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.

Stokes-Darcy fracture model

Let us consider the matrix domains Ω 1 = (-L 1 , -δ ) × R, Ω 2 = (δ , L 2 ) × R and the fracture domain Ω f = (-δ , δ ) × R as illustrated in Figure 1. We consider the following Darcy (in the matrix) Stokes (in the fracture) coupled model:

-µ∆ u + ∇p = 0 on Ω f , divu = 0 on Ω f , div(u i ) = f i on Ω i , i = 1, 2, u i = -K i ∇p i on Ω i , i = 1, 2,
combined with the following coupling conditions on Γ 1 = {-δ } × R and Γ 2 = {δ } × R:

u i • n i = u • n i on Γ i , i = 1, 2, (1) 
p i = p -µ(∇u n i ) • n i on Γ i , i = 1, 2, (2) 
µ(∇u n i ) • τ τ τ = αu • τ τ τ on Γ i , i = 1, 2, (3) 
where n i is the unit normal vector on Γ i , oriented outward of Ω i , τ τ τ is the unit vector tangent to the interfaces oriented in the positive y direction, µ > 0 is the fluid kinematic

x y 0 L 2 n 1 n 2 -L 1 Ω 1 Γ 1 δ Γ 2 Γ Ω 2 -δ Ω f Fig. 1. Model problem geometry, with Ω 1 = (-L 1 , -δ ) × Γ , Ω 2 = (δ , L 2 ) × Γ , Γ 1 = {-δ } × Γ , Γ 2 = {δ } ×Γ , and Ω f = (-δ , δ ) ×Γ .
The unit normals on Γ j pointing outside of Ω j are denoted by n j , j = 1, 2. Note that the Fourier analysis below will be carried out on unbounded domains by setting Γ = R. viscosity, α is the Beaver-Joseph-Saffman parameter assumed to be constant for simplicity, and K i is the permeability tensor in subdomain Ω i . We also set n

= n 1 = -n 2 in what follows.
2 Dimensional reduction by Fourier analysis 

= u i • n(δ i , k), pi = pi (δ i , k), leads to the system -µ∂ xx û(x, k) + µk 2 û(x, k) + ∂ x p(x, k) = 0 x ∈ (-δ , δ ), (4) 
-µ∂ xx v(x, k) + µk 2 v(x, k) + ik p(x, k) = 0 x ∈ (-δ , δ ), (5) 
∂ x û(x, k) + ik v(x, k) = 0 x ∈ (-δ , δ ), (6) pi = p(δ i , k) -µ∂ x û(δ i , k) i = 1, 2, (7) (-1) i+1 µ∂ x v(δ i , k) = α v(δ i , k) i = 1, 2, (8) ûi = û(δ i , k) i = 1, 2. (9)
Using that ∆ p = 0 yields the equation

∂ xx p(x, k) -k 2 p(x, k) = 0, whose solution is p(x, k) = C 1 (k)e |k|x + C 2 (k)e -|k|x
. We next substitute this pressure solution p into the momentum equations (4)-(5) of the previous system yielding four additional integration constants C j (k) with j = 3, 4, 5, 6. These 6 integration constants can be computed using the divergence free condition (6) (providing two additional equations on these 6 constants) and the transmission conditions (7)-(8). The last two transmission conditions (9) are then used to provide the following two exact transmission conditions of the model posed on Ω 1 ∪ Ω 2 eliminating the fracture model:

µ|k| H ex 1 (|k|δ ) 0 0 H ex 2 (|k|δ ) û2 + û2 û1 -û2 = p1 -p2 p1 + p2 , (10) 
where, setting ξ := |k|δ ,

H ex 1 (ξ ) = -4(1 +C α ξ 2 )e 2ξ + (2 + 3C α ξ )e 4ξ + (2 -3C α ξ ) 4ξ (1 +C α )e 2ξ + (1 + 2C α ξ )e 4ξ + (2C α ξ -1) , H ex 2 (ξ ) = 4(1 +C α ξ 2 )e 2ξ + (2 + 3C α ξ )e 4ξ + (2 -3C α ξ ) -4ξ (1 +C α )e 2ξ + (1 + 2C α ξ )e 4ξ + (2C α ξ -1) , (11) 
and C α := µ αδ is a dimensionless parameter governing the Beaver-Joseph-Saffman condition (3). To simplify the presentation, we develop in the following the analysis for the case α = +∞, i.e. C α = 0, corresponding to replacing the Beaver-Joseph-Saffman condition by the no slip condition u • τ τ τ = 0. This approximation is valid for a wide range of not too large rock permeabilities. The discussion of the general case is postponed to Section 4.

Reduced transmission conditions

An asymptotic expansion of H ex i , i = 1, 2, with respect to small ξ provides the reduced transmission conditions

µ|k| H red 1 (|k|δ ) 0 0 H red 2 (|k|δ ) û2 + û2 û1 -û2 = p1 -p2 p1 + p2 , (12) 
with the approximation H red i of H ex i given by

H red 1 (ξ ) = ξ , H red 2 (ξ ) = 3 ξ 3 1 + 4 5 ξ 2 ,
at order O(ξ 5 ) and O(ξ ). Note that these orders of approximation are the highest ones providing a well-posed reduced model, i.e. such that |k| H red i (|k|δ ) > 0 for all k > 0. Setting for i = 1, 2

γ n i u i = u i • n δ i , • , γ i p i = p 1 δ i , • ,
provides the following reduced model with elimination of the fracture unknowns:

div(u i ) = f i on Ω i , i = 1, 2, u i = -K i ∇p i on Ω i , i = 1, 2, -µ∂ yy (γ n 1 u 1 + γ n 2 u 2 ) 2 = γ 1 p 1 -γ 2 p 2 2δ on R, µ 1 - 4 5 δ 2 ∂ yy (γ n 1 u 1 -γ n 2 u 2 ) 2δ = - δ 2 3 ∂ yy (γ 1 p 1 + γ 2 p 2 ) 2 on R.
(13)

Reconstruction along the fracture

As in [START_REF] Lesinigo | A multiscale Darcy-Brinkman model for fluid flow in fractured porous media[END_REF][START_REF] Rybak | A dimensionally reduced Stokes-Darcy model for fluid flow in fractured porous media[END_REF], the reconstruction along the fracture starts with averaging both the Stokes unknowns and equations along the fracture width, setting

P := 1 2δ δ -δ p(x, k)dx, Û := 1 2δ δ -δ û(x, k)dx, V := 1 2δ δ -δ v(x, k)dx.
From the divergence free condition (6), we obtain by integration along the fracture width the reduced material conservation equation

ik2δ V = û1 -û2 . ( 14 
)
By integration of the momentum equation (4), and taking into account the pressure jump condition (7), we get that

µ|k| 2 2δ Û = ( p1 -p2 ). ( 15 
)
By integration of the momentum equation ( 5), we get the relation

-µ(∂ x v(δ , k) -∂ x v(-δ , k)) + µ|k| 2 2δ V + ik2δ P = 0. (16) 
Then, the classical approach developed in [START_REF] Lesinigo | A multiscale Darcy-Brinkman model for fluid flow in fractured porous media[END_REF][START_REF] Rybak | A dimensionally reduced Stokes-Darcy model for fluid flow in fractured porous media[END_REF] amounts to make profile assumptions along the width for U, V and P in order to derive both the coupling conditions and the approximation of the wall friction term -µ(

∂ x v(δ , k) -∂ x v(-δ , k)).
In our approach the coupling conditions were already derived by Fourier analysis and asymptotic expansions. The approximation of the friction term is obtained in the same way from the Fourier expression of ∂ x v(x, k) which can be shown to lead to

F ex (ξ ) = δ (∂ x v(-δ , k) -∂ x v(δ , k)) V = -2 ξ 2 4ξ e 2ξ + e 4ξ -1
4ξ e 2ξe 4ξ + 1 .

By asymptotic expansion for small ξ = |k|δ , we obtain the following approximation F red of F ex at order O(ξ 4 ):

F red (ξ ) = 6 + 4 5 ξ 2 ,
which leads to 6µ

δ V + µ|k| 2 2δ V + ik2δ P = 0, (17) 
with the modified tangential viscosity µ = 1 + 2 5 µ. Equations ( 14)-( 15)-( 17) are the reconstructed equations along the fracture. These equations can be combined with (13) in order to obtain the following coupled formula-tion of the reduced model:

div(u i ) = f i on Ω i , i = 1, 2, u i = -K i ∇p i on Ω i , i = 1, 2, 2δ ∂ y V = γ n 1 u 1 -γ n 2 u 2 , on R, -2µδ ∂ yy U = γ 1 p 1 -γ 2 p 2 on R, 6 µ δ V -2 µδ ∂ yy V + 2δ ∂ y P = 0 on R, U = γ n 1 u 1 + γ n 2 u 2 2 on R, µ δ γ n 1 u 1 -γ n 2 u 2 = γ 1 p 1 + γ 2 p 2 -2P on R. (18) 
Compared with the classical approach developped in [START_REF] Lesinigo | A multiscale Darcy-Brinkman model for fluid flow in fractured porous media[END_REF][START_REF] Rybak | A dimensionally reduced Stokes-Darcy model for fluid flow in fractured porous media[END_REF] our methodology leads to a correction term which amounts to replace the tangential viscosity µ by µ in the fifth equation of (18). This correction plays an essential role to obtain the error estimates shown in the next section.

Error estimates

We use the same setting as in [START_REF] Gander | Modeling and Analysis of the Coupling in Discrete Fracture Matrix Models[END_REF] for the Darcy subproblems assuming for simplicity that K 1 = K 2 = I and considering homogeneous Dirichlet conditions on ∂ Ω i \ Γ . For each subdomain i = 1, 2, we denote by ŝi ≥ 0 the Fourier transform of the Steklov Poincaré operator with ŝi = |k| coth(|k|(L iδ )), and we denote by R( f i ) the Fourier transform of γ n i ∇(∆ -1 f i ) with ∆ -1 defined on Ω i with homogeneous Dirichlet boundary conditions on ∂ Ω i . In this section, the superscripts red and ex are used for the reduced and exact model solutions. We assume in the following that δ is such that δ ≤ L = min( L 1 2 , L 2 2 ).

3.1 Error estimates on the traces γ i p i and γ n i u i

For the exact and reduced solutions we have, with

• = red, ex, û• 1 = -ŝ1 p• 1 -R( f 1 ), û• 2 = ŝ2 p• 2 -R( f 2 ).
We want to provide an error estimate for the errors on the traces

êp i = pex i -pred i , êu i = ûex i -ûred i ,
for i = 1, 2 which are linked by the relations êu i = (-1) i ŝi êp i .

From the exact and reduced transmission conditions (10) and ( 12), setting

E i = H ex i -H red i , and 
D(k) = 1 µ|k| ŝ1 + H red 1 1 µ|k| ŝ2 + H red 2 + 1 µ|k| ŝ2 + H red 1 1 µ|k| ŝ1 + H red 2 ,
we obtain that

êu 1 = -( 1 µ|k| ŝ2 + H red 2 )E 1 ( ûex 1 + ûex 2 ) -( 1 µ|k| ŝ2 + H red 1 )E 2 ( ûex 1 -ûex 2 ) D(k)
,

êu 2 = -( 1 µ|k| ŝ1 + H red 2 )E 1 ( ûex 1 + ûex 2 ) + ( 1 µ|k| ŝ1 + H red 1 )E 2 ( ûex 1 -ûex 2 ) D(k)
.

It remains to estimate | êu i |. We can establish the following bounds

|E 2 (ξ )| ξ ≤ C 2 , |E 1 (ξ )| ξ 5 ≤ C 1 , ∀ξ ≥ 0, and 
1 H ex 2 (ξ ) ≤ C 3 ξ 3 , 1 H red 2 (ξ ) ≤ C 3 ξ 3 , k ≤ ŝi (k) ≤ k + 1 L , ∀ξ , k ≥ 0, with C 1 = 1 45 , C 2 = 81 175 , C 3 = 1 3 .
We deduce the estimates

| êu i | = µ|k|(|k| + 1 L )C 1 |k|δ | ûex 1 + ûex 2 | +C 2 C 3 | ûex 1 -ûex 2 | |k| 4 δ 4 , (19) 
and

| êu i | = µ|k|(|k| + 1 L )C 1 | ûex 1 + ûex 2 | + 1 µ|k| C 2 (C 3 ) 2 |k| 2 δ 2 | pex 1 + pex 2 | |k| 5 δ 5 . (20) 
Estimates on êp i are readily deduced from the relations êu i = (-1) i ŝ1 êp i . An improved estimate can also be derived on êp 1êp 2 using the additional bound

| 1 ŝ1 -1 ŝ2 | ≤ 1 |k|(L|k|+1) : | êp 1 -êp 2 | ≤ µ 2(|k| + 1 L )C 1 | ûex 1 + ûex 2 | + 1 2L C 2 C 3 | ûex 1 -ûex 2 | |k| 5 δ 5 . (21) 
3.2 Error estimates on the fracture mean values U, V and P Let us proceed with the error estimates on the fracture mean values V , Û and P. For the error êV = V ex -V red , we have from ( 14) the bound

| êV | ≤ 1 |k|2δ | êu 1 -êu 2 |,
then, it suffices to apply (19) or (20) providing respectively an O(δ 3 ) or an O(δ 4 ) error estimate.

Similarly, for the error êU = Ûex -Ûred , we have from (15) the bound

| êU | ≤ 1 µ2δ |k| 2 | êp 1 -êp 2 |.
Then, it suffices to apply (21) providing an O(δ 4 ) error estimate.

To estimate the error on the mean pressure, it can be shown that there exists

C 4 = 22 175 such that |F ex (ξ ) -F red (ξ )| ξ 4 ≤ C 4 , ∀ξ ≥ 0.
Then, we deduce from ( 16) and the definition of F ex the following error estimate for êP = Pex -Pred :

| êP | ≤ µ (1 + 2 15C 3 )|k| + 1 C 3 |k| -1 δ -2 | êV | + C 4 2 |k| 3 δ 2 | V ex | , of order O(δ 2 ).

Extension to the general Beaver Joseph Saffman condition

In the general case, the functions H ex i and F ex depend on two dimensionless parameters, namely |k|δ and C α = µ αδ . The extension distinguishes two cases, first α > 0 (including the previous case α = +∞ i.e. C α = 0) and second α = 0. In the first case, the asymptotic expansions of H ex i and F ex are done for small values of |k|δ at given C α < +∞. This choice permits to recover the proper wall friction term in the V momentum equation (22). We obtain the same model as in (18) with modified coefficients for the fifth equation:

6 µ δ 1 + 3C α V -2 µδ ∂ yy V + 2δ ∂ y P = 0. (22) 
The tangential viscosity µ = 1 + 2 5(3C α +1) 2 µ is again corrected compared with the classical model reduction approach for which µ = µ. The error estimates are the same as in Subsections (3.1) and (3.2) with constants C i , i ∈ {1, 2, 3, 4} depending on C α .

In the second case, for α = 0 corresponding to C α = +∞, the expansions of H ex i are done w.r.t. small values of |k|δ and F ex = F red = 0. We obtain the following reduced model:

div(u i ) = f i on Ω i , i = 1, 2, u i = -K i ∇p i on Ω i , i = 1, 2, 2δ ∂ y V = γ n 1 u 1 -γ n 2 u 2 on R, -2µδ ∂ yy U = γ 1 p 1 -γ 2 p 2 on R, -µ ∂ yy V + ∂ y P = 0 on R, U = γ n 1 u 1 + γ n 2 u 2 2 on R, µ δ 1 - δ 2 6 ∂ yy γ n 1 u 1 -γ n 2 u 2 = γ 1 p 1 + γ 2 p 2 -2P on R, (23) 
which differs in the last equation from the model obtained by the classical model reduction approach [START_REF] Lesinigo | A multiscale Darcy-Brinkman model for fluid flow in fractured porous media[END_REF] providing the equation µ δ γ n 1 u 1γ n 2 u 2 = γ 1 p 1 + γ 2 p 2 -2P. The

2. 1

 1 Elimination of the fracture by Fourier analysis Let us set u = u v , δ i = (-1) i δ , and take the Fourier transform in the y direction of the Stokes equations and of the transmission conditions. Setting in short ûi

error estimates for the case α = 0 differ from the ones of Subsections (3.1) and (3.2). Setting C 1 = 2 15 and C 2 = 2 945 , we obtain

and

Conclusions

This work extends the dimensional reduction methodology based on Fourier analysis developed in [START_REF] Gander | Modeling and Analysis of the Coupling in Discrete Fracture Matrix Models[END_REF] to the case of a Darcy-Stokes matrix fracture coupled model. This analysis leads to correction terms which cannot be a priori obtained by the classical technique based on averaging along the fracture width combined with profile assumptions on the velocities and pressure in the fracture [START_REF] Lesinigo | A multiscale Darcy-Brinkman model for fluid flow in fractured porous media[END_REF][START_REF] Rybak | A dimensionally reduced Stokes-Darcy model for fluid flow in fractured porous media[END_REF]. More precisely, the new mixeddimensional model exhibits a correction of the tangential viscosity along the fracture in the case α > 0 and a second order correction term in the second closure equation in the case α = 0. These terms play an essential role in the error estimates between the equi and mixed-dimensional models derived by the Fourier analysis. Numerical tests are ongoing in order to assess numerically these results.