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Adaptive regularization, discretization, and linearization for
nonsmooth problems based on primal-dual gap estimators

François Févotte‡ Ari Rappaport∗† Martin Vohralík∗†

May 24, 2023

Abstract
We consider nonsmooth partial differential equations associated to a minimization of an energy

functional. We adaptively regularize the nonsmooth nonlinearity so as to be able to apply the usual
Newton linearization, which is not always possible otherwise. We apply the finite element method
as a discretization. We focus on the choice of the regularization parameter and adjust it on the
basis of an a posteriori error estimate for the difference of energies of the exact and approximate
solutions. Importantly, our estimates distinguish the different error components, namely those of
regularization, linearization, and discretization. This leads to an algorithm that steers the overall
procedure by adaptive stopping criteria with parameters for the regularization, linearization, and
discretization levels. We prove guaranteed upper bounds for the energy difference and discuss the
robustness of the estimates with respect to the magnitude of the nonlinearity when the stopping
criteria are satisfied. Numerical results illustrate the theoretical developments.

Key words: nonlinear elliptic problem, nonsmooth nonlinearity, adaptive regularization, finite elements,
iterative linearization, energy difference, a posteriori error estimate, equilibrated flux reconstruction
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1 Introduction
Given a Hilbert space V , consider the abstract minimization problem

u := argmin
v∈V

J (v) (1.1)

where J is a convex functional. When J satisfies certain regularity conditions, one can form the associ-
ated Euler–Langrange conditions which are expressed as a nonlinear elliptic partial differential equation
(PDE). We are particularly interested in cases where it is difficult to iteratively solve the resulting nonlin-
ear PDE by the standard Newton method, cf. [25, 14], due to low regularity. More specifically, applying
the standard Newton method can lead to slow convergence or even failure. In this work, we seek to
recover good convergence of Newton’s method by adaptively regularizing the nonlinear PDE.

By replacing the original problem by a regularized one, a regularization error appears. For inverse
problems [24, 28, 18], regularization is a common strategy and the error due to regularization has been
extensively studied. In [28], the authors study the so-called Tikhonov regularization and its associated
error. The regularization parameter is chosen adaptively and various criteria are discussed. Regularization
is also considered for degenerate PDEs where the operators change type as a function of either space or
time [29, 15, 27]. In these cases, a regularized problem is introduced that does not suffer from degeneracy.
It is proven in [29] that the regularized solutions converge to the true solution in an approximate sense.

In a similar spirit, for Newton-type methods, regularization (smoothing) Newton methods replace
non-differentiable nonlinearities with smooth counterparts, see [42, 32, 31] and the references therein. In
this case, the amount of added regularization is proportional to a parameter that is driven to zero as the
Newton iterations progress, thereby approaching the original problem.

From a practical point of view, the choice of the regularization parameter should ideally be updated
in a dynamic way as the chosen numerical method converges. This leads to the question of how to choose
the regularization parameter based on information from a solution iterate. One strategy to control the
amount of regularization is to rely on a posteriori error estimation.

A posteriori error estimation for PDEs is a well established subject, see for example the books of
Verfürth [40], Ainsworth and Oden [1], Repin [36], and the references therein. A posteriori errors es-
timators can be utilized to 1) certify the error; 2) drive adaptive refinement strategies; and 3) provide
stopping criteria for iterative solvers. In general, important properties of such estimators are their relia-
bility (upper bound for the error) and efficiency (lower bound for the error), where the constants in the
upper bounds are ideally explicit, independent of the PDE data and finite-dimensional approximation
parameters. More specifically in the context of adaptive stopping criteria, it is especially attractive to
have a constant-free upper bound. As for the error lower bound, the goal is to obtain a generic constant
ideally independent of the model parameters. In the case of strongly monotone and Lipschitz continuous
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operators, robustness with respect to the ratio of the Lipschitz constant to the monotonicity constant is of
particular interest. We will present numerical evidence of robustness in such a setting, where theoretical
developments are presented in [23].

In the context of energy minimization, it is advantageous to study a certain class of a posteriori
estimators, namely the so-called primal-dual gap estimators [35, 34, 36, 6, 43]. These estimators rely
on results from convex analysis to bound the “difference of energies” which we make precise in §4.1. In
particular, these estimators do indeed provide a constant-free upper bound on the difference of energies.

In the recent works of [6, 5] Bartels et. al. employ the primal-dual gap estimator to drive a posteriori
mesh refinement for singular solutions. It is also applied directly at the level of the energy minimization
so that rough problems, e.g. posed in the BV space, can be treated without appealing to the Euler–
Lagrange conditions. The energy minimization is solved directly via the so-called variable-alternating
direction method of multipliers [5]. In this method the primal and dual problems are solved in a globally
coupled, iterative manner.

In the present context, we use a continuous Galerkin finite element discretization for the primal
problem and perform a local equilibrated flux reconstruction to obtain a vector field in H(div,Ω) with
the divergence prescribed by the load. This is achieved by solving linear, local, and mutually independent
problems on patches of mesh elements. This resulting object is referred to as the equilibrated flux and is
based on principles first established in Prager and Synge [30] and more recently in the works of Ladevèze
and Leguillon [26], Destuynder and Métivet [13], Braess and Schöberl [9], and Ern and Vohralík [20]. One
major advantage of this strategy is the so-called p-robustness, i.e., the resulting estimator is uniformly
efficient for arbitrary polynomial order.

The main contribution of this work is an adaptive algorithm for solving nonsmooth problems by
incorporating regularization into the algorithm. This in particular allows us to apply the standard Newton
method to nonsmooth nonlinearities. This adaptive solution strategy resembles the one in [20], where
the authors distinguish discretization, linearization, algebraic, and quadrature errors through computable
component estimators. Here, we construct estimators for the errors due to regularization, discretization,
and linearization. These estimators then lead to adaptive stopping criteria to steer an adaptive algorithm.
We test our algorithm numerically and recover the optimal convergence rate under uniform refinement
for a known smooth solution. We also consider a numerical test for an unknown solution on an L-shaped
domain and observe the optimal rate of convergence with respect to total degrees of freedom (DOFs) for
our estimator.

The rest of the paper is organized as follows. In §2 we introduce the relevant mathematical details
of the problem, as well as our regularization strategy. In §3 we define the discrete spaces as well as
the particular form of the Newton algorithm. In §4 we discuss some common notions of error and their
relations to the difference of energies. Next, in §5 we introduce the necessary ideas from duality theory to
describe the primal-dual gap estimators. In §6 we give the details of the flux reconstruction in the current
setting. We introduce our decomposition of the upper bound provided by the primal-dual estimator in
§7. We discuss the efficiency of the estimators in §8. We subsequently introduce the adaptive algorithm
in §9 and we present numerical results in §10. Finally, we conclude in §11 and discuss future work.

2 Continuous problem statement and regularization
In this section we will fix continuous-level notation and then introduce in detail the model problem which
we study throughout the rest of the paper.

2.1 Notation
For d = 2, 3, let Ω ⊂ Rd be a polygon or polyhedron with Lipschitz boundary. We introduce the space
of Lebesgue square-integrable functions L2(ω) with scalar product (·, ·)ω and norm ∥ · ∥ω on ω ⊆ Ω. We
drop the subscript when ω = Ω. We use the same notation for vector-valued functions. Next, we define,
for scalar-valued functions, the standard Sobolev space H1(Ω) = {v ∈ L2 : ∂xi

v ∈ L2(Ω),∀ 1 ≤ i ≤ d}
with H1

0 (Ω) being the subspace of H1(Ω) of functions with vanishing trace on ∂Ω. For vector-valued
functions we consider the space H(div,Ω) := {v ∈ [L2(Ω)]d;∇·v ∈ L2(Ω)}.
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2.2 Energy minimization and equivalent formulations
Let ϕ : R → R be a given function and f ∈ L2(Ω). Consider the functional J : H1

0 (Ω) → R given by

J (v) :=

∫
Ω

ϕ(|∇v|) dx−
∫
Ω

fv dx. (2.1)

We will make the following assumptions on the function ϕ.

Assumption 2.1 (Assumptions on the energy function). We assume that the function ϕ is convex and
of class C1(R) with

ϕ(0) = ϕ′(0) = 0. (2.2)

We further assume ϕ satisfies, for real constants 0 < α ≤ L,

|ϕ′(r)− ϕ′(s)| ≤ L|r − s| ∀r, s ∈ R, (2.3a)

(ϕ′(r)− ϕ′(s))(r − s) ≥ α(r − s)2 ∀r, s ∈ R. (2.3b)

Note that (2.3b) in particular implies ϕ′(r) ≥ αr, ∀r ≥ 0, so that ϕ′ : R+ → R+.

We will be interested in the solution to the minimization problem

u := argmin
v∈H1

0 (Ω)

J (v). (2.4)

Due to the convexity of the functional J following from Assumption 2.1 and the fact that H1
0 (Ω) is

complete, the solution exists and is unique, see e.g. [41]. Another way to characterize the solution to
problem (2.4) is through its Euler–Langrange equations. To this end, we introduce the nonlinear functions
a : R → R,A : Rd → Rd,

a(s) :=
ϕ′(s)
s

, A(q) := a(|q|)q. (2.5)

A consequence of this definition is the following.

Lemma 2.2 (Strongly monotone and Lipschitz continuous operator). For L and α from Assumption 2.1,
the operator A given by (2.5) is strongly monotone

α∥∇(v − w)∥2 ≤ (A(∇v)−A(∇w),∇(v − w)) ∀v, w ∈ H1
0 (Ω). (2.6)

It is also Lipschitz continuous

∥A(∇v)−A(∇w)∥ ≤ L∥∇(v − w)∥ ∀v, w ∈ H1
0 (Ω). (2.7)

The proof is standard and is detailed in, e.g., [23, Proposition A.1]. Then the solution to (2.4) also
solves the following weak formulation (the Euler–Langrange equations of (2.4)): find u ∈ H1

0 (Ω) such
that

(A(∇u),∇v) = (f, v) ∀v ∈ H1
0 (Ω). (2.8)

Consequently, the strong formulation of (2.8) and (2.4) is given by the boundary-value problem

−∇·A(∇u) = f in Ω, (2.9a)
u = 0 on ∂Ω. (2.9b)

2.3 Regularization
According to Assumption 2.1 it is possible that the function ϕ belongs to the class C1(R) but not
C2(R). In particular, this means that the nonlinear functions a and subsequently A defined by (2.5) are
not necessarily (Fréchet) differentiable. We give an example in §2.4 below. Thus the classical Newton
method to iteratively linearize (2.8) can struggle to converge as we demonstrate later with numerical
examples. To overcome this issue, our approach will be to introduce an auxiliary regularized problem
that we use to create a sequence of solutions that approach the solution to the non-regularized problem.
We will more precisely introduce a regularized function defined from ϕ′, parameterized by ϵ > 0, which
we call ϕ′ϵ. We will make the following assumption.
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Assumption 2.3 (Regularization of ϕ). For every ϵ > 0, the regularized function satisfies

ϕ′ϵ(0) = 0, (2.10)

ϕ′ϵ ∈ C2(R). (2.11)

Next, the regularized function satisfies inequalities similar to (2.3):

|ϕ′ϵ(r)− ϕ′ϵ(s)| ≤ L|r − s| ∀r, s ∈ R, (2.12a)

(ϕ′ϵ(r)− ϕ′ϵ(s))(r − s) ≥ α(r − s)2 ∀r, s ∈ R, (2.12b)

where 0 < α ≤ L are real constants independent of ϵ. Moreover, in all points s ∈ R, there holds

(ϕ′ϵ − ϕ′)(s)
ϵ→0→ 0. (2.13)

The regularized function implicitly defines regularized versions aϵ and Aϵ as in (2.5) through

aϵ(s) :=
ϕ′ϵ(s)
s

,Aϵ(q) := aϵ(|q|)q, (2.14)

which, by the same reasoning as in Lemma 2.2, satisfy

α∥∇(v − w)∥2 ≤ (Aϵ(∇v)−Aϵ(∇w),∇(v − w)) ∀v, w ∈ H1
0 (Ω), (2.15a)

∥Aϵ(∇v)−Aϵ(∇w)∥ ≤ L∥∇(v − w)∥ ∀v, w ∈ H1
0 (Ω). (2.15b)

We now prove a consequence of Assumption 2.3 which will be useful later.

Lemma 2.4 (L2 convergence of the regularization). For any vector field v ∈ L2(Ω) we have that

lim
ϵ→0

∥ϕ′ϵ(|v|)− ϕ′(|v|)∥ → 0. (2.16)

Proof. We will make use of the Lebesgue dominated convergence theorem in L2(Ω), see e.g. [38]. Indeed,
consider an arbitrary real sequence {ϵn}n∈N tending to zero and consider the sequence of functions

gn(x) := ϕ′ϵn(|v(x)|)− ϕ′(|v(x)|).

Then by (2.13) from Assumption 2.3, we have that gn → 0 pointwise for almost all x ∈ Ω. Next, to
establish a dominating function, observe that since ϕ′(0) = ϕ′ϵ(0) = 0 by (2.2) and (2.10), we have

|gn(x)| ≤ |ϕ′ϵn(|v(x)|)|+ |ϕ′(|v(x)|)|
(2.3a),(2.12a)

≤ (L+ L)|v(x)| =: g(x) ∈ L2(Ω),

so we can choose g as the dominating function. Finally, since ϵn was arbitrary, the sequential criterion
for a limit ensures (2.16).

For algorithmic reasons, we will consider a monotonically decreasing sequence, {ϵj}j≥0 of positive real
values which is in particular determined by two values ϵ0 > 0 and 0 < Cϵ < 1, where, for j ≥ 1,

ϵj := Cϵϵ
j−1. (2.17)

All these considerations lead us to a regularized version of the problem (2.8): for a fixed j ≥ 0, find
uj ∈ H1

0 (Ω) such that
(Aϵj (∇uj),∇v) = (f, v) ∀v ∈ H1

0 (Ω). (2.18)

2.4 An example nonsmooth nonlinearity with a kink
To make our notions more concrete, we introduce a simple but instructive example for our study. Consider
ϕ ∈ C1(R) \ C2(R) given by

ϕ(s) :=

{
1
2 (s− s0)

2 + s0s− 1
2s

2
0 s ≤ s0,

m
2 (s− s0)

2 + s0s− 1
2s

2
0, s > s0

(2.19)
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Figure 1: [Kink function (2.19) with m = 4, s0 = 2] The kink function ϕ (2.19) and its derivative ϕ′
(2.20) Notice that ϕ′ is not strongly differentiable at s0.
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Figure 2: [Kink function (2.19) withm = 4, s0 = 2] Regularization of the kink function (2.19) by replacing
the absolute value function with its differentiable counterpart, see (2.25).

with continuous derivative

ϕ′(s) =

{
s, s ≤ s0,

m(s− s0) + s0, s > s0,
(2.20)

where s0 > 0 determines the location of the discontinuity in the second derivative and m ≥ 1 determines
the slope to the right of s0. An illustration is given in Figure 1. We call the function (2.20) a kink
function due to the fact that ϕ′(s) is not strongly differentiable at the point s0. This function satisfies
Assumption 2.1 with L = m and α = 1 since the weak derivative of ϕ′ is given by

ϕ′′(s) =

{
1, s < s0,

m, s > s0.
(2.21)
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We now introduce a regularized version of the function ϕ′ of (2.20) that in turn defines regularized
versions of the nonlinear functions a and A in (2.14). We first notice that (2.19) can be equivalently
rewritten as

ϕ′(s) =
m− 1

2
|s− s0|+

m+ 1

2
(s− s0) + s0. (2.22)

We then consider, for a fixed value of ϵ > 0, the smooth approximation of the absolute value function

|s|ϵ :=
√
s2 + ϵ2. (2.23)

We then replace the absolute value in (2.22) by the smooth version

ϕ̂′ϵ(s) :=
m− 1

2
|s− s0|ϵ +

m+ 1

2
(s− s0) + s0. (2.24)

We then set
ϕ′ϵ(s) := ϕ̂′ϵ(s)− ϕ̂′ϵ(0) (2.25)

to achieve ϕ′ϵ(0) = 0. An illustration is given in Figure 2. We now show the following

Lemma 2.5 (Example regularization (2.25)). The definition (2.25) satisfies Assumption 2.3.

Proof. The requirement (2.10) is obvious from the definition. Next, the function is actually C∞(R)—in
particular C2(R)—so (2.11) is satisfied. Next, for (2.12), observe that

ϕ′′ϵ (s) =
m− 1

2

s√
s2 + ϵ2

+
m+ 1

2

is strictly increasing and lims→−∞ ϕ′′ϵ (s) = 1, as well as lims→∞ ϕ′′ϵ (s) = m. Thus, 1 ≤ ϕ′′ϵ ≤ m and
appealing to, e.g., [23, Proposition A.2], we conclude that (2.12) is satisfied with L = m and 1 = α,

Finally, we show that for all s ∈ R,

|s|ϵ − |s| =
√
s2 + ϵ2 −

√
s2 =

ϵ2
√
s2 + ϵ2 +

√
s2

→ 0

when ϵ→ 0, which confirms (2.13).

3 Discrete problem and linearization
We now give details for the discretization of the regularized problem (2.18) via the continuous Galerkin
finite element method [19] and subsequent linearization.

3.1 Finite element discretization
Let T0 be a simplicial mesh of the physical domain Ω with no “hanging nodes” i.e., T0 = ∪K{K}, where
the intersection of (the closure of) two arbitrary simplices K,K ′ ∈ T0 are either empty or an l-dimensional
simplex for 0 ≤ l ≤ d − 1. From the initial mesh T0, we generate a hierarchy {Tℓ}Lℓ=1 of nested meshes,
i.e., Tℓ ⊂ Tℓ+1 for all ℓ ≥ 0. We assume that each mesh in the hierarchy is also free of hanging nodes in
the same sense as for T0. We also assume that the hierarchy of meshes is shape regular, i.e., that there
exists a constant κT such that, for all ℓ,

max
K∈Tℓ

κK ≤ κT , (3.1)

where κK := hK

ρK
, hK is the diameter of K, and ρK is the radius of the largest inscribed ball of K. For

an arbitrary collection of simplices T of some mesh Tℓ and its corresponding subdomain ω ⊂ Ω, we define
the broken polynomial space of order p ≥ 0 by

Pp(T ) := {v ∈ L2(ω) : v|K ∈ Pp(K), ∀K ∈ T }. (3.2)

Finally, we introduce, for a fixed polynomial degree p ≥ 1 and for each ℓ an H1
0 (Ω)-conforming finite-

dimensional space,
V pℓ := H1

0 (Ω) ∩ Pp(Tℓ). (3.3)

We now consider a discrete equivalent of the regularized continuous problem (2.18) where we seek, for
j, ℓ ≥ 0 the solution ujℓ ∈ V pℓ such that

(Aϵj (∇ujℓ),∇vℓ) = (f, vℓ) ∀vℓ ∈ V pℓ . (3.4)

Note that while this problem is finite-dimensional, it is still nonlinear.
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3.2 Linearization
We now define a linearization scheme for the regularized finite-dimensional problem (3.4). For fixed
ℓ, j ≥ 0, let uj,0ℓ ∈ V pℓ be the initial guess. Denoting by k ≥ 1 the linearization iterate, a step of the
linearization procedure to approximately solve (3.4) takes the form: find uj,kℓ ∈ V pℓ such that

(Ak−1
ϵj (∇uj,kℓ ),∇v) = (f, v) ∀v ∈ V pℓ , (3.5)

where the operator Ak−1
ϵj is affine and takes the form

Ak−1
ϵj (q) := Ak−1

ϵj q − bk−1
ϵj (3.6)

for a matrix-valued function Ak−1
ϵj : Ω → Rd×d and a vector-valued function bk−1

ϵj : Ω → Rd. Once a basis
of V pℓ is chosen, the problem (3.5) is equivalent to solving a linear system of algebraic equations.

We make the following assumptions on the linearization.

Assumption 3.1 (Assumptions on the linearization). Let the regularization step j ≥ 0 and mesh level
ℓ ≥ 0 be fixed. We assume that the linearized operator converges in the sense that

lim
k→∞

∥Ak−1
ϵj (∇ujℓ)−Aϵj (∇ujℓ)∥ = 0. (3.7)

Finally, we assume that Ak−1
ϵj is uniformly bounded and symmetric positive definite, that is, the following

conditions hold for all x ∈ Ω and all v ∈ Rd,

|Ak−1
ϵj (x)v| ≤ λ|v| (boundedness), (3.8a)

λ|v|2 ≤ (Ak−1
ϵj (x)v) · v (positive definiteness), (3.8b)

where 0 < λ ≤ λ are real constants.

A prototypical example is the Picard, or fixed point, linearization where

Ak−1
ϵj (q) := aϵj (|∇uj,k−1

ℓ |)q, (3.9)

whereas for a Newton step the linearized function is given by

Ak−1
ϵj (q) := aϵj (|∇uj,k−1

ℓ |)q +
(
∂qaϵj (|∇uj,k−1

ℓ |)⊗∇uj,k−1
ℓ

)
(q −∇uj,k−1

ℓ ), (3.10)

and, in turn,

∂qaϵj (|q|) =
a′ϵj (|q|)

|q|
q =

(
ϕ′′ϵ (|q|)− ϕ′ϵ(|q|)|q|−1

)
|q|−2q. (3.11)

In [23, Section 2.3.2] it is demonstrated that these two linearization schemes satisfy (3.8) for λ = α and
λ = L.

Remark 3.2 (Newton linearization). Note that the derivative ϕ′′ϵ (s) appears in (3.11). For nonsmooth
nonlinearities, where merely the function ϕ ∈ C1(R) \ C2(R), the second derivative ϕ′′ does not exist in
a strong sense. This is the motivation for introducing the regularization.

4 Three ways of measuring the error and their mutual relations
We have now established and characterized different solutions, namely the true solution u of (2.8) and the
approximate solution to the regularized, discretized, and linearized problem of (3.5) uj,kℓ . The next step
is to define a concrete notion of error between these two objects, and then, ideally, to have a computable
means of estimating it. We postpone the discussion of error estimation to §7. In this section we will
recall, following [36, 43, 4], three notions of error between u and uj,kℓ , namely the difference of energies
(2.1), a notion related to a (weighted by α1/2) H1

0 (Ω) norm, and the dual (weighted by α−1/2) norm of
the residual. One salient feature when comparing these error measures is that they all coincide in the
linear case where ϕ(s) = s2/s and A(q) = q, as will be made precise in §4.4. Recall that we assume that
the constants L and α are given by Assumption 2.1.
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4.1 Energy difference
A physically-motivated notion of error is the difference of energies. For v ∈ H1

0 (Ω), this is given as

0 ≤ J (v)− J (u), (4.1)

where the energy functional J is defined in (2.1). Since the true solution u is the unique minimum of J
in H1

0 (Ω) as per (2.4), this quantity is guaranteed to be nonnegative and only 0 when v = u.

4.2 Energy norm
A second type of error measure we will consider will be that of the energy norm. For v ∈ H1

0 (Ω) we
namely consider

|||v||| := α1/2∥∇v∥, (4.2)

where α > 0 is the monotonicity constant from (2.3b). Thus, the error between v ∈ H1
0 (Ω) and the

solution u of (2.8) is here expressed as
0 ≤ 1

2 |||u− v|||2. (4.3)

The reason for the choice of squaring and dividing by two will become clear in §4.4.

4.3 Dual norm of the residual
Finally we consider the abstract error quantity obtained through the dual norm of the residual. First,
we define, for a fixed v ∈ H1

0 (Ω), the residual functional R(v) ∈ H−1(Ω) by

⟨R(v), w⟩ := (f, w)− (A(∇v),∇w), w ∈ H1
0 (Ω), (4.4)

where the duality pairing ⟨·, ·⟩ is between H−1(Ω) and H1
0 (Ω). Next we introduce the dual norm for

R ∈ H−1(Ω)
|||R(v)|||−1 := sup

φ∈H1
0 (Ω), |||φ|||=1

⟨R(v), φ⟩. (4.5)

Here the error in the energy dual norm of the residual is given, for v ∈ H1
0 (Ω),

0 ≤ 1
2 |||R(v)|||2−1. (4.6)

As in the previous section, note that R(v) = 0 if and only if v = u solves the continuous problem (2.8).
The choice of squaring and dividing by two will again be made clear in §4.4. Finally, if we consider the
standard definition of the dual norm,

∥R(v)∥H−1(Ω) := sup
φ∈H1

0 (Ω), ∥∇φ∥=1

⟨R(v), φ⟩, (4.7)

our definition satisfies the scaling

|||R(v)|||−1 = α−1/2∥R(v)∥H−1(Ω). (4.8)

4.4 Equivalence in the linear case
In this section, we recall the special relationship between the three different error measures of the previous
sections in the case where ϕ(s) = s2/2, i.e., α = L = 1, which writes as

J (v)− J (u) = 1
2 |||v − u|||2 = 1

2 |||R(v)|||2−1. (4.9)

For the sake of completeness, we recall the proof of (4.9). As for the first equality,

J (v)− J (u) =

∫
Ω

1
2 |∇v|

2 − fv dx−
(∫

Ω

1
2 |∇u|

2 − fudx

)
(2.8)
=

∫
Ω

1
2 |∇v|

2 −∇u · ∇v dx−
(∫

Ω

1
2 |∇u|

2 −∇u · ∇udx
)

=

∫
Ω

1
2 |∇v|

2 −∇u · ∇v + 1
2 |∇u|

2 dx = 1
2 |||u− v|||2.

The latter one is then simply

|||u− v||| = sup
φ∈H1

0 (Ω), ∥∇φ∥=1

(∇(u− v),∇φ) = sup
φ∈H1

0 (Ω), ∥∇φ∥=1

{(f, φ)− (∇v,∇φ)} = |||R(v)|||−1.

9



4.5 Relations in the nonlinear case
In the nonlinear case, the measures are only equivalent up to factors of L/α. Indeed, between the dual
norm of the residual and the energy norm, a factor of exactly L/α relates the two:

Proposition 4.1 (Relation energy norm-dual residual norm). Let u solve (2.8) and let v ∈ H1
0 (Ω) be

arbitrary. Then there holds

1
2 |||v − u|||2 ≤ 1

2 |||R(v)|||2−1 ≤ L2

2α2
|||v − u|||2. (4.10)

Proof. By the definition of the energy norm (4.2) and the dual residual norm (4.5), together with the
monotonicity assumption (2.3b) implying (2.6) and definition (2.8),

|||v − u||| = α1/2∥∇(v − u)∥
(2.6)
≤ (A(∇v)−A(∇u),∇(v − u))

α1/2∥∇(v − u)∥
≤ sup
φ∈H1

0 (Ω), |||φ|||=1

(A(∇v)−A(∇u),∇φ)

(2.8)
= sup

φ∈H1
0 (Ω), |||φ|||=1

{(A(∇v),∇φ)− (f, φ)}

= |||R(v)|||−1.

(4.11)

For the second inequality, observe that, using the Lipschitz continuity assumption (2.3a) implying (2.7),

|||R(v)|||−1
(4.8)
= α−1/2∥R(v)∥H−1(Ω)

(2.8)
= α−1/2 sup

φ∈H1
0 (Ω),∥∇φ∥=1

(A(∇v)−A(∇u),∇φ)

≤ α−1/2 sup
φ∈H1

0 (Ω),∥∇φ∥=1

∥A(∇v)−A(∇u)∥ ∥∇φ∥

= α−1/2∥A(∇v)−A(∇u)∥
(2.7)
≤ Lα−1/2∥∇(v − u)∥

(4.2)
=

L

α
|||v − u|||.

(4.12)

When comparing the energy difference with the energy norm, a factor of
√
L/α is instead introduced.

Proposition 4.2. Let u solve (2.8) and let v ∈ H1
0 (Ω) be arbitrary. Then there holds

1
2 |||v − u|||2 ≤ J (v)− J (u) ≤ L

2α
|||v − u|||2. (4.13)

Proof. See [21, Lemma 5.1].

5 Duality theory
In order to bound the energy difference as introduced in §4.1, we will proceed using duality for convex
functions, following [7, 36, 43].

5.1 Fenchel conjugate and its properties
Let us introduce the Fenchel conjugate (also known as the Legendre transform). For a convex function
ϕ, it is given by

ϕ∗(r) :=
∫ r

0

(ϕ′)−1(s) ds. (5.1)

We also define the conjugate operator

A∗(q) :=
(ϕ∗)′(|q|)

|q|
q. (5.2)
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To illustrate, let us compute explicitly the Fenchel conjugate for the kink example (2.19) of §2.4. We
first compute the inverse of the derivative

(ϕ′)−1(s) =

{
s, s ≤ s0
s+(m−1)s0

m , s > s0
. (5.3)

Then the Fenchel conjugate (5.1) takes the form

ϕ∗(r) =
∫ r

0

(ϕ′)−1(s) ds =

{
1
2r

2, r ≤ s0
1

2m [(r + (m− 1)s0)
2 − s20m(m− 1)], r > s0

. (5.4)

Indeed, for the case where r ≥ s0,∫ r

0

(ϕ′)−1(s) ds =

∫ s0

0

sds+

∫ r

s0

s+ (m− 1)s0
m

ds

=
1

2m

(
r2 + 2(m− 1)s0r − s20(m− 1)

)
=

1

2m
[(r + (m− 1)s0)

2 − s20m(m− 1)].

(5.5)

Definition (5.1) yields the following properties, see [36, 7] or Appendix A:

Proposition 5.1 (Properties of the Fenchel conjugate). Let ϕ be a convex function with ϕ(0) = ϕ′(0) = 0
and let ϕ∗ : R → R be its Fenchel conjugate given by (5.1). Then the following properties hold.

ϕ∗(r) = r(ϕ′)−1(r)− ϕ((ϕ′)−1(r)) = max
s

{sr − ϕ(s)}, (5.6a)

ϕ∗ is convex, (5.6b)

ϕ∗ ∈ C1(R) and (ϕ∗)′ = (ϕ′)−1, (5.6c)
ϕ∗(0) = (ϕ∗)′(0) = 0. (5.6d)

This proposition can be used to derive the following well-known result [36, 43, 7, 33] or Appendix A:

Corollary 5.2 (Young’s inequality for convex functions). Let ϕ ∈ C1(R) be convex and let ϕ∗ be given
by (5.1). Then

sr ≤ ϕ(s) + ϕ∗(r) for all s, r ≥ 0, (5.7)

where the equality holds for r = ϕ′(s) or equivalently s = (ϕ∗)′(r).

Next, we consider the relationship between the vector-valued counterparts.

Corollary 5.3 (A and A∗). Let A be given by (2.5) and A∗ be given by (5.2). Then the following holds
for all q ∈ Rd

A(A∗(q)) = q (5.8a)
A(q) · q = ϕ(|q|) + ϕ∗(|A(q)|). (5.8b)

Finally, there holds:

Lemma 5.4 (Lipschitz continuity of (ϕ∗)′). Let ϕ satisfy the Assumption 2.1. Then (ϕ∗)′ is Lipschitz
continuous with Lipschitz constant equal to α−1, i.e.,

|(ϕ∗)′(r)− (ϕ∗)′(s)| ≤ α−1|r − s|. (5.9)

The proof of these results is again given in Appendix A.

5.2 The two energies principle
We are led to investigate the dual optimization problem to (2.4). The dual problem to (2.4) can be stated
as

σ := argmax
ς∈H(div,Ω)

∇·ς=f

J ∗(ς), (5.10)
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where the dual functional J ∗ : H(div,Ω) → R is given by

J ∗(ς) := −
∫
Ω

ϕ∗(|ς|) dx. (5.11)

It turns out that the flux σ = −A(∇u), where u is given by (2.4), or, equivalently, by (2.8). We see this
in the following way. First of all, the Euler–Langrange conditions for (5.10) are: find σ ∈ H(div,Ω) with
∇·σ = f such that

(A∗(σ),v) = 0 ∀v ∈ H(div,Ω) with ∇·v = 0. (5.12)

We consider the equivalent mixed formulation of (5.12): find (σ, ũ) ∈ H(div,Ω)× L2(Ω) such that

(A∗(σ),v)− (ũ,∇·v) = 0 ∀v ∈ H(div,Ω), (5.13a)

(∇·σ, q) = (f, q) ∀q ∈ L2(Ω). (5.13b)

By the definition of the weak gradient, (5.13a) implies

∇ũ = −A∗(σ)
(5.8a)
=⇒ −A(∇ũ) = σ. (5.14)

Finally taking q ∈ H1
0 (Ω) ⊂ L2(Ω) as the test function in (5.13b) shows that ũ = u is the solution to

problem (2.8).
To make the connection between the primal and dual problems more precise, we proceed to introduce

the saddle point functional by

L(v, ς) := J ∗(ς)− (∇v, ς)− (f, v), ς ∈ H(div,Ω), v ∈ H1
0 (Ω). (5.15)

Then we have the following

Lemma 5.5 (Two energies principle). Let u be the solution to the minimization problem (2.4) and σ be
the solution to (5.10). Let L be as in (5.15). Then

max
ς∈H(div,Ω)

∇·ς=f

J ∗(ς) = J ∗(σ) = L(u,σ) = J (u) = min
v∈H1

0 (Ω)
J (v). (5.16)

There also holds
L(u,σ) = max

ς∈H(div,Ω)
∇·ς=f

min
v∈H1

0 (Ω)
L(v, ς). (5.17)

Proof. The first and last equalities of (5.16) follow by definition. For the second equality of (5.16), note
that from σ ∈ H(div,Ω) and ∇·σ = f , for any v ∈ H1

0 (Ω), we have −(∇v,σ)− (f, v) = 0.
For the third equality of (5.16),

L(u,σ) =
∫
Ω

−ϕ∗(|σ|)−∇u · σ − fudx

(5.14)
=

∫
Ω

−ϕ∗(|A(∇u)|) +∇u ·A(∇u)− fudx
(5.8b)
=

∫
Ω

ϕ(|∇u|)− fudx
(2.1)
= J (u).

Finally, (5.17) follows since, as above,

max
ς∈H(div,Ω)

∇·ς=f

min
v∈H1

0 (Ω)
L(v, ς) (5.15)

= max
ς∈H(div,Ω)

∇·ς=f

J ∗(ς) = J ∗(σ) = L(⊓,σ).

The above developments directly lead to an upper bound on the energy difference [35, 43, 3, 7]:

Corollary 5.6 (Two energies principle). Under the assumptions of Lemma 5.5, the following holds for
any ς ∈ H(div,Ω) with ∇·ς = f and any v ∈ H1

0 (Ω),

0 ≤ J (v)− J (u) ≤ J (v)− J ∗(ς). (5.18)

Proof. We apply the properties of the objects involved,

0
(2.4)
≤ J (v)− J (u)

(5.16)
= J (v)− J ∗(σ)

(5.10)
≤ J (v)− J ∗(ς). (5.19)
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6 Equilibrated flux and its components

In this section, we detail an algorithm to construct a dual object tj,kℓ ∈ H(div,Ω) with ∇·tj,kℓ = f
as required by the duality theory of §5. We consider patch-wise minimizations corresponding to local
Neumann mixed finite element problems. This strategy has already been employed in many contexts cf.
[9, 20, 13]. First we make the following assumption to simplify the analysis. The treatment of general f
has been studied carefully in e.g. [20, 23].

Assumption 6.1 (No data oscillation). We suppose for simplicity that the source term is a piecewise
polynomial, f ∈ Pp(Tℓ).

6.1 Equilibrated flux
We begin with some additional geometric information. For a given mesh level ℓ ≥ 0, let Vℓ be the set
of mesh vertices partitioned to Vℓ = V int

ℓ ∪ Vext
ℓ by interior and boundary vertices. Next let ωa be the

subdomain corresponding to the set of elements of Tℓ for which a is a vertex, denoted by Ta. We also
make use of the hat functions ψa ∈ P1(Tℓ) ∩ C0(Ω) associated with the vertex a ∈ Vℓ.

For a collection of simplices T and their corresponding domain ω, we introduce the broken Raviart–
Thomas–Nédélec finite element space [10] of order p ≥ 0,

RTp(T ) := {vℓ ∈ [L2(ω)]d : vℓ|K ∈ [Pp(K)]d + xPp(K), ∀K ∈ T }. (6.1)

Next, to account for normal face continuity, we define the vertex patch space

V p
ℓ (ωa) := RTp(Ta) ∩H0(div, ωa), (6.2)

where H0(div, ωa) is the subspace of H(div, ωa) of functions with vanishing normal trace on ∂ωa when
a ∈ V int

ℓ and on ∂ωa \ {ψa>0} when a ∈ Vext
ℓ . For v ∈ L2(Ω), define the L2-projection Πpv ∈ Pp(Tℓ)

by (v − Πpv, vℓ) = 0 for all vℓ ∈ Pp(Tℓ). Note that it acts elementwise. Finally, for T ⊂ Tℓ and the
corresponding domain ω ⊆ Ω, define the mean-free space by P∗

p (T ) := {v ∈ Pp(T ) :
∫
ω
v dx = 0}.

Definition 6.2 (Total flux tj,kℓ ). Let uj,kℓ be the solution to (3.5). For all vertices a ∈ Vℓ, define
tj,ka ∈ V p

ℓ (ωa) and qa ∈ P∗
p (Ta) as the solution to the patch-local mixed finite element problem

(tj,ka ,vℓ)ωa − (qa,∇·vℓ)ωa = −(ψaA
k−1
ϵj (∇uj,kℓ ),vℓ)ωa , (6.3a)

(∇·tj,ka , rℓ)ωa = (fψa −Ak−1
ϵj (∇uj,kℓ ) · ∇ψa, rℓ)ωa (6.3b)

for all pairs (vℓ, rℓ) ∈ V p
ℓ (ωa) × P∗

p (Ta). After solving this local problem on each patch and extending
tj,ka by 0 outside of ωa, assemble the global flux by

tj,kℓ =
∑
a∈Vℓ

tj,ka . (6.3c)

The patch problem (6.3) is equivalent to solving the local minimization problem,

tj,ka := argmin
vℓ∈V p

ℓ (ωa)

∇·vℓ=Πp(ψaf−∇ψa·Ak−1

ϵj
(∇uj,k

ℓ ))

∥ψaA
k−1
ϵj (∇uj,kℓ ) + vℓ∥ωa . (6.4)

The flux satisfies the divergence constraint.

Lemma 6.3 (Divergence of the equilibrated flux). Given Assumption 6.1, the flux tj,kℓ given by Definition
6.2 satisfies

∇·tj,kℓ = f. (6.5)

Proof. By construction,

∇·tj,kℓ =
∑
a∈Vℓ

∇·tj,ka = Πp

(∑
a∈Vℓ

(ψaf −∇ψa ·Ak−1
ϵj (∇uj,kℓ ))

)
= Πpf = f,

see e.g. [9, 20].
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We have the following stability result obtained by proceeding as in [37].

Lemma 6.4 (Stability of the equilibrated flux). For a fixed vertex a ∈ Vℓ, the solution to the patch
problem (6.3) satisfies

∥tj,ka ∥ωa ≲ ∥Ak−1
ϵj (∇uj,kℓ )∥ωa + hωa∥ψaf∥ωa . (6.6)

The hidden constant only depends on the space dimension d and the mesh shape regularity constant κT
of (3.1).

Proof. We first recall the result used in [37, Lemma 4.1], i.e., for any τa ∈ RTp(Ta) and ga ∈ Pp(Ta),

min
vℓ∈V p

ℓ (ωa)
∇·vℓ=ga

∥τa + vℓ∥ωa ≤ sup
v∈H1

∗(ωa)
∥∇v∥ωa=1

{(ga, v)ωa − (τa,∇v)ωa}, (6.7)

where H1
∗ (ωa) is the subspace of functions in H1(ωa) that have mean value zero on the patch subdomain

ωa if a ∈ V int
ℓ is an interior vertex, or that vanish on ∂ωa∩{ψa > 0} when a ∈ Vext

ℓ is a boundary vertex.
Next, set

gj,ka := Πp(ψaf −∇ψa ·Ak−1
ϵj (∇uj,kℓ )), τ j,ka := ψaA

k−1
ϵj (∇uj,kℓ ). (6.8)

For technical reasons, we will need to introduce another auxiliary problem. First, we introduce ΠRT
ℓ,p−1,

the [L2]d-orthogonal projection from [L2(Ω)]d to RTp−1(Tℓ). Note that it acts elementwise. We consider
the vector-valued data

τ̃ j,ka := ψaΠ
RT
ℓ,p−1(A

k−1
ϵj (∇uj,kℓ )) (6.9)

and the associated minimization problem

t̃j,ka := min
vℓ∈V p

ℓ (ωa)

∇·vℓ=g
j,k
a

∥τ̃ j,ka + vℓ∥ωa . (6.10)

We are now prepared to derive the bound (6.6). We start with

∥tj,ka ∥ωa ≤ ∥tj,ka + τ j,ka ∥ωa + ∥τ j,ka ∥ωa

(6.4)
≤ ∥t̃j,ka + τ j,ka ∥ωa + ∥τ j,ka ∥ωa

≤ ∥t̃j,ka + τ̃ j,ka ∥ωa + ∥τ j,ka − τ̃ j,ka ∥ωa + ∥τ j,ka ∥ωa

(6.10)
= min

vℓ∈V p
ℓ (ωa)

∇·vℓ=g
j,k
a

∥τ̃ j,ka + vℓ∥ωa + ∥τ j,ka − τ̃ j,ka ∥ωa + ∥τ j,ka ∥ωa

(6.7)
≤ sup

v∈H1
∗(ωa)

∥∇v∥ωa=1

{(gj,ka , v)ωa︸ ︷︷ ︸
a

− (τ̃ j,ka ,∇v)ωa︸ ︷︷ ︸
b

}

︸ ︷︷ ︸
T1

+ ∥τ j,ka − τ̃ j,ka ∥ωa︸ ︷︷ ︸
T2

+ ∥τ j,ka ∥ωa︸ ︷︷ ︸
T3

.

We now bound these three terms individually. For the third term,

T3 = ∥τ j,ka ∥ωa

(6.8)
= ∥ψaA

k−1
ϵj (∇uj,kℓ )∥ωa ≤ ∥ψa∥L∞(ωa)∥A

k−1
ϵj (∇uj,kℓ )∥ωa = ∥Ak−1

ϵj (∇uj,kℓ )∥ωa . (6.11)

For the second term,

T2 ≤ ∥τ j,ka ∥+ ∥τ̃ j,ka ∥ωa

(6.9)
= ∥τ j,ka ∥+ ∥ψaΠ

RT
ℓ,p−1(A

k−1
ϵj (∇uj,kℓ )))∥ωa

≤ ∥τ j,ka ∥+ ∥ΠRT
ℓ,p−1(A

k−1
ϵj (∇uj,kℓ ))∥ωa

(6.11)
≤ ∥Ak−1

ϵj (∇uj,kℓ )∥ωa .

Finally, for the first term, fix v ∈ H1
∗ (ωa) with ∥∇v∥H1

∗(ωa) = 1. For term b,

(τ̃ j,ka ,∇v)ωa

C.S.
≤ ∥τ̃ j,ka ∥ωa ,
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whence the preceding arguments can be applied again. For term a,

(gj,ka , v)ωa

C.S.
≤ ∥gj,ka ∥ωa∥v∥ωa

Poincaré
≲ hωa∥gj,ka ∥ωa

(6.8)
= hωa∥Πp(ψaf −∇ψa ·Ak−1

ϵj (∇uj,kℓ ))∥ωa

≤ hωa∥ψaf −∇ψa ·Ak−1
ϵj (∇uj,kℓ )∥ωa

≤ hωa

(
∥ψaf∥ωa + ∥∇ψa ·Ak−1

ϵj (∇uj,kℓ )∥ωa

)
≤ hωa

(
∥ψaf∥ωa + ∥∇ψa∥L∞(ωa)∥A

k−1
ϵj (∇uj,kℓ )∥ωa

)
≲ hωa

(
∥ψaf∥ωa + h−1

ωa
∥Ak−1

ϵj (∇uj,kℓ )∥ωa

)
= hωa∥ψaf∥ωa + ∥Ak−1

ϵj (∇uj,kℓ )∥ωa .

Combining these terms concludes the proof.

6.2 Component fluxes
In addition to the flux in Definition 6.2, we introduce three more fluxes. The idea, as in [20], is that
tj,kℓ will contain information about the total error, and the additional fluxes will isolate components of
the error. This definition is more precisely intended to distinguish the errors coming from regularization,
linearization, and discretization.

Definition 6.5 (Decomposition of tj,kℓ into components). Let uj,kℓ be the solution to (3.5), for ℓ ≥ 0, j ≥ 0,

and k ≥ 1. Let A,Aϵj , and Ak−1
ϵj be given by (2.5), (2.14), and (3.6), respectively. Then define

rj,kℓ := Aϵj (∇uj,kℓ )−A(∇uj,kℓ ) [regularization error flux], (6.12a)

lj,kℓ := Ak−1
ϵj (∇uj,kℓ )−Aϵj (∇uj,kℓ ) [linearization error flux], (6.12b)

dj,kℓ := tj,kℓ − rj,kℓ − lj,kℓ = tj,kℓ +A(∇uj,kℓ )−Ak−1
ϵj (∇uj,kℓ ) [discretization flux]. (6.12c)

Based on our Assumption 2.3 on ϕ′ϵ, we have the following result.

Lemma 6.6 (H1
0 -convergence of the regularized approximation). Consider a discrete version of (2.8),

i.e., find uℓ ∈ V pℓ such that
(A(∇uℓ),∇vℓ) = (f, vℓ) ∀v ∈ V pℓ . (6.13)

Then the solution to the regularized discrete problem (3.4) satisfies

lim
j→∞

∥∇(uℓ − ujℓ)∥ = 0. (6.14)

Proof. Using the strong monotonicity of Aϵj ,

α∥∇(uℓ − ujℓ)∥
2

(2.15a)
≤

(
Aϵj (∇uℓ)−Aϵj (∇ujℓ),∇(uℓ − ujℓ)

)
=
(
Aϵj (∇uℓ)−A(∇uℓ) +A(∇uℓ)−Aϵj (∇ujℓ),∇(uℓ − ujℓ)

)
(3.4),(6.13)

=
(
Aϵj (∇uℓ)−A(∇uℓ),∇(uℓ − ujℓ)

)
C.S.
≤ ∥Aϵj (∇uℓ)−A(∇uℓ)∥∥∇(uℓ − ujℓ)∥

(2.5),(2.14)
= ∥ϕ′ϵj (|∇uℓ|)− ϕ′(|∇uℓ|)∥∥∇(uℓ − ujℓ)∥.

Thus, ∥∇(uℓ − ujℓ)∥ ≤ α−1∥ϕ′ϵj (|∇uℓ|)− ϕ′(|∇uℓ|)∥
j→∞−→ 0 by (2.16).

We have a similar result for the linearized problem.
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Lemma 6.7 (H1
0 -convergence of the linearized approximation). Let the regularization step j ≥ 0 and

mesh level ℓ ≥ 0 be fixed. Then
lim
k→∞

∥∇(ujℓ − uj,kℓ )∥ = 0. (6.15)

Proof. We use the coercivity of the linearization matrix of Assumption 3.1,

λ∥∇(uj,kℓ − ujℓ)∥
2

(3.8b)
≤ (Ak−1

ϵj ∇(uj,kℓ − ujℓ),∇(uj,kℓ − ujℓ))

(3.6)
= (Ak−1

ϵj (∇uj,kℓ )−Ak−1
ϵj (∇ujℓ),∇(uj,kℓ − ujℓ))

= (Ak−1
ϵj (∇uj,kℓ )−Aϵj (∇ujℓ) +Aϵj (∇ujℓ)−Ak−1

ϵj (∇ujℓ),∇(uj,kℓ − ujℓ))

(3.4),(3.5)
= (Aϵj (∇ujℓ)−Ak−1

ϵj (∇ujℓ),∇(uj,kℓ − ujℓ))

C.S.
≤ ∥Aϵj (∇ujℓ)−Ak−1

ϵj (∇ujℓ)∥∥∇(uj,kℓ − ujℓ)∥.

Thus, ∥∇(uj,kℓ − ujℓ)∥ ≤ λ−1∥Aϵj (∇ujℓ)−Ak−1
ϵj (∇ujℓ)∥

k→∞−→ 0 by (3.7).

We are now prepared to prove the following.

Lemma 6.8 (Convergence of the regularization error flux). For a fixed mesh index ℓ ≥ 0, the regular-
ization error flux rj,kℓ given in (6.12a) satisfies

lim
j,k→∞

∥rj,kℓ ∥ = 0. (6.16)

Proof. From the definition of the regularization component flux,

lim
j,k→∞

∥rj,kℓ ∥ (6.12a)
= lim

j,k→∞
∥Aϵj (∇uj,kℓ )−A(∇uj,kℓ )∥

≤ lim
j,k→∞

(
∥Aϵj (∇uj,kℓ )−Aϵj (∇uℓ)∥+ ∥Aϵj (∇uℓ)−A(∇uℓ)∥+ ∥A(∇uℓ)−A(∇uj,kℓ )∥

)
(2.15b),(2.7)

≤ lim
j,k→∞

(
∥Aϵj (∇uℓ)−A(∇uℓ)∥+ (L+ L)∥∇(uℓ − uj,kℓ )∥

)
≤ lim
j,k→∞

(
∥Aϵj (∇uℓ)−A(∇uℓ)∥+ (L+ L)(∥∇(uℓ − ujℓ)∥+ ∥∇(ujℓ − uj,kℓ )∥)

)
(6.15),(6.14)

= lim
j→∞

∥Aϵj (∇uℓ)−A(∇uℓ)∥

(2.5),(2.14)
= lim

j→∞
∥ϕ′ϵj (|∇uℓ|)− ϕ′(|∇uℓ|)∥

(2.16)
= 0.

We now turn our attention to the convergence of the linearization error flux component.

Lemma 6.9 (Convergence of the linearization error flux). Let the regularization step j ≥ 0 and mesh
level ℓ ≥ 0 be fixed. The linearization error flux lj,kℓ given by (6.12b) satisfies

lim
k→∞

∥lj,kℓ ∥ = 0. (6.17)
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Proof. From the definition of the linearization error flux,

lim
k→∞

∥lj,kℓ ∥ (6.12b)
= lim

k→∞
∥Ak−1

ϵj (∇uj,kℓ )−Aϵj (∇uj,kℓ )∥

≤ lim
k→∞

(
∥Ak−1

ϵj (∇uj,kℓ )−Ak−1
ϵj (∇ujℓ)∥+ ∥Ak−1

ϵj (∇ujℓ)−Aϵj (∇ujℓ)∥

+ ∥Aϵj (∇ujℓ)−Aϵj (∇uj,kℓ )∥
)

(3.7)
= lim

k→∞

(
∥Ak−1

ϵj (∇uj,kℓ )−Ak−1
ϵj (∇ujℓ)∥+ ∥Aϵj (∇ujℓ)−Aϵj (∇uj,kℓ )∥

)
(2.15b)
≤ lim

k→∞

(
∥Ak−1

ϵj (∇uj,kℓ )−Ak−1
ϵj (∇ujℓ)∥+ L∥∇(ujℓ − uj,kℓ )∥

)
(3.6)
= lim

k→∞

(
∥Ak−1

ϵj ∇(uj,kℓ − ujℓ)∥+ L∥∇(ujℓ − uj,kℓ )∥
)

(3.8a)
≤ lim

k→∞
(λ+ L)∥∇(ujℓ − uj,kℓ )∥ (6.15)

= 0.

Combining these results with the stability of the equilibrated flux in Lemma 6.4 results in the following.

Lemma 6.10 (Boundedness of the total equilibrated flux). The equilibrated flux tj,kℓ of (6.3c) is bounded
in the indices j and k, i.e.,

lim
j,k→∞

∥tj,kℓ ∥ = Cf,ℓ <∞. (6.18)

Proof. We first observe that

∥tj,kℓ ∥2 ≤ (d+ 1)
∑
a∈Vℓ

∥tj,ka ∥2ωa
. (6.19)

Now, for a fixed a, j, k, letting Cf,a := hωa∥ψaf∥ωa ,

∥tj,ka ∥ωa

(6.6)
≲ ∥Ak−1

ϵj (∇uj,kℓ )∥ωa + Cf,a

≤ ∥A(∇uℓ)∥ωa + ∥Aϵj (∇ujℓ)−A(∇uℓ)∥ωa + ∥Ak−1
ϵj (∇uj,kℓ )−Aϵj (∇ujℓ)∥ωa + Cf,a

≤ ∥A(∇uℓ)∥ωa + ∥Aϵj (∇ujℓ)−A(∇uℓ)∥ωa︸ ︷︷ ︸
T1

+ ∥Ak−1
ϵj (∇ujℓ)−Aϵj (∇ujℓ)∥ωa︸ ︷︷ ︸

T2

+ ∥Ak−1
ϵj (∇uj,kℓ )−Ak−1

ϵj (∇ujℓ)∥ωa︸ ︷︷ ︸
T3

+Cf,a

First, we have

lim
j→∞

T1 ≤ lim
j→∞

(
∥Aϵj (∇ujℓ)−Aϵj (∇uℓ)∥ωa + ∥Aϵj (∇uℓ)−A(∇uℓ)∥ωa

)
(2.15b)
≤ lim

j→∞

(
L∥∇(ujℓ − uℓ)∥ωa + ∥Aϵj (∇uℓ)−A(∇uℓ)∥ωa

)
(2.5)
= lim

j→∞

(
L∥∇(ujℓ − uℓ)∥ωa + ∥ϕ′ϵj (|∇uℓ|)− ϕ′(|∇uℓ|)∥ωa

)
(2.16),(6.14)

= 0.

Next,

lim
j,k→∞

T2
(3.7)
= 0.

Finally, we have

lim
j,k→∞

T3
(3.6)
= lim

j,k→∞
∥Ak−1

ϵj (∇uj,kℓ − ujℓ)∥ωa

(3.8a)
≤ lim

j,k→∞
λ∥∇(uj,kℓ − ujℓ)∥ωa

(6.15)
= 0.
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Combining these results with (6.19), we conclude

lim
j,k→∞

∥tj,kℓ ∥2 ≤ (d+ 1)
∑
a∈Vℓ

(∥A(∇uℓ)∥ωa + Cf,a)
2
=: (Cf,ℓ)

2.

Lemma 6.11 (Convergence of the discretization flux). For a fixed mesh index ℓ ≥ 0, the discretization
flux dj,kℓ given in (6.12c) satisfies

lim
j,k→∞

∥dj,kℓ − tj,kℓ ∥ = 0. (6.20)

Consequently, we have that the discretization flux satisfies

lim
j,k→∞

∥dj,kℓ ∥ = Cf,ℓ <∞, (6.21)

where Cf,ℓ is given in (6.18).

Proof. Equation (6.20) is a direct consequence of Lemmas 6.8 and 6.9 taken with the definition (6.12c).
For (6.21),

lim
j,k→∞

∥dj,kℓ ∥ ≤ lim
j,k→∞

(
∥dj,kℓ − tj,kℓ ∥+ ∥tj,kℓ ∥

) (6.20),(6.18)
≤ Cf,ℓ. (6.22)

We use this fact to justify calling dj,kℓ the discretization flux. Indeed, the total flux tj,kℓ is captured by
the discretization component dj,kℓ upon convergence of both the regularization and linearization indices
j and k respectively.

We now present the results separately for the three ways of measuring the error introduced in §4.

7 A posteriori error estimates distinguishing the error compo-
nents

In this section we present error estimates that provide an upper bound and decompose the total error in
a given numerical solution. The components estimate the error due to regularization, discretization, and
linearization.

7.1 Energy difference
The results of §5 lead us directly to the following upper bound on the error in the difference of energies.

Proposition 7.1 (Upper bound on the energy difference). Let u ∈ H1
0 (Ω) be the solution to (2.4), and let

J and J ∗ be given by (2.1) and (5.11), respectively. For a mesh index ℓ ≥ 0, a regularization step j ≥ 0,
and linearization step k ≥ 1, let uj,kℓ ∈ V pℓ be the solution to (3.5) and tj,kℓ be given by Definition 6.2.
Then there holds

0 ≤ J (uj,kℓ )− J (u)︸ ︷︷ ︸
total error (eℓ,j,ktot )2

≤ J (uj,kℓ )− J ∗(tj,kℓ )︸ ︷︷ ︸
total est. (ηℓ,j,ktot )2

.
(7.1)

Proof. We apply Corollary 5.6 with v = uj,kℓ and ς = tj,kℓ .

Remark 7.2 (Equivalent definition of the total estimator). The definition of the total estimator (7.1)
has an equivalent form that is more amenable to local adaptive mesh refinement. This has been already
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discussed in, e.g., [6, Proposition 4.9]. Indeed, we have that

(ηℓ,j,ktot )2
(7.1)
= J (uj,kℓ )− J ∗(tj,kℓ )

(2.1),(5.11)
=

∫
Ω

ϕ(|∇uj,kℓ |) + ϕ∗(|tj,kℓ |)− fuj,kℓ dx

(6.5)
=

∫
Ω

ϕ(|∇uj,kℓ |) + ϕ∗(|tj,kℓ |)− (∇·tj,kℓ )uj,kℓ dx

I.B.P.
=

∫
Ω

ϕ(|∇uj,kℓ |) + ϕ∗(|tj,kℓ |) +∇uj,kℓ · tj,kℓ dx

=
∑
K∈Tℓ

∫
K

ϕ(|∇uj,kℓ |) + ϕ∗(|tj,kℓ |) +∇uj,kℓ · tj,kℓ︸ ︷︷ ︸
ηℓ,j,ktot,K≥0 by (5.7)

dx.

(7.2)

The advantage of this definition is that the last integrand is non-negative by the generalized Young’s
inequality for convex functions (5.7).

We now present a decomposition of total estimator, employing Definition 6.2 and (7.2).

Theorem 7.3 (Decomposition of the energy difference upper bound). Let the assumptions of Proposi-
tion 7.1 hold. Let in addition dj,kℓ , rj,kℓ , and lj,kℓ be given by Definition 6.5. Then the total estimator in
(7.1) can be further bounded from above as

(ηℓ,j,ktot )2 ≤
∣∣∣∣∫

Ω

ϕ(|∇uj,kℓ |) + ϕ∗(|dj,kℓ |) +∇uj,kℓ · tj,kℓ dx

∣∣∣∣︸ ︷︷ ︸
discretization est. (ηℓ,j,kdis )2

+

∣∣∣∣∫
Ω

ϕ∗(|dj,kℓ + rj,kℓ |)− ϕ∗(|dj,kℓ |) dx
∣∣∣∣︸ ︷︷ ︸

regularization est. (ηℓ,j,kreg )2

+

∣∣∣∣∫
Ω

ϕ∗(|tj,kℓ |)− ϕ∗(|dj,kℓ + rj,kℓ |) dx
∣∣∣∣︸ ︷︷ ︸

linearization est. (ηℓ,j,klin )2

.

(7.3)

Proof. The proof follows by adding and subtracting ϕ∗(|dj,kℓ + rj,kℓ |) and ϕ∗(|dj,kℓ |) to the integrand of
(7.2) and using the triangle inequality.

We now show our definition of the regularization component behaves in the way that we would expect.

Lemma 7.4 (Convergence of the regularization error estimator). Then the regularization component
estimator ηℓ,j,kreg of (7.3) tends to 0 as j, k → ∞.

Proof. From the definition of the regularization component estimator,

lim
j,k→∞

(ηℓ,j,kreg )2
(7.3)
= lim

j,k→∞

∣∣∣∣∫
Ω

ϕ∗(|dj,kℓ |)− ϕ∗(|dj,kℓ + rj,kℓ |) dx
∣∣∣∣

= lim
j,k→∞

∣∣∣∣∣
∫
Ω

∫ |dj,k
ℓ |

|dj,k
ℓ +rj,k

ℓ |
(ϕ∗)′(s) dsdx

∣∣∣∣∣
(5.6d),(5.9)

≤ α−1 lim
j,k→∞

∣∣∣∣∣
∫
Ω

∫ |dj,k
ℓ |

|dj,k
ℓ +rj,k

ℓ |
sdsdx

∣∣∣∣∣
= (2α)−1 lim

j,k→∞

∣∣∣∣∫
Ω

|dj,kℓ |2 − |dj,kℓ + rj,kℓ |2 dx
∣∣∣∣

= (2α)−1 lim
j,k→∞

∣∣∣∥dj,kℓ ∥2 − ∥dj,kℓ + rj,kℓ ∥2
∣∣∣ (6.16)

= 0

where we have also used that dj,kℓ is uniformly bounded in j, k by Lemma 6.11 to interchange the limit
and the integral in the last equality.
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The same argument holds for the linearization error component estimator.

Lemma 7.5 (Convergence of the linearization error estimator). Then the linearization component esti-
mator ηℓ,j,klin of (7.3) tends to 0 as k → ∞.

Finally, we have the following result pertaining to the discretization error component estimator.

Lemma 7.6 (Convergence of the discretization error estimator). The discretization component estimator
satisfies

lim
j,k→∞

(ηℓ,j,kdis )2 = lim
j,k→∞

(ηℓ,j,ktot )2. (7.4)

Proof. In addition to (7.3), there holds

(ηℓ,j,kdis )2 ≤ (ηℓ,j,ktot )2 + (ηℓ,j,kreg )2 + (ηℓ,j,klin )2.

Thus, Lemma 7.4 and Lemma 7.5 finish the proof.

7.2 Dual norm of the residual
Considering the dual norm of the residual as an error estimator leads to a different set of estimators.
These have been studied previously in a variety of contexts [20, 15, 17]. First, we consider the total
estimator, which provides an upper bound on the quantity (4.6).

Lemma 7.7 (Upper bound on the dual norm of the residual). Let the Assumption 6.1 hold. Let R be
defined by (4.4) and let uj,kℓ ∈ V pℓ be the solution of (3.5). Then there holds

0 ≤ 1
2 |||R(uj,kℓ )|||2−1︸ ︷︷ ︸

total error (ẽℓ,j,ktot )2

≤ 1
2 α

−1∥A(∇uj,kℓ ) + tj,kℓ ∥2︸ ︷︷ ︸
total est. (η̃ℓ,j,ktot )2

. (7.5)

Proof. Let us first fix a function φ ∈ H1
0 (Ω) with |||φ||| = ∥α1/2∇φ∥ = 1. Then,

⟨R(uj,kℓ ),∇φ⟩ (4.4)
= (f, φ)− (A(∇uj,kℓ ),∇φ) (6.5)

= −(A(∇uj,kℓ ) + tj,kℓ ,∇φ)

= −α−1/2(A(∇uj,kℓ ) + tj,kℓ , α1/2∇φ) ≤ α−1/2∥A(∇uj,kℓ ) + tj,kℓ ∥∥α1/2∇φ∥

= η̃ℓ,j,ktot .

(7.6)

Since φ was arbitrary, (7.5) follows the definition (4.5).

Corollary 7.8 (Decomposition of the upper bound). Let assumptions of Lemma 7.7 hold. Then

η̃ℓ,j,ktot ≤α−1/2∥Ak−1
ϵj (∇uj,kℓ ) + tj,kℓ ∥︸ ︷︷ ︸

discretization est. η̃ℓ,j,kdis

+α−1/2∥A(∇uj,kℓ )−Aϵj (∇uj,kℓ )∥︸ ︷︷ ︸
regularization est. η̃ℓ,j,kreg

+ α−1/2∥Aϵj (∇uj,kℓ )−Ak−1
ϵj (∇uj,kℓ )∥︸ ︷︷ ︸

linearization est. η̃ℓ,j,klin

.
(7.7)

Proof. From the definition (7.5) of η̃ℓ,j,ktot ,

η̃ℓ,j,ktot = α−1/2∥tj,kℓ +A(∇uj,kℓ )∥

= α−1/2∥tj,kℓ +
(
Ak−1
ϵj (∇uj,kℓ )−Ak−1

ϵj (∇uj,kℓ ) +Aϵj (∇uj,kℓ )−Aϵj (∇uj,kℓ )
)
+A(∇uj,kℓ )∥

≤ η̃ℓ,j,kdis + η̃ℓ,j,kreg + η̃ℓ,j,klin .

Remark 7.9 (Decomposition of the residual). We can also split the residual R(v) introduced in (4.4) as

R(v) = Rℓ,j,k
dis (v) +Rℓ,j,k

reg (v) +Rℓ,j,k
lin (v), (7.8)

where

⟨Rℓ,j,k
dis (v), w⟩ := (f, w)− (Ak−1

ϵj ∇v,∇w), (7.9a)

⟨Rℓ,j,k
reg (v), w⟩ := (Aϵj (∇v)−A(∇v),∇w), (7.9b)

⟨Rℓ,j,k
lin (v), w⟩ := (Ak−1

ϵj (∇v)−Aϵj (∇v),∇w). (7.9c)

Then there holds

|||R(uj,kℓ )|||−1 ≤ |||Rℓ,j,k
dis (uj,kℓ )|||−1 + |||Rℓ,j,k

reg (uj,kℓ )|||−1 + |||Rℓ,j,k
lin (uj,kℓ )|||−1. (7.10)
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7.3 Energy norm
In light of the relation between the dual norm of the residual and the energy norm presented in Propo-
sition 4.1, we observe that the results of the previous section imply,

Lemma 7.10 (Upper bound on the energy error). Let the assumptions of Lemma 7.7 hold. Then,

|||uj,kℓ − u||| ≤ |||R(uj,kℓ )|||−1 ≤ η̃ℓ,j,ktot ≤ η̃ℓ,j,kdis + η̃ℓ,j,kreg + η̃ℓ,j,klin . (7.11)

8 Efficiency of the estimators
Up to this point, we have only considered the property that the estimators we construct are global upper
bounds of the errors that we have defined and identified the error components. However, it has already
been demonstrated that these estimators provide lower bounds to the error as well, even local lower
bounds.

8.1 Dual norm of the residual
The setting of [20, 8] covers the present one. In particular, the flux of Definition 6.2, which in turn
defines η̃ℓ,j,ktot as in (7.5), provides a local lower bound under certain conditions on stopping criteria
of the form (9.1a) and (9.1b) below. Roughly speaking, the efficiency is achieved when discretization
component estimator is larger than the other components. This efficiency is robust with respect to the
Lipschitz/montonicity parameters L/α, i.e.,

η̃ℓ,j̄,k̄tot ≲ |||R(uj̄,k̄ℓ )|||−1 + quadrature terms,

where the hidden constant has no dependence on L and α.

8.2 Energy norm
In the case of the energy norm, we can also obtain a (local) lower bound for the estimator η̃ℓ,j,ktot of (7.11)
by using the lower bound of (4.10):

|||R(uj̄,k̄ℓ )|||−1 ≤ L

α
|||uj̄,k̄ℓ ||| − u. (8.1)

Unfortunately, this makes appear the “strength of the nonlinearity” factor L/α. We will show numerically
in §10.1.1, that this bound actually appears to be sharp. Thus, if L/α is large, the a posteriori estimate
is pessimistic for the error measured in the energy norm.

8.3 Energy difference
In [23, Theorems 3.4 and 4.1], we study the efficiency of ηℓ,j,ktot as well as of a related estimator that
incorporates the error in the difference of energies for the linear minimization problem corresponding to
the linearization step (3.5). In particular, results of the form

J (uj,kℓ )− J (u) ≤ (ηℓ,j,ktot )2 ≲ (Ckℓ )
2(J (uj,kℓ )− J (u)) + oscillation and quadrature terms (8.2)

are obtained, where the constant Ckℓ only depends locally on the ratio of the biggest and smallest eigen-
values of Ak−1

ϵj and the hidden constant has no dependence on α and L at all.

9 Adaptive algorithm
In this section we will use the estimators based on the energy difference as in §7.1 to devise an adaptive
algorithm. In particular, the algorithm will construct a sequence of solutions uj,kℓ over mesh levels ℓ,
regularization iterations j, and Newton iterations k. The main ideas will be to 1) spend the maximum
amount of computing time on coarser meshes where computations are cheap and 2) decrease the regu-
larization parameter adaptively so as to make Newton converge but avoid polluting the solution to the
approximate problem. The algorithm accepts user-defined parameters γlin > 0 and γreg > 0 that express
the requested relative sizes of the corresponding error components. Additionally, the algorithm takes as
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parameters Cϵ ∈ (0, 1) and ϵ0 > 0 that determine the sequence of regularization parameters according to
(2.17) and a user-specified tolerance tol, the requested maximal overall error. We consider three stopping
criteria with bars denoting the stopping indices as

ηℓ,j,k̄lin < γlinη
ℓ,j,k̄
reg , (9.1a)

ηℓ,j̄,k̄reg < γregη
ℓ,j̄,k̄
dis , (9.1b)

ηℓ̄,j̄,k̄tot < tol. (9.1c)

The first criterion (9.1a) indicates that the Newton solver should not continue on a given regularized
problem if it has sufficiently converged. The problem should be changed (increasing the difficulty) by
lowering the regularization parameter. The second criterion (9.1b) says that once the regularization
parameter is sufficiently small on a given mesh, we can then pass to a finer mesh through the refinement
procedure REFINE (newest vertex bisection or uniform refinement). Finally, the last criterion (9.1c)
checks whether the estimator for the total error is below the user-specified threshold. Details are given
in Algorithm 1.

Algorithm 1: Adaptive regularized Newton algorithm

Initialization: Choose an initial guess u0,00 ∈ V p0 and initialize ℓ = j := 0

Parameters : γreg, γlin, tol, ϵ0, Cϵ
1 Loop for discretization
2 Loop for regularization
3 Initialize k := 0

4 Loop for linearization
5 Increment k := k + 1

6 From uj,k−1
ℓ compute the linearized operator Ak−1

ϵj by (3.10)
7 Solve for uj,kℓ in (3.5)
8 Compute tj,kℓ following Definition 6.2 and ηℓ,j,ktot following (7.1)
9 Compute estimators ηℓ,j,kdis , ηℓ,j,kreg , ηℓ,j,klin following (7.3)

10 until ηℓ,j,klin < γlinη
ℓ,j,k
reg

11 Update k̄ := k

12 if ηℓ,j,k̄reg ≥ γregη
ℓ,j,k̄
dis then

13 Increment j := j + 1

14 Update ϵj := Cϵϵ
j−1

15 end

16 until ηℓ,j,k̄reg < γregη
ℓ,j,k̄
dis

17 Update j̄ := j

18 Increment ℓ := ℓ+ 1

19 V pℓ := REFINE(V pℓ−1, η
ℓ, ¯j,k̄
tot,K)

20 uℓj,0 := uj̄,k̄ℓ−1

21 until ηℓ,j̄,k̄tot < tol

22 Update ℓ̄ := ℓ

23 return uj̄,k̄
ℓ̄

10 Numerical experiments
We now present numerical experiments to substantiate the theory developed in the preceding sections.
In particular, we compare and contrast the three error measures discussed in §4 for a polynomial man-
ufactured solution defined on the unit square. Next, we explore several solver strategies for this same
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Figure 3: [Polynomial solution (10.3), kink nonlinearity (2.19) with s0 = 1 and m =64, polynomial degree
p = 1, #DOFs varying, no regularization ϵ = 0] Robustness with respect to the number of DOFs for the
three error measures.

polynomial solution, including the adaptive Algorithm 1. In this case we will use uniform mesh refine-
ment. Finally, we consider an unknown solution on an L-shaped domain and test the adaptive Algorithm 1
comparing both adaptive and uniform mesh refinement, in addition to adaptivity in regularization and
linearization.

We will consider the effectivity index defined as the ratio of the estimator to the error, and in particular
we have, using the notation of Proposition 7.1, Lemma 7.7, and Lemma 7.10,

Iℓ,j,ktot :=
ηℓ,j,ktot

eℓ,j,ktot

, Ĩℓ,j,ktot :=
η̃ℓ,j,ktot

ẽℓ,j,ktot

, Îℓ,j,ktot :=
η̃ℓ,j,ktot

|||uj,kℓ − u|||
. (10.1)

We also consider a relative version of the various quantities (both errors and estimators) by dividing by
the energy of the approximate solution, e.g.,

(ηℓ,j,klin,rel)
2 :=

(ηℓ,j,klin )2

J (uj,kℓ )
. (10.2)

We will start with piecewise linear continuous finite elements i.e., we first set the polynomial order p = 1
in (3.3), but later we test adaptivity for 2 ≤ p ≤ 5. All numerical experiments are conducted with the
help of the Gridap.jl library [2, 39] in the Julia programming language.

10.1 Polynomial solution on a square
In this case, we consider a square domain Ω = (0, 1)2 ⊂ R2 and we take a manufactured solution,

u(x) = 10x(x− 1)y(y − 1) (10.3)

to generate the source term f . We neglect that f /∈ P0(Tℓ). We will take ϕ in the energy (2.1) as in
the definition of the kink function as (2.19). Thus, according to (2.21), we have that the monotonicity
constant α = 1 and the Lipschitz continuity constant L = m.

10.1.1 Comparison of the three error measures of §4

In this section, we will numerically investigate the relationships between the error measures discussed in
section §4. The results are given in Figures 3 and 4. For this example we set the regularization parameter
to zero, i.e., ϵ0 := 0. We first consider the scaling of the effectivity indices (10.1) with respect to the
number of DOFs. We remark that all three error measures appear to be stable under uniform mesh
refinement. This is consistent with the theory since the constants in the reliability and efficiency bounds
are independent of the mesh size/number of DOFs. We do, however, note that the effectivity for the
energy difference is much larger for each value of the mesh than for the other two error measures.
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Figure 4: [Polynomial solution (10.3), kink nonlinearity with s0 = 1 and m varying, polynomial degree
p = 1, #DOFs=3969, no regularization ϵ = 0] The effectivity associated with the energy norm scales
linearly in m whereas the other effectivities remain constant.

Now we consider the scaling with respect to the “size of the nonlinearity” i.e., m = L/α in Figure 4.
We begin with the dual norm of the residual. We observe that the estimator (7.5) is not only a constant-
free upper bound on the dual norm of the residual, but it is also a (local) lower bound [20, 8] robust with
respect to m.

Next we observe that the energy norm effectivity scales like m. This is consistent with the theoretical
bounds, (4.10) and (8.1) and confirms non-robustness.

Finally, we consider the effectivity based on the difference of energies. This estimator too appears to
be robust with respect to the scaling for this range of parameters. This behavior has been studied in [23].
In particular, a robustness result was demonstrated for a modified estimator, see (8.2).

10.1.2 Need for regularization for large ratios L/α

For the rest of this section, we will only consider the error and estimator based on the difference of energies
of Proposition 7.1. We now study a much larger value of the “size of the nonlinearity” m = L/α and
test the standard Newton algorithm, i.e., performing Algorithm 1 without regularization (with ϵ0 = 0).
In particular, we set m = 10000 and we consider the same manufactured solution (10.3) on a fixed
uniform mesh with 261121 DOFs. In Figure 5, we plot both the relative total error and estimator
along with the corresponding effectivity index in function of the Newton iterations. In the lower figure,
the components as in (7.3) are shown. Based on the behavior of the linearization estimator ηℓ,j,klin , we
conclude that the Newton solver fails to meet the specified convergence criteria after 50 iterations and we
artificially terminate the algorithm. This manifests possible non-convergence of the Newton linearization
for nonsmooth nonlinearities.

In Figure 6 we consider the same problem but now we fix a relatively large value for the initial
regularization of ϵ0 := 0.125. We set the parameters γreg := 1.0e16, γlin := 1.0e-5 to ensure the algo-
rithm will converge fully in linearization but will not perform any adaptivity in either regularization or
discretization.

We first remark that the effectivity index of our a posteriori error estimator oscillates much less,
compared to Figure 5, signifying a more stable approximation of the error. It appears further to converge
after several iterations to a value near 1.6. We next remark that the Newton linearization exhibits the
optimal quadratic convergence according to the values of the linearization estimator ηℓ,j,klin . However,
the other two estimator components ηℓ,j,kreg and ηℓ,j,kdis stagnate at similar values: 1.06e-1 and 1.07e-1
respectively. We remark that the reason that these are larger than the total estimator ηℓ,j,ktot = 2.05e-2
is due to the insertion of absolute values in the definition (7.3). In any case, the Newton linearization
now converges, but the regularization component is much too large to be satisfactory. This motivates the
adaptive Algorithm 1 where the regularization estimator is decreased adaptively along the iterations.
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Figure 5: [Polynomial solution (10.3), kink nonlinearity (2.19) with s0 = 1 and m = 10000, polynomial
degree p = 1, #DOFs = 261121, no regularization ϵ0 = 0, refinement index ℓ, regularization index j,
linearization index k, ] The classical Newton method fails to converge for the unregularized problem
corresponding to ϵ = 0.

10.1.3 Adaptive regularization and linearization

We now engage the adaptive regularization and linearization of Algorithm 1 by setting the parameters
γreg = 0.6, γlin = 0.4 and Cϵ = 0.5. We again set m = 10000, ϵ0 = 0.125, and we now start from a uniform
coarse mesh with 3969 DOFs for ℓ = 0 (64 × 64 × 2 triangles). The results of the adaptive algorithm
are presented in Figure 7. We first remark that the effectivity index (10.1) stays bounded below 2, and
as the Newton solver converges for a fixed (j, ℓ), the effectivity approaches a value near 1.4. Next, we
observe that in accordance with the criteria (9.1b), the regularization component estimator is always
γreg-times below the discretization component estimator. Thus, we can guarantee that in this sense the
regularization does not pollute the overall error, in constrast to the previous section. Indeed, this is
substantiated in Figure 8, where the optimal rate of convergence of both the error and the estimator with
respect to DOFs is observed, for the stopping indices k̄ and j̄ satisfying respectively (9.1a) and (9.1b).
Finally, we see that the majority of the iterations are spent on the meshes ℓ = 0, 1, 2. This is another
advantage of the adaptive algorithm, where the coarser meshes serve as a way to create a good initial
guess for the next mesh. For a smooth problem it is not strictly necessary to begin on a coarse mesh,
since the refinement procedure is known a priori, but as we will see in the following section, sometimes
starting on a coarse mesh in not just useful but also necessary to achieve the optimal rate of convergence
in DOFs. Finally, we remark that the final total error is 2.51e-3 as opposed to 1.03e-2 in the previous case,
where no adaptivity was used. This confirms that fixing once and for all the regularization parameter
can deteriorate the quality of the final solution, which does not happen for Algorithm 1.
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Figure 6: [Polynomial solution (10.3), kink nonlinearity (2.19) with s0 = 1 and m = 10000, #DOFs =
261121, ϵ0 = 0.125, γreg = 1.0e16, γlin = 1.0e-5, Cϵ = 1, polynomial degree p = 1, mesh refinement index
ℓ, regularization index j, linearization index k] The classical Newton method converges for the regularized
problem with ϵ = 0.125 but the level of regularization possibly pollutes the error due the discretization.

10.2 Unknown solution on an L-shaped domain
We now consider an L-shaped domain Ω = (−1, 1)2 \ ([0, 1] × [−1, 0]) where we impose the boundary
condition and right-hand side as

u = uD(r, θ) := rα sin(αθ) on ∂Ω and f = 0 in Ω. (10.4)

where α = 2
3 . We will consider the parameters γreg = 0.4, γlin = 0.4 and Cϵ = 0.5. The main difference

compared to the polynomial solution of §10.1 is that we anticipate that uniform mesh refinement will
not achieve the a priori optimal convergence rate due to the re-entrant corner and the nonlinearity that
will activate around the curve |∇u| = s0. We will first consider uniform refinement of the mesh as in the
previous problem, and then adaptive refinement using the estimator ηℓ,j,ktot,K in (7.2) will be employed on
line 19 of Algorithm 1. Note that here, since we do not know the true solution, we do not plot the error
and the effectivity index.

In Figure 9, we consider the uniform mesh refinement strategy. We see the estimator along with the
component estimators. The adaptive algorithm works as before for the smooth case, with the regulariza-
tion estimator always below the discretization estimator, and for fixed (j, ℓ) the Newton solver converges
very quickly. However, if we now consider convergence with respect to DOFs in Figure 11, we see that we
obtain the suboptimal convergence rate of DOFs−1/3. This is evidence that the true solution is not H2

regular, and therefore the optimal rate of DOFs−1/2 will not be achieved for uniform mesh refinement.
Next, we consider in Figure 10 applying Algorithm1 but now with adaptive mesh refinement using Dörfler
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Figure 7: [Polynomial solution (10.3), kink nonlinearity (2.19) with s0 = 1 and m = 10000, final #DOFs
= 261121, ϵ0 = 0.125, γreg = 0.6, γlin = 0.4, Cϵ = 0.5, polynomial degree p = 1, mesh refinement index ℓ,
regularization index j, linearization index k] The adaptive Algorithm 1 applied to a polynomial solution.
The final value of the regularization parameter is ϵ6 = 1.95e-3.
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Figure 8: [Polynomial solution (10.3), kink nonlinearity (2.19) with s0 = 1 and m = 10000, polynomial
degree p = 1, ϵ0 = 0.125, γreg = 0.6, γlin = 0.4, Cϵ = 0.5, #DOFs varies] Achieving the optimal rate of
convergence for a polynomial solution with uniform mesh refinement.
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Figure 9: [Unknown singular solution with data (10.4), kink nonlinearity (2.19) with s0 = 0.75 and
m = 10000, final #DOFs = 97793, ϵ0 = 0.125, γreg = 0.4, γlin = 0.4, Cϵ = 0.5, polynomial degree p
= 1, mesh refinement index ℓ, regularization index j, linearization index k] Applying Algorithm 1 using
uniform refinement.

marking [16]. The elementwise indicators are given by ηℓ,j,ktot,K from (7.2) and we use the newest vertex
bisection algorithm to enforce mesh conformity, i.e., to ensure no hanging nodes are generated. We see
first of all that many more iterations are needed to obtain a similar number of final DOFs. However,
the total estimator at the end of the iterations is much lower compared to that of the uniform case.
This is even more explicit when we plot the number of DOFs versus the total estimator in Figure 11. In
particular, we see that upon running the same algorithm with adaptive mesh refinement, we recover the
optimal rate of DOFs−1/2 for the estimator with respect to DOFs.

One advantage of adaptive mesh refinement is that it allows in general to recover the optimal rate of
convergence for arbitrary polynomial degree with respect to DOFs, i.e., DOFs−p/d, even when the solution
does not have sufficient regularity for the a priori theory, see e.g. [12]. We now test the convergence rate
and the behavior of the adaptive algorithm for higher polynomial degrees. We first show the convergence
plots for 2 ≤ p ≤ 5 in Figure 12. We observe that for p = 2, 3 the optimal rate of convergence DOFs−p/d is
again achieved for the adaptive mesh refinement. However, for p ≥ 4, the convergence rate is suboptimal,
it appears to be similar to that of p = 3, i.e., DOFs−3/2. We can potentially explain this deterioration
by the appearance of one-dimensional curve singularities, see e.g., [11]. Indeed, in Figure 13, we notice
there is non-trivial refinement along the curves where the norm of the gradient equals s0. Since the right
hand side f = 0 and we have chosen a nonsmooth nonlinearity, heuristically the solution must also be
nonsmooth along |∇u| = s0 to compensate.

Finally, we consider comparing the estimator against a notion of cost across all iterations following
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Figure 10: [Unknown singular solution with data (10.4), kink nonlinearity (2.19) with s0 = 0.75 and
m = 10000, final #DOFs = 86973, ϵ0 = 0.125, γreg = 0.4, γlin = 0.4, Cϵ = 0.5, polynomial degree p
= 1, mesh refinement index ℓ, regularization index j, linearization index k] Applying Algorithm 1 using
adaptive refinement.

[21, 22] We define this cost at each step of the algorithm as

Cost =

ℓ̄∑
ℓ=0

j̄(ℓ)∑
j=0

k̄(ℓ,j)∑
k=1

(DOFs)ℓ. (10.5)

We observe in Figure 14 that the rates in this metric are very similar to those observed for the convergence
with respect to DOFs of Figure 11; in particular, we shall obtain the optimal -1/2 rate in cost for adaptive
mesh refinement.

11 Conclusion
In this paper, we have considered an adaptive algorithm to iteratively solve energy minimization problems
with nonsmooth nonlinearities. Our adaptive algorithm is guided by the so-called primal-dual gap error
estimator which provides an upper bound for the difference of energies. We construct the necessary dual
object required by the estimator by solving mutually independent, patch-local, minimization problems.
We introduce a regularization to allow the use of a standard Newton’s method as a nonlinear solver for
the nonsmooth system of equations associated to the minimization problem. The algorithm adaptively
controls the regularization parameter to reduce the model error incurred by regularizing the problem.
We perform a decomposition of the total estimator into component estimators related to regularization,
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Figure 11: [Unknown singular solution with data (10.4), kink nonlinearity (2.19) with s0 = 0.75 and
m = 10000, polynomial degree p = 1, ϵ0 = 0.125, γreg = 0.4, γlin = 0.4, Cϵ = 0.5, #DOFs varies]
Comparison of the suboptimal convergence for uniform refinement and optimal convergence for adaptive
mesh refinement based on the estimator ηℓ,j,ktot for the lowest order.
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Figure 12: [Unknown singular solution with data (10.4), kink nonlinearity (2.19) with s0 = 0.75 and
m = 1000, different polynomial degrees p, #DOFs varying, ϵ0 = 0.125, γreg = 0.4, γlin = 0.4, Cϵ = 0.5]
Different polynomial degrees p using adaptive mesh refinement based on ηℓ,j,ktot . The optimal rate of
DOFs−p/d is obtained for adaptive refinement up to p = 3, then only suboptimal convergence of DOFs−3/d

is achieved. We explain this by the appearance of one-dimensional (curve) singularities. In the case
of uniform mesh refinement, increasing the polynomial degree does not change the suboptimal rate of
DOFs−1/3.
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Figure 13: [Unknown singular solution with data (10.4), kink nonlinearity (2.19) with s0 = 0.75 and
m = 1000, polynomial degree p = 4, #DOFs=93681, ϵ0 = 0.125, γreg = 0.4, γlin = 0.4, Cϵ = 0.5, ]
Coloring corresponding to the norm of the gradient of the approximate solution at the final iteration, i.e.,
|∇uj̄,k̄

ℓ̄
|. We note the aggressive refinement at the re-entrant corner, and the weaker, but still substantial,

refinement along the curves corresponding to s0 = |∇uj̄,k̄
ℓ̄

|, i.e., at the kink.
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Figure 14: [Unknown singular solution with data (10.4), kink nonlinearity (2.19) with s0 = 0.75 and
m = 10000, polynomial degree p = 1, ϵ0 = 0.125, γreg = 0.4, γlin = 0.4, Cϵ = 0.5, #DOFs varies]
Convergence in costs given by the triple sum (10.5). We observe the same rates in function of the cost
as we do for the DOFs which is expected theoretically.
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discretization, and linearization. In particular, we prove that these component estimators converge to
zero in the limit as the number of associated iterations tends to infinity. These component estimators are
used to construct stopping criteria for the various components of the algorithm.

We test our algorithm numerically on two examples. In the first example, we show that the regular-
ization restores the (quadratic) convergence of Newton’s method, which without regularization failed to
converge. Moreover, the adaptivity in the regularization does not influence the optimal rate of conver-
gence of the error in the energy difference with respect to DOFs. In the second example, we consider an
unknown solution on an L-shaped domain. We use adaptive mesh refinement to overcome the geometric
singularity generated by the re-entrant corner; there also appears a singularity along a curve arising from
the nonsmooth nonlinearity. With the help of adaptive mesh refinement, we again obtain the optimal
rate of convergence with respect to DOFs for low order cases. However, for higher orders, suboptimal
convergence rates are obtained. We attribute this to the appearance of the above-discussed singularity,
which is a well known difficulty for isotropic mesh refinement.

In terms of future work, one possible approach to address the singularity problem in the L-shaped
domain case would be to employ an anisotropic refinement strategy. In our work we, however, would be
missing a number of theoretical tools. It would also be instructive to prove convergence of the adaptive
algorithm, i.e., to show rigorously that by decreasing the regularization, we can obtain the optimal rate of
convergence with respect to DOFs and cost, which is what we observe numerically. It may also be possible
to extend certain aspects of this algorithm to other energy minimization settings posed in different spaces
like the p-Laplace problem or the obstacle problem.

Appendix A Proofs from §5
Proof of Proposition 5.1. We begin by proving (5.6a). To simplify notation, define ξ := ϕ′. We consider
the integral in (5.1), with the change of variables s = ϕ′(t) = ξ(t)∫ r

0

ξ−1(s) ds =

∫ ξ−1(r)

ξ−1(0)

ξ−1(ξ(t))ξ′(t) dt =
∫ ξ−1(r)

0

tξ′(t) dt

= tξ(t)

∣∣∣∣ξ−1(r)

0

−
∫ ξ−1(r)

0

ξ(t) dt = rξ−1(r)− ϕ(ξ−1(r)) + ϕ(0),

where we have used our assumptions that ϕ′(0) = 0 and hence also (ϕ′)−1(0) = 0 = ξ−1(0). The second
equality in (5.6a) follows from the basic fact that for a convex differentiable function, the max is obtained
by setting the derivative w.r.t. s in the curly braces equal to zero, and hence r = ϕ′(s).

To prove (5.6b), we consider the criterion for convexity. For r1, r2 ∈ Dom(ϕ∗) and α ∈ [0, 1],

ϕ∗(αr1 + (1− α)r2) = max
s

{s[αr1 + (1− α)r2]− ϕ(s)}

= max
s

{α[sr1 − ϕ(s)] + (1− α)[sr2 − ϕ(s)]}

≤ αmax
s

{sr1 − ϕ(s)}+ (1− α)max
s

{sr2 − ϕ(s)}

= αϕ∗(r1) + (1− α)ϕ∗(r2).

Finally, to prove (5.6c), let now ζ(r) := (ϕ′)−1(r), so that

d

dr
ϕ∗(r) =

d

dr

(
rζ(r)− ϕ(ζ(r))

)
= ζ(r) + rζ ′(r)− ϕ′(ζ(r))ζ ′(r) = ζ(r) = (ϕ′)−1(r),

because ϕ′(ζ(r)) = r by definition, whereas (5.6d) is obvious.

Proof of Corollary 5.2. The inequality (5.7), follows immediately from the max definition of the trans-
form, i.e., the second equality of (5.6a). The maximum in (5.6a) for r = ϕ′(s), as discussed above, which
leads to the equality.

Proof of Corollary 5.3. Since we know ϕ′ : R+ → R+, we have

A(q) · q =
ϕ′(|q|)
|q|

q · q = |A(q)|︸ ︷︷ ︸
r

|q|︸︷︷︸
s

. (A.1)
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Now take r in s as in the Young inequality (5.7), and note that r = ϕ′(s) so equality (5.8b) holds.
Unpacking the definitions, we find (5.8a) as

A(A∗(q))
(5.2)
=

ϕ′
(
|A∗(q)|

)
|A∗(q)|

A∗(q) = ϕ′
(
(ϕ∗)′(|q|)

) A∗(q)
(ϕ∗)′(|q|)

(5.6c)
=

|q|A∗(q)
(ϕ∗)′(|q|)

(5.2)
= q.

Proof of Lemma 5.4. Note that for any x, y ≥ 0,

0 ≤ α(x− y)2
(2.3b)
≤ (x− y)(ϕ′(x)− ϕ′(y))

=⇒ α|x− y|2 ≤ |x− y||ϕ′(x)− ϕ′(y)|
=⇒ α|x− y| ≤ |ϕ′(x)− ϕ′(y)|.

Thus, since we assume ϕ′ is bijective on R+, we may take x = (ϕ′)−1(r), y = (ϕ′)−1(s), yielding

α|(ϕ′)−1(r)− (ϕ′)−1(s)| ≤ |r − s|.

The relationship given by (5.6c) finishes the proof.
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