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True Symmetric Variational Formulations 
for Fluid-structure Interaction in Bounded 

Domains - Finite Element Results 

Roger Ohayon and Roger Valid 

Summary It is proposed to establish, in a systematic way, symmetric vari­
ational formulations for the problem of transient and modal analysis of 
bounded coupled fluid-structure linear systems, taking into account gravity 
and compressibility effects. The discretization of such variational principles by 
finite element procedures leads therefore to convenient symmetric matrix 
systems. 

This question of symmetry arises from the choice of displacement type for 
the structure and of stress (pressure) type for the fluid. If those types of
variables are simultaneously used, then modified complementary type vari­
ational procedures must be introduced in order to exhibit an adequate fluid­
structure coupling. 

This can be done by using two new variables, namely the free surface 
displacement (for gravity effects) and the displacement potential of the fluid 
(forlcompressibility effects), together with the displacement field in the struc­
ture and the pressure field in the fluid. In those cases, generalized added mass 
operators - independent of time and circular frequency- are introduced. A 
link with boundary integral equation is established. 

Numerical finite element results are presented in three cases: 

-incompressible hydroelastic modal analysis of a liquid propelled launch 
vehicle, 

-elasto-acoustic modal analysis of an incompressible structure containing 
a compressible gas, 

-elastic cylinder partially filled with liquid under gravity effects (comparison 
with experiments). 
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10.1 INTRODUCTION 

It is proposed to investigate the problem of transient and modal linear analysis 
of bounded coupled fluid-structure systems. Those systems are constituted by 
an elastic structure partially or completely filled with a compressible fluid, 
taking into account possible gravity and/ or capillary free surface effects. Such 
problems arise in aerospace, nuclear, mechanical, naval, and civil engineering 
areas [1-3]. Let us mention some typical examples. The prediction of the 
so-called Pogo instabilities occurring on launch vehicle configurations 
(launchers, the Space Shuttle) requires very complete and very accurate 
mathematical models in the calculation of the propellant tanks' hydroelastic 
modes. The response of liquid-filled nuclear reactors and dams to a seismic 
environment is also of prime importance. Supplementary gravity effects are 
fundamental in the linear dynamics of wing tip tanks of aircraft. Capillary 
effects arise in satellite tanks. Acoustoelasticity studies are important for the 
dynamics of solid propellant boosters and for the prediction of interior noise 
in aircraft, in automobile passenger compartments, etc. 

In all the above-mentioned problems, the physically coupled fluid-structure 
system may be considered as weakly dissipative for the range of frequencies 
of interest. Therefore, the computation of the state parameterf> of the associated 
conservative system is of prime importance, i.e. a system in which there is no 
damping in the structure and no viscosity in the fluid. It should be stressed 
that for bounded media, compressibility and gravity-free surface effects for 
the fluid are not a source of damping, as is the case for unbounded media 
(radiation phenomena)" [3-5]. 

Among the numerical methods which could be applied to these problems, 
the finite element method is a particularly efficient one in so far as one can 
use the standard algorithms for the resolution of a symmetric matrix system 
which usually exist in modular finite element codes. The symmetry of the 
matrices is a property connected with the existence of symmetric variational 
formulations of conservative linear systems of continuous media [6, 7]. 

A boundary integral method has been already developed for the computation 
of the vibration modes of an elastic tank partially filled with an incompressible 
liquid [8] and has recently been applied for a case having very simple geometry 
[9]. We must stress here that the extension and the application of boundary 
integral procedures to the case of a compressible fluid (acoustoelasticity prob­
lems) is very complicated due to the fact that it is impossible to obtain, for 
instance for modal analysis, an eigenvalue problem of the type [A- w2 B] x 
{X} = {O}, where w denotes the circular frequency, and {X} the state vari­
ables in the structure and on the fluid-structure boundary, even if A and B 
are non-symmetric. For transient response analysis, this means that higher time 
order terms rather than the second time derivative of {X} are present. In 
order to obtain a linear type of eigenvalue problem with respect to w2, one 

2



must absolutely keep the interior fluid state variable present in the final 
equations of the problem. This fact cancels the major advantage of boundary 
integral methods for this type of problem. 

That is why, for general dynamic fluid-structure problems in bounded 
domains, we preferred the finite element method, or, if possible, Ritz-type 
geometric and physical substructure procedures, in order to have general 
modular tools for complex geometries and involving complex physical 
phenomena. In fact, this idea implies that one must, as a first step, exhibit 
symmetric variational formulations as the system is linear and conservative. 
When, for instance, for harmonic vibrations, a Ritz-type procedure may be 
employed, the basis vector which spans the space where the solution belongs 
can be computed by using methods other than the finite element method, 
provided that they are more efficient, i.e. making use as far as possible of 
standard efficient algorithms. Each subsystem being also conservative, the 
method should take advantage of the fact that symmetric variational principles 
always exist. 

As in the analysis of linear conservative fluid-structure systems the fluid is 
irrotational, a scalar variable can be used, namely the pressure field in the 
fluid which represents a dual (stress) type of unknown field. When, in conjunc­
tion with this dual variable, a primal variable (the displacement field) is used 
for the elastic structure, the search of symmetric variational formulations is 
not a standard theoretical task. From a study of the literature, it seems that a 
solution of this problem has been very difficult to handle. This is the reason 
why many non-symmetric matrix systems are exhibited [10 , 11], together with 
some matrix manipulations in order to symmetrize these systems through some 
physical approximations [12-14 ], before applying direct finite element pro­
cedures [15] or modal techniques [13]. More recently, a symmetrization 
procedure [16] has been carried out, but this converts the conservative non­
symmetric formulation into one which is 'damped' and symmetric and therefore 
more costly for bounded domains. For aerospace engineering problems, we 
have succeeded in solving fluid-structure interaction problems through original 
sy'Pmetric variational formulations [17-23]. In the present paper, which con­
stitutes the detailed version of reference [22], we do not intend to discuss the 
effects of gravity on the wet boundaries of the elastic structure [17, 24] as 
they are generally negligible with respect to other energy contributions. Some 
of the methods proposed in references [17-22] have been adopted recently 
and applied to nuclear engineering problems [25]. 

Alternatively, the choice of primal-type variables both for the structure and 
the fluid leads to straightforward symmetric formulations, but difficulties arise 
due to the fact that the discretization of the kinematic admissible space 
introduces numerical drawbacks connected with the existence of an infinite­
dimensional space of zero eigenvalues. The corresponding formulation, which 
has been established ([19], Appendix 1) for acoustoelasticity problems, has 
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been applied for the same type of situations in reference [26], which incidentally 
contains a misleading interpretation of the symmetrization procedures of 
references [17-19] when using pressure-type variables for the fluid. Let 
us mention a penalty procedure to avoid the zero eigenvalue discretized 
space [27]. 

We present below a systematic approach to the general linear transient or 
modal fluid-structure problem in order to state symmetric variational formula­
tions. The main problem arises from the choice of unknown fields of displace­
ment or stress types for the structure and for the fluid. If those types of 
variables are used simultaneously, then modified complementary-type vari­
ational procedures must be generally introduced in order to exhibit an 
appropriate coupling. The various fluid-structure symmetric variational formu­
lations, which are considered here and which lead to symmetric matrix systems, 
can be applied through a direct finite element analysis or a substructuring type 
of analysis [18-22]. 

Numerical results are presented for three cases: (1) incompressible hydro­
elastic vibrations of a liquid-propelled launch vehicle; (2) acoustoelastic vibra­
tions of an incompressible axisymmetric elastic structure containing a com­
pressible gas; (3) a three-dimensional system constituted by an elastic structure 
containing a liquid, taking into account gravity effects, together with a com­
parison with experimental results. 

10.2 GENERAL LOCAL EQUATIONS OF THE BOUNDARY 
VALUE PROBLEM 

10.2.1 Notation 

Let us introduce the following notation (see Figure 10 . 1): 

w circular frequency 
n., n,, na domain occupied by the structure, the liquid, and the gas at equilibrium 

�1 (resp. �g) liquid (resp. gas)-structure interface at equilibrium 
r liquid-gas interface at equilibrium (or usual free surface if the effect of the 

gas is negligible) 
R 1> R2 principal curvature radii of r 

O,, D1, Rg unitary external normal to 0., Oi. 0g 
g gravity field constant 

p., P1> Pg mass density of the structure, the liquid, and the gas at equilibrium 
c1 (resp. c11) sound velocity in the liquid (resp. the gas) 

T surface tension constant 
U,, U1, UB displacement field of the structure, the liquid, and the gas material points, 

measured from equilibrium 
17 normal displacement of liquid-gas interface (or of the free surface), measured 

from equilibrium 
p., (resp. p8) unsteady pressure field in the liquid (resp. the gas) 

'Pi (resp. <p8) unsteady displacement potential field in the liquid (resp. the gas) 
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Elastic structure 

Figure 10.1 General coupled liquid-gas-structure 
system in an external gravity field environment. 

<r Cauchy stress tensor, function of u. through the constitutive law of hyper­
elastic medium 

E deformation tensor 
Tr trace symbol of an operator 

10.2.2 Physical and geometrical hypothesis

As already mentioned in the introduction, we are dealing with a conservative 
dynamic linear fluid-structure bounded system. Therefore the fluid (or respec­
tively the structure) is considered as inviscid (or respectively as elastic). We 
shall not include, for sake of brevity, pre-stress effects [28, 29] due to an 
internal gas (through a quasi-static approximation) and to the liquid's weight 
for pressurized tanks. As already mentioned in the introduction, small gravity 
effects on the fluid-structure interface are neglected [24 ]. 

We are concerned by small motion amplitudes around an equilibrium natural 
state at rest. Therefore the fluid may be considered as irrotational. 

10.2!3 General local equations of the boundary value problem

10.2.3.1 In the structure 

The dynamic equilibrium equation is given by 

;lu 
div u-p. -T =O in n •. 

at 

The stress-strain elastic law is given by 

u=Ae m n,. 

(10.1) 

(10.2) 
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Strain-displacement relationships are described by 

e == ! [grad U, +(grad U,) T]. 
10. 2. 3. 2  In the fluid 

(10 . 3) 

Let us consider, for instance, the general case of a stratified fluid medium 
constituted by a heavy liquid and a gas (Figure 10. 1). The liquid-gas interface 
is at equilibrium under an external gravity field (including capillary effects in 
the case of a low gravity environment). 

The dynamic equations in the fluid are a particular case of equation (10 . 1) 
with a spherical stress tensor (which takes a value opposite to that of the 
pressure). For the liquid, 

a2U1 
-grad PI- P1 at2

== 0 in O,. (10 . 4) 

For the gas, 

(10 . 5) 

The equation corresponding to (10 . 2) and (10 . 3), i. e. the relationship between 
the pressure and the displacement fields, is obtained through the classical 
barotropic law and continuity equation. For the liquid, 

(10 . 6) 

For the gas, 

pg=-pg c� div Ug in Og. (10 . 7) 

Furthermore, curl U1 == 0 and curl Ug == 0 .

10.2. 3. 3 Liquid-gas coupling equations 

The liquid-gas interface which is at equilibrium under the external gravity 
field may be considered as a surface medium which has its own constitutive 
Jaw, namely 

Pi- P8 = P1 g11 on f. (10.8) 
Remark 1 In the case of a low external gravity field, one must add the 
operator :£( 1/) corresponding to a membrane theory-type behaviour of the 
interface [20, 29, 30): 

:£( 17) = r[ -(;i + ;�) 71 +div grad 1J l (10.9�· 
div and grad being considered as surface operators in (10 . 9). 
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The constitutive law of the interface medium r becomes 

Pi - pg= Pig cos (ni, z)7/ +2?( 71). (10. 10 ) 

In this case, one must add an appropriate boundary condition on the boundary 
ilf of r which expresses the constant angle condition [1, 30]: 

il71 
-= a71 on ilf. (10. 11) ilv 

(a is a constant depending of the fluid-structure interface characteristics and 
II is the normal to af in the tangent plane to f at the Contact line between f 
and the tank. ) 

Special attention must be paid in order to couple the preceding theory of 
capillarity with a structure relevant to the three-dimensional elastic theory. 
This last problem is analogous to the classical problem of the matching of two 
media, one described by three-dimensional elasticity theory and the other by 
second gradient theory (plate, shell) [29]. We shall not describe this particular 
point in the present analysis. 

Remark 2 We have, for the sake of simplicity, considered here only the case 
where one of the two fluids is heavy; that is why only the contribution p1g71 
is present. 

The coupling equation (10 . 8) (or (10 .10 )  and (10 . 11) ) must be completed 
by the kinematic coupling equations: 

11 = U1 • n1 on r, 

11 = -Ug · ng on r. 

10. 2. 3. 4  Fluid-structure coupling equations 

Dynamic equilibrium equations on the interface are given by 

lTD, = p1n1 on Li, 

lTD, = pgng on Lg. 

Kinematic equations on the interface (inviscid fluid) are given by 

U,·n,=U1·n, on Li, 

U, · n,=Ug · n, on Lg. 

10. 2. 3. 5  Prescribed boundary and initial conditions 

(10 . 12) 

(10.13) 

(10. 14) 

(10. 15) 

(10.16) 

(10 . 17) 

Let us denote by S the boundary ilO- (L1u2g) of the structure. The system
is subjected to prescribed forces acting, for example, on a part S1 of S: 

lTD5=F(M,t) on S1• (10. 18) 
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The system is, for example; clamped on S2(S = S1uS2, S1nS2 = 0):
U,(M, t) = 0 ,  on S2, Vt, (10 .19) 

Remark 3 If S2 is free, no supplementary difficulties arise, the corresponding 
adjustment is left to the reader. 

One must finally add the appropriate initial Cauchy conditions. If the state 
field variables are of displacement types U. , U., U8, and Tf, we have U.(M, 0 ) ,
(aU,/at)(M, 0)  (with the respective subscripts land g) given; T/(M, O)  is also 
given. 

10.2.4 Dynamic variational formulation - Generalities 

Without entering into mathematical details [31-33], let us recall that, as is 
usual in the variational treatment of linear dynamic systems, the time t is 
considered as a parameter. 

A function /(M, t) is defined as the mapping M-+ f(M, t), using the same 
notation f for convenience; then we consider f: t-+ f(t). 

Let V be the product space of the admissible spaces in which belong each 
state variable field of the boundary value problem. V is independent of t and 
corresponds to the classical mathematical spaces introduced for the functional 
analysis studies of linear problems of the mechanics of continuous media. 

Let X(t) be an element of V. 
The dynamic variational formulation of a classical linear dynamic conserva­

tive system is settled as follows. Find a function t-+ X( t )  of [O, t']-+ V such that 

a (X(t), ax)+ b(X(t), 5X) == (F(t), 5X ) V5XE V, (10.20) 

plus initial conditions. The double dot, i. e. X, denotes the second derivative 
with respect to t and 5X, independent of t, is the usual test function. (The 
notation 5X is useful for the correlation with virtual principles concepts of 
mechanics [ 6, 7].) a ( · , · ) and b( · , · ) are two bilinear forms of V x V. The 
existence and uniqueness of a solution X(t) of (10 . 20 )  is closely connected 
with the properties of a(·,·) and b( ·, · ) .  

In particular, a( ·, · ) usually defines a scalar product on an appropriate space 
and is therefore symmetric, positive definite. b( ·, · ) must also be symmetric 
and must satisfy mathematical inequality properties such as coercivity. If, for 
example, X is a displacement field, then a ( ·,· ) corresponds to a so-called
kinetic bilinear operator on V x V, connected to the kinetic energy of the 
linear conservative system as a.( ·,· ) is symmetric; similarly, b( ·,·) corresponds
to a so-called potential bilinear operator on V x V, connected to the potential 
energy of the linear conservative system as b( · , ·) is symmetric. 
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If we are dealing with free harmonic vibrations, then (10.20 ) becomes an 
eigenvalue problem involving the same operators a(·,·) and b( · ,  · ) . The 
problem is then settled as follows. Find w2 E IR2 and XE V such that 

- w2a(X, 8X) + b(X, 8X) = 0 V8XE V. (10.21) 

With the same symmetry and mathematical property of the operators (com­
pactness), (10. 2.1) expresses the stationarity of the following Rayleigh quotient: 

or equivalently: 

R (X) = 
b(X, X) 
a(X, X)' 

XE v, 
8[-w2a(X,X)+b(X,X)]=O on V,

(10 . 22) 

V8XE V. (10.23) 

This leads to the classical min or min-max properties of eigenvalues [34, 35] 
together with the usual algebraic properties: a infinite numerable sequence of 
eigenvalues; to each eigenvalue is associated a finite-dimensional subspace 
(expected for the infinite eigenvalue); the direct sum of these subspaces 
constitutes the admissible space V. 
Remark 4 We should notice that, starting from (10 . 20 ) ,  and using Laplace 
transformation, we obtain a spectral problem (10. 21 ) . The connection between 
transient and harmonic formulations is straightforward. 

We must notice here that if the symmetry properties are not satisfied, all 
the preceding considerations are invalid; in particular the existence theorem 
in the transient case remains to be proved. Moreover, from the physical point 
of view, a linear c·onservative system which therefore possesses quadratic 
operators connected to energy concepts must lead to symmetric variational 
formulations. 

We stress the fact that if, as mentioned in Section 10.1, many non-symmetric 
fornlulations arose from the linear conservative dynamic fluid-structure problem, 
the situation is due to an unappropriate choice of state variable fields. This will 
be seen in the next sections when primal and dual types of variables are 
introduced. 

10.3 VARIATIONAL FORMULATIONS IN THE CASE OF 
RIGID, MOTIONLESS STRUCTURES 

10.3.1 Introduction 

In what follows we shall discuss primal (displacement) and various dual 
(pressure) variational formulations in the case of a rigid, motionless structure 
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in order to prepare the tools which will be needed in Section 10.4 for the 
elastic situation. 

In order, when dealing with dual field variables, to retrieve the usual physical 
situation of linear dynamic conservative system, i. e. with potential and kinetic 
bilinear operators corresponding to equations ( 10.20) or (10.21), we must 
introduce, in the general case, a so-called indirect dual-primal symmetric 
variational formulation. The word primal is employed because the liquid-gas 
interface (or the free surface) is described by a primal type field, namely the
normal displacement 1/ of the interface. 

For the sake of simplicity, we shall not consider capillary effects, but we 
shal1 show at the end of this section how the variational formulations may be 
modified accordingly. Moreover, we shall consider the standard modal situ­
ation, the forced transient case being easily recovered by replacing -w2 X by 
X (t)  and by introducing as a second member the linear form corresponding 
to the prescribed forces. 

By using the same notation for the state variable field and the corresponding 
modal amplitude, the equations of Section 10.2.3 may be given as follows: in 
the lkjuid, 

in the gas, 

-grad Pi+ p,w 2u, = 0 in nh 
p, = -p,c� div u, in n,;

-grad pg+ p8c./U8 = 0 in fi8, 

p8 = -pgc� div U8 in fi8• 

(10.24) 

(10.25) 

(10.26) 

(10.27) 

We can easily see that, as p1 and Pg are constant in n, and fig, (10.24) and 
(10.26) lead to the results curl U1=0 and curl Ug = 0. Furthermore, this
property comes from the fact that, together with the barotropic behaviour of 
the field, linearized motions around an equilibrium state at rest is considered 
here. 

The liquid-gas coupling equations may be written as fol1ows: 

p,-pg=p,g'YJ on r, 

'Y/ = u, . n, on r' 

'Y/ = -Ug. Dg on r.

The fluid-structure equations are given by

U1 • n1=0 on !.., 

Ug · n8=0 on !.8• 

(10.28) 

(10.29) 

(10.30) 

(10.31) 

(10.32) 
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10.3.2 Primal (displacement) symmetric variational formulation 

Let us consider the case in which three media are coupled together, each one 
being described by displacement-type variables Ui. fl, and U8. 

The interface medium can be viewed as a medium characterized by the 
constitutive law (10.28) leading to a potential energy without a kinetic energy 
due to an absence of mass (membrane or spring-type forces). The variational 
formulation - obviously symmetric - is consequently straightforward to 
establish. 

If V1 denotes the appropriate admissible space, i.e. 

v, = {fl, u., UglU1 . n1 =Oil:,, Ug . ng =Oil: •• 

fl = U1 · n1 lr, fl= -Ug · n8lr} , (10.33) 

then we may find the triplet (fl, U., U8) E  Vi, and w2E R+, such that

f p1c� div U, div c5U1 + f p,gfl l>71 
n, r 

+ f pgc� div Ug div l>Ug 
Og 

-w2[L, P1U1 · 8U,+ L. pgUg · l>Ug] = O V(871, l>U., l>Ug) E V1.

(10.34) 

Remark 5 From a mathematical point of view, U1 (respectively Ug) belongs
to H(div; !11) (respectively H(div; !1g), a space of square-summable functions 
with their divergence also square-summable. 1/ is only square-summable on r. 

Remark 6 From the discretization point of view, independently of the fact 
that the matrices are banded, one must deal with the existence of an infinite 
vector space corresponding to a zero eigenvalue and leading to spurious 
rotational modes (see reference [26], which exhibits numerical difficulties in 
a sin\plified case without gravity and with one acoustic medium, and the penalty
method of reference [27]). 

Remark 7 If the liquid is incompressible (div U1 = 0 and c1-+ oo), the constraint 

div U1 = 0 (10.35) 

must be added in V1. The discretization of such a constraint needs particular 
regularization-penalty techniques [36-38]. 

Remark 8 If gravity effects are negligible by comparison with other energy 
.contributions, one has to cancel the fr p1g71 871 contribution (by setting g = 0 
or using a constraint procedure existing in standard codes). 

11



Remark 9 In order to take into account capillary effects, one has to replace 
the potential bilinear operator Jr p1g11 S11 by the foJlowing, which is easily
derived from (10.10) and (10.11) after integrating by parts and applying 
surface-Green formulae: 

From a mathematical point of view, 71 and the surface gradient of 71 must be 
square-summable on r in the distribution sense. 

Remark 10 By using a dual variable for the fluid, the difficulties exhibited 
in Remark 6 can be circumvented. Using the scalar product in the sense of 
kinetic energy, U must be orthogonal to the zero-divergence space: 

LU· SU =O, 'tf SUE {SU I div c5U} � U =grad cp, curl U =O. 

10.3.3 Dual variational formulations 

In Section 10.3.2 the displacement equation for the fluid was obtained by 
using, for example, equation (10.25) in equation (10.24). In order to express 
(10.24) in terms of p1 only, one has, after dividing equation (10.24) by Pi. to 
apply the divergence operator to (10.24) and to take account of (10.25). 

In the liquid we obtain 

In the gas 

div (.!. grad Pi) + 
w 2

2 Pi = 0 in il1.Pi P1C1 

div (_.!_ grad pg) + 
w2

2 p8 = 0 in 08•Pg PsCg 
The liquid-gas coupling equation is given by 

p1- p8 = p1g71 on f.
From (10.24) and (10.29), we find 

From (10.26) and (10.30), 

1 ap1 
1/ =--2 - on r.

P1W dD1 

1 ap 
1/ = ---2 :La on r. 

PgW dDg 

(10.37) 

(10.38) 

(10.39) 

(10.40) 

(10.41) 
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The fluid-struc ture equations on �i and �g are 

apg=O "" on ""g· 
ang 

(10.42) 

(10.43) 

We have to couple three media, two of them being d esc ribed by dual variables -
namely the pressure field and the interface medium - by a primal displacement 
scalar variable. 

10.3.3.1 Dual-Primal direct symmetric variational formulation 

The corresponding dual-primal symmetric variational formulation can be easily 
obtained. 

If V2 denotes the appropriate admissible space, i.e.

V2 = {( 77, J1I, pg)/mathematical usual vector spaces},

then we must find the triplet { 77, J1I, pg} E V2, w2 E IR+ such that

f _!_ grad Pi · grad 8Pi + f _!_ grad Pg · grad 8pg
n,Pi n, Pg 

-w2[f �Pi 8pi+ f �Pg 8pg
n, Pi Ci 08 PgCg 

-L Pig118TJ + L Pis,.,+ L 8piTJ

-Lpg s,.,- L 8pg17 J =O V{8TJ, 8pi, 8pg}E V2• 

(10.44) 

(10.45) 

Renlark 11 From the mathematical point of view, T/ E L2(f)J1I(resp. pg) E
H1(01) (resp. H1(0g)). 

All the operators involved in (10.45) are symmetric, therefore, instead of 
(10.45), we can (see Section 10.24) find the triplet {71,J1I,pg}E V2, w2EIR+
such that 

s {f -2
1 

lgradpi l2+ f -2
1 

lgradpl-w2[J -2 l 2P�+ f -2 l 2P�n, P1 n, Pg n, P1C1 n, PgCg 

-� L p1g112+ L (J1I-pg)T/ ]} =0 V{871, 8pi, 8pg}E V2. (10.46) 
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We must stress here the fact that all the potential energy contributions of the 
fluid, namely 

are actually factors of w2
• This is not the usual situation.

Let us return to Section 10.2.4 and let us partially split a linear dynamic 
conservative system into two subsystems labelled by subscripts 1 and 2. 

If, separately, subsystem 1 is described through primal variable X1 and 
subsystem 2 is described through a dual variable X2, we have just seen (and 
this was readily observed from the method by which we obtained equation 
(10.37) from (10.24) and (10.25), which inverts the position of the kinetic 
and potential terms) that we have 

-w2a1(Xi. 8X1) + b1(X1> 8X1) = 0 in the domain (1), (10.47)

- w2 b2(X2, 8X2) + a2(X2, 8X2) = 0 in the domain (2), (10.48)

where a1 ( · ,  · ) and a2( · ,  · ) are the kinetic bilinear forms and b1 ( · ,  ·) and
b2( • , · ) are the potential bilinear forms.

Obviously these two subsystems cannot be matched by following the classical 
physical rule of adding the potential contributions of each susbsystem and the 
corresponding kinetic ones, through appropriate coupling terms, because a2( · , · )
does not possess the factor w2•

One has to make an exception if one of the two subsystems has only a 
kinetic or potential linear contribution, because there could be an artificial 
premultiplication by w2 (w � 0). This was the case in the preceding example 
because the liquid-gas interface has only one type of energy contribution: the 
potential one. That is why the matching was possible, but we have to notice 
that the potential energy contribution of the interface acts as a 'mass' contri­
bution. 

Remark 12 When we say that there is no possible matching it must be 
understood that no matching is possible in order to obtain symmetric bilinear 
forms, as it would be the case if one would add a1( · ,  · ) to a2( · ,  • ), as they
are separately symmetric. 

Remark 13 Without entering into details, the interface variable 11 could have 
been eliminated through the equation (10.39), with Pi� pg on f:

(10.49) 

and using ( 10.49) in ( 10.40) and (10.41). In fact, we have three representations 
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of the free surface energy: the primal one, 

(10.50) 

the primal-dual one, 

-i t P1g112+ L (pi- pg)T), (10.51) 

which is the Legendre-Fenchel [7] transform of (10.50); and the dual one, 

! f ( Pt - pg)2 
(10.52) 

2 r Pig

Remark 14 If capillary effects are taken into account, then in the formulation 
(10.45), the contribution Jr p1g17 817 must be replaced using the relation (10.36).
Of course, contrary to the situation in Remark 13 above, 17 cannot be elimi­
nated when using (10.10). The capillary constitutive law involves too complex 
a partial differential operator to allow us to exhibit a dual energy of the 
liquid-gas interface. 

10.3.3.2 Indirect dual-primal symmetric variational formulation. Introduction 
of a supplementary new state variable: the d isplacement field potential 

Taking into account the results of the analysis in Section 10.3.3.1, one can 
guess that the symmetric primal dual formulations cannot match, except for 
very particular cases, with a primal displacement formulation of an elastic 
structure, in order to obtain symmetric bilinear operators. 

(a) Local equations of the problem In order to recover (10.46), the right 
physical places of the kinetic and potential energies, we introduce an auxiliary 
field variable: the potential displacement rp1 (respectively rp8) in the liquid 
(res�ectively the gas).

We write (24) as follows: 

with 

Pi= P1W2<p1 in n1'
U1 =grad rp1 in !11. 

The same transformation holds for the gas. 

(10.53) 

(10.54) 

(10.55) 
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The equations introduced at the beginning of Section 3.3 are then given a 
follows: in the liquid , 

in the gas, 

iicp1 + 
p, 2 = 0 in n.,

P1C1 

Pi= p,w2cp1 in n,;

iicp8+ Pg
2 =O in flv

PgCg P8 = p8w2cpg in Og;

the liquid-gas coupling equations are 

acp, 
r, - = 77 on 

iln1 

� on r·= -77 ang , 

and the fluid-structure equations on �1 and �8 are 

�=O � on .... 8. 
ang 

(10.56) 

(10.57) 

(10.58) 

(10.59) 

(10.60) 

(10.61) 

(10.62) 

(10.63) 

(10.64) 

We shall present two equivalent symmetric variational formulations of the 
above equations. The first one is of mixed type and involves the five fields 
( cp., cp8, Ph pg, and 77 ). The second one, which is equivalent to the first one, 
involves only three fields, because we shall show that cp1 (respectively 'Pg) is 
an appropriate function of p1 (respectively p8) and 77 through generalized 
'added mass operators' concepts. 

(b) Mixed symmetric variational formulations The test function procedure 
applied to equations (10.56) (with 8cp1), (10.58) (with 8cp8), (10.57) (with 8JJi), 
(10.59) (with 8p8) , and (10.60) (with 877) leads to five symmetric field following 
variational formulation. 

If V3 denotes the appropriate admissible space, i.e. 

V3 = { 71, Pi. p8, <Pi. cp8lmathematical usual vector spaces}, (10.65) 
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then we have the problem of finding ( 77, Pi. pg, 'Pi. cpg) E V3, w2 E IR+ such that

f P18�1+ f Pg8�8+ f p1g71 871 - w2 [-J Pi grad 'P1 ·grad 8cp, 
n, p1C1 n, Pg.Cg r n, 

+ I Pi 8cp, 71 + f Pi 'Pi 871 + f 'Pi �Pi
+ f {jcpt, 

r r n, c, n, c, 

-f Pg grad 'Pg · grad 8cpg + f p8 8cpg 71 + f Pg'Pg 871 
n, r r 

(10.66) 

To give this problem in a more convenient manner, as all operators are 
symmetric, we need to find ( 71, Pi. Pr" 'Pi. 'Pg) E V3, w2 E IR+ such that

(10. 67) 

Remark 15 From the mathematical point of view, 1/ EL  2([), p1(respectively
pg) EL 2(01)(respectively L 2(0g) ), cp1(respectively 'Pg) EH 1 (01)(respectively
H1(flg)). 

Remark 16 p1 ;t; pg, cp,.,,: cp8 on r. If no gravity effects are taken into account,
then p1 =Psi but cp1 ;t; 'Pg on f. 

Reriiark 17 In (10 . 6  7) all the potential and kinetic energies of the system
are in the right physical places. For example 

I I p� 1 f p2 1 f 2 
- --2 +- �+- p,g71 2 o, p1c1 2 n, pgc8 2 I" is the sum of the three potential energies of the three media. We shall see in 

the next section that the quantity 

-�f p,jgradcp,l2+f P1<P111+f �P1'P1 
n, 01 n, c, 

represents the kinetic energy of the liquid and implies an added mass concept. 
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Remark 18 If capillary effects are taken into account, one must replace the 
potential energy Hr p1g712 using the relation (10.36), and therefore 1J E L2(r)
and grad 71 E (L2(r))2. 
Remark 19 Discretization by the finite element method The various symmetric 
operators involved in the symmetric formulation (10.66) leads to the following 
eigenvalue problem: 

{[� � i �
0 0 c 0 0 0 0 0 0 0 0 0 

(10.68) 

The matrices F1 are singular, of rank N -1; N is the number of degrees of 
freedom in cp1 (the same analysis holds for Fg)· It is easy to see that all the 'P1 
(respectively all the 'Pg) except one can be eliminated as a function of 17, p1 
(respectively of 71, pg) using a static standard condensation procedure applied 
to the mass supermatrix. The stiffness matrix remains unchanged but the 
resulting mass matrix can be interpreted as an added mass matrix operator. 
If gravity effects are neglected and if there is only one acoustic liquid medium 
with a free surface, then one must impose the usual condition on the free 
surface r: 

(10.69) 

The matrix F1 is not singular and all the cp1 variables can be eliminated as a 
function of p., 71 (the same for Fg)·

( c) Three field ( 71, p., p8) symmetric variational formulation through generalized 
add ed mass operators We shall define two auxiliary static problems, one for 
the liquid and one for the gas. We shall go into details for the liquid; the 
transposition to the gas being a question of notation. 

Let us consider the system given by (10.56), (10.61), and (10.63): 

Pl �cp1+--2 =O in n.,
P1C1 

ilcp1 = O  "" on ""· 
an1 

(10.68) 

We define cp1 as the solution of this static problem, where 71 and Pl are supposed 
temporarily known. 
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We need an existence condition of this Newman problem: 

(10.69) 

together with the uniqueness condition 

(10. 70) 

The mapping ( 17, p,) -+ <,01 is linear.
We can now define the kinetic energy of the liquid as a quadratic function 

of 1/ and p1 provided that they satisfy (10.69), and this represents the general­
ized added mass concept through the following extremal property (which gives 
the definition of the added mass operator M� ): 

(10.71) 

The proof is the same as in the theory of elasticity, when we search the value 
of the total potential energy for the solution [7, 39].

We define in the same manner the gas added mass, which represents the 
kinetic energy of the gas expressed as a quadratic function of pg and ri through 
the extremal property 

Mi([�s]. [�s]) =m�:x (- � L/g lgrad r,ol+ f Pg'Pg1/+ L. p;t) (10.72)

I 
under the existence condition

(10.73) 

( 10.74) 

H we look at the formulation (10.67), as commented on in Remark 1 7, we 
said that the quantity
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represents the kinetic energy of liquid. The proof has been given by the added 
mass operator concept defined above. 

If V4 denotes the appropriate admissible space, i.e. 

v4={PJ,Pv7Jlf P12+r 71 =0. f A+r 77=0} , oo.1s)
n, P1C1 Jr n1 P8Cg Jr 

then the three fields symmetric variational formulation is given by finding 
( [JJ, P&• 77) E V4, u/ E IR+ such that

(10.76) 

A way of discretizing M� and M� by finite element procedures is precisely 
to form the corresponding part of the mass matrix in (10.68) and to use a 
standard static condensation method which gives the discretized added mass 
operators. M� and M� operators are added through an assembly procedure 
on T/· 

10.4 VARIATIONAL FORMULATIONS IN THE CASE 
OF AN ELASTIC STRUCTURE 

10.4.1 Introduction 

If the structure is described by a primal displacement field, the only way to 
get a symmetric variational fluid-structure formulation (see Sections 10.2.4 
and 10.3.3.1) is to use the indirect dual-primal variational formulation of 
Section 10.3.3.2. It is, as already shown, the only one which exhibits the 
potential and kinetic energies of the fluid system at proper places for a 
symmetric coupling with a displacement representation of the structure. 

We stress here that if a dynamic dual formulation is used for the structure, 
then the direct dual fluid formulation represents the proper one (Section 
10.3.3.1). 

10.4.2 Local equations of the problem 

We shall write these equations taking account of the results of Section 10.3.3.2 
(as usual in the modal situation). In the struc ture, taking account of (10.1)­
(10.3), 

div cr(Us) + p5w2Us = 0 in fl5• (10.77) 
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In the liquid , we have the system (10.68): 

In the gas, 

Pi 6.1p1+--2 =0 in fli. P1C1 

i!<p1 
-= 1] on r, 
iln1 

il<p1 -=U · n1 on L1.
iln1 s 

�=-1] ilng 
on r,

ilcpg-;;----= u. · ng on �g­ong 

Liquid-gas dynamic coupling is given by 
2 2 r P1W <Pi - p8w <P8 = PigTJ on .

Fluid-structure coupling is given by 

u(U,)n. = p1w 2 cp1n1 on �1 

u(U.)n. = p8w
2cp8n8 on �g

ilcp1 
U ·n =- on �1 

• • an. 

i!<p U, · n, = ::.!:l! on �8• an, 

(10. 78) 

(10.79) 

(10.80) 

(10.81) 

(10.82) 

(10.83) 

(10.84) 

10.4.3 Symmetric variational formulation of the fluid-structure system 

Taking into account the results of Section 10.3.3.l concerning the coupling 
of two systems described by primal and dual variables, we have the four 
following systems: the structure (primal field), the gas (dual field), the liquid 
(dual field), the interface (primal field). 

In order to match the systems properly, keeping the displacement primal 
field for the structure, as seen before, the triple gas-interface-liquid must use 
the indirect dual-primal (for this triple) symmetric variational formulation of 
Section 10.3.3.2. It can be observed that all the formulations introduced in the rigid case are symmetric, but only one of them matches the primal 
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formulation of the fluid; a similar situation would arise if, for instance, one 
fluid were described by a primal field and the other by a dual field. 

As previously (see Sections 10.3.3.2(b) and (c)), we can easily derive a 
six-field variational formulation and a four-field equivalent variational formu­
lation through added mass operators. 

10.4.3.1 Mixed symmetric variational formulation 

The formulation is derived in a manner similar to that given in Section 
10.3.3.2(b) by taking into account the equations in the structure (i.e. (10.77)) 
multiplying by the test function 5U., and, after integrating by parts, using 
equations (10.81) and (10.82), and modifying accordingly the formulation 
(10.67) in order to take into account the following boundary conditions 
((10.83) and (10.84)): 

We can see that (10.67) is easily transformed into a new functional by adding 
the potential and kinetic contributions of the elastic structure, and by adding 
two contributions in the fluid in order to take into account the preceding 
boundary conditions. 

If V5 denotes the appropriate admissible space, i.e. V5 = { T/, Ph pg, 'Ph <p8,
u.lplus mathematical appropriate spaces, plus constraints on u. if any} then
the problem is to find (,,.,,/JI, pg, 'Ph 'Pv u.) E Vs, w2 E IR+ such that 

{ 1 f I pt f p2 1 i 2 5 -2 
Tr (a(U.)g'(U.)) + -2 -+ -2 

g 
2 +-2 PigT/ 

n, n1 P1C1 n8 P8C8 r 

-w2[(-�f P1lgrad <p1l2+J P1'P11J+f Pi�1+f P1'P1U. · n1) 
n, n1 n1 C ::i:, 

+ (-� f P8lgrad 'Pl + I Pg'PgT/ + J P��g+ f p8<p8Us · n8) 
� � � � 

+� L. P.lu.12 J} = o v(s,,.,, Bpi. 5pg, B<p1, 5<p8, su.) E Vs. (10.85) 

Remark 20 From the mathematical point of view U.E (H\fl.))3• 
Remark 21 In (10.85) all the potential and kinetic energies of the system 
are in the proper physical places. This equation clearly gives the sum of the 
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potential energies of the four media. We shall see in the next section that the 
quantity 

represents the kinetic energy of the fluid (here, for example, the liquid) and 
implies an added mass concept. 

Remark 22 As in the rigid case, cp1 can be eliminated as a function of 71, [Ji, Us · D1. 

Remark 23 The discretization by the finite element method is carried out 
by the same procedure as indicated in Remark 19. 

10.4.3.2 Four-field ( TJ, f>i, pg, U,) symmetric variational formulation through 
generalized added mass operators concepts 

The procedure is the same as in Section 10.3.3.2(c). Using (10. 78), we define 
'Pi as the solution of (10. 78) considered as a static problem, where TJ, Us· n1 
and p1 are supposed to be temporarily known. 

We need the existence condition of the following van Neumann problem, 

(10.86) 

together with the uniqueness condition 

(10.87) 

The added mass operator then satisfies the following extremal property: 

([ Pi ] [ Pi ]) =M� Tl , T/ , Us. n, u,. Di 

(10.88) 
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If v6 denotes the following appropriate admissible space, i.e. 

V6 = {p" pg, TJ, U. I f  1\ + f 71 +  f P1<.o1U, · n, = O;
n1P1C1 J r  l:1 

respectively subscript g} , 
then the four-field symmetric variational formulation is given by finding ([Ji,  pg, TJ, u.) E v6, w 2 E IR+, such that 

[ ( [ P1 J [ Pi J ) ( [ Pg J [ Ps J ) 
-w2 M� T/ , "1 + M1 "1 , T/ = O  

Us · D1 Us · D1 Us · Dg Us · Dg 

Remark 24 For transient responses, one has simply to replace 

by 

where 

2 
[ Pi J

- w "1 
u. · n, 

(10.89) 

is independent of time, in the bilinear forms of (10.89) and to add the lineai 
form corresponding to external forces. 

Remark 25 Equations (10.85) and (10.88) are greatly simplified if there is 
only a liquid (incompressible) without gravity free surface effects: p1 and T/ do 
not then appear in the formulation and (10.88) represents the classical added 
mass operator. 
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10.5 NUMERICAL RESULTS 

In the three following cases, the fluid-structure modules of the ONERA 
Structure Division research set of codes, ASTRONEF, are used. 

10.5.1 Incompressible hydroelastic vibrations of tbe liquid propelled 
launch vehicle Ariane (second stage flight) 

We present here the axisymmetric modes of the launcher. The added mass 
operators are computed separately for each tank. The total number of degrees 
of freedom is 380 (the dimension of the total matrix system before the added 
mass condensation procedure is 970). 

Hz 

50 

20 1:..--------

10 ...._.....___._�_,____._�,___.___._�_,____._�.__�r o/o 0 20 40 60 80 100 
Figure 10.2 Evolution of frequencies as a function of filling 

ratio ( r =  100% = empty) . 

Figure 10.2 represents the evolution of the frequencies as a function of the 
filling ratio. 

Figure 10.3 represents, for a half-empty configuration, the third stage being · lull, the axisymmetric modal shapes of the launcher.
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Figure 10.3 Modal shapes of the second stage flight of the launcher Ariane (filling ratio 50%). 1, Free surface displacement;  2, 3, structural displacement; 4, evoulution of the 
pressure along the axis of revolution. 
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/ 
Axis of revolution 

Incompressible 
elastic structure 

Compressible gas 

Plane of symmetry 

Figure 10.4 Gas-structure system of revolution in a 
meridian plane. 

10.5.2 Incompressible axisymmetric elastic structure containing a 

compressible gas 

The procedure consists of applying the symmetric formulation particularized 
to the problem of consideration through a dynamic substructure analysis [ 19] 
through a Ritz method. The basis functions are computed by a finite element 
method using the modes in a rigid cavity and the modes of the incompressible 
elastic structure in vacuo. The coupling reveals that the in vacuo structural 
moae takes 30% of the kinetic energy of the closed acoustic mode. 

Figures 10.4-10.6 give an illustration of the coupled eigenmodes. The 
computation of the incompressible in vacuo modes of the elastic structure 
involves special regularization techniques [40]. (In Figure 10.5, the diameter of the structure is 1 .5  m and the length is 3 m.) 

10.5.3 Elastic cylinder partially filled with liquid under gravity 

Figure 10. 7 represents the physical system (under transverse excitation) .  The 
length of the cylinder is 1. 730 m and the diameter is 0. 1 73 m. The main 
motivation of this study is the problem of the influence of sloshing in using tip tanks on the vibration modes of a wing. 
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Figure 10.5 Structural finite element mesh and fifth 
modal shape. 
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-Figure 10.6 Gas finite element mesh and fifth pressure modal 
shape. 
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Free 
surface 

Figure 10.7 Elastic cylinder partially filled with liquid. Cross-section 
of the three-dimensional isoparametric elements. 

Table 10.1 shows the very good accuracy between the experimental data 
[41] and the numerical results. 

10.6 GENERALIZATION: STRUCTURE-STRUCTURE 
INTERACTION 

Variational principles governing the problems of continuum mechanics, i.e. 
displacement, complementary energy, and mixed principles [6, 7] have not 
been applied, as far as we know, in vibration and transient responses mechanics as regards the coupling of these various variational principles to one another. 
But it might be interesting to divide a structure spatially into zones in which 
one principle would be privileged relative to another, in that it puts into play in each zone the most pertinent variables of the problem (Figure 10.8). This 

Table 10.1 Comparison between experimental and numerical frequencies (in hertz) for trans­
verse excitation ( rotation around X-axis) 

Half-filled cylinder Three-quarter-filled cylinder 

Relative error Relative error 
Numerical Experimental ( % )  Numerical Experimental ( % )  

1.970 1 . 962 0.4 2 . 1 64 2.220 2.5 
3.708 3.680 0.8 2.295 
4.948 4.002 3.900 2.6 

12.006 1 1 .76 2 . 1  4.807 4.890 1 .7 
5 . 692 
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Figure 10.8 Structure spljt into two subdomains. 

could be interesting for problems where the stresses present high gradients. 
The same problem of symmetrization occurs here as was the case_ in the 
fluid-structure problem, and involves a similar type of procedure, i.e. introduc­
tion of an auxiliary variable satisfying an auxiliary static problem [ 42, 43]. 
One could also obtain the benefit, for transient problems, of the so-called 
partitioned procedures [SJ which have been useful for infinite medium fluid­
structure interaction [ 44]. 

10.7 CONCLUSION 

A systematic approach has been presented for variational symmetric formula­
tions of conservative linear coupled fluid-structure bounded systems. The 
approach explains clearly why non-symmetric formulations in terms of dis­
placement potential or pressure have been found in the literature. Generaliz­
ation to problems of elasticity is under development [ 43]. This makes use of 
appropriate unknown fields in specified subdomains of a structure. Similar 
ideas lead to a posteriori error estimates [ 45]. Extension to non-linear problems 
of dynamic coupled bounded systems is an on-going open research area, for 
example for non-linear dynamic fluid-structure interaction in bounded media 
[46, 47]. 
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