2, . . . there exist two polynomials in j, denoted ψ1(i, j) and
ψ2(i, j) such that for j ≥ 2i +5 we have:



αj+4 and βj+4 αj and βj

∧ ∧

αj+4,κ2 and βj+4,κ2 αj,κ4 and βj,κ4

Qj+4,κ2,c3 and Qj+4,κ2,c4 Qj,κ4,c7 and Qj,κ4,c8

αj+4,κ1 and βj+4,κ1 αj,κ3 and βj,κ3

Qj+4,κ1,c1 and Qj+4,κ1,c2 Qj,κ3,c5 and Qj,κ3,c6

αj+4,j+2 and βj+4,j+2 αj,j and βj,j

Qj+4,j+2,c9 and Qj+4,j+2,c10 Qj,j,c11 and Qj,j,c12

Qj+2,j+2,c9 and Qj+2,j+2,c10 Qj+2,j,c11 and Qj+2,j,c12

αj+2,j+2 and βj+2,j+2 αj+2,j and βj+2,j

∧

αj+2 and βj+2

any αj+2,κ and βj+2,κ

any Qj+2,κ,c

Fig. 6. Inferring αj+2,βj+2 from αj ,βj and αj+4,βj+4. The Qj,κ,c in green boxes are de-
termined using integer relation algorithms.



α
j, j−2i−32

=
ψ1(i, j)
µ(i, j)

and β
j, j−2i−32

=
ψ2(i, j)
µ(i, j)

Tables 2 and 3 provide the first values of the polynomials ψ1,ψ2.
See code snippet "7. Croatia".

i ψ1(i, j)

0 −1
1 14− j
2 −464+58j − 3j2

3 27936− 4692j +432j2 − 15j3

4 −2659968+542256j − 67836j2 +4260j3 − 105j4

5 367568640− 86278560j +13203480j2 − 1139700j3 +51450j4 − 945j5

Table 2. ψ1(i, j) for 0 ≤ i ≤ 5.

i ψ2(i, j)

0 −15+4j

1 306− 95j +4j2

2 −13360+4646j − 357j2 +12j3

3 999648− 379692j +40368j2 − 2457j3 +60j4

4 −113885568+46449360j − 6124164j2 +513228j3 − 22935j4 +420j5

5 18333538560− 7933530720j +1224286440j2 − 126833100j3 +7864950j4 − 266175j5 +3780j6

Table 3. ψ2(i, j) for 0 ≤ i ≤ 5.

Remark 5.

The leading coefficients ofψ1(i, j) (i.e. 1,1,3,15,105,945, . . .) are (2i−1)!! whereas
the leading coefficients of ψ2(i, j) (i.e. 4,4,12,60,420,3780, . . .) are 4(2i − 1)!!.

Remark 6. The ψ polynomials can always be written under a nested form, e.g.:

ψ1(j,6) =− 14487726825− (104826150+ (452605725

+ (121200300+ (13697775+ (640710

+10395 · (j − 27))(j − 25))(j − 23))(j − 21))(j − 19))(j − 17)

ψ2(j,6) =3198013886925+ (145296572850+ (5207427225

+ (4353102000+ (877052475+ (78210090+ (3023055

+41580 · (j − 29))(j − 27))(j − 25))(j − 23))(j − 21))(j − 19))(j − 17)



Remark 7. The GCD between the u-th coefficient of ψ1(i, j) and the u-th coeffi-
cient of ψ2(i, j) is always smooth as illustrated in the code snippet "8. coef-

ficients". Our code could not reverse-engineer those coefficients. This might
come from the fact that the coefficients involve too many φi or (more likely)
that a specific φi , absent in our catalog, intervenes in the coefficients.

10 Balkans Knowledge Summary

In summary:

– For Kosovo and Croatia we have κ-level formulae9.
– Any Qj,κ,c value in Montenegro is algebraically computable.
– Any Qj,κ,c value in Bosnia & Herzegovina is algebraically computable.
– Serbia is fully determined by our knowledge of Montenegro and Kosovo.
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Fig. 7. The axes along which the κ-level master formulae operate in each area. We hence
see that a finite amount of “magic” information in one dimension allows to algebraically
compute Qj,κ,c over the two remaining dimensions.

We conjecture that there exists (possibly very complex) j-level master for-
mulae for all regions allowing to algebraically access any Qj,κ,c value. Another
challenge, on which the authors are currently working, is characterizing the
case of even j values (that yield formulae involving log2) and negative j,κ,c
values.

As a motivational example let us unveil the simple log2 example Q2,κ,0.
In this case:

9 This means that oracle knowledge of αj ,βj is required to generate Qj,κ,c for all κ,c.

αj ,βj can be inferred from any four Qj,κ1,c1 ,Qj,κ1,c2 ,Qj,κ2,c3 ,Qj,κ2,c3 values.



Area j-level formula κ-level formula c-level formula

Kosovo+Serbia unknown X X
Croatia unknown X X

Montenegro not needed X X
Bosnia & Herzegovina not needed X X

Table 4. Knowledge Summary

Q2,κ,0 =
(−1)κ+1aκ
−bκ + aκ log2

Where aκ is the LCM of the list of κ integers starting with κ (in Mathemat-
ica: Table[Apply[LCM,Table[i,{i,k,2k-1}]],{k,1,100]}) while the bκ are
the numerators of the coefficients in the power series for − log(1 + x) log(1− x).

Recall that the coefficients in the expansion of log(1 + x) log(1− x) are given
by

1
2

(
2n
n

)∫ 1

x=0
(x(1− x))n−1 log(x)dx

and

log(1+ x) log(1− x) = 1
2

∫ 1

z=0

log(z)
z(1− z)

 1√
1− 4x2z(1− z)

− 1
 dz

Evidently, providing formal proofs of the formulae provided in this paper
is a challenge by its own right. The Conservative Matrix Field approach of [6]
is one promising direction to investigate. To date, attempts to code automated
substitution-simplification-induction proofs were unsuccessful. Yet another in-
teresting question is that of reversal : Given a Qj,κ,c (i.e. a0, a1, a2) find j,κ,c10.

The main open questions remaining are very simple to formulate:

Open Question 1

Find a way to calculate directly the constants: {αj ,βj } =
{
{
α

αj ,
β

αj }, {
α

βj ,
β

βj }
}
.

Open Question 2

Find a way to calculate directly the polynomials ψ1(i, j) and ψ2(i, j).

Open Question 3

Prove the formulae given in this paper.

10 Reversal is not always possible over Montenegro because ∀κ, Q1,κ,1 =Q1,1,κ.



The following observations are hints that may serve in future quests:

Remark 8.

Q1,0,c =
(2c)!

2(2c − 1)!!2G −∆c−1,0
where:

∆1,0,c =

1+10c if c < 2
2c(1− 2c)3∆1,0,c−2 + (8c2 +2c+1)∆1,0,c−1 if c ≥ 2

or under an equivalent more compact form:

∆1,0,c =

1 if c = 0
(2c)! + (2c+1)2∆1,0,c−1 if c > 0

and even [4]:

∆1,0,c−1 = (2c)!

2G(2c
c

)
4c

−
∫ ∞
0

t

cosh2c+1(t)
dt


Remark 9.

lim
c→∞

Qj,κ,c+1 −Qj,κ,c = 2

lim
κ→∞

Qj,κ+1,c −Qj,κ,c = 2j

lim
κ→∞

Qj+1,j+2r+1,c −Qj,j+2r+1,c = 4r +1

Remark 10. Denoting:

Qj,κ,c =
a0

a1 + a2G
where a0, a1, a2 ∈Z

The following formula (code snippet "9. ratio") is valid all over areas:

ρj,κ,c =

j−1
2∏
i=1

(2c − 2κ+2i − 1)(κ − i +1)
(2c − 2i +1)(2κ − 2i +1)

and εj,κ = 2κ+
j − 7
2

+
⌊1
j

⌋
a0
a2

=
(2c)! · 2εj,κ

(2c − 1)!!2 ·Cκ−1 ·C j−3
2
· (2κ − 1) · (j − 2) · ρj,κ,c

Where ρ1,κ,c = 1 by definition.

Remark 11. Let x ∈ Q, denote by p(x) the highest power of two dividing the
numerator of x. We have:

p(
α

αj ) = p(
α

βj ) = p(C j−3
2
)



Remark 12. Although possibly unrelated, we note that low-degree continued
fractions involving log2 can be also obtained with lower degree polynomials,
e.g. (See code snippet "10. log2-a".):

2

L(
1
2
,1, c − 1)

=
2

∞∑
n=0

eπin

(n+ c − 1)

=
1

2c−2 log(2)−
c−2∑
j=1

2c−j−2

j

= c+
∞

K
n=1

( −2n2
3n+ c

)

We get a similar behavior for:

Rc = c+
∞

K
n=1

(−2n2 − 2n
3n+ c

)
where 2c−4 · (c−3) ·a0 = a2 and for which we provide numerical examples in

Table 12.
See code snippet "11. log2-b".

Remark 13. We also discovered other continued fractions involving G outside
the Balkans. This suggests the existence of a more general formula encompass-
ing both the Balkans and those other territories (called “Inostranstvo”).

We denote those relations:

Q′δ,ε,τ,η,µ = ε+
∞

K
n=1

(−2n(n+ τ)(n+ η)(n+µ)
ε+ δn+3n2

)
=

a0
a1 + a2G

where a0, a1, a2 ∈Z

Luckily, given that we have two coefficients11 in the denominator of the
continued fractions, we can compare in one plot the coefficients ε and δ of the
Balkans and of Inostranstvo in one figure (Figure 8). Similarly we can visualize
in 3D the τ,η,µ of both regions (Figure 9). The alignments of red points show
that there is clearly another structured family hiding out beyond the Balkans.

PCA and automated matching revealed that ε,δ are dependent on τ,η,µ
and:

Q′τ,η,µ = x+2(τ + η +1)i +
∞

K
n=1

( −2n(n+ τ)(n+ η)(n+2i +µ)
x+2(τ + η +1)i + (2(τ + η +µ+2i) + 3)n+3n2

)
Where x = (1+ η)(1 +µ) + τ(1 + η +µ).
This formula works when all variables12 have identical parity, i.e.:

τ ≡ η ≡ µ mod 2

11 We exclude the 3 of 3n2 in the denominator, which is common to both the Balkans
and to Inostranstvo.

12 (code snippet "14. Inostranstvo")
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Fig. 8. ε,δ for the Balkans (in blue) and Inostranstvo (in red).

For instance:

Q′i = 7+6i +
∞

K
n=1

(−2n(n+1)2(n+2i +1)
7+ 6i + (9+4i)n+3n2

)
for i = 0,1 . . .

Whose formal expression (code snippet "12. Inostranstvo1") turns out to
be:

Q′i =
(2i +1)!

∆′i − 2G(2i +1)!!2

∆′i =

2+15i if i < 2
2(2i − 1)3(1− i) ·∆′i−2 + (8i2 − 2i +3) ·∆′i−1 if i ≥ 2

or13:

Q′′i = 23+10i +
∞

K
n=1

(−2n(n+1)(n+3)(n+2i +3)
23+10i + (17+4i)n+3n2

)
for i = 0,1 . . .

We did not investigate further the various Inostranstvo families but conjec-
ture that they share the same behaviors as the Balkans.

Remark 14. A frustrating exploration that did not succeed can be re-attempted
by interested readers. The reasons for which this approach failed can be any
combination of the following:

13 for which
a0
a2

=
(2j +5)!

(2j +4)(2j +5)!!2

(code snippet "13. Inostranstvo2")



Fig. 9. τ,η,µ for the Balkans (in blue) and Inostranstvo (in red).

– The hypothesis below is wrong.
– We did not explore deep enough.
– A bug in our overly complex code.
– The unknowns are in Q and not in Z.

We wish to test the hypothesis that
α

αj has as a factor some function ∆′′j of
the form:

∆′′j =

α + βj if j < 2
P (j) ·∆′j−2 +R(j) ·∆

′
j−1 if j ≥ 2

Where α,β are unknown integers and P ,Q are unknown polynomials with
moderate size integer coefficients.

We note that
α

α2 mod 2909 =
α

α3 mod 5801 = 0.
Set some integer exploration bounds B0,B1,B2.
Run a search over α,β ∈ [−B0,B0] and for each candidate pair perform the

following test:
List all the integer pairs Pi ,Ri ∈ [−B1,B1] for which:

∆̃′′2 = 0 mod 2909 = 0

where:

∆̃′′j =

α + βj if j < 2
Pi ·∆′j−2 +Ri ·∆

′
j−1 if j ≥ 2



List all polynomials P (x),R(x) having integer coefficients pi , ri ∈ [−B2,B2]
such that: P (2) = Pi and R(2) = Ri .

For each candidate check if ∆′′3 mod 5801 = 0. Note that the search on all the
coefficients of P ,R is not required as the free coefficients can be determined as a
function of all others. This task does not necessarily require exhaustive search
and can be tackled, for instance, by integer programming.

The reason to be of this experiment is that themagnitude of
α

αj is compatible
with that of ∆′′j when, as usual, deg(P (x)) = 4 and deg(R(x)) = 2.

Figure 10 shows the relative log2-scale growth of the functions
α

αj ,
β

αj and
∆′′j where:

{α,β,P (x),R(x)} = {−1,20,−x4,x2}
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50

100

150

200

Fig. 10.
α

αj (blue),
β

αj (black) and ∆′′j (red). Absolute value, log2-scale.

This comforted the hypothesis14 that
α

αj and
β

αj are ∆-cores multiplied or
divided by some moderate-magnitude combinatorial φis.

Unfortunately, except fishing some artifacts, that fail from j = 5 and on, we
did not spot any valid candidate.

Alternatively, one can attempt a faster but more complex analytic approach
consisting in using each of the coefficients pi , ri to absorb one divisibility con-
straint, i.e.:

∆′′j (α,β,P (x),R(x)) mod ρi = 0 where (for instance):

14 That we (unsuccessfully) tried to confirm.
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Fig. 11. red minus blue and red minus black for Figure 10.

{ρ2,ρ3, . . .} = {2909,5801,1093,103192403,5522863607683, . . .}
We did not attempt this approach given the prohibitive complexity of cod-

ing it.

Remark 15. The ∆ functions appearing in this paper are particular cases of
“Generalized Fibonacci Polynomials” (GFBs) studied by various authors, e.g.
[9]. GFBs have numerous properties that might shed light on the open ques-
tions listed supra. We did not investigate this further.

Yet another route consists in considering the targets as algebraic equations
and attempting on them an algebraic sieving approach such as [3]. This was not
investigated this process given its theoretical and logistical complexity.

Finally, the similarity between the infinite sums given in [13] and the con-
tinued fractions investigated in this paper may reveal connections allowing to
prove our conjectures. While analyzing [13] we noted a probable misprint in
the formulae given for y3 and y5 (bottom of page 9 of [13]). We hence con-
ducted our own experiments and discovered the relations described in Table 5
where:

w2c+w3 +w1

∞∑
n=1

(−1)n+1
7∏
i=1

(2n+2i − 3+ ε)−ei = 0

11 The Gradient Descent Process

The Gradient Descent process that generated the formulae will be presented in
steps. We sample execution at critical points using the example j = 11,κ = 6
and 40 ≤ c ≤ 47 to explain the automated exploration process.



ε c e1, e2, . . . , e7 w1,w2,w3

0 π 0,0,2,2,2,2,0 57153600,−33075,103904
0 π 0,1,1,2,2,1,1 69854400,−24255,76192
0 π 0,1,2,1,1,2,1 62868960,−14553,45712
0 π 0,2,2,1,2,2,0 −65318400,−4725,14848
0 π 0,2,2,2,2,0,0 −6350400,−3675,11552
0 π 1,1,2,2,1,1,0 −907200,−315,992
0 π 1,2,1,1,2,1,0 −635040,−147,464
0 π 1,2,2,2,2,1,0 16934400,−245,768
0 π 2,1,1,1,1,2,0 −59535000,−6615,21292
0 π 2,2,0,0,2,1,1 −93139200,−2695,9344
0 π 2,2,0,0,2,2,0 −52920000,−2695,9056
0 π 2,2,1,2,2,0,0 −50803200,3675,−11264
0 π 2,2,2,2,0,0,0 129600,−75,224
0 G 0,1,2,2,2,1,0 −50803200,66150,−60577
0 G 0,3,2,3,0,0,0 −3456000,−6750,6197
0 G 1,2,2,2,1,0,0 −2419200,−3150,2909
0 G 1,3,0,3,1,0,0 8064000,8750,−8109
0 G 2,2,0,2,2,0,0 −33868800,−22050,21131
0 G 3,2,3,0,0,0,0 −27648,54,−25
1 log2 0,0,0,2,2,2,2 −33177600,−38400,26617
1 log2 0,0,2,2,2,2,0 1382400,−1600,1109
1 log2 0,1,1,2,2,1,1 11059200,−7680,5323
1 log2 0,1,2,1,1,2,1 −22118400,10240,−7097
1 log2 0,2,2,0,0,2,2 17280000,−1760,1219
1 log2 0,2,2,2,2,0,0 442368,512,−355
1 log2 1,1,2,0,0,2,2 −88473600,5120,−3539
1 log2 1,1,2,2,1,1,0 −230400,−160,111
1 log2 1,2,1,1,2,1,0 −22118400,−10240,7109
1 log2 2,2,0,0,2,1,1 −88473600,−5120,3627
1 log2 2,2,0,0,2,2,0 69120000,7040,−4951
1 log2 2,2,1,2,2,0,0 7077888,−1024,707
1 log2 2,2,2,2,0,0,0 −13824,16,−11

Table 5. Relations for π, G and log2. See code snippet "15. Series".



11.1 The starting point

We first recall our notations:

Qj,κ,c =
a0

a1 + a2G
where a0, a1, a2 ∈Z

We have by now “seen the end of the movie”, and we know that for all areas:

n0(j,κ,c) =
a0
a2

=
(2c)! · 2εj,κ

(2c − 1)!!2 ·Cκ−1 ·C j−3
2
· (2κ − 1) · (j − 2) · ρj,κ,c

Where:

ρj,κ,c =

j−1
2∏
i=1

(2c − 2κ+2i − 1)(κ − i +1)
(2c − 2i +1)(2κ − 2i +1)

and εj,κ = 2κ+
j − 7
2

+
⌊1
j

⌋
We started our journey by manually inspecting n0(j,κ,c) for several j,κ,c

values, noting that n0(j,κ,c) is always very smooth.
This suggests that n0(j,κ,c) is the product of basic combinatorial functions

such as factorials, binomials, semifactorials, Catalan numbers, Pochhammer
symbols etc.

But the question is – of course – which functions?
We now know that n0(j,κ,c) is an exotic zoo containing the following ani-

mals:

φ0 = (2c)!, φ1 = (2c − 1)!!, φ2 = (2c − 1)!!, φ3 = Cκ−1, φ4 = C j−3
2

φ5 = (2κ − 1), φ6 = (j − 2), φ7 = 22κ, φ8 = 2
j−7
2 , φ9 = 2b

1
j c

φ10 =

j−1
2∏
i=1

(2c − 2κ+2i − 1), φ11 =

j−1
2∏
i=1

(κ − i +1), φ12 =

j−1
2∏
i=1

(2c − 2i +1)

φ13 =

j−1
2∏
i=1

(2κ − 2i +1)

n0(j,κ,c) =
φ0 ·φ7 ·φ8 ·φ9 ·φ12 ·φ13

φ1 ·φ2 ·φ3 ·φ4 ·φ5 ·φ6 ·φ10 ·φ11

However, at start, we have no idea what the φis were nor do we know how
many φis are there.



Remark 16. The basic functions in our catalog are not independent as some
multiplicatively generate others. e.g., Catalan numbers, binomials, multinomi-
als and Pochhammer symbols are all products of factorials. Adding to the cata-
log 2x we reach semifactorials etc. The code can hence successfully follow dif-
ferent paths for a given target n0(j,κ,c). While those functional dependencies
do not impact the final result, they do impact complexity: e.g., using Catalan
numbers reduces the depth of search15 but increases its width.

11.2 Mutating functions

The algorithm performs a gradient descent on ni(j,κ,c), using an LLM to guide
the descent. Catalog functions are not used in “bare metal” mode. They appear
with specific linear combinations of j,κ,c,1. To capture those combinations let:

σ (ū) = u0j +u1κ+u2c+u3 where ū = {u0,u1,u2,u3}

In other words16:

φ0 = σ (0,0,2,0)!, φ1 = φ2 = σ (0,0,2,−1)!!, φ3 = Cσ (0,1,0,−1)

φ4 = Cσ ( 12 ,0,0,− 3
2 )
, φ5 = σ (0,2,0,−1), φ6 = σ (1,0,0,−2), φ7 = 2σ (0,2,0,0)

φ8 = 2σ (
1
2 ,0,0,−

7
2 ), φ10 =

σ ( 12 ,0,0,−
1
2 )∏

i=1

(σ (0,−2,2,−1) + 2i)

φ11 =
σ ( 12 ,0,0,−

1
2 )∏

i=1

(σ (0,1,0,1)− i), φ12 =
σ ( 12 ,0,0,−

1
2 )∏

i=1

(σ (2,0,0,1)− 2i)

φ13 =
σ ( 12 ,0,0,−

1
2 )∏

i=1

(σ (0,2,0,1)− 2i)

11.3 What information do we have?

The integer relations oracle17 provides tens of thousands of n0(j,κ,c) instances.
We record these in a database B where each entry has the form:

Bi = {ji ,κi , ci , ti} = {ji ,κi , ci ,n0(ji ,κi , ci)}

.
The code needs to infer the ūs that intervene in n0(j,κ,c) from those numer-

ous numerical examples.

15 When a Catalan number is identified three factorial identifications are avoided.
16 φ9 = 2

b 1j c was not in the catalog and was added manually to unify two families of
general formulae discovered by two runs.

17 In our case LLL.



11.4 A first step

Assume that the code is discovering the φis and their ūs one by one. The code
is at some step ω at which it has already discovered the φis shown in red in the
formulae:

n0(j,κ,c) =
a0
a2

=
(2c)! · 2εj,κ

(2c − 1)!!2 ·Cκ−1 ·C j−3
2
· (2κ − 1) · (j − 2) · ρj,κ,c

And:

ρj,κ,c =

∏ j−1
2
i=1(2c − 2κ+2i − 1)(κ − i +1)∏ j−1

2
i=1(2c − 2i +1)(2κ − 2i +1)

Divide the ti of each record Bi by the red components evaluated at ji ,κi , ci .
Update the target to:

nω(j,κ,c) = (2c − 1)!!2 ·Cκ−1 ·C j−3
2
· (2κ − 1) · (j − 2) ·

j−1
2∏
i=1

(2c − 2κ+2i − 1)(κ − i +1)

A successfully mutated function, e.g. φ1 = (2c − 1)!! = σ (0,0,2,−1)!! stands-
out because:

nω(j,κ,c) mod σ (0,0,2,−1)!! = 0 for all j,κ,c values

Evidently, this criterion generates false positives. For instance:

nω(j,κ,c) mod σ (0,0,2,−1)!! = 0⇒ nω(j,κ,c) mod σ (0,0,2,−3)!! = 0

Remark 17. False positives come in two flavors: “False false positives” and “True
false positives”. σ (0,0,2,−3)!! is a “false false positive”. Detecting σ (0,0,2,−3)!!
is useful as it decreases the target. In the example above, instead of peeling-off
(2c − 1)!! in one round, a first round will peel-off (2c − 3)!! and leave an extra
(2c − 1) to some subsequent round. By opposition a “True false positive” is a
candidate appearing as a factor of the target by the sole effect of chance over
the available dataset.

To visualize efficiently execution we introduce Backgammon diagrams.

11.5 Backgammon diagrams

The gradient descent monitoring tool is called “Backgammon diagrams” be-
cause of its visual similarity to a backgammon board (Figure 12).

In a Backgammon diagram the x-axis shows a search performed over a co-
ordinate us within an interval us ∈ {ustart, . . . ,uend}.



Fig. 12. A typical Backgammon board.

In all the following, consider that all ū coordinates other than s were fixed
to correct values denoted by X.

The draughts represent experiments with fixed j,κ values and different c
values. In the example j = 11,κ = 6 and 40 ≤ c ≤ 47. Each draught color corre-
sponds to a different c value (•,•,•,•,•,•,•,•). The legend is not repeated to save
space. Draughts were slightly lifted to avoid covering each other.

If for a given c value:

nω(j,κ,c) mod φi(σ (X, . . . ,X,us,X, . . . ,X)) = 0

then the draught of c’s color is lowered to the bottom of diagram, else it it
raised to the top. Hence, a glance at the diagram shows which us values are
compatible with the target nω(j,κ,c) for each c.

Two additional features enhance reading: a red line showing the correct an-
swer18 and little red triangles (N) denoting us values for which tests succeeded
for all c values.

This view is grandly simplifiedwith respect to reality. In the code j,κ vary as
well (resulting in multi-dimensional and hence unvisualizable diagrams) and
several uss are simultaneously tried at each round.

11.6 A worked-out example

We want to disassemble:

nω(j,κ,c) = (2c − 1)!!2 ·Cκ−1 ·C j−3
2
· (2κ − 1) · (j − 2) ·

j−1
2∏
i=1

(2c − 2κ+2i − 1)(κ − i +1)

18 This is, of course, not provided by the software.



step ω+1

target nω(j,κ,c)
candidate (uc − 1)!!

▲▲

● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●

-5 0 5

● ● ● ●

● ● ● ●

new target nω+1(j,κ,c) = nω(j,κ,c)/(2c − 1)!!
database update ∀i do ti = ti /(2ci − 1)!!

remarks We have one solution which is u = 2.

step illustrating option 1: ω+2

target nω+1(j,κ,c)
candidate illustrating option 1: (uc − 1)!!

▲▲

● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●

-5 0 5

new target nω+2(j,κ,c) = nω+1(j,κ,c)/(2c − 1)!!
database update ∀i do ti = ti /(2ci − 1)!!

remarks We have one solution which is u = 2.

step illustrating option 2: ω+2

target nω+1(j,κ,c)
candidate illustrating option 2: (2c+u)!!

▲ ▲ ▲ ▲

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ●

-5 0 5

new target nω+2(j,κ,c) = nω+1(j,κ,c)/(2c − 1)!!
database update ∀i do ti = ti /(2ci − 1)!!

remarks 4 solutions added to backtracking list.



step illustrating option 1: ω+3

target nω+2(j,κ,c)
candidate illustrating option 1: (uc − 1)!!

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

-5 0 5

new target None, wrong guess.
database update None, wrong guess.

remarks No solutions: repeat step ω+3 with another candidate.

step illustrating option 2: ω+3

target nω+2(j,κ,c)
candidate illustrating option 2: (uκ − 1)

▲ ▲ ▲ ▲ ▲ ▲ ▲
●

● ● ●

●

● ●

● ● ● ●

●

●

●

●

● ●

●

● ● ●

●

● ●

● ● ● ●

● ● ●

●

● ●

●

● ● ●

●

● ●

● ● ● ●

● ● ●

●

● ●

●

● ● ●

●

● ●

● ● ● ●

● ● ●

●

● ●

●

● ● ●

●

● ●

● ● ● ● ●

● ●

●

● ●

●

● ● ●

●

● ●

● ● ● ● ●

●

● ●

● ●

●

● ● ●

●

● ●

● ● ● ● ●

●

● ●

● ●

●

● ● ●

●

●

● ● ● ● ● ●

●

● ●

● ●

-5 0 5

new target nω+3(j,κ,c) = nω+2(j,κ,c)/(2κ − 1)
database update ∀i do ti = ti /(2κi − 1)

remarks 7 solutions added to backtracking list.

step illustrating option 3: ω+3

target nω+2(j,κ,c)
candidate illustrating option 3: (2κ+u)

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
● ● ● ● ● ● ● ● ●

●

● ● ●

●

●

●

●
● ● ● ● ● ● ● ● ●

●

● ● ●

●

●

●

●
● ● ● ● ● ● ● ● ●

●

● ● ●

●

●

●

●
● ● ● ● ● ● ● ● ●

●

● ● ●

●

●

●

●
● ● ● ● ● ● ● ● ●

●

● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ●

●

● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ●

●

● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

-5 0 5

new target nω+3(j,κ,c) = nω+2(j,κ,c)/(2κ − 1)
database update ∀i do ti = ti /(2κi − 1)

remarks 14 solutions added to backtracking list.



step illustrating option 1: ω+4

target nω+3(j,κ,c)
candidate illustrating option 1: (j +u)

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ●

●

● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ●

●

● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

-5 0 5

new target nω+4(j,κ,c) = nω+3(j,κ,c)/(j − 2)
database update ∀i do ti = ti /(ji − 2)

remarks 13 solutions added to backtracking list.

step illustrating option 2: ω+4

target nω+3(j,κ,c)
candidate illustrating option 2: (uj − 2)

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
●

● ● ●

● ● ●

●

● ● ●

●

●

●

● ●

●

● ●

● ● ●

● ●

●

● ● ●

●

●

●

● ●

●

● ●

● ● ●

● ●

●

● ● ●

●

●

●

● ●

●

● ●

● ● ●

● ●

●

● ● ●

●

●

●

● ●

●

● ● ●

● ●

● ●

●

● ● ●

●

●

●

● ●

●

● ● ●

● ●

● ●

●

● ● ●

●

●

●

● ●

●

●

●

●

● ●

● ●

●

● ● ●

●

●

●

● ●

●

●

●

●

● ●

● ● ● ● ● ●

●

●

●

● ●

●

-5 0 5

new target nω+4(j,κ,c) = nω+3(j,κ,c)/(j − 2)
database update ∀i do ti = ti /(ji − 2)

remarks 9 solutions added to backtracking list.

step illustrating option 1: ω+5

target nω+4(j,κ,c)
candidate illustrating option 1: Cκ+u

▲ ▲ ▲ ▲ ▲ ▲ ▲

●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

-5 0 5

new target nω+5(j,κ,c) = nω+4(j,κ,c)/Cκ−1
database update ∀i do ti = ti /Cκi−1

remarks 7 solutions added to backtracking list.



step illustrating option 2: ω+5

target nω+4(j,κ,c)
candidate illustrating option 2: Cuκ−1

▲ ▲

● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ●

-5 0 5

new target nω+5(j,κ,c) = nω+4(j,κ,c)/Cκ−1
database update ∀i do ti = ti /Cκi−1

remarks 2 solutions added to backtracking list.

step illustrating option 1: ω+6

target nω+5(j,κ,c)

candidate illustrating option 1:

j−1
2∏
x=1

(2c+uk +2x − 1)

▲▲

● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

-5 0 5

new target nω+6(j,κ,c) = nω+5(j,κ,c)/

j−1
2∏
x=1

(2c − 2k +2x − 1)

database update ∀i do ti = ti /

ji−1
2∏
x=1

(2ci − 2ki +2x − 1)

remarks We have one solution which is u = −2.



step illustrating option 2: ω+6

target nω+5(j,κ,c)

candidate illustrating option 2:

j−1
2∏
x=1

(2c − 2k +2x+u)

▲▲

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●
● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●

-5 0 5

new target nω+6(j,κ,c) = nω+5(j,κ,c)/

j−1
2∏
x=1

(2c − 2k +2x − 1)

database update ∀i do ti = ti /

ji−1
2∏
x=1

(2ci − 2ki +2x − 1)

remarks We have one solution which is u = −1.

step illustrating option 3: ω+6

target nω+5(j,κ,c)

candidate illustrating option 3:

j−1
2∏
x=1

(uc − 2k +2x − 1)

▲▲

● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ●
● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ●
● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ●
● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ●
● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●

-5 0 5

new target nω+6(j,κ,c) = nω+5(j,κ,c)/

j−1
2∏
x=1

(uc − 2k +2x − 1)

database update ∀i do ti = ti /

ji−1
2∏
x=1

(uci − 2ki +2x − 1)

remarks We have one solution which is u = 2.



step illustrating option 4: ω+6

target nω+5(j,κ,c)

candidate illustrating option 4:

2uj+j−1
2∏
x=1

(2c − 2κ+2x − 1)

▲▲
●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

0 2 4 6 8

new target nω+6(j,κ,c) = nω+5(j,κ,c)/

2uj+j−1
2∏
x=1

(2c − 2κ+2x − 1)

database update ∀i do ti = ti /

2uji+ji−1
2∏
x=1

(2ci − 2κi +2x − 1)

remarks We have one solution which is u = 0.

step ω+7

target nω+6(j,κ,c)
candidate C j+2u+1

2

▲ ▲ ▲
● ● ●

● ● ● ●

● ● ●

● ● ● ●

● ● ●

● ● ● ●

● ● ●

● ● ● ●

● ● ●

● ● ● ●

● ● ●

● ● ● ●

● ● ●

● ● ● ●

● ● ●

● ● ● ●

-3 -2 -1 0 1 2 3

new target nω+7(j,κ,c) = nω+6(j,κ,c)/C j−3
2

database update ∀i do ti = ti /C ji−3
2

remarks 3 solutions added to backtracking list.



step ω+8

target nω+7(j,κ,c)

candidate

j−1
2∏
x=1

(κ − x+u)

▲ ▲ ▲ ▲

●

● ●

● ● ● ● ●

● ●

● ● ● ● ● ● ●
●

● ●

● ● ● ● ●

● ●

● ● ● ● ● ● ●
●

● ●

● ● ● ● ●

● ●

● ● ● ● ● ● ●
●

● ●

● ● ● ● ●

● ●

● ● ● ● ● ● ●
●

● ●

● ● ● ● ●

● ●

● ● ● ● ● ● ●
●

● ●

● ● ● ● ●

● ●

● ● ● ● ● ● ●
●

● ●

● ● ● ● ●

● ●

● ● ● ● ● ● ●
●

● ●

● ● ● ● ●

● ●

● ● ● ● ● ● ●

-5 0 5

new target nω+8(j,κ,c) = nω+7(j,κ,c)/

j−1
2∏
x=1

(κ − x+1)

database update ∀i do ti = ti /

ji−1
2∏
x=1

(κi − x+1)

remarks 4 solutions added to backtracking list.

step ω+8

target nω+7(j,κ,c)

candidate

j−1
2∏
x=1

(κ+ux+1)

▲ ▲

● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●

-5 0 5

new target nω+8(j,κ,c) = nω+7(j,κ,c)/

j−1
2∏
x=1

(κ − x+1)

database update ∀i do ti = ti /

ji−1
2∏
x=1

(κi − x+1)

remarks 2 solutions added to backtracking list.

At this point one of the backtracking branches gives the constant function
1. nω(j,κ,c) was hence disassembled.



11.7 The Decimator

A very significant speed-up is achieved by a software module called “the Deci-
mator”. The Decimator restricts the ū space by removing ui affine combinations
incompatible with the target.

Consider the target:

nω+2(j,κ,c) = Cκ−1 ·C j−3
2
· (2κ − 1) · (j − 2) ·

j−1
2∏
i=1

(2c − 2κ+2i − 1)(κ − i +1)

Create the database B given in Table 6.

i ji κi ci ti = nω+2(ji ,κi , ci )

1 11 6 40 86562004597992000
2 11 6 41 99107222655672000
3 11 6 42 113065986409992000
4 11 6 43 128554477699032000
5 11 6 44 145695074725569600
6 11 6 45 164616513001617600
7 11 6 46 185454046292961600
8 11 6 47 208349607563697600

Table 6. The database B

Assume that we want to test a candidate y(j,κ,c) = u0j + u1κ + u2c + u3. We
are typically interested in exploring each ui over a small interval, e.g. [−8,8].
Start by creating a list L of all (2× 8+1)4 ~u-values.

For each {u0,u1,u2,u3} value, if a ti is not divisible by at least one y(ji ,κi , ci)
then remove {u0,u1,u2,u3} from L.

Table 7 gives the number of ~us eliminated from [−8,8]4 by each c value.

c 40 41 42 43 44 45 46 47
eliminated ~us 51721 54371 55635 56161 52771 51203 51609 46383

Table 7. Number of eliminated ~u combinations per c tried.

When we merge all the forbidden ~us, removing duplicates, we get a collec-
tion of 78567 combinations to skip. We are hence left with (2×8+1)4−78567 =
4954 survivors to test, i.e. 5.9%.

The above example is restricted to eight c toy-values. In reality we per-
form calculations on ' 105 combinations of (j,κ,c). This reduces drastically



the search space19. Note however that as c increases the percentage of newly
removed ū values per round decreases.

Note that, in practice even an exploration in [−3,3]4 would have sufficed20.
For ~u ∈ [−3,3]4 we get 332 survivors out of 2401 (14%).

For [−8,8]4 and 40 ≤ c ≤ 47, decimating for y(j,κ,c) = Cu0j+u1κ+u2c+u3 re-
moves 83233 candidates, leaving only 288 possibilities (0.35%).

Decimating over [−5,5]5 and 20 ≤ c ≤ 60 for the candidate:

y(j,κ,c) =

j−1
2∏
i=1

(u0j +u1κ+u2c+u3 +u4i)

results in 1496 survivors out of 161051 (0.93%).
Counter-intuitively, the more “complex”21 the candidate is the more effi-

ciently it is decimated. We hence select the candidates in decreasing complexity
order. Measuring the complexity of mathematical formulas can be a subjective
task, as it depends on various factors such as the number of terms, the presence
of functions, exponents, and variables, as well as the overall structure. There’s
no definitive metric to quantify formula complexity. The following criteria can
nonetheless be used to “measure” complexity and hence get rid of φis as fast as
possible:

Counting Elements: We can count the number of distinct elements in each
candidate, such as variables, constants, operators, and functions. For example,
the candidate κ − 1 has two elements while in others we may have multiple
variables, exponents, a product symbol, and a summation, which increases its
complexity.

Nesting and Hierarchy: Analyze the nesting of operations and functions
within the candidates. A candidate with multiple levels of nesting or hierarchy
can be regarded as more complex.

Mathematical Operations: Consider the types of mathematical operations
present in the candidates. More complex operations, such as exponentiation
and summation, contribute to higher complexity compared to simpler opera-
tions like addition or multiplication.

Function Complexity: If the candidate includes functions, their complexity
should be taken into account. For instance, a Catalan number can add complex-
ity compared to linear or constant functions.

Symbolic Representation: Represent each candidate in a symbolic format,
such as a parse tree or abstract syntax tree. Compare the depth and branching
of the trees as a rough measure of complexity.

Information Theory: Explore concepts from information theory, such as
Kolmogorov complexity or algorithmic information theory, to quantify the amount
of information needed to describe each candidate. This approach can be quite
theoretical and may not provide a practical measure for all cases.

19 e.g., exploring for 20 ≤ c ≤ 60 reduces the survivors’ pool to 3702 (4.4%).
20 The 7 in φ8 would have been decimated in two rounds.
21 i.e., closer to a random oracle.



We resorted to a much more brutal approach [2]. Using the API22, we asked
GPT-4 to compare candidates pairwise and obtained a subjective comparison
of each pair and translated the ternary results23 to a directed graph. We per-
formed a random walk of 106 steps on the graph and counted the number of
times each candidate was visited. The most visited candidate was considered
as the “most complex”. We then removed this candidate from the graph and
started over again.

As a final note, we remark that some φis are “process killers”. This is the
case of candidates such as (2c)!. Because, in essence, (2c)! contains just about
any number of interest, it silences the modular tests. We hence start by launch-
ing the process with ū! and start the backtracking afresh for each n0(j,κ,c)/ū!.

11.8 Ascending to descend

As underlined in [15], some descents require intermediate ascents. The process
described so far advances only in the case of a monotonous descent. In other
words, if the initial φis were wrongly chosen the process will not converge.

We thus need a process allowing temporary ascents to get out of bowls.
To that end we use a modified version of Broyden-Fletcher-Goldfarb-Shanno’s
(BFGS) algorithm. This requires a more refined measure of the penalty/profit
of each move which cannot just be the Boolean “x divides y”.

Denote by pi the i-th prime.
We introduce a measure called “brittleness”24 denoted Ξ(n).

Let: n =
a−1∏
i=0

pmii ∈Q be a simplified fraction. Then Ξ(n) =
a−1∑
i=0

|mi |

In other words, Ξ(n) counts, with repetition, the number of distinct factors
appearing in the numerator or in the denominator of n.

The following example illustrates the evolution of brittleness (y-axis) dur-
ing the peeling-off process.

Dotted lines ⇒ Target’s brittleness at the concerned j,κ,c points.
Draughts ⇒ Raised to Ξ(target/candidate) for different u values.

As before, N denotes us at which all draughts are lower than their same-
color dotted lines. The thin red vertical line is the correct answer.

As an example start with the target:

n1(j,κ,c) = Cκ−1 ·C j−3
2
· (2κ − 1) · (j − 2) ·

j−1
2∏
i=1

(2c − 2κ+2i − 1)(κ − i +1)

22 endpoint https://api.openai.com/v1/engines/davinci-codex/completions
23 “A is more complex that B”: A→ B, “B is more complex than A”: B→ A or “unsure”:

no edge.
24 Brittleness is a generalization the prime Ω function to Q: Ξ(n) = Ω(numerator(n)) +

Ω(denominator(n)).

https://api.openai.com/v1/engines/davinci-codex/completions
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Fig. 13. Steps are ordered from left→right and up→down, i.e. 1 1′ 2 3
3′ 4 5 6 . Note the steady

decrease of Ξ levels. Steps 1 and 1′ are two division options occurring at the same step
and so are 3 and 3′ .



Figure 13 represents the following steps:

step 1 of Figure 13

target n0(j,κ,c)
candidate illustrating first option: uκ − 1
new target n1(j,κ,c) = n0(j,κ,c)/(2κ − 1)

step 1′ of Figure 13

target n0(j,κ,c)
candidate illustrating second option: 2κ+u
new target n1(j,κ,c) = n0(j,κ,c)/(2κ − 1)

step 2 of Figure 13

target n1(j,κ,c)
candidate uj − 2
new target n2(j,κ,c) = n1(j,κ,c)/(j − 2)

step 3 of Figure 13

target n2(j,κ,c)

candidate illustrating first option:

j−1
2∏
x=1

(2c − 2k +ux − 1)

new target n3(j,κ,c) = n2(j,κ,c)/

j−1
2∏
x=1

(2c − 2k +2x − 1)

step 3′ of Figure 13

target n2(j,κ,c)

candidate illustrating second option:

j+2u+1
2∏
x=1

(2c−2k +2x−1)

new target n3(j,κ,c) = n2(j,κ,c)/

j−1
2∏
x=1

(2c − 2k +2x − 1)

step 4 of Figure 13

target n3(j,κ,c)
candidate Cuκ−1
new target n4(j,κ,c) = n3(j,κ,c)/Cκ−1



step 5 of Figure 13

target n4(j,κ,c)
candidate C j+2u+1

2
new target n5(j,κ,c) = n4(j,κ,c)/C j−3

2

step 6 of Figure 13

target n5(j,κ,c)

candidate

j−1
2∏
x=1

(k − x+u)

new target None: Processed finished.

a0 a1 a2 P (n)/(−2n) T (n)− 3n2

−7351344 −32375839 46558512 n(3 +n)(17+n) 72+ 43n
−2450448 −1768477 2450448 n(1 +n)(17+n) 36+ 39n
−1081080 −16147379 23279256 n(5 +n)(15+n) 96+ 43n
−793800 −232217 322560 (4+n)(9 +n)2 100+39n
−504504 −16140515 23279256 n(7 +n)(13+n) 112+43n
−436590 7989199 −11531520 (3+n)(9 +n)(11+n) 120+43n
−180180 −1001393 1441440 (2+n)(5 +n)(13+n) 84+ 39n
−174636 −8069449 11639628 n(9 +n)(11+n) 120+43n
−72072 −850133 1225224 n(5 +n)(13+n) 84+ 39n
−72072 −251099 360360 n(3 +n)(13+n) 56+ 35n
−72072 −52279 72072 n(1 +n)(15+n) 32+ 35n
−45045 124048 −180180 (1+n)(3 +n)(13+n) 56+ 35n
−28028 −999391 1441440 (2+n)(7 +n)(13+n) 112+43n
−27720 −20417 27720 n(1 +n)(11+n) 24+ 27n
−22050 27649 −40320 (3+n)(7 +n)(9 +n) 80+ 35n
−19305 424423 −612612 (1+n)(5 +n)(15+n) 96+ 43n
−17640 −250007 360360 n(7 +n)(9 +n) 80+ 35n
−14700 −153907 221760 (2+n)(7 +n)(9 +n) 80+ 35n
−10395 124741 −180180 (1+n)(5 +n)(11+n) 72+ 35n
−9450 76691 −110880 (1+n)(5 +n)(9 +n) 60+ 31n
−7350 −62563 90090 n(7 +n)2 64+31n
−7007 424566 −612612 (1+n)(7 +n)(13+n) 112+43n
−6300 −14087 20160 (2+n)(5 +n)(9 +n) 60+ 31n
−6006 99839 −144144 (1+n)(5 +n)(13+n) 84+ 39n
−4900 −21043 30240 (2+n)(7 +n)2 64+31n
−2520 −1879 2520 n(1 +n)(9 +n) 20+ 23n
−2450 28781 −41580 (1+n)(7 +n)2 64+31n
−1225 367 −560 (3+n)(7 +n)2 64+31n
−525 −2413 3465 n(5 +n)(7 +n) 48+ 27n
−450 1151 −1680 (1+n)(5 +n)2 36+23n
−350 1739 −2520 (1+n)(5 +n)(7 +n) 48+ 27n
−180 −299 420 n(3 +n)(5 +n) 24+ 19n
−105 142 −210 (1+n)(3 +n)(7 +n) 32+ 23n
−18 7 −12 (1+n)(3 +n)2 16+15n
−6 −5 6 n(1 +n)(3 +n) 8 + 11n

Table 8. Examples of convergence to a0
a1+a2 log2



a0 a1 a2 P (n)/(−2n) T (n)− 3n2

1 1 −1 n(1 +n)2 4+7n
9 11 −15 n(3 +n)2 16+15n
50 147 −210 n(5 +n)2 36+23n
60 47 −60 n(1 +n)(5 +n) 12+ 15n
90 −79 120 (1+n)(3 +n)(5 +n) 24+ 19n
420 319 −420 n(1 +n)(7 +n) 16+ 19n
420 887 −1260 n(3 +n)(7 +n) 32+ 23n
900 361 −480 (2+n)(5 +n)2 36+23n
1890 −3443 5040 (1+n)(3 +n)(9 +n) 40+ 27n
2100 2377 −3360 (2+n)(5 +n)(7 +n) 48+ 27n
5544 50035 −72072 n(5 +n)(11+n) 72+ 35n
6468 −249713 360360 (1+n)(7 +n)(11+n) 96+ 39n
7560 19409 −27720 n(3 +n)(9 +n) 40+ 27n
8316 −19031 27720 (1+n)(3 +n)(11+n) 48+ 31n
15444 −49705 72072 (1+n)(3 +n)(15+n) 64+ 39n
22050 −499279 720720 (1+n)(7 +n)(9 +n) 80+ 35n
24255 −76586 110880 (3+n)(7 +n)(11+n) 96+ 39n
25740 200107 −288288 (2+n)(5 +n)(15+n) 96+ 43n
37800 250427 −360360 n(5 +n)(9 +n) 60+ 31n
38808 849671 −1225224 n(7 +n)(11+n) 96+ 39n
39690 −1997851 2882880 (1+n)(9 +n)2 100+39n
41580 154327 −221760 (2+n)(5 +n)(11+n) 72+ 35n
58212 3997025 −5765760 (2+n)(9 +n)(11+n) 120+43n
79380 2123957 −3063060 n(9 +n)2 100+39n
83160 251561 −360360 n(3 +n)(11+n) 48+ 31n
87318 −8491859 12252240 (1+n)(9 +n)(11+n) 120+43n
97020 1999321 −2882880 (2+n)(7 +n)(11+n) 96+ 39n
132300 3997907 −5765760 (2+n)(9 +n)2 100+39n
198450 −1227581 1774080 (3+n)(9 +n)2 100+39n
216216 852707 −1225224 n(3 +n)(15+n) 64+ 39n
360360 263111 −360360 n(1 +n)(13+n) 28+ 31n
630630 −3990557 5765760 (3+n)(7 +n)(13+n) 112+43n
918918 −3383801 4900896 (1+n)(3 +n)(17+n) 72+ 43n
1746360 2475007 −3548160 (4+n)(9 +n)(11+n) 120+43n
46558512 33464927 −46558512 n(1 +n)(19+n) 40+ 43n

Table 9. Examples of convergence to a0
a1+a2 log2

. The entry in blue is the one reported by
the Ramanujan Project.



a0 a1 a2 P (n)/(−2n) T (n)− 3n2

−80281600 −10675439 9459450 (2+n)(3 +n)(14+n) 45+ 35n
−15728640 392683 −727650 (4+n)2(12+n) 65+ 35n
−13107200 −263867 −28350 (4+n)(5 +n)(10+n) 55+ 31n
−10485760 −93699 −103950 (4+n)(5 +n)(12+n) 65+ 35n
−7372800 −884203 727650 (2+n)(3 +n)(12+n) 39+ 31n
−6291456 149419 −257250 (4+n)(8 +n)2 81+35n
−5242880 −86807 9450 (5+n)(6 +n)(10+n) 77+ 35n
−3932160 −116317 3150 (4+n)(5 +n)(8 +n) 45+ 27n
−3276800 −158859 22050 (2+n)(5 +n)(10+n) 33+ 27n
−2621440 −48609 −1050 (5+n)(6 +n)(8 +n) 63+ 31n
−2359296 −168445 103950 (2+n)(4 +n)(12+n) 39+ 31n
−491520 50593 −66150 (3+n)(4 +n)(10+n) 55+ 31n
−327680 −21271 9450 (2+n)(4 +n)(10+n) 33+ 27n
−230400 −1909 −22050 (2+n)2(5 +n) 9 + 11n
−196608 −184547 198450 (3+n)(6 +n)(10+n) 77+ 35n
−163840 −4981 −22050 n(5 +n)(8 +n) 9 + 19n
−131072 −2951 −630 (4+n)2(8 +n) 45+ 27n
−122880 −13079 9450 (2+n)(3 +n)(10+n) 33+ 27n
−61440 −2467 −3150 (2+n)(4 +n)(5 +n) 15+ 15n
−61440 791 −9450 n(5 +n)(6 +n) 7 + 15n
−51200 2839 −9450 n(4 +n)(5 +n) 5 + 11n
−49152 −1919 90 (4+n)2(6 +n) 35+ 23n
−36864 −2693 −450 (2+n)(4 +n)(6 +n) 21+ 19n
−18432 −419 −3150 n(4 +n)(6 +n) 7 + 15n
−18432 −419 −3150 n(3 +n)(8 +n) 9 + 19n
−8192 −487 −54 (4+n)3 25+19n
−3072 121 −630 n(4 +n)2 5+11n
−2048 −129 −90 (2+n)(4 +n)2 15+15n
−2048 −43 −30 (3+n)(4 +n)(6 +n) 35+ 23n
−768 −77 −18 (2+n)(3 +n)(4 +n) 15+ 15n
−288 31 −90 n(2 +n)(3 +n) 3 + 7n

Table 10. Examples of convergence to a0
a1+a2G



a0 a1 a2 P (n)/(−2n) T (n)− 3n2

192 13 18 (2+n)2(3 +n) 9 + 11n
384 1 90 n(3 +n)(4 +n) 5 + 11n
2304 389 450 n(3 +n)(6 +n) 7 + 15n
3072 179 −18 (3+n)(4 +n)2 25+19n
4608 133 450 (2+n)2(4 +n) 9 + 11n
4608 383 −90 (2+n)(3 +n)(6 +n) 21+ 19n
11520 −1373 3150 n(2 +n)(4 +n) 3 + 7n
12288 973 −750 (3+n)(6 +n)2 49+27n
12288 1145 −630 (2+n)(3 +n)(8 +n) 27+ 23n
16384 −543 1050 (3+n)(4 +n)(8 +n) 45+ 27n
81920 3983 1350 (4+n)2(5 +n) 25+ 19n
89600 −10891 22050 n(2 +n)(5 +n) 3 + 7n
98304 2263 150 (4+n)(6 +n)2 49+27n
98304 35389 −36750 (3+n)(6 +n)(8 +n) 63+ 31n
122880 6563 3150 (2+n)(5 +n)(6 +n) 21+ 19n
147456 21365 22050 n(4 +n)(8 +n) 9 + 19n
163840 6789 450 (4+n)(5 +n)(6 +n) 35+ 23n
262144 710401 −771750 (3+n)(8 +n)2 81+35n
294912 18013 −3150 (2+n)(4 +n)(8 +n) 27+ 23n
524288 27787 −22050 (4+n)(6 +n)(10+n) 77+ 35n
786432 19099 −5250 (4+n)(6 +n)(8 +n) 63+ 31n
983040 25979 −450 (5+n)(6 +n)2 49+27n
1310720 1723 28350 (4+n)2(10+n) 55+ 31n
2949120 168821 22050 (2+n)(5 +n)(8 +n) 27+ 23n
9830400 −1833409 2182950 (3+n)(4 +n)(12+n) 65+ 35n
12582912 184025 −7350 (5+n)(8 +n)2 81+35n
39321600 1965547 −727650 (2+n)(5 +n)(12+n) 39+ 31n
165150720 12969199 −9459450 (2+n)(4 +n)(14+n) 45+ 35n
330301440 17687791 −9459450 (2+n)(5 +n)(14+n) 45+ 35n

Table 11. Examples of convergence to a0
a1+a2G

c a0 a1 a2

3 2 1 0
4 1 1 −1
5 −1 −3 4
6 −2 −17 24
7 −3 −67 96
8 12 667 −960
9 5 666 −960
10 30 9319 −13440
11 −105 −74537 107520
12 −280 −447187 645120
13 126 447173 −645120
14 63 491884 −709632
15 231 3935051 −5677056
16 2772 102311095 −147603456
17 −1287 −102310996 147603456
18 −6006 −1023109531 1476034560
19 45045 16369749493 −23616552960
20 720720 556571437717 −802962800640

Table 12. Examples of convergence to a0
a1+a2 log2

for Rc



j
α

αj
β

αj

3 −1 4
5 19 234
7 5818/3 254456/3
9 667115 60003486
11 467946090 71121907440
13 554143204110 127451285438100
15 994115449382940 322092692148962160
17 2516347061651130075 1092094185270706446150
19 8546069024090201027250 4785798287838257081935200
21 37508692924557081882027450 26331102038134635548392485900
23 206659254109760483703789089700 177726957997323983116663150902000
25 1396637676485497608584841260027550 1444123356588023432320434243315206700
27 11361110319787394788017568214856502500 13905999029609441333101619589964946580000
29 109509742351999832489255793094925601037500 156598931559029451368898717824937174831465000
31 1234320809247763942235545044494798498436195000 2039097976865181167119056627863149102390546140000
33 16085205915675471439195309128783843538512283666875 30401039180587356456007967587920548312623820610393750
35 239989379884263177615577263747245812249369757283461250 514537230471714428505965482811829861362838523445500920000

j
α

βj
β

βj

3 −1/3 −14/3
5 −17 −8
7 −758 −27820
9 −302117 −23010044
11 −1091480994/5 −146282046156/5
13 −262476468810 −54596049230880
15 −475443072646380 −141682352738003640
17 −1211573031414907725 −489475664504671450500
19 −4135193781750207709650 −2175112041708995560914300
21 −18218507239728799899288030 −12097088912487772715204794320
, 23 −100680148628028059378172563700 −82356361704096372069838207986600
25 −682078864161239229949889893754850 −673893917980353010760236819146271800
27 −5559692282317104149119150499246482500 −6527078739785105011529098668023829975000
29 −53681246247288656939970174534335708392500 −73865394837022289182570623863734010339760000
31 −605939306349175124039948450466713432304279000 −965867254322525126192328035746702493817188406000
33 −7906287653442943862409767973858652552097126548125 −14452693830499521315903006473321900713406050369972500
35 −118090012323922699712409299094969252935070156336941250 −245391045609131483699190960852072336578359955374403917500

Table 13. The first αj =
{
{
α

αj ,
β

αj }
}
values and the first βj =

{
{
α

βj ,
β

βj }
}
values.



A Mathematica Code

1 (* code snippet "1. Montenegro" *)
2 NumQ[k_,c_]:=2k+1+ContinuedFractionK[−2n^2(n+2k)(n+c),3n^2+(3+4k)n+2k+1,{n,1,5000}];
3 vD[a_,b_,k_,c_]:=If[c<2,a+b*c,−2c(2c−1)(2(c−k)−1)^2vD[a,b,k,c−2]+(8c^2+(2−8k)c−2k+1)vD[a,b,k,c−1]];
4 vG[a_,b_,k_,c_]:=((2c−1)!!)^2Catalan+Product[(2(c−j)−1),{j,0,k−1}]*vD[a,b,k,c−1];
5 vd[k_]:=4^(k−1)/(2k−1)/CatalanNumber[k−1];vr[k_]:=vd[k](−1)^(k)(1−2k)/((2k)!(2k−3)!!);
6 va[k_]:=vr[k]vD[1,−2,1,k−1];vb[k_]:=−vr[k](2k−3)^2vD[1,12,2,k−1]−va[k];
7 QFor[k_,c_]:=vd[k](2c)!/vG[va[k],vb[k],k,c];
8 Print[Union[Flatten[Table[N[QFor[k,c],200]==N[NumQ[k,c],200],{c,1,14},{k,1,14}]]][[1]]];ClearAll["Global‘*"];

j = 1

j = 3

j = 5

j = 7

j = 9

j = 11

j = 13

j = 15

j = 17

j = 19

j = 21

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 14. The points on which Montenegro is tested for 1 ≤ c ≤ 14 by the snippet "1. Montenegro" are shown in red.



1 (* code snippet "2. Bosnia" *)
2 NumQ[j_,c_]:=−j+ContinuedFractionK[−2n(n−2)(n+c)(n+j−1),3n^2+(2j−3)n−j,{n,1,5000}];
3 vD[j_,c_]:=If[c<2,(−2)^((3j−11)/2)(1+(15−4j)c),−2c(2c−j)(2c+1)(2c−j+2)vD[j,c−2]+(8c^2+(14−4j)c−3(j−2))vD[j,c−1]];
4 g[j_,c_]:=Product[(2c−2i+1)(j−2−2i),{i,1,(j−1)/2}](2c)!2^((3j−13)/2);
5 h[j_,c_]:=(2c−j+2)Product[(2c−2i−1)^2,{i,0,(j−5)/2}];
6 Q[j_,c_]:=Simplify[g[j,c]/(vD[j,c−1]*h[j,c])];
7 Print[Union[Flatten[Table[N[NumQ[j,c]==Q[j,c],200],{j,5,13,2},{c,1,14}]]][[1]]];ClearAll["Global‘*"];

j = 1

j = 3

j = 5

j = 7
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j = 11

j = 13

j = 15

j = 17

j = 19

j = 21
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Fig. 15. The points on which Bosnia & Herzegovina is tested for 1 ≤ c ≤ 14 by the snippet "2. Bosnia" are shown in red.

1 (* code snippet "3. Northern Balkans"*)
2 NumQ[j_,k_,c_]:=j(2−j+2k)+ContinuedFractionK[−2n(c+n)(j+n−1)(1−j+2k+n),3n^2+(3+4k)n+j(2−j+2k),{n,1,15000}];
3 vD[ab_,j_,k_,c_]:=If[c<2,ab[[1]]+ab[[2]]c,−2c(2c−j)(2c−2k+j−2)(2c−2k−1)vD[ab,j,k,c−2]+(8c^2+(2−8k)c+(j−2)(2k−j))vD[ab,j

,k,c−1]];



4 f[j_,k_,c_]:=Product[(2c−2k+2i−1)(k−i+1),{i,1,(j−1)/2}]CatalanNumber[(j−3)/2](j−2)(2k−1)*(2c−1)!!^2*CatalanNumber[k−1];
5 g[j_,k_,c_]:=Product[(2c−2i+1)(2k−2i+1),{i,1,(j−1)/2}](2c)!2^(2k+(j−7)/2);
6 h[j_,k_,c_]:=Product[2c−2i−1,{i,0,(j−3)/2}]Product[2c−2i−1,{i,0,k−1}];
7 Q[j_,k_,c_,ab_]:=Simplify[g[j,k,c]/(vD[ab,j,k,c−1]h[j,k,c]+f[j,k,c]Catalan)];
8 Ratio:=Function[{j,k,c},r=N[NumQ[j,k,c],2000];v=FindIntegerNullVector[{1,r,N[Catalan*r,2000]}];−v[[1]]/v[[2]]];
9 GenAB[j_]:=Table[({a,b}/.Solve[Table[{a,b}.{1,c−1}==g[j,k,c]/Ratio[j,k,c]/h[j,k,c],{c,1,2}],{a,b}])[[1]],{k,1,6}];

10 result={};For[j=−7,j<=13,If[j==1,j=3];AB=GenAB[j];AppendTo[result,Union[Flatten[Table[N[Q[j,k,c,AB[[k]]]==NumQ[j,k,c
],20],{k,1,6},{c,1,7}]]]];j+=2];Print[Union[Flatten[result]][[1]]];ClearAll["Global‘*"];

j = 1
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Fig. 16. The points on which the c-level master formula is tested for 1 ≤ c ≤ 7 by the snippet "3. Northern Balkans" are shown in red.
Note that the Montenegro line does not obey that same c-level formula but was validated by snippet "1. Montenegro". Note that the
formula is also tested for negative j values (not shown as red dots in the diagram).



1 (* code snippet "4. Kosovo" *)
2 NumQ[j_,k_,c_]:=j(2−j+2k)+ContinuedFractionK[−2n(c+n)(j+n−1)(1−j+2k+n),3n^2+(3+4k)n+j(2−j+2k),{n,1,15000}];
3 vD:=Function[{ab,j,k,c},If[c<2,ab[[1]]+ab[[2]]c,−2c(2c−j)(2c−2k+j−2)(2c−2k−1)vD[ab,j,k,c−2]+(8c^2+(2−8k)c+(j−2)(2k−j))

vD[ab,j,k,c−1]]];
4 f[j_,k_,c_]:=Product[(2c−2k+2i−1)(k−i+1),{i,1,(j−1)/2}]CatalanNumber[(j−3)/2](j−2)(2k−1)*(2c−1)!!^2*CatalanNumber[k−1];
5 g[j_,k_,c_]:=Product[(2c−2i+1)(2k−2i+1),{i,1,(j−1)/2}](2c)!2^(2k+(j−7)/2);
6 h[j_,k_,c_]:=Product[2c−2i−1,{i,0,(j−3)/2}]Product[2c−2i−1,{i,0,k−1}];
7 Q[j_,k_,c_,ab_]:=Simplify[g[j,k,c]/(vD[ab,j,k,c−1]*h[j,k,c]+f[j,k,c]Catalan)];
8 l[n_,j_,k_]:=(−1)^(k+1)(2k)!^2/k!/2^(3*k−2)/Product[(k−i)(2k−2i−1)^2,{i,0,(j−3)/2}]/(2k−j)/(2k−1)/(n((2k−j−2)(3−2k)−1)

+1);
9 kD:=Function[{n,ab,j,k},If[k<2,ab[[1]]+ab[[2]]k,(2k+2j−9−2n)(2k+j−8−2n)(−2k+5−j)(2k+j−6)*kD[n,ab,j,k−2]+(8k^2+k(10j

−48−8n)+(3j^2−(28+4n)j+68+18n))kD[n,ab,j,k−1]]];
10 Descend:=Function[{j,k},abh[0]={{−1,4},{19,234},{5818/3,254456/3},{667115,60003486},{467946090,71121907440},
11 {554143204110,127451285438100},{994115449382940,322092692148962160},{2516347061651130075,1092094185270706446150},
12 {8546069024090201027250,4785798287838257081935200},{37508692924557081882027450,26331102038134635548392485900},
13 {206659254109760483703789089700,177726957997323983116663150902000},
14 {1396637676485497608584841260027550,1444123356588023432320434243315206700},
15 {11361110319787394788017568214856502500,13905999029609441333101619589964946580000},
16 {109509742351999832489255793094925601037500,156598931559029451368898717824937174831465000},
17 {1234320809247763942235545044494798498436195000,2039097976865181167119056627863149102390546140000},
18 {16085205915675471439195309128783843538512283666875,30401039180587356456007967587920548312623820610393750},
19 {239989379884263177615577263747245812249369757283461250,514537230471714428505965482811829861362838523445500920000}};
20 abh[1]={{−1/3,−14/3},{−17,−8},{−758,−27820},{−302117,−23010044},{−1091480994/5,−146282046156/5},
21 {−262476468810,−54596049230880},{−475443072646380,−141682352738003640},{−1211573031414907725,−489475664504671450500},
22 {−4135193781750207709650,−2175112041708995560914300},{−18218507239728799899288030,−12097088912487772715204794320},
23 {−100680148628028059378172563700,−82356361704096372069838207986600},
24 {−682078864161239229949889893754850,−673893917980353010760236819146271800},
25 {−5559692282317104149119150499246482500,−6527078739785105011529098668023829975000},
26 {−53681246247288656939970174534335708392500,−73865394837022289182570623863734010339760000},
27 {−605939306349175124039948450466713432304279000,−965867254322525126192328035746702493817188406000},



28 {−7906287653442943862409767973858652552097126548125,−14452693830499521315903006473321900713406050369972500},
29 {−118090012323922699712409299094969252935070156336941250,−245391045609131483699190960852072336578359955374403917500}};
30 ab=Table[kD[u,abh[u][[(j−1)/2]],j,k−j+2]/l[u,j,k],{u,0,1}];{ab[[1]],ab[[2]]−ab[[1]]}];
31 Q[j_,k_,c_,ab_]:=Simplify[g[j,k,c]/(vD[ab,j,k,c−1]*h[j,k,c]+f[j,k,c]Catalan)];
32 Print[Union[Flatten[Table[N[NumQ[j,k,c]==Q[j,k,c,Descend[j,k]],200],{j,3,11,2},{k,j−2,10},{c,1,7}]]][[1]]];ClearAll["

Global‘*"];
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Fig. 17. The points on which Kosovo is tested for 1 ≤ c ≤ 7 by the snippet "4. Kosovo" are shown in red.

1 (* code snippet "5. resolution" *)
2 NumQ[j_,k_,c_]:=j(2−j+2k)+ContinuedFractionK[−2n(c+n)(j+n−1)(1−j+2k+n),3n^2+(3+4k)n+j(2−j+2k),{n,1,10000}];
3 f[j_,k_,c_]:=Product[(2c−2k+2i−1)(k−i+1),{i,1,(j−1)/2}]CatalanNumber[(j−3)/2](j−2)(2k−1)*(2c−1)!!^2*CatalanNumber[k−1];
4 g[j_,k_,c_]:=Product[(2c−2i+1)(2k−2i+1),{i,1,(j−1)/2}](2c)!2^(2k+(j−7)/2);
5 h[j_,k_,c_]:=Product[2c−2i−1,{i,0,(j−3)/2}]Product[2c−2i−1,{i,0,k−1}];



6 l:=Function[{n,j,k},(−1)^(k+1)(2k)!^2/k!/2^(3k−2)/Product[(k−i)(2k−2i−1)^2,{i,0,(j−3)/2}]/(2k−j)/(2k−1)/(n((2k−j−2)(3−2
k)−1)+1)];

7 AB:=Function[{j,k},For[c=1,c<=2,r=N[NumQ[j,k,c],2000];v=FindIntegerNullVector[{1,r,N[Catalan*r,2000]}];d[c]=(−g[j,k,c](
v[[3]]Catalan+v[[2]])/v[[1]]−f[j,k,c]Catalan)/h[j,k,c];c++];{d[1],d[2]−d[1]}];ABlists:=Function[lim,z[1]=z[0]={};

8 For[j=3,j<=lim,For[w=0,w<=1,e[w]=Table[AB[j,k].{1,w}l[w,j,k],{k,j−2,j−1}];
9 ab[w]={a,b}/.Solve[Table[a+b(u−1)==e[w][[u]],{u,1,2}],{a,b}];AppendTo[z[w],ab[w][[1]]];w++];j+=2];{z[1],z[0]}];

10 Print[ABlists[15]];ClearAll["Global‘*"];

1 (* code snippet "6. symmetry" *)
2 NumQ[j_,k_,c_]:=j(2−j+2k)+ContinuedFractionK[−2n(c+n)(j+n−1)(1−j+2k+n),3n^2+(3+4k)n+j(2−j+2k),{n,1,15000}];
3 g[j_,k_,c_]:=Product[(2c−2i+1)(2k−2i+1),{i,1,(j−1)/2}](2c)!2^(2k+(j−7)/2);
4 h[j_,k_,c_]:=Product[2c−2i−1,{i,0,(j−3)/2}]Product[2c−2i−1,{i,0,k−1}];
5 zeta[j_,u_]:=Product[2+2i−j,{i,0,u−1}]/2^u;Ratio:=Function[{j,k,c},r=N[NumQ[j,k,c],2000];
6 v=FindIntegerNullVector[{1,r,N[Catalan*r,2000]}];−v[[1]]/v[[2]]];
7 GenAB[j_,k_]:=({a,b}/.Solve[Table[{a,b}.{1,c−1}==g[j,k,c]/Ratio[j,k,c]/h[j,k,c],{c,1,2}],{a,b}])[[1]];
8 tau[j_,u_]:=If[u>(j−1)/2,Sign[zeta[j,u]](2j−2u−3)!!(2u−j)!!(−2)^u,zeta[j,u](−4)^u];
9 For[j=3,j<=13,Print[MatrixForm[Table[{{j,j−u−1},{j−2u,j−u−1},(GenAB[j,j−u−1]/GenAB[j−2u,j−u−1])/tau[j,u]=={1,1}},{u,1,j

+3}]]];j+=2];ClearAll["Global‘*"];

1 (* code snippet "7. Croatia" *)
2 NumQ[j_,k_,c_]:=j(2−j+2k)+ContinuedFractionK[−2n(c+n)(j+n−1)(1−j+2k+n),3n^2+(3+4k)n+j(2−j+2k),{n,1,2000}];
3 g[j_,k_,c_]:=Product[(2c−2i+1)(2k−2i+1),{i,1,(j−1)/2}](2c)!2^(2k+(j−7)/2);
4 h[j_,k_,c_]:=Product[2c−2i−1,{i,0,(j−3)/2}]Product[2c−2i−1,{i,0,k−1}];
5 Ratio:=Function[{j,k,c},r=N[NumQ[j,k,c],4000];v=FindIntegerNullVector[{1,r,N[Catalan*r,4000]}];−v[[1]]/v[[2]]];
6 GenAB[j_,k_]:=({a,b}/.Solve[Table[{a,b}.{1,c−1}==g[j,k,c]/Ratio[j,k,c]/h[j,k,c],{c,1,2}],{a,b}])[[1]];
7 psi1[i_,j_]:={−1,14−j,−464+58j−3j^2,27936−4692j+432j^2−15j^3,−2659968+542256j−67836j^2+4260j^3−105j

^4,367568640−86278560j+13203480j^2−1139700j^3+51450j^4−945j^5}[[i]];
8 psi2[i_,j_]:={4j−15,306−95j+4j^2,−13360+4646j−357j^2+12j^3,999648−379692j+40368j^2−2457j^3+60j^4,−113885568+
9 46449360j−6124164j^2+513228j^3−22935j^4+420j^5,18333538560−7933530720j+1224286440j^2−126833100j^3+7864950j^4−266175j

^5+3780j^6}[[i]];
10 mu[i_,j_]:=−Product[j−2q−2,{q,1,i}]/(−2)^((3j−11−4i)/2);
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Fig. 18. The points on which the Kosovo-Serbia symmetry is tested at the (αj,κ,βj,κ)-level by the snippet "6. symmetry". Tested points are
shown in red and their symmetrical correspondents in pink.

11 Print[Union[Table[Union[Table[GenAB[j,(j−3)/2−i]=={psi1[1+i,j],psi2[1+i,j]}/mu[i,j],{j,5+2i,37,2}]][[1]],{i
,0,5}]][[1]]];ClearAll["Global‘*"];
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Fig. 19. The points on which Croatia is tested. Note that the test is performed directly at the (αj,κ,βj,κ)-level. Points tested by the snippet
"7. Croatia" are shown in red. Points tested beyond the quadrant are not shown.

1 (* code snippet "8. coefficients" *)
2 coef=CoefficientList[{3198013886925+(145296572850+(5207427225+(4353102000+(877052475+(78210090+(3023055+41580(X−29))(X

−27))(X−25))(X−23))(X−21))(X−19))(X−17),−14487726825−(104826150+(452605725+(121200300+(13697775+(640710+10395(X
−27))(X−25))(X−23))(X−21))(X−19))(X−17)},X];Print[Table[GCD[coef[[1, i]], coef[[2, i]]], {i, 1, 7}]];ClearAll["
Global‘*"];

1 (* code snippet "9. ratio" *)
2 NumQ[j_,k_,c_]:=j(2−j+2k)+ContinuedFractionK[−2n(c+n)(j+n−1)(1−j+2k+n),3n^2+(3+4k)n+j(2−j+2k),{n,1,50000}];
3 For[j=1,j<=7,For[k=Abs[j−2],k<=7,For[c=1,c<=7,r=N[NumQ[j,k,c],3000];v=FindIntegerNullVector[{1,r,N[Catalan*r,3000]}];
4 q=(−v[[1]]/v[[3]]==((2c)!2^(2k+(j−7)/2+Floor[1/j])/CatalanNumber[k−1]/(2k−1)/(2c−1)!!^2/(j−2)/Product[(2c−2k+2i−
5 1)(k−i+1)/(2c−2i+1)/(2k−2i+1),{i,1,(j−1)/2}]/CatalanNumber[(j−3)/2]));Print[{j,k,c,q}];c++];k++];j+=2];ClearAll["Global

‘*"];
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Fig. 20. The points on which the ratio conjecture is tested for 1 ≤ c ≤ 7 by the snippet "9. ratio" are shown in red.

1 (* code snippet "10. log2−a" *)
2 Q[c_]:=c+ContinuedFractionK[−2n^2,3n+c,{n,1,2000}];
3 For[c=2,c<=25,r=N[Q[c],80];
4 v=FindIntegerNullVector[{1,r,N[Log[2]*r,80]}];
5 Print[{c,Simplify[2/LerchPhi[1/2,1,−1+c]==−v[[1]]/(v[[2]]+Log[2]v[[3]])==1/(Log[2]2^(c−2)−Sum[2^(c−j−2)/j,{j,c−2}])]}];

c++];ClearAll["Global‘*"];

1 (* code snippet "11. log2−b"*)
2 R[c_]:=c+ContinuedFractionK[−2n^2−2n,3n+c,{n,1,2000}];
3 For[c=3,c<=20,r=N[R[c],200];v=FindIntegerNullVector[{1,r,N[Log[2]*r,200]}];
4 Print[{c,2^(c−4)*(c−3)*v[[1]]==v[[3]],−v[[1]]/(v[[2]]+Log[2]v[[3]])}];c++];ClearAll["Global‘*"];

1 (* code snippet "12. Inostranstvo1" *)



2 NumQ[j_]:=7+6j+ContinuedFractionK[−2n(n+1)^2(n+2j+1),3n^2+(9+4j)n+(7+6j),{n,1,10000}];
3 D1:=Function[i,If[i<2,2+15i,2(2i−1)^3(1−i)*D1[i−2]+(8i^2−2i+3)D1[i−1]]];For[j=0,j<=14,r=N[NumQ[j],80];
4 v=FindIntegerNullVector[{1,r,N[Catalan*r,80]}];Q=−v[[1]]/(v[[2]]+Catalanv[[3]]);Print[{j,(2*j+1)!/(D1[j]−2Catalan(2*j

+1)!!^2)==Q}];j++];

1 (* code snippet "13. Inostranstvo2" *)
2 NumQ[j_]:=23+10j+ContinuedFractionK[−2n(n+1)(n+3)(n+2j+3),3n^2+(17+4j)n+(23+10j),{n,1,30000}];
3 For[j=0,j<=30,r=N[NumQ[j],180];v=FindIntegerNullVector[{1,r,N[Catalan*r,180]}];Print[{j,(2j+5)!/(2j+4)/(2j+5)!!^2==v

[[1]]/v[[3]]}];j++];

1 (* code snippet "14. Inostranstvo" *)
2 NumQ:=Function[{i,a,b,c},z=a+b+1;x=ab+(c+1)z;x+2zi+ContinuedFractionK[−2n(n+a)(n+b)(n+2i+c),
3 3n^2+(2z+2c+1+4i)n+(x+2zi),{n,1,5000}]];lim=6;ToV:=Function[{i,a,b,c},r=N[NumQ[i,a,b,c],80];v=FindIntegerNullVector[{1,

r,N[Catalan*r,80]}];
4 Q=−v[[1]]/(v[[2]]+Catalanv[[3]])];Table[ToV[i,a+p,b+p,c+p],{p,0,1},{a,0,lim,2},{i,0,lim},{c,0,lim,2},{b,a,lim,2}]

1 (* code snippet "15. Series" *)
2 all={{Pi,{0,0,2,2,2,2,0},{57153600,−33075,103904},0},{Pi,{0,1,1,2,2,1,1},{69854400,−24255,76192},0},{Pi

,{0,1,2,1,1,2,1},{62868960,−14553,45712},0},{Pi,{0,2,2,1,2,2,0},{−65318400,−4725,14848},0},{Pi
,{0,2,2,2,2,0,0},{−6350400,−3675,11552},0},{Pi,{1,1,2,2,1,1,0},{−907200,−315,992},0},{Pi
,{1,2,1,1,2,1,0},{−635040,−147,464},0},{Pi,{1,2,2,2,2,1,0},{16934400,−245,768},0},{Pi
,{2,1,1,1,1,2,0},{−59535000,−6615,21292},0},{Pi,{2,2,0,0,2,1,1},{−93139200,−2695,9344},0},{Pi
,{2,2,0,0,2,2,0},{−52920000,−2695,9056},0},{Pi,{2,2,1,2,2,0,0},{−50803200,3675,−11264},0},{Pi
,{2,2,2,2,0,0,0},{129600,−75,224},0},{Catalan,{0,1,2,2,2,1,0},{−50803200,66150,−60577},0},{Catalan
,{0,3,2,3,0,0,0},{−3456000,−6750,6197},0},{Catalan,{1,2,2,2,1,0,0},{−2419200,−3150,2909},0},{Catalan
,{1,3,0,3,1,0,0},{8064000,8750,−8109},0},{Catalan,{2,2,0,2,2,0,0},{−33868800,−22050,21131},0},{Catalan
,{3,2,3,0,0,0,0},{−27648,54,−25},0},{Log[2],{0,0,0,2,2,2,2},{−33177600,−38400,26617},1},{Log
[2],{0,0,2,2,2,2,0},{1382400,−1600,1109},1},{Log[2],{0,1,1,2,2,1,1},{11059200,−7680,5323},1},{Log
[2],{0,1,2,1,1,2,1},{−22118400,10240,−7097},1},{Log[2],{0,2,2,0,0,2,2},{17280000,−1760,1219},1},{Log
[2],{0,2,2,2,2,0,0},{442368,512,−355},1},{Log[2],{1,1,2,0,0,2,2},{−88473600,5120,−3539},1},{Log



[2],{1,1,2,2,1,1,0},{−230400,−160,111},1},{Log[2],{1,2,1,1,2,1,0},{−22118400,−10240,7109},1},{Log
[2],{2,2,0,0,2,1,1},{−88473600,−5120,3627},1},{Log[2],{2,2,0,0,2,2,0},{69120000,7040,−4951},1},{Log
[2],{2,2,1,2,2,0,0},{7077888,−1024,707},1},{Log[2],{2,2,2,2,0,0,0},{−13824,16,−11},1}};

3 G:=Function[{e,ep},(−1)^(n+1)/Product[(2n+2i−3+ep)^e[[i]],{i,1,Length[e]}]];F:=Function[{e,ep},Sum[G[e,ep]/.{n−>j},{j
,1,100000}]];Union[Table[{F[all[[i,2]],all[[i,4]]],all[[i,1]],1}.all[[i,3]]<10^30,{i,1,Length[all]}]]



B A bit of science-fiction

Note that if we had a κ-level formula for Serbia the problem would be settled
and we would have a j-level master formula. We stress that we do not have such
a formula, hence what follows is only a hypothetical science-fiction blueprint.

We would split the problem into two parts: Computing Qj,κ,c for j < 7 and
for j ≥ 7. For j < 7 we would just use the κ-level formulae given in this paper
for j ∈ {1,3,5} that we would compute once and for all.

We would then profit of the symmetry to “ascend” from lines 1,3 to any
j ≥ 7 as shown in Figure 22. The rest of the process would follow Figure 5.
A more succinct equivalent process is described in Figure 23. We would have
hence obtained a polynomial-time process (polynomial in j,κ,c) allowing to
compute precisely and formally any Qj,κ,c.

Unfortunately the κ-level formula for Kosovo does not work for Serbia!

Fig. 21. The remaining challenge: find a j-level formula so thatQj,κ,c Requiescat in pace.
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