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A problem of image restoration Large-scale image inpainting

Our goal: Recovering x̂ as close as possible to the original image x̄ from a
degraded observation z

x̄ z x̂

Context: Restoration of large-scale images (N > 106 variables)
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A problem of image restoration Large-scale image inpainting

Problem formulation:

Classic degradation model: z = Ax̄+ ϵ

• A ∈ RM×N a linear degradation
• ϵ ∈ RM some gaussian noise

Ill-posed problem, it leads to the following minimization problem:

x̂ ∈ Argmin
x∈RN

1

2
∥Ax− z∥22 + λ∥Dx∥1,2

• N image size
• D ∈ RK×N linear transform on x on which we will impose sparsity
• λ > 0 regularization parameter
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A problem of image restoration Large-scale image inpainting

Problem formulation:

Classic degradation model: z = Ax̄+ ϵ

• A ∈ RM×N a linear degradation
• ϵ ∈ RM some gaussian noise

Ill-posed problem, it leads to the following minimization problem:

min
x∈RN

F (x) := (f ◦A)(x)︸ ︷︷ ︸
data fidelity

+ (g ◦D)(x)︸ ︷︷ ︸
regularization

f and g proper, lower semi-continuous and convex. f is assumed
differentiable with Lipschitz gradient. g is not necessarily differentiable.
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A problem of image restoration Large-scale image inpainting

First order optimization
methods
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A problem of image restoration First order optimization methods

First order descent methods

xk+1 = Φ(xk) = xk −Dk

•If f and g are differentiable : Gradient method

Dk = τk(∇(f ◦A)(xk) +∇(g ◦D)(xk))
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A problem of image restoration First order optimization methods

First order descent methods

xk+1 = Φ(xk) = xk −Dk

•If f and g are differentiable : Gradient method

Dk = τk(∇(f ◦A)(xk) +∇(g ◦D)(xk))

•If g is not differentiable : Proximal gradient method

Dk = xk − proxτkg◦D (xk − τk∇(f ◦A)(xk))

proxτg(·) = argmin
x∈RN

1
2∥x− ·∥22 + τg(x) is available explicitly.

•Convergence of the objective function values with rate 1/k
•Convergence to a minimizer if it exists
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A problem of image restoration First order optimization methods

Main goal : provide acceleration for high dimensional
problems

High dimensional problems → high computation time.
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A problem of image restoration First order optimization methods

Main goal : provide acceleration for high dimensional
problems

High dimensional problems → high computation time.

Alternatives :
• FISTA [Beck & Teboulle, 2009],
• Preconditionning [Donatelli, 2019],
• Blocks methods [Liu, 1996],
• Exploit the problem structure with a multiresolution strategy. Idea

that comes from the PDE field and developed in particular for
non-smooth optimization in [Parpas, 2017], our inspiration.

Common aim of these methods:
improve the gradient/proximal gradient steps with well chosen rules.

G.Lauga Multilevel Proximal Methods for Image Restoration 7 / 47



Multilevel algorithm for smooth optimization

Multilevel algorithm for
smooth optimization
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Multilevel algorithm for smooth optimization Classical scheme for two levels

Classical scheme for two levels

Goal: Exploit a hierarchy of approximations of the objective function.
Two levels case: fine (h) and coarse (H)

Argmin
xh∈RNh

Fh(xh)

xh,k

I H
h

Argmin
xH∈RNH

FH

xH,k,0 xH,k,m

Argmin
xh∈RNh

Fh(xh)I
h
H

xh,k+IhH(xH,k,m − xH,k,0)

G.Lauga Multilevel Proximal Methods for Image Restoration 9 / 47



Multilevel algorithm for smooth optimization Ingredients of the multilevel framework

Ingredients

Information transfer operators
• IHh ∈ RNH×Nh : transfer from fine to coarse scales (NH < Nh)
• IhH ∈ RNh×NH : transfer from coarse to fine scales
• Coherence between operators: IhH = ν(IHh )T

• Example: multiresolution analysis (orthogonal wavelets)

IHh IhH
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Multilevel algorithm for smooth optimization Ingredients of the multilevel framework

Ingredients

Objective function at coarse level:

fH ◦AH + gH ◦DH

Image restoration context

∀xh ∈ RNh fh(xh) =
1
2∥xh − z∥22 gh(xh) = λ∥x∥2

∀xH ∈ RNH fH(xH) = 1
2∥xH − IHh z∥22 gH(xH) = λ∥xH∥2

where:
• AH is a reduced order version of Ah (e.g. Galerkin approximation,

decimation)
• DH is a reduced order version of Dh (e.g. TV at fine and coarse

levels)
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Multilevel algorithm for smooth optimization Ingredients of the multilevel framework

First order coherence
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Multilevel algorithm for smooth optimization Ingredients of the multilevel framework

First order coherence
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Multilevel algorithm for smooth optimization Ingredients of the multilevel framework

Guarantees associated with this construction

Coarse model FH for smooth functions

FH = fH ◦AH + gH ◦DH + ⟨vH , ·⟩

The first order coherence term involves

vH =IHh (∇(fh ◦Ah)(xh) +∇(gh ◦Dh)(xh))

− (∇(fH ◦AH)(IHh xh) +∇(gH ◦DH)(IHh xh))

which guarantees that if

⟨xH,m − xH,0,∇FH(xH,0)⟩ ≤ 0

then
⟨IhH(xH,m − xH,0),∇Fh(xh)⟩ ≤ 0
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Multilevel algorithm for smooth optimization Ingredients of the multilevel framework

Multilevel algorithm for smooth optimization
for k do

if Descent condition then

Coarse model:
xH,k,0 = IHh xh,k Projection
xH,k,m = ΦH,k,m−1 ◦ .. ◦ ΦH,k,0(xH,k,0) Coarse decrease
Set τ̄h,k > 0, Update by coarse step
x̄h,k = xh,k + τ̄h,kI

h
H (xH,k,m − xH,k,0)

else
x̄h,k = xh,k

end

Fine level :
xh,k+1 = x̄h,k − τ (∇(fh ◦Ah) +∇(gh ◦Dh)) (x̄h,k) Gradient step

end
S. G. Nash, A Multigrid Approach to Discretized Optimization Problems, Optimization
Methods and Software (2000)
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Multilevel algorithm for smooth optimization Ingredients of the multilevel framework

Multilevel algorithm for smooth optimization
In the context of image processing

Some references:
• A. Javaherian and S. Holman, A Multi-Grid Iterative Method for Photoacoustic

Tomography, IEEE Transactions on Medical Imaging, (2017)
• S. W. Fung and Z. Wendy, Multigrid Optimization for Large-Scale

Ptychographic Phase Retrieval, SIAM Journal on Imaging Sciences, 13 (2020)
• J. Plier, F. Savarino, M. Kočvara, and S. Petra, First-Order Geometric Multilevel

Optimization for Discrete Tomography, in Scale Space and Variational Methods
in Computer Vision, A. Elmoataz, J. Fadili, Y. Quéau, J. Rabin, and L. Simon,
eds., vol. 12679, Springer International Publishing, Cham, (2021)

→ Successful attempts of accelerating minimization in imaging problems
→ Smooth optimization: not very good for image reconstruction problems
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Multilevel algorithm for non-smooth optimization : IML FISTA

Multilevel algorithm for
non-smooth optimization:

IML FISTA
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Multilevel algorithm for non-smooth optimization : IML FISTA Starting point

What has been done:

Extension of the multilevel framework to non-smooth optimization:

✓ Handles non-smooth g

✓ Smoothing to define the first order coherence
7 Requires explicit form of proxg◦D : D must be orthogonal
7 No guarantee of convergence to a minimizer

V. Hovhannisyan, P. Parpas, and S. Zafeiriou, MAGMA: Multilevel Accelerated Gradient
Mirror Descent Algorithm for Large-Scale Convex Composite Minimization, SIAM Journal on
Imaging Sciences (2016)
P. Parpas, A Multilevel Proximal Gradient Algorithm for a Class of Composite Optimization
Problems, SIAM Journal on Scientific Computing, 39 (2017)
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Multilevel algorithm for non-smooth optimization : IML FISTA Starting point

Our contribution
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Multilevel algorithm for non-smooth optimization : IML FISTA Motivations

Motivations and contribution

In a multilevel setting we want to:
• include inexact proximal steps to handle state-of-the-art

regularization: Total Variation (TV) and Non-Local Total Variation
(NLTV) based semi-norm

• obtain state-of-the-art convergence guarantees

In this context we provide IML FISTA a convergent multilevel inexact and
inertial proximal gradient algorithm that works when:

• the proximity operator of g is explicit
• the proximity operator of g ◦D is not known under closed form
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Multilevel algorithm for non-smooth optimization : IML FISTA Framework of a multilevel inexact FISTA

Framework

Inertial convergent proximal algorithm that can handle inexact steps:

xk+1 ≈ϵk proxτg◦D (yk − τ∇(f ◦A)(yk) + ek)

yk+1 = xk+1 + αk(xk+1 − xk)

where αk is chosen with tk+1 =
(
k+a
a

)d, αk = tk−1
tk+1

.

Our idea (inspired by [Parpas, 2016-2017]): update yk through a multilevel
step.

• How to construct such multilevel update ?
• How to guarantee convergence ?

J.-F. Aujol and C. Dossal, Stability of Over-Relaxations for the Forward-Backward Algorithm,
Application to FISTA, SIAM Journal on Optimization, (2015)
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Multilevel algorithm for non-smooth optimization : IML FISTA Coarse correction construction

Smoothing of Fh and FH with the Moreau envelope

Moreau envelope of gH : γgH = infy∈H gH(y) + 1
2γ ∥ · −y∥2

Properties of the Moreau envelope:
• ∇γgH = γ−1(Id − proxγgH )

• ∇γgH γ−1 - Lipschitz
• ∇ (γgH ◦DH) (·) = γ−1

H D∗
H

(
DH · −proxγHgH (DH ·)

)
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Figure: Moreau envelope of l1-norm for γ = 0.1 and γ = 1

G.Lauga Multilevel Proximal Methods for Image Restoration 21 / 47



Multilevel algorithm for non-smooth optimization : IML FISTA First order coherence for non smooth objective function

First order coherence for g non-smooth

Coarse model FH for non-smooth functions

FH = fH ◦AH + (γHgH ◦DH) + ⟨vH , ·⟩

where γg is the Moreau envelope of g
and the coherence term involves

vH = IHh (∇(fh ◦Ah)(yh) +∇(γhgh ◦Dh)(yh))

− (∇(fH ◦AH)(IHh yh) +∇(γHgH ◦DH)(IHh yh))

and the minimization operator at coarse level as:

ΦH := ∇(fH ◦AH) +∇(γHgH ◦DH)
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Convergence guarantees of IML FISTA Decrease guarantee

Decrease at fine level

With this first order coherence, any algorithm that decreases FH implies

Fh(yh + τ̄ IhH(xH,m − xH,0)) ≤ Fh(yh) + ηγh

where :
• η, γh > 0 depend on the Moreau approximation
• τ̄ is some step size.

→ Bound on one multilevel step but not enough for global convergence
guarantees. Similar as [Parpas, 2017]
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Convergence guarantees of IML FISTA Global guarantees

Multilevel steps interpreted as errors

FISTA steps allow errors on the computation of the backward and on the
forward steps:

xh,k+1 ≃ϵh,k proxτhgh◦Dh
(yh,k − τh∇(fh ◦Ah) (yh,k) + eh,k)

yh,k+1 = xh,k+1 + αh,k(xh,k+1 − xh,k)

Rewriting coarse corrections:

eh,k = τh(∇(fh ◦Ah)(yh,k)−∇(fh ◦Ah)(ȳh,k)

+
τ̄h,k
τh

IhH(xH,k,m − xH,k,0))

→ Multilevel steps are bounded errors on the gradient
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Convergence guarantees of IML FISTA Global guarantees

Estimation of the proximity operator

At each iteration of fine level minimization we need to compute
proxγgh◦Dh

(x) = x−D∗
hû with:

û ∈ argmin
u∈RK

1

2
∥D∗

hu− x∥2 + γg∗h(u)

which can be solved iteratively with accuracy ϵ so that:

x−D∗
hûϵ ≃ϵ proxγgh◦Dh

(x)

Equivalent to having:

D∗
hûϵ
γ

∈ ∂ϵ (gh ◦Dh) (x−D∗
hûϵ)

S. Villa, S. Salzo, L. Baldassarre, and A. Verri, Accelerated and Inexact Forward-Backward
Algorithms, SIAM Journal on Optimization, 23 (2013)
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Convergence guarantees of IML FISTA Global guarantees

Convergence of the algorithm

Convergence theorem
Assume that:

• we compute accurate estimation of the proximity operators so that:∑
k k

2dϵh,k < +∞
• we compute at most p coarse corrections so that:

∑
k keh,k < +∞

Then:
• (k2d (Fh(xh,k)− Fh(x̂)))k∈N belongs to ℓ∞(N)
• (xh,k)k∈N converges to a minimizer of Fh
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Convergence guarantees of IML FISTA IML FISTA

Inexact MuLtilevel FISTA
for k do

if Descent condition and r < p then

Coarse model (r = r+1):
xH,k,0 = IHh yh,k Projection
xH,k,m = ΦH,k,m−1 ◦ .. ◦ ΦH,k,0(xH,k,0) Coarse decrease
Set τ̄h,k > 0, Update by coarse step
ȳh,k = yh,k + τ̄h,kI

h
H (xH,k,m − xH,k,0)

else
ȳh,k = yh,k

end

Fine level :
xh,k+1 ≈ϵk FB(ȳh,k) Forward-backward step
th,k+1 =

(
k+a
a

)d, αh,k =
th,k−1
th,k+1

yh,k+1 = xh,k+1 + αh,k(xh,k+1 − xh,k) Inertial step

end
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Reconstruction of color images

Numerical experiments on
color images
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Reconstruction of color images NLTV prior

Image reconstruction with NLTV prior
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Reconstruction of color images NLTV prior

Image reconstruction with NLTV prior
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Reconstruction of color images NLTV prior

Image reconstruction with NLTV prior
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Reconstruction of color images Problem formulation

Problem formulation:

• N = 2048× 2048× 3 image size
• A inpainting operator: 90% along all channels
• D a Non Local Total Variation operator on x

• Gaussian noise σ(noise) = 5e− 2

• λ = 3e− 2

• Parameters: τ = 1, γ = 1.1, l = 5, p = 2, m = 5, λH = λ/4

x̂ ∈ Argmin
x∈RN

1

2
∥Ax− z∥22 + λ∥Dx∥1,2
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Reconstruction of color images Information transfer operators

Information transfer operators : orthogonal wavelets

For a generic quadrature mirror filter q = (q1, . . . , qm):

IHh := (Rq,r ⊗Rq,c)

Tq =


q1 q2 . . . qm 0 . . . 0
0 q1 q2 . . . . . . . . . 0
... . . . . . . . . . . . . . . .
0 . . . 0 0 q1 q2 . . .


• Rq,c size NH,r-by-Nh,r: dyadic decimated version of Tq

• Rq,r size NH,c-by-Nh,c: dyadic decimated version of Tq

M. I. Espanol, Multilevel methods for discrete ill-posed problems: Application to deblurring,
PhD thesis, 2009
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Reconstruction of color images Fast reconstruction

Reconstruction after 2 iterations with NLTV

z x2 FISTA x2 IML FISTA
x̂ estimated after 2 iterations of FISTA vs 2 iterations of IML FISTA.

G.Lauga Multilevel Proximal Methods for Image Restoration 32 / 47



Reconstruction of color images Objective function behaviour

Evolution of Fh for a Nh = 2048× 2048× 3 image
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Reconstruction of color images Final reconstruction

Reconstruction after 50 iterations with NLTV

x̄ z x̂

x̂ estimated after 50 iterations of IML FISTA.
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Reconstruction of color images Final reconstruction

Additional results on deblurring problems
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Figure: Deblurring ℓ1,2-TV. Objective function (normalized w.r.t. the initial
value) vs CPU time (sec). First column: σ(noise) = 0.01; second column:
σ(noise) = 0.05. First row: dim(PSF) = 20, σ(PSF) = 3.6; second row:
dim(PSF) = 40, σ(PSF) = 7.3.
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Reconstruction of hyperspectral images

Numerical experiments on
hyperspectral images
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Reconstruction of hyperspectral images Spectral hypercube

Hyperspectral images

x(i,b) = x(i1,i2,b) the pixel i = (i1, i2) ∈ {1, . . . , Nr} × {1, . . . , Nc} of the
band b ∈ {1, . . . , L} of the hypercube x. N = Nr ×Nc × L
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Reconstruction of hyperspectral images Problem formulation

Inpainting problem for Hyperspectral Images

Degradation model: z = Ax̄+ ϵ. Associated minimization problem:

x̂ ∈ Argmin
x∈RN

1

2
∥Ax− z∥22 + λg(Dx)

• A ∈ RM×N an inpainting operator which applies independant masks
on each spectral band

• D ∈ R(N×K×L)×N such that:

(Dx)(i) =
[
ω(i,j)(x(i,b) − x(j,b))

]
j∈Ni,1≤b≤L

∈ RK̃×L

(∀x ∈ RN ) g(Dx) =

N∑
i=1

∥(Dx)i∥∗
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Reconstruction of hyperspectral images Tailoring IML FISTA for hyperspectral images reconstruction

IML FISTA for hyperspectral images

Optimization scheme of IML FISTA:

ȳh,k = ML(yh,k)
xh,k+1 ≈ϵh,k proxτgh(Dh·) (ȳh,k − τ∇(fh ◦Ah)(ȳh,k)) ,

yh,k+1 = xh,k+1 + αh,k(xh,k+1 − xh,k),

The MultiLevel (ML) step encompasses the coarse correction.
How to construct ML to exploit the high correlation in the data ?
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Reconstruction of hyperspectral images Tailoring IML FISTA for hyperspectral images reconstruction

Dimension reduction

Spe
ct

ra
l r

es
ol

ut
io

n

Spatial resolution

Dimension reduction  :  spectral reduction or spatial reduction
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Reconstruction of hyperspectral images Tailoring IML FISTA for hyperspectral images reconstruction

Coarse model construction

Spectral IML FISTA

b, ℓ = 1
while b ≤ Lh − 1 do

if µ(λ)− σ(λ) ≤ λ(b+1) − λ(b) ≤
µ(λ) + σ(λ) then

x
(:,ℓ)
H = 1

2
(x

(:,b)
h + x

(:,b+1)
h ),

ℓ = ℓ+ 1
else

x
(:,ℓ)
H = x

(:,b)
h ,

x
(:,ℓ+1)
H = x

(:,b+1)
h ,

ℓ = ℓ+ 2
end
b = b+ 2

end
The blocks of Ah are passed through this
procedure to construct the blocks of AH .

Spatial IML FISTA

(∀b = {1, . . . , Lh})

x
(:,b)
H = IHh (x

(:,b)
h )

where:

IHh := (Rq,r ⊗Rq,c)

T dec
NH,c

(q) decimated Toeplitz matrix
engendered by q.
The blocks of Ah are decimated to
construct the blocks of AH .
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Reconstruction of hyperspectral images Results

Results with Spectral IML FISTA

x̄ ∈ R512×512×33
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Reconstruction of hyperspectral images Results

Results with Spectral IML FISTA

z
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Reconstruction of hyperspectral images Results

Results with Spectral IML FISTA

xend,FISTA
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Reconstruction of hyperspectral images Results

Results with Spectral IML FISTA

xend,IML FISTA
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Reconstruction of hyperspectral images Results

Results with Spectral IML FISTA

x̄ (SNR) x2,FISTA (7 dB) xend,FISTA (21 dB)

z (3 dB) x2,IML FISTA (19 dB) xend,IML FISTA (35 dB)
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Reconstruction of hyperspectral images Objective function behavior

Objective function evolution
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Summary

Summary
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Summary

Summary

We have developed a convergent multilevel algorithm with:
• same convergence rates as FISTA
• efficient construction of coarse models
• good experimental performances on large scale images
• embed-able state-of-the-art regularizations for inverse problems
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Summary

Future work

• Hyperspectral imaging : possible application : fast restoration
available to improve segmentation tasks (e.g. identification of crop
types).

• Reconstruction of circumstellar environments : direct application of
IML FISTA to a real problem.

• Radio interferometric imaging : possible extension of multilevel
methods to primal-dual approaches and application to real data.

• Better guarantees for the multilevel steps
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Summary

References
• IML FISTA: Inexact MuLtilevel FISTA for Image Restoration,

preprint and code available
• Méthodes multi-niveaux et restauration d’images

hyperspectrales, preprint
• Multilevel FISTA for Image Restoration, ICASSP 2023
• Méthodes proximales multi-niveaux pour la restauration

d’images, GRETSI 2022

https://laugaguillaume.github.io/
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