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Abstract

The query of causality is of paramount importance in
biomedical data analysis: assessing the causal relation-
ships between the observed variables allows to improve
our understanding of the tackled medical condition and
better support decision-making. Torsade de Pointes (TdP)
is an extremely serious drug-induced cardiac side effect,
which can provoke ventricular fibrillation and lead to sud-
den death. TdP is related to abnormal repolarizations in
single cells, and the minimum set of ion channels needed to
correctly assess TdP risk is still an open question. Discov-
ering causal relations between drug-induced ionic chan-
nels’ perturbations could shed new light on the underlying
mechanisms leading to TdP, and drive variable selection
to improve TdP-risk assessment. In this work, we propose
to apply the causal discovery method ICA-Linear Non-
Gaussian Acyclic Model (ICA-LiNGAM) to uncover the re-
lations across the 7 ion channels identified by the Compre-
hensive in vitro Proarrhythmia Assay (CiPA) initiative as
potentially related to the induction of TdP: IKr, INa, INaL,
ICaL, IK1, IKs and Ito. The obtained Bayesian causal net-
work can be explored to infer the downstream impact of
the ionic currents in the drug’s safety label. We consider
109 drugs of known torsadogenic risk (51 unsafe) listed
by CredibleMeds. We identify IKr, INaL and ICaL as the
ones which directly affect TdP-risk assessment, and sug-
gest that INa perturbations could potentially have a high
impact on proarrhythmic risk induction. Our causality-
based results were further confirmed by independently per-
forming binary drug risk classification, which shows that
the combination of the 3 selected ions maximizes the clas-
sification accuracy and specificity, outperforming state-of-
the-art approaches based on alternative ion channel com-
binations.

1. Introduction

Identifying causal links between variables of importance
takes a leading position in facilitating stable inference and
making rational decisions in several areas, by overcoming
the bias induced through standard correlation-based statis-
tical and machine-learning approaches. For instance, in
medicine, understanding the causal relationship between
risk factors and disease can help develop effective preven-
tion and treatment strategies and prioritize the available in-
formation to improve risk assessment tools. Causal discov-
ery is a branch of causal research, whose aim is to learn the
cause-effect relationships of observational variables, typi-
cally through causal graphs. Several methods have been
proposed to learn such graphs, for instance by exploring
several assumptions on the independent causal function
representing the relation between each variable (or node)
and its parents’ nodes in the graph, or the independent
variable-specific noise term [1]. Among them, a classic
approach is provided by the linear non-Gaussian acyclic
model (LiNGAM) [2], which assumes that the causal re-
lations between variables are simply linear and their noise
term is non-Gaussian to enforce the identification of the
causal directions. An extension of the LiNGAM algo-
rithm, ICA-LiNGAM, further assumes that the observed
variables are not independent due to the presence of un-
observed or latent variables [3]. In ICA-LiNGAM, inde-
pendent component analysis (ICA, [4]) is used to separate
the observed variables into their independent components,
hence LiNGAM is applied.

Drug-induced torsade de pointes (TdP) is one of the
most frightening drugs’ side effects since it can trigger
ventricular fibrillation and ultimately lead to sudden death.
TdP is closely associated with abnormal repolarization,
hence by a prolongation of the QT interval. The hu-
man ether-à-go-go-related gene (hERG) is responsible for
the rapid component of the delayed rectifier current (IKr)
which is one of the major repolarizing currents in the heart
[5]. Proarrhythmic risk assessment of drugs is tradition-



ally based on the evaluation of the hERG channel and the
measure of the delayed ventricular repolarization on the
electrocardiogram (ECG), i.e. the QT interval prolonga-
tion [6]. This method can accurately classify high TdP-risk
drugs through a single analytical assessment considering a
unique ionic channel and exclusively focusing on ventric-
ular repolarization [7]. However, it has been observed (eg
[8]) that IKr blocking may be not sufficient to assess drug-
induced TdP risk and is prone to produce false positives.
Consequently, recent studies have been proposed to incor-
porate additional ion channels other than IKr for a more
reliable drug safety assessment [9–11]. Several ion chan-
nels’ combinations have been retained in the literature as
the most relevant to assess drug-induced TdP risk such as
IKr, ICaL, INa [9, 12] or IKr, ICaL, INaL, and IKs [10].

In this work, we propose to use the ICA-LiNGAM
causal discovery approach for upstream ion channels’ se-
lection, to improve TdP risk assessment. The rest of the
paper is organized as follows: in Section 2, we introduce
the causal discovery algorithm employed in this work and
the considered drug data-set. In Section 3, we present
the results obtained for uncovering the relationships be-
tween the ion channels and the binary drugs’ label as well
as their straightforward applicability for the classification
task. Section 4 provides our conclusions and discussion of
future directions for the presented work.

2. Materials and method

2.1. Drugs data-set

A total of 109 drugs from CredibleMeds [13] with
known torsadogenic risk (37 with known risk, 14 with pos-
sible risk, 13 with conditional risk and 45 with no proven
risk) were used in this study. More details about the data
set are available in [10] and the supplementary material
herein. In this work, we consider a binary classification
task labeling drugs of confirmed or possible TdP-risk as
unsafe, and drugs with conditionally or no proven TdP risk
as safe.

For every drug, we consider two pharmacological data:
the IC50 for each of the seven ionic currents addressed
by the CiPA initiative, and the effective free therapeutic
plasma concentration (EFTPC), defined as the drug con-
centration in the plasma required to produce the desired
therapeutic effect in the body. As input of the causal al-
gorithm, we use the ion channels blocked fraction, here
denoted by BfIon:

BfIon :=

[
1 +

(
IC50Ion
EFTPC

)h
]−1

, (1)

where h denotes the Hill coefficient, the number of drug
molecules assumed to be sufficient to block a ion channel.

2.2. ICA-LiNGAM causal discovery algo-
rithm

ICA-LiNGAM [3] is a function-based causal discovery
algorithm [14], which extends the Linear Non-Gaussian
Additive Model (LiNGAM) [2]. LiNGAM assumes that
the causal relations between observed variables can be rep-
resented by a non-Gaussian linear acyclic model, i.e. a
directed acyclic graph (DAG) [15] where the causal func-
tions between each variable and its parents’ nodes are lin-
ear, and the error term follows a non-Gaussian distribu-
tion. Let us denote by X = {xi, 1 ≤ i ≤ n} the set
of observed variables: we can encode the DAG structure
through its adjacency matrix B = {bij}, where bij repre-
sents the strength of the connection between the variables
xi and xj . The matrix B could be permuted by simultane-
ous permutations of equal rows and columns to be strictly
lower triangular, in accordance with the acyclicity assump-
tion. Finally, denoting by Pai the set of parents nodes of
xi (i.e. the nodes who causally precede xi), the generating
process for variable xi ∈ X writes:

xi =
∑

xj∈Pai

bijxj + ei, (2)

where ei ∈ E denotes a centered non-Gaussian noise with
non-zero variance. In a matrix form, we can rewrite Equa-
tion (2) as follows:

X = (I−B)−1E, (3)

I being the identity matrix. In this work, we consider the
ICA-LiNGAM method, an extension of LiNGAM based
on the assumption that observed variables may be depen-
dent due to the presence of unobserved or latent variables
[3]. Indeed, Equation (3) defines the independent com-
ponent analysis model since the noise terms ei are inde-
pendent and non-Gaussian. ICA [4] is used estimate the
mixing matrix A = (I − B)−1. Further, a set of permu-
tations and scaling of the obtained independent parameters
are performed to estimate the causal order k and the adja-
cency matrix as well. The ICA-LiNGAM steps are sum-
marized in Algorithm 1.

3. Results

In Figure 1 we show the causal graph obtained by ap-
plying ICA-LiNGAM to the ion channels blocked frac-
tions, for the seven considered ionic currents that have
been proven to be potential for TdP induction: IKr, INa,
INaL, ICaL, IK1, IKs and Ito. We introduce an extra Label
node to investigate the relations of the blockade parameters
with the known proarrhythmic risk. We used 5-fold cross-
validation over the 109 drugs, and the final graph repre-
sented in Figure 1 accounts for the occurrences of causal



Algorithm 1 ICA-LiNGAM
Input: Data matrix X
Output: B̃, estimation of B (Equation (3))
1. Given X, use ICA to obtain the decomposition X =
AS, where S contains the independent components. De-
fine W := A−1.
2. Compute the matrix W̃, the unique permutation of W
without any leading diagonal zero.
3. Compute W̃′, which corresponds to W̃ after dividing
each row by its corresponding diagonal element.
4. Compute an estimation B̂ of B := I− W̃′.
5. Estimate the causal order or the parents variables for
each variable xi ∈ X by finding the permutation matrix
P̃ of B̂ such that B̃ := P̃B̂P̃T is as close as possible to
a strictly lower triangular structure. This can be measured
using

∑
i≤j B̃

2
ij .

6. Return the permuted matrix B̃.

arrows identified in each fold. One can see that the Kr
channel is systemically identified as a direct cause leading
to the drug label, which is directly caused as well by CaL
and NaL ionic currents. Despite the fact that channel Na
is not affecting the node label directly, it still plays an im-
portant role since it is causally related to Kr, CaL, and
NaL channels.
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CaL
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Figure 1: Causal graph generated by ICA-LiNGAM, per-
forming 5-fold cross-validation. The arrows’ thickness
represents the number of occurrences of the causal arrows
over the 5 splits.

Next, we perform an independent binary classification
of the 109 drugs used for this study. In particular, we used
two classical machine learning classifiers: RandomForest
and K-Nearest-Neighbors, whose prescriptions are finally
combined through a majority voting classifier [16]. A 5-
fold cross-validation was performed as well for the classi-
fication task.

In Figure 2 we present the accuracy and speci-

ficity scores for the ion channels combinations re-
vealed by the obtained causal graph (Figure 1), start-
ing from the most stably identified parent of the la-
bel node Kr, up to its farthest ancestors. The high-
est accuracy levels are achieved by the two combinations
(Kr,CaL,NaL) and (Kr,CaL,NaL,Na). For the ion-
combination (Kr,CaL,NaL) we obtained a mean ac-
curacy level achieving 93.59%, whereas the combination
(Kr,CaL,NaL,Na) allows to reach a mean accuracy of
92.68%.
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Figure 2: Accuracy and specificity levels of drug’s safety
classification based on the combinations of ions as sug-
gested by the ICA-LiNGAM algorithm (Figure 1) using
the voting classifier with RandomForest and K-Nearest-
Neighbors. The white dots correspond to the mean values
and the numerical values plotted over each box represent
the median.

Furthermore, our causality-based classification results
show a high mean specificity value reaching 94.70% for
(Kr,CaL,NaL). There is no further improvement be-
yond these combinations, indicating that the causal graph
has been effective in identifying the main parameters
which directly inform on the drug safety classification,
namely (Kr,CaL,NaL).

Table 1 summarizes the drugs safety classification per-
formance of our causally-based method with respect to
some sate-of-the-art methods [9,12]. Our ion-combination
selection shows the best mean AUC and specificity scores,
i.e. 0.94 and 94.7% respectively, outperforming the other
methods. These results emphasize the importance of tak-



ing into consideration ion channels CaL and NaL in ad-
dition to Kr to improve drug induced TdP-risk classifica-
tion.

Ion combination AUC Acc. Sens. Spec. Ref.
Kr,CaL,Na 0.91 90.9% 88% 87% [9]
Kr,CaL,Na NA 87% 73% 89% [12]
Kr,CaL,NaL 0.94 93.59% 92% 94.7% Our method

Table 1: Mean values of the performance (AUC, accuracy,
sensitivity and specificity) of our causality-based classifi-
cation procedure compared to some state-of-the-art meth-
ods which use ion channels for proarrythmic risk classifi-
cation.

4. Conclusion

The study presented here highlights the importance of
using causal discovery methods to infer ion channels se-
lection for the drug-induced TdP risk. The obtained results
suggest that IKr, ICaL and INaL are the most critical ions
to be considered for TdP risk assessment. These results
are consistent with previous works (e.g., [10]) where the
authors showed the crucial role of these ions in the com-
putation of in silico arrhythmogenic biomarkers proposed
for TdP risk assessment. In addition, the proposed causal
approach can bring valuable insights concerning the down-
stream effects of perturbation of other ionic channels, and
the obtained causal graph can further be deployed to in-
fer the safety of new compounds. The current study has
the potential to expand its scope by incorporating addi-
tional biological variables such as action potential [17], or
in-silico biomarkers proposed in the literature [10]. This
would significantly aid in selecting parameters prior to
simulations, resulting in reduced computational time and
a more reliable and rationale variable selection.
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