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Abstract. The paper proposes a method for the correct by design co-
ordination of autonomous driving systems (ADS). It builds on previous
results on collision avoidance policies and the modeling of ADS by com-
bining descriptions of their static environment in the form of maps, and
the dynamic behavior of their vehicles.
An ADS is modeled as a dynamic system involving a set of vehicles
coordinated by a Runtime that based on vehicle positions on a map and
their kinetic attributes, computes free spaces for each vehicle. Vehicles
are bounded to move within the corresponding allocated free spaces.
We provide a correct by design safe control policy for an ADS if its vehi-
cles and the Runtime respect corresponding assume-guarantee contracts.
The result is established by showing that the composition of assume-
guarantee contracts is an inductive invariant that entails ADS safety.
We show that it is practically possible to define speed control policies
for vehicles that comply with their contracts. Furthermore, we show that
traffic rules can be specified in a linear-time temporal logic, as a class
of formulas that constrain vehicle speeds. The main result is that, given
a set of traffic rules, it is possible to derive free space policies of the
Runtime such that the resulting system behavior is safe by design with
respect to the rules.

Keywords: Autonomous driving systems · Traffic rule specification ·
Map specification · Collision avoidance policy · Assume-guarantee con-
tract · Correctness by design.

1 Introduction

Autonomous driving systems (ADS ) are probably the most difficult systems to
design and validate, because the behavior of their agents is subject to temporal
and spatial dynamism. They are real-time distributed systems involving compo-
nents with partial knowledge of their environment, pursuing specific goals while
the collective behavior must meet given global goals.
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Development of trustworthy ADS is an urgent and critical need. It poses
challenges that go well beyond the current state of the art due to their over-
whelming complexity. These challenges include, on the one hand, modeling the
system and specifying its properties, usually expressed as traffic rules; on the
other hand, building the system and verifying its correctness with respect to the
desired system properties.

Modeling involves a variety of issues related to the inherent temporal and
spatial dynamics as well as to the need for an accurate representation of the
physical environment in which vehicles operate. Many studies focus on formaliz-
ing and standardizing a concept of map that is central to semantic awareness and
decision-making. These studies often use ontologies and logics with associated
reasoning mechanisms to check the consistency of descriptions and their accu-
racy with respect to desired properties [3,2]. Other works propose open source
mapping frameworks for highly automated driving [1,16]. Finally, the SOCA
method [7] proposes an abstraction of maps called zone graph, and uses this
abstraction in a morphological behavior analysis.

There is an extensive literature on ADS validation that involves two interre-
lated problems: the specification of system properties and the application of val-
idation techniques. The specification of properties requires first-order temporal
logics because parameterization and genericity are essential for the description
of situations involving a varying number of vehicles and types of traffic patterns.
The work in [19,17] formalizes a set of traffic rules for highway scenarios in Is-
abelle/HOL. It shows that traffic rules can be used as requirements to be met by
autonomous vehicles and proposes a verification procedure. A formalization of
traffic rules for uncontrolled intersections is provided in [12], which shows how
the rules can be used by a simulator to safely control traffic at intersections. The
work in [10] proposes a methodology for formalizing traffic rules in linear tem-
poral logic; it shows how the evaluation of formalized rules on recorded human
behaviors provides insight into how well drivers follow the rules.

Many works deal with the formal verification of controllers that perform
specific maneuvers. For example, in [11], a dedicated multi-way spatial logic
inspired by interval temporal logic is used to specify safety and provide proofs
for lane change controllers. The work in [18] presents a formally verified motion
planner in Isabelle/HOL. The planner uses maneuver automata, a variant of
hybrid automata, and linear temporal logic to express properties. In [10], runtime
verification is applied to check that the maneuvers of a high-level planner conform
to traffic rules expressed in linear temporal logic.

Of particular interest for this work are correct by construction techniques
where system construction is guided by a set of properties that the system is
guaranteed to satisfy. They involve either the application of monolithic synthe-
sis techniques or compositional reasoning throughout a component-based sys-
tem design process. There is considerable work on controller synthesis from a
set of system properties usually expressed in linear temporal logic, see for ex-
ample [13,27,28,21,26]. These are algorithmic techniques extensively studied in
the field of control. They consist of restricting the controllable behavior of a
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system interacting with its environment so that a set of properties are satisfied.
Nonetheless, their application is limited due to their high computational cost,
which depends in particular on the type of properties and the complexity of the
system behavior.

An alternative to synthesis is to achieve correctness by design as a result
of composing the properties of the system components. Component properties
are usually "assume-guarantee" contracts characterizing a causal relationship
between a component and its environment: if the environment satisfies the "as-
sume" part of the contract, the state of the component will satisfy the "guar-
antee" part, e.g. [4,15,8]. The use of contracts in system design involves a de-
composition of overall system requirements into contracts that provide a basis
for more efficient analysis and validation. In addition, contract-based design is
advocated as a method for achieving correctness by design, provided that satis-
factory implementations of the system can be found [23]. There are a number of
theoretical frameworks that apply mainly to continuous or synchronous systems,
especially for analysis and verification purposes [22,14,20]. They suffer computa-
tional limitations because, in the general case, they involve the symbolic solution
of fixed-point equations, which restricts the expressiveness of the contracts [14].
Furthermore, they are only applicable to systems with a static architecture,
which excludes dynamic reconfigurable systems, such as autonomous systems.

The paper builds on previous results [5] on a logical framework for parametric
specification of ADS combining models of the system’s static environment in the
form of maps, and the dynamic properties of its vehicles. Maps are metric graphs
whose vertices represent locations and edges are labeled with segments that can
represent roads at different levels of abstraction, with characteristics such as
length or geometric features characterizing their shape and size.

An ADS model is a dynamic system consisting of a map and a set of vehicles
moving along specific routes. Its state can be conceived as the distribution of
vehicles on a map with their positions, speeds and other kinematic attributes.
For its movement, each vehicle has a safe estimate of the free space in its neigh-
borhood, according to predefined visibility rules. We assume that vehicle coor-
dination is performed by a Runtime that, for given vehicle positions and speeds
on the map, can compute the free spaces on each vehicle’s itinerary in which it
can safely move.

We study a safe control policy for ADS, which is correct by design. It results
from the combination of two types of assume-guarantee contracts: one contract
for each vehicle and another contract for the Runtime taking into account the
positions of the vehicles on the map. The contract for a vehicle states that, as-
suming that initially the dynamics of the vehicle allow it to stay in the allocated
free space, it will stay in this free space. Note that the details of the contract
implementation are irrelevant; only the I/O relationship between free space and
vehicle speed matters. The Runtime contract asserts that if the free spaces allo-
cated to vehicles are disjoint, then they can be allocated new disjoint free spaces
provided they have fulfilled their contract.
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We build on this general result by specializing its application in two direc-
tions. First, we show that it is possible to define speed policies for vehicles that
satisfy their assume-guarantee contract. Second, we show that it is possible to
define free space policies for the Runtime enforcing safety constraints of a given
set of traffic rules. We formalize traffic rules as a class of properties of a linear
temporal logic. We provide a method that derives from a given set of traffic
rules, constraints on the free spaces chosen by the Runtime such that the result-
ing system behavior is safe with respect to these rules. This is the main result of
the paper establishing correctness by design of general ADS, provided that their
components comply with their respective contracts.

The paper is structured as follows. In Section 2, we establish the general
framework by introducing the basic models and concepts for the representation
of maps. In Section 3, we introduce the dynamic model of ADS involving a set of
vehicles and a Runtime for their coordination. We show how a correct by design
safe control policy is obtained by combining assume-guarantee contracts for the
vehicles and the Runtime. In Section 4, we study the principle of speed policies
respecting the vehicle contract and show its application through an example. In
Section 5, we formalize traffic rules as a class of formulas of a linear temporal
logic and show how it is possible to generate from a set of traffic rules free
space policies such that the system is safe by design. Section 6 concludes with a
discussion of the significance of the results, future developments and applications.
The proofs of technical results are available in the long version of the paper [6].

2 Map Representation

Following the idea presented in [5], we build contiguous road segments from a
set S equipped with a partial concatenation operator ⋅ ∶ S × S → S ∪ {⊥},
a length norm ∣∣.∣∣ ∶ S → R≥0 and a partial subsegment extraction operator
.[., .] ∶ S × R≥0 × R≥0 → S ∪ {⊥}. Thus, given a segment s, ∣∣s∣∣ represents its
length and s[a, b] for 0 ≤ a < b ≤ ∣∣s∣∣, represents the sub-segment starting at
length a from its origin and ending at length b. Segments can be used to represent
roads at different levels of abstraction, from intervals to regions. In this paper,
we consider S as the set of curves obtained by concatenation of line segments
and circle arcs, for representing roads of a map as depicted in Fig. 1.

We use metric graphs G
def
= (V,S, E) to represent maps, where V is a finite

set of vertices, S is a set of segments and E ⊆ V × S⋆ × V is a finite set of edges
labeled by non-zero length segments (denoted S⋆). For an edge e = (v, s, v′) ∈ E
we denote •e

def
= v, e•

def
= v

′, e.s
def
= s. For a vertex v, we define •v

def
= {e ∣ e• = v}

and v•
def
= {e ∣ •e = v}. We call a metric graph connected (resp. weakly connected)

if a path (resp. an undirected path) exists between any pair of vertices.

We consider the set PosG
def
= V ∪ {(e, a) ∣ e ∈ E, 0 ≤ a ≤ ∣∣e.s∣∣} of positions

defined by a metric graph. Note that positions (e, 0) and (e, ∣∣e.s∣∣) are considered
equal respectively to positions •e and e•. We denote by p

s
−→G p

′ the existence of
an s-labelled edge ride between succeeding positions p = (e, a) and p′ = (e, a′)
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in the same edge e whenever 0 ≤ a < a′ ≤ ∣∣e.s∣∣ and s = e.s[a, a′]. Moreover, we
denote by p

s
↝G p

′ the existence of an s-labelled ride between arbitrary positions
p, p′, that is, ↝G

def
= ( −→G )+ the transitive closure of edge rides. Finally, we

define the distance dG from position p to position p′ as 0 whenever p = p′ or the
minimum length among all segments labeling rides from p to p′ and otherwise
+∞ if no such ride exists. Whenever G is fixed in the context, we will omit the
subscript G for positions PosG, distance dG, and rides −→G or ↝G .

Fig. 1: A map with junctions (blue edges) and a merger vertices (red edges)

A connected metric graph G = (V,S, E) can be interpreted as a map, struc-
tured into roads and junctions, subject to additional assumptions:

– we restrict to metric graphs which are 2D-consistent [5], meaning intuitively
they can be drawn in the 2D-plane such that the geometric properties of
the segments are compatible with the topological properties of the graph.
In particular, if two distinct paths starting from the same vertex v, meet
at another vertex v

′, the coordinates of v′ calculated from each path are
identical. For the sake of simplicity, we further restrict to graphs where
distinct vertices are located at distinct points in the plane, and moreover,
where no edge is self-crossing (meaning actually that distinct positions (e, a)
of the same edge e are located at distinct points).

– the map is equipped with a symmetric junction relationship � on edges E
which abstracts the geometric crossing (or the proximity) between edges at
positions other than the edge end points. This relationship is used to define
the junctions of the map, that is, as any non-trivial equivalence class in
the transitive closure of �. Actually, junctions need additional signalisation
to regulate the traffic on their edges (e.g., traffic lights, stop signs, etc). In
addition, we assume a partial ordering ≺j on the set of vertices to reflect
their static priorities as junction entries.

– to resolve conflicts at merger vertices, i.e., vertices with two or more incident
segments which do not belong to a junction, we assume that the map is
equipped with a static priority relationship. Specifically, for a vertex v, there
is a total priority order ≺v on the set of edges •

v. This order reflects an
abstraction of the static priority rules associated with each of the merging
edges (e.g., right-of-way, yield-priority, etc).

– every edge e is associated with a maximal speed limit e.v ∈ R≥0.
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In the remainder of the paper, we consider a fixed metric graph G = (V,S, E)
altogether with the junction relationship �, static priorities ≺v and edge speed
limits as discussed above. Also, we extend the junction and priority relationships
from edges to their associated positions, that is, consider (e1, a1) ∼ (e2, a2)

def
=

e1 ∼ e2 for any relation ∼∈ {�, (≺v)v∈V }. Finally, we denote by r1 ⊎ r2 the
property that rides r1, r2 in G are non-crossing, that is, their sets of positions
are disjoint and moreover not belonging to the same junction(s), except for
endpoints.

3 The ADS Dynamic Model

3.1 General ADS Architecture

Given a metric graph G representing a map, the state of an ADS is a tuple
⟨sto⟩o∈O representing the distribution of a finite set of objects O with their
relevant dynamic attributes on the map G. The set of objects O includes a set of
vehicles C and fixed equipment such as lights, road signs, gates, etc. For a vehicle
c, its state stc

def
= ⟨c.p, c.δ, c.v , c.wt , c.it . . . ⟩ includes respectively its position on

the map (from Pos ), its displacement traveled since c.p (from R≥0), its speed
(from R≥0), the waiting time (from R≥0) which is the time elapsed since the
speed of c became zero, its itinerary (from the set of segments S) which labels

a ride starting at c.p, etc. For a traffic light lt, its state stlt
def
= ⟨lt .p, lt .cl , . . .⟩

includes respectively its position on the map (from Pos ), and its color (with
values red and green), etc.

The general ADS model is illustrated in Fig. 2 and consists of a set of vehicle
models C and a Runtime that interact cyclically with period ∆t. The Runtime
calculates free space values for each vehicle c which are lenghts c.f of initial
rides on their itineraries c.it whose positions are free of obstacles. In turn, the
vehicles adapt their speed to stay within the allocated free space. Specifically,
the interaction proceeds as follows:

– each vehicle c applies a speed policy for period ∆t respecting its free space
c.f received from the Runtime. During ∆t, it travels a distance c.δ′ to some
new position c.p ′, and at the end of the period its speed is c.v ′, its itinerary
c.it

′, etc. The new state is then communicated to the Runtime.
– the Runtime updates the system state on the map taking into account the

new vehicle states and time-dependent object attributes. Then it applies a
free space policy computing the tuple ⟨c.f ′⟩c∈C , the new free space for all
vehicles based on the current system state. The corresponding free spaces
are then communicated to vehicles and the next cycle starts.

Note that the coordination principle described is independent of the type of
segments used in the map, e.g. intervals, curves or regions. For simplicity, we
take the free spaces to measure the length of an initial ride without obstacles on
the vehicle itinerary. This abstraction is sufficient to state the basic results. We
discuss later how they can be generalized for richer interpretations of the map.
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⟨c.f , ...⟩c∈C, ⟨sto⟩o∈O\C⟨c.f ⟩c∈C ,∆t

Map

⟨c.p, c.δ, c.v , c.it , ...⟩c∈C Runtime
stc =
⟨c.p, c.δ, c.v , c.it , ...⟩

Vehicle c

Fig. 2: General ADS architecture

3.2 Assume-Guarantee for Safe Control Policies

We give below the principle of a safe control policy for vehicles, which respects
their allocated free space, applying assume-guarantee reasoning.

We consider the following two hypotheses. For a vehicle c, there exists a
function Bc ∶ R≥0 → R≥0 that gives the minimum braking distance c needs
to stop from speed v, in case of emergency. Furthermore, for a non-negative
distance f , let Aheadc(f) denote the ride consisting of the positions reachable
on the itinerary c.it from the current vehicle position c.p within distance f ,

formally Aheadc(f)
def
= {p′ ∈ Pos ∣ ∃δ ≤ f. c.p c.it[0,δ]

↝ p
′}.

The following definition specifies a safe control policy using assume-guarantee
reasoning on the components of the ADS architecture. We consider assume-
guarantee contracts on components defined as pairs of properties A/G specifying
respectively the input-output component behavior for a cycle, i.e., respectively,
what the component guarantees (G) provided its environment conforms to given
assumption (A).

Definition 1 (safe control policy). A control policy is safe if

– each vehicle c ∈ C respects the assume-guarantee contract:

0 ≤ c.v , Bc(c.v) ≤ c.f / 0 ≤ c.v
′
, 0 ≤ c.δ

′
, c.δ

′
+Bc(c.v ′) ≤ c.f ,

c.p
c.it[0,c.δ′]
↝ c.p

′
, c.it

′
= c.it[c.δ′,−]

– the Runtime respects the assume-guarantee contract:

∧c0 ≤ c.δ ≤ c.f , ⊎c Aheadc(c.f − c.δ) / ∧c∈Cc.f ′ ≥ c.f − c.δ, ⊎c∈C Aheadc(c.f ′)

The policy is the joint enforcement of safe speed policies for vehicles and
safe free space policies for the Runtime. Vehicle safe speed policies require that
if a vehicle can brake safely by moving forward within its allocated free space
at the beginning of a cycle, then it can adapt its speed moving forward within
this space. Runtime safe free space policies require that if the free spaces of the
vehicles are non-crossing at the beginning of a cycle, then it is possible to find
new non-crossing free spaces for the vehicles provided they move forward in their
allocated free space.

Theorem 1. Safe control policies preserve the following invariants:

– the speed is positive and compliant to the free space, for all vehicles, that is,
⋀c∈C 0 ≤ c.v ∧B(c.v) ≤ c.f ,
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– the free spaces are non-crossing, that is, ⨄c∈C Aheadc(c.f ).

Note that this theorem guarantees the safety of the coordination insofar
as the vehicles respecting their contracts remain in their allocated free spaces
which are non-crossing by construction. Nevertheless, the result leaves a lot of
freedom to vehicles and the Runtime to choose speeds and non-crossing free
spaces. In particular, two questions arise concerning these choices. The first
question is wether the system can reach states where no progress is possible.
One can imagine traffic jam situations, for example when vehicles do not have
enough space to move. The second question is whether free space choices can
be determined by traffic rules that actually enforce fairness in resolving conflicts
between vehicles. This question is discussed in detail in Section 5.

4 Speed Policies abiding by the Vehicle Contract

In this section, we show that it is possible for vehicles to compute speed policies
in accordance with their contract.

The behavior of each vehicle is defined by a controller, which given its current
speed and its free space, computes the displacement for ∆t so that it can safely
move in the free space. Such safe speed policies have been studied in [24,25].

We illustrate the principle of safe speed policy with respect to f considering
that each vehicle is equipped with a controller that receives a free space value and
adjusts its speed adequately. For the sake of simplicity, assume the controller can
select among three different constant acceleration values {−bmax, 0, amax} ∈ R
respectively, the negative value −bmax for decreasing, the zero value for main-
taining and the positive value amax for increasing the speed. At every cycle, the
controller will select the highest acceleration value for which the vehicle guaran-
tee holds as defined by its contract in Def. 1. Nonetheless, an exception applies
for the very particular case where the vehicle stops within the cycle, which cannot
be actually handled with constant acceleration.

The proposed speed policy defines the new speed v′ and displacement δ′ using
a region decomposition of the safe v×f space (that is, where v ≥ 0 and f ≥ B(v))
as follows:

v
′
, δ

′ def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, f if f ≥ B(v), f − v∆t < B(v), v − bmax∆t < 0

v − bmax∆t, v∆t − bmax∆t
2/2

if f ≥ B(v), f − v∆t < B(v), v − bmax∆t ≥ 0

v, v∆t if f − v∆t ≥ B(v), f − v∆t − amax∆t2/2 < B(v + amax∆t)
v + amax∆t, v∆t + amax∆t

2/2
if f − v∆t − amax∆t

2/2 ≥ B(v + amax∆t)
(1)

Intuitively, the regions are defined such that, when the corresponding acceler-
ation is constantly applied for ∆t time units, the guarantee on the vehicle is
provable given the assumptions and the region boundary conditions.
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Moreover, the vehicle position and the itinerary are updated according to

the travelled distance by taking c.p
′ such that c.p

c.it[0,c.δ′]
↝ c.p

′ and c.it
′
=

c.it[c.δ′,−]. Furthermore, the waiting time c.wt is updated bt taking c.wt ′
def
=

c.wt +∆t if c.v = c.v ′ = 0 and c.wt ′
def
= 0 otherwise.

Proposition 1. The region-based speed policy respects the safety contract for
vehicles if the braking function is B(v) = v2/2bmax.

Note that the speed policy works independently of the value of the parameter
∆t, which is subject only to implementation constraints, e.g., it must be large
enough to allow the controlled electromechanical system to realize the desired
effect. A large ∆t may imply low responsiveness to changes and jerky motion,
but will never compromise the safety of the system.

The proposed implementation of the speed policy is "greedy" in the sense
that it applies maximum acceleration to move as fast as possible in the available
space. We could have "lazy" policies that do not move as fast as possible, and
simply extend the travel time. We have shown in [24] that the region-based speed
policy approaches the optimal safety policy, i.e., the one that gives the shortest
travel time, when we refine the choice of acceleration and deceleration rates in
the interval [−bmax, amax].

5 Free Space Policies implied by Traffic Rules

In this section, we study free space safety policies for a given set of global system
properties describing traffic rules. We formalize traffic rules as a class of linear
temporal logic formulas and provide a method for computing free space values
for vehicles that allow them to meet a given set of traffic rules.

5.1 Writing Specifications of Traffic Rules

Given a map G and a set of objects O, we specify traffic rules as formulas of a
linear time logic of the following form, where □ is the always time modality and
N is the next time modality:

□ ∀c1. ∀o2...∀ok. φ(c1, o2, . . . , ok) ⟹ N ψ(c1, o2, . . . , ok) (2)

A rule says that for any run of the system, the satisfaction of the precondition
φ implies that the postcondition ψ holds at the next state. Both φ and ψ are
boolean combinations of state predicates as defined below. Furthermore, we as-
sume that ψ constrains the speed of a single vehicle c1 for which the property is
applicable, and which we call for convenience the ego vehicle.

The rules involve state predicates φ in the form of first-order assertions built
from variables and object attributes (denoting map positions, segments, reals,
etc) using available primitives on map positions (e.g., rides ↝ , edge rides
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−→ , distance d, equality =), on segments (e.g., concatenation and subsegment
extraction), in addition to real arithmetic and boolean operators.

Moreover, we define auxiliary non-primitive location and itinerary predicates
proven useful for the expression of traffic rules. For a vehicle c ∈ C and x either
an object o ∈ O, a vertex u or an edge e of the map, we define the predicates
c@x (c is at x), c −→ x (c meets x along the same edge), c↝ x (c meets x) as in
Table 1. Furthermore, for a vehicle c ∈ C and non-negative δ let c.p ⊕c δ denote
the future position of c after traveling distance δ, that is, either c.p if δ = 0 or the

position p′ such that c.p
c.it[0,δ]
↝ p

′. We extend ⊕c to arbitrary future positions of
c by taking (c.p ⊕c δ)⊕c δ′

def
= c.p ⊕c (δ + δ′) and we consider the total ordering

≤c defined as c.p ⊕c δ ≤c c.p ⊕c δ
′ if and only if δ ≤ δ′.

c@x c −→ x c↝ x

x = o c.p = o.p ∃δ. c.p
c.it[0,δ]
−−−−−→ o.p ∃δ. c.p

c.it[0,δ]
↝ o.p

x = u c.p = u ∃δ. c.p
c.it[0,δ]
−−−−−→ u ∃δ. c.p

c.it[0,δ]
↝ u

x = e ∃a. c.p = (e, a) ∃δ. ∃a > 0. c.p
c.it[0,δ]
−−−−−→ •

e∧ ∃δ. ∃a > 0. c.p
c.it[0,δ]
↝

•
e∧

c.p
c.it[0,δ+a]
↝ (e, a) c.p

c.it[0,δ+a]
↝ (e, a)

Table 1: Location and itinerary predicates.

We define the semantics of state predicates φ in the usual way, by providing a
satisfaction relation σ, st ⊢ φ, where σ is an assignment of free variables of φ and
st is a system state. A complete formal definition can be found in [5]. The seman-
tics of rules is defined on pairs σ, [st(ti)]i≥0 consisting of a function σ assigning
objects instances to object variables of the formulas and a run [st(ti)]i≥0 for a
finite set of objects O. For initial state st(t0) we define runs as sequences of con-
secutive states [st(ti)]i≥0 obtained along the cyclic ADS execution as described
in section 3.1 and parameterized by the sequence of time points ti

def
= t0+ i ⋅∆t,

that is, equal to the time for reaching the ith system state.
We provide examples of traffic rules in Table 2. We restrict ourselves to safety

rules that characterize boundary conditions that should not be violated by the
driver controlling the vehicle speed. Therefore, the preconditions characterize po-
tential conflict situations occurring at intersections as well as other constraints
implied by the presence of obstacles or speed rules, e.g., traffic lights or speed
limit signals. The preconditions may involve various itinerary and location pred-
icates and constraints on the speed of the ego vehicle. Moreover, the latter are
limited to constraints maintained by the vehicle and involving braking functions
in the form Bc(c.v) # k where k is a distance with respect to a reference position
on the map and # is a relational symbol # ∈ {<,≤,=,≥,>}. Furthermore, the
postconditions involve two types of constraints on the speed of the ego vehicle:
either speed regulation constraints that limit the distance to full stop, that is
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1 enforcing safety distance between following vehicles c1 and c2:
□ ∀c1. ∀c2. c1 ↝ c2 ⟹ N Bc1(c1.v) ≤ d(c1.p, c2.p)

2 coordination within all-way-stop junctions:
(i) safe braking of vehicle c1 approaching a stop so1

□ ∀c1. ∀so1. c1 −→ so1 ⟹ N Bc1(c1.v) ≤ d(c1.p, so1.p)
(ii) vehicle c1 obeys a stop sign when another vehicle c2 crosses the junction

□ ∀c1. ∀so1. ∀c2. c1@so1 ∧ c1.v = 0 ∧ c2.v > 0 ∧ c1.p � c2.p ⟹ N c1.v = 0
(iii) if two vehicles c1, c2 are waiting before the respective stops so1, so2

and c2 waited longer than c1 then c1 has to stay stopped
□ ∀c1. ∀so1. ∀c2. ∀so2. c1@so1 ∧ c1.v = 0 ∧ c2@so2 ∧ c2.v = 0 ∧

c1.p � c2.p ∧ c1.wt < c2.wt ⟹ N c1.v = 0
(iv) if two vehicles c1, c2 are waiting before the respective stops so1, so2 the same

amount of time and c2 is at an entry with higher priority then c1 has to stay stopped
□ ∀c1. ∀so1. ∀c2. ∀so2. c1@so1 ∧ c1.v = 0 ∧ c2@so2 ∧ c2.v = 0 ∧

c1.p � c2.p ∧ c1.wt = c2.wt ∧ so1.p ≺j so2.p ⟹ N c1.v = 0

3 coordination using traffic-lights:
if vehicle c1 meets a red traffic light lt1, it will remain in safe distance
□ ∀c1. ∀lt1. c1 −→ lt1 ∧ lt1.color = red ∧Bc1(c1.v) ≤ d(c1.p, lt1.p)

⟹ N Bc1(c1.v) ≤ d(c1.p, lt1.p)
4 priority-based coordination of two vehicles c1 and c2 whose itineraries

meet at merger vertex u:
(i) if c2 cannot stop at u then c1 must give way

□ ∀c1. ∀c2. ∀u. c1 −→ u ∧Bc1(c1.v) ≤ d(c1.p, u) ∧
c2 −→ u ∧Bc2(c2.v) > d(c2.p, u) ⟹ N Bc1(c1.v) ≤ d(c1.p, u)

(ii) if c1, c2 are reaching u and c1 has less priority than c2 then c1 must give way
□ ∀c1. ∀c2. ∀u. c1 −→ u ∧Bc1(c1.v) = d(c1.p, u) ∧ c1.p ≺u c2.p ∧

c2 −→ u ∧Bc2(c2.v) = d(c2.p, u) ⟹ N Bc1(c1.v) ≤ d(c1.p, u)
5 enforcing speed limits for vehicle c1:
(i) if c1 is traveling in an edge e then its speed should be lower than the speed limit

□ ∀c1. ∀e. c1@e ⟹ N c1.v ≤ e.v
(ii) if c1 is approaching an edge e then it controls its speed so that it complies

with the speed limit at the entrance of e
□ ∀c1. ∀e. c1 −→ e ⟹ N Bc1(c1.v) ≤ d(c1.p,

•
e) +Bc1(e.v)

Table 2: Traffic rules

Bc1(c1.v), or speed limitation constraints requiring that the speed c1.v does not
exceed a given limit value.

Note the difference with other approaches using unrestricted linear temporal
logic, with "eventually" and "until" operators, to express traffic rules, e.g. [5]. We
have adopted the above restrictions because they closely characterize the vehicle
safety obligations in the proposed model. Furthermore, as we show below, traffic
rules of this form can be translated into free space rules that can reinforce the
policy managed by the Runtime.
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5.2 Deriving Free Space Rules from Traffic Rules

We show that we can derive from traffic rules limiting the speed of vehicles, rules
on free space variables controlled by the Runtime such that both the traffic rules
and the free space contract hold.

To express constraints on the free space variables c.f , we use, for vehicles c,
auxiliary limit position variables ⟨c.π⟩c∈C such that c.π = c.p ⊕c c.f . In other
words, the limit position c.π defines the position beyond which a vehicle should
not be according to its contract. It is clear that for given c.π and c.p, c.f is
defined as the distance from c.p to c.π.

Using the limit position variables ⟨c.π⟩c∈C we can transform structurally any
state formula φ into a free space formula φπ by replacing constraints on speeds
by induced constraints on limit positions as follows, for # ∈ {<,≤,=,≥,>} and
t a non-negative real constant:

Bc(c.v) # d(c.p, x) + t ↦ c.π #c x ⊕c t
c.v # t ↦ c.π #c c.p ⊕c Bc(t)

The first case concerns speed regulation constraints bounding the limit po-
sition c.π relatively to the position x of a fixed or moving obstacle ahead of c,
that is, a stop or traffic light sign, a vehicle, etc. The second case concerns speed
limitation constraints bounding c.π relatively to the current vehicle position c.p
and the allowed speed.

Given a state formula φ, let φπ be the derived formula obtained by replac-
ing constraints on speeds by constraints on limit positions. The following theo-
rem guarantees preservation between properties involving speed constraints and
properties involving limit positions, in relation to the vehicle speed contracts.

Theorem 2. The following equivalences hold:

(i) φ⟺ (∃ c.π)c φπ ∧⋀cBc(c.v) = d(c.p, c.π)
(ii)↙φ⟺ (∃ c.π)c φπ ∧⋀cBc(c.v) ≤ d(c.p, c.π)

where ↙φ is the speed-lower closure of φ, that is, φ where speed constraints of
the form c.v # t, Bc(c.v) # d(c.p, x)) + t for # ∈ {≥,>} are removed.

Re-calling Thm. 1 in section 3.2, notice that Bc(c.v) ≤ d(c.p, c.π) is enforced
by safe control policies as d(c.p, c.π) = c.f . Therefore, any property φ is preserved
through equivalence only when all the vehicles run with the maximal allowed
speed by the distance to their limit positions. Otherwise, the speed-lower closure
↙φ is preserved through equivalence, that is, only the upper bounds on speeds
as derived from corresponding bounds on limit positions.

Therefore, all traffic rules of form (2) which, for states satisfying the pre-
condition φ, constrain the speed of vehicle c1 at the next cycle according to
constraint ψ, are transformed into free space rules on limit positions of the form:

□ ∀c1.∀o2...∀ok. φπ(c1, o2, . . . , ok) ⟹ N ψπ(c1, o2, . . . , ok) (3)
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Notice that the postcondition ψπ is of the form c1.π ≤c1 bψ(c1, o2, . . . , ok) for a
position term bψ obtained by the transformation of ψ.

For example, the traffic rule 1 is transformed into the free space rule: □∀c1.∀c2.
c1 ↝ c2 ⟹ N c1.π ≤c1 c2.p. The traffic rule 4(ii) is transformed into the free
space rule: □∀c1. ∀c2. ∀u. c1 −→ u ∧ c2 −→ u ∧ c1.π = u ∧ c2.π = u ∧ c1.p ≺u

c2.p ⟹ N c1.π ≤c1 u.
We are now ready to define the Runtime free space policy based on traffic

rules. Let R denotes the set of traffic rules of interest e.g., the ones defined
in Table 2. For a current ADS state st and current limit positions and free
spaces ⟨c.π, c.f ⟩c∈C the policy computes new limit positions and new free spaces
⟨c.π′, c.f ′⟩c∈C as follows:

c.π
′ def
= min

≤c
{ σbψ ∣ [∀c1.∀o2...∀ok. φ ⟹ Nψ] ∈ R, σ[c/c1], st ⊢ φπ}

∪ { e• ∣ ∃a < ∣∣e∣∣, c.π = (e, a), c↝ e } (4)

c.f
′ def
= δ such that c.p ⊕c δ = c.π

′ (5)

Actually, that means computing for every vehicle c the new limit position c.π′

as the nearest position with respect to ≤c from two sets of bounds. The first
set contains the bounds σbψ computed for all the free space rules derived from
the traffic rules in R and applicable for c at the given state st. The second set
contains the endpoint e• of the edge e where the current limit position c.π is
located. It is needed to avoid "jumping" over e•, even though this is allowed by
application of the rules, as e• may be a merger node and should be considered
for solving potential conflicts. Then, we define the new free space c.f ′ as the
distance δ from the current position c.p to the new limit position c.π′ measured
along the itinerary of c.

Note that if the free space policy respects the assume-guarantee contract
of the Runtime from Def. 1 then it will moreover guarantees the satisfaction
of all traffic rules from R where both the pre- and the postcondition φ and
ψ are speed-lower closed formulas. First, conformance with respect to the con-
tract is needed to obtain the invariants Bc(c.v) ≤ c.f = d(c.p, c.π) according
to Thm. 1. Second, these invariants ensure preservation through equivalence
between speed-lower closed formula and derived formula on limit positions, ac-
cording to Thm. 2. Third, the free space policy ensures the satisfaction of the
derived free space rules, that is, by construction it chooses limit positions ensur-
ing postconditions ψπ hold whenever preconditions φπ hold. As these formulas
are preserved through equivalence, it leads to the satisfaction of the original
traffic rule.

5.3 Correctness with respect to the Free Space Contract

We prove correctness, that is, conformance with the assume-guarantee contract
of Def. 1, of the free space policy obtained by the application of the traffic
rules from Table. 2 excluding the one concerning traffic lights. For this rule we
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need additional assumptions taking into account the light functioning and the
behavior of the crossing vehicles.

First, we assume that the vehicle braking dynamics are compatible with the
speed limits associated with the map segments, that means:

– for any edge e leading to a junction (and henceforth a stop sign) or a merger
vertex holds Bc(e.v) ≤ ∣∣e∣∣, for any vehicle c ∈ C (see Figure 3(a)),

– for any consecutive edges e1, e2 holds Bc(e1.v) ≤ ∣∣e1∣∣ + Bc(e2.v), for any
vehicle c ∈ C (see Figure 3(b)) i.e., between two consecutive speed limit
changes, there is sufficient space to adapt the speed.

Bc(v)

e v

(a)
e1 e2v1 v2

Bc(v1) Bc(v2)

(b)

Fig. 3: Explaining restrictions on speed limits

Second, we call an ADS state ⟨sto⟩o∈O consistent with limit positions ⟨c.π⟩c∈C
iff for every vehicle c ∈ C:

– the limit position is ahead of the current vehicle position, that is, c.p ≤c c.π,
– there is no stop sign located strictly between the current vehicle position and

the limit position, that is, c.p <c so.p <c c.π does not hold for any stop so,
– the limit position conforms to the speed limits of the current edge (e1) and

next edge (e2) on the itinerary of c, that is, d(c.p, c.π) ≤ Bc(e1.v) and
d(c.p, c.π) ≤ d(c.p, •e2) +Bc(e2.v).

The next proposition states the correctness of the free space policy constructed
from traffic rules. The proof is provided in [6].

Proposition 2. The free space policy respects the safety contract for the Run-
time provided the initial ADS state is consistent with initial limit positions.

6 Discussion

The paper studies results for the correct by design coordination of ADS based
on assume-guarantee contacts. The coordination follows a two-step synchronous
interaction protocol between vehicles and a Runtime that, based on the distribu-
tion of vehicles on a map, computes the corresponding free spaces. A first result
characterizes safe control policies as the combination of assume-guarantee con-
tracts for vehicles and the Runtime. This result is then specialized by showing
how policies consistent with their respective contracts can be defined for vehicles
and the Runtime. In particular, for vehicles, we provide a principle for defining
speed policies and, for the Runtime, we compute free space policies that conform
to a set of traffic rules. The results are general and overcome the limitations of
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a posteriori verification. They can be applied to ADS involving a dynamically
changing number of vehicles. In addition, they rely on a general map-based en-
vironment model, which has been extensively studied in [5]. Control policies for
vehicles and the Runtime can be implemented efficiently. In particular, the speed
policy has been tested in various implementations [24,25] and found to be not
only safe, but also closer to the optimum when refining the space of possible
accelerations.

Note that the results can be extended with slight modifications to maps where
the segments are curves or regions to express traffic rules involving properties of
two-dimensional space, for example for passing maneuvers. For example, if we
consider region maps, their segments will be regions of constant width centered
on curves. Itineraries, free spaces and B(v) will be regions. The relationship
B(v) ≤ f becomes B(v) ⊆ f and the addition of lengths of segments should be
replaced by the disjoint union of the regions they represent. The speed control
policy will remain unchanged in principle but will need a function computing the
distance travelled in a region. Finally, the runtime verification of the disjointness
of free spaces may incur a computational cost depending on the accuracy of the
region representation.

The presented results provide a basis for promising developments in several
directions. One direction is to extend the results to achieve correctness by design
for general properties. We have shown that traffic rules, which are declarative
properties of vehicles, can be abstracted into safety constraints on free spaces.
In this way, we solved a simple synthesis problem by transforming a “static”
constraint on vehicle speed into a “dynamic” constraint on shared resources.

An interesting question that should be further investigated, is whether the
method can be extended to more general properties involving the joint obligation
of many vehicles. For example, we can require that for any pair of vehicles c1 and
c2 that are sufficiently close, the absolute value of the difference between their
speeds is less than a constant k, i.e., ∣c1.v − c2.v∣ ≤ k. This can be achieved by
a free space constraint that gives more free space to the vehicle with the lower
speed, assuming that vehicle speed policies are not "lazy" and use as soon as
possible the available space.

For general properties involving more than one vehicle, it seems realistic
to translate them directly into free space constraints that will enforce the con-
straints processed by the Runtime to ensure the safe control policy. In particular,
in addition to safety properties, we could devise free space policies that optimize
criteria such as road occupancy and uniform separation for a given group of
vehicles e.g. platoon systems studied in [9]. Note that achieving non-blocking
control is such a property that involves the application of occupancy criteria.

Another direction is to move from centralized to distributed coordination
with many runtimes. It seems possible to partition traffic rules according to the
geometric scope of their application, e.g., a specific runtime could control access
to each junction. Finally, the Runtime can be used as a monitor to verify that
the vehicle speed policies of an ADS are safe and respect the given traffic rules.
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