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Abstract

We introduce a novel self-attention mechanism, which we call CSA (Chromatic Self-Attention),
which extends the notion of attention scores to attention filters, independently modulating the
feature channels. We showcase CSA in a fully-attentional graph Transformer CGT (Chromatic
Graph Transformer) which integrates both graph structural information and edge features,
completely bypassing the need for local message-passing components. Our method flexibly
encodes graph structure through node-node interactions, by enriching the original edge
features with a relative positional encoding scheme. We propose a new scheme based on
random walks that encodes both structural and positional information, and show how to
incorporate higher-order topological information, such as rings in molecular graphs. Our
approach achieves state-of-the-art results on the ZINC benchmark dataset, while providing a
flexible framework for encoding graph structure and incorporating higher-order topology.

1 Introduction

The field of graph representation learning and graph-structured data has seen significant growth and maturity
in recent years, with successful applications in a wide range of domains such as pharmaceutics, drug discovery
Gaudelet et al. (2021), recommender systems Ying et al. (2018), or navigation systems Derrow-Pinion et al.
(2021). Key to these advances has been the success of graph neural networks (GNNs), which up until 2021
took mostly the form of local message-passing neural networks (MPNNs). In addition, the field has benefited
from the development of a flurry of high-quality benchmark datasets Dwivedi et al. (2020); Hu et al. (2020;
2021); Dwivedi et al. (2022b).

Local MPNNs have been known to suffer from limitations such as over-smoothing Oono & Suzuki (2020),
bottlenecks in information propagation Alon & Yahav (2021) and limited expressiveness Xu et al. (2019);
Morris et al. (2021). This issue is alleviated by (i) adding positional or structural encodings to node features
Bouritsas et al. (2020); Abboud et al. (2021); Dwivedi et al. (2022a) and (ii) softly decoupling the message
passing flow from the graph structure, by enhancing the graph with virtual nodes or higher order structures
– meaningful ones such as rings for molecules Fey et al. (2020); Bodnar et al. (2021a), or simply random
subgraphs Zhao et al. (2022), leading to forms of hierarchical message-passing.
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Another way to overcome these limitations is a whole avenue of work on graph transformers (GT) Ying et al.
(2021); Mialon et al. (2021); Kreuzer et al. (2021); Park et al. (2022); Hussain et al. (2022); Rampášek et al.
(2022). Global attention GTs perform dense message-passing, where all nodes communicate with each other.
Recently these have surpassed MPNNs on large-scale datasets Ying et al. (2021); Park et al. (2022); Hussain
et al. (2022); Rampášek et al. (2022). However they are not yet competitive on smaller datasets and tasks
that are highly dependent on local substructures Kreuzer et al. (2021); Rampášek et al. (2022). In this work,
we develop a novel self-attention mechanism which – when coupled with expressive node interaction features –
are competitive on benchmark datasets of all scales.

The output of the standard Transformer self-attention mechanism Vaswani et al. (2017) is invariant to
permutations. This issue is mostly solved for sequences by concatenating positional encodings to the element
features. The natural equivalent for graphs are positional encodings based on the eigenvectors of the graph
Laplacian Dwivedi et al. (2020); Kreuzer et al. (2021). Albeit theoretically justified, in practice they are
outperformed by other structural encodings specially tailored for graphs Dwivedi et al. (2022a). Furthermore,
even state-of-the-art node-wise positional encodings alone are not enough to bridge the performance gap
between GTs and MPNNs Rampášek et al. (2022). Furthermore edge features – which describe semantic
relationships between nodes, such as the type of chemical bond in molecules – can be essential for valid graph
representations, yet there is no standard or clear-cut way to incorporate them in GTs. In this work we give
an answer the question:

How to expressively incorporate both graph structural information and edge features in graph Transformers?

Some recent GTs delegate this task to a local MPNN module Wu et al. (2021); Chen et al. (2022); Rampášek
et al. (2022), but otherwise all standalone GTs directly bias the attention matrix with relative positional
encodings Shaw et al. (2018) of different natures, engineering in both edge features and the adjacency matrix.
We propose a unifying framework for the self-attention layer that flexibly subsumes most of the GT-flavors
aforementioned.

Contributions :

• We enrich this framework by introducing Chromatic (or Channel-wise) Self-Attention (CSA): selectively
modulating message channels, damping or highlighting them based on the relative positions of two
nodes.

• A novel relative positional encoding scheme for graphs, based on random walks. We inject them in
CSA and reach state-of-the-art results on several graph benchmarks.

• We showcase the generality of our framework by seamlessly integrating higher-order graph topological
features such as rings. This augmented version CSA-rings greatly improves the state-of-the-art on the
ZINC molecular dataset.

We show in rigorous ablation study on a set of graph benchmarks the added benefits of our proposed methods.

2 Setting and Related Work

2.1 Graph neural networks

Regular graph neural networks (GNNs) consider a graph as a set of node features X ∈ RNnodes×d, an
adjacency matrix A ∈ {0; 1}Nnodes×Nnodes and (optionally) a set of edge features E ∈ RNedges×d. The
information contained in the adjacency matrix A describes the connections between nodes and is henceforth
referred to as the graph structure.

GNNs node representations h (initialized by h(0) = X) are iteratively updated in layers, by receiving and
aggregating messages M from other nodes. The edge features can also be updated, which we do not write
here.

h
(`+1)
i ← AGGj∈N (i)

{
M
(
h

(`)
j , eij

)}
. (1)
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On the one hand, in local message passing networks (local-MPNNs) the aggregation spans only the neighbors
j of node i. The types of local-MPNNs – Kipf & Welling (2017); Bresson & Laurent (2017); Corso et al.
(2020) to cite just a few of the most popular variants – mostly differ on how the aggregation is performed. On
the other hand, Graph Transformers (GTs), which can be interpreted as dense MPNNs, aggregate messages
from all nodes together.

2.2 Transformer Architecture

In vanilla transformers, messages are linear transformations of node representations – the node values V –,
and the aggregation is a simple weighted sum:

hi ← hi +
Nnodes∑
j=1

ã(i, j)Vj . (2)

The coefficients in this weighted sum, the attention scores ã(i, j) ∈ [0, 1], are obtained by a softmax
normalization such that ã(i, j) = a(i, j)/

∑
k a(i, k) with

a(i, j) = exp
(

1√
d
Qi ·Kj

)
. (3)

From now on, we omit the normalization term 1√
d
. Q = WQh; K = WKh; V = WV h are commonly named

the query, key and value matrices, respectively. In the multi-head setting, Nheads separated attention scores
are computed, modulating the values V by blocks of size d/Nheads.

In this basic formulation, the update rule is invariant to permutations in the input nodes, and in fact oblivious
to the graph structure and edge features Eij . It is therefore crucial to include these, either by encoding and
injecting them in the node features, or by tweaking the update rule.

2.3 Encoding graph structure

In this section, we give a brief overview of existing methods to encode graph structure and edge features in
GTs.

Local-MPNN hybrids One natural way to include the graph structure is simply to mix in local-MPNN
layers, by either interleaving (Rampášek et al., 2022) or stacking (Wu et al., 2021; Chen et al., 2022) them
with dense Transformer layers. The graph structural information, as well as the edge features, are handled by
the local components, conveniently leveraging the rich literature on local MPNNs. In this work however we
restrict ourselves to purely attentional networks, for which appropriate positional encodings (PE) are needed.
We briefly go over the different flavors of graph PEs in the literature, see Rampášek et al. (2022) for a more
systematic overview and a thorough categorization. We adopt their distinction of structural and positional
encodings.

Node structural encodings (SE) Most successful node encodings for graph rely on local structural
information, such as centrality measures Ying et al. (2021) or local substructure counts Bouritsas et al. (2020).
One such encoding, related to the one we will introduce in section 3 – node-RWSE Dwivedi et al. (2022a) – is
based on random walks. Instrumental to the success of GTs, they have also shown to improve performance
and expressivity in local MPNNs. However they cannot fully convey the relative spatial information in a
Transformer.

For the sake of intuition, take the key and query matrices to be identity, and suppose we have concatenated a
positional encoding p to the features h← h ‖ p. The attention score can then be written as the product of a
semantic part and a positional one:

a(i, j) = exp (hi · hj) exp (pi · pj) .

The original cosine positional embeddings p designed for sequences have the desirable property that pi · pj is
a function of the relative distance between i and j: |i− j|. For most of the successful graph node encodings
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presented, these inner products can at most represent structural similarity i.e. how the local neighborhoods
of nodes i and j compare to each other. They are independent of the distance between i and j within the
graph, whereas the model could benefit from this information, for instance by attenuating signals coming
from far away nodes.

Node positional encodings (PE) This distance-encoding role could be fulfilled by positional encodings
of the form φr(i) = r(Λ)�Eig(L)i, where Λ and Eig(L)i are the eigenvalues and the i-th row of the eigenvector
matrix of the normalized graph Laplacian L. They have been adapted into a node-PE (Dwivedi et al.,
2020; Kreuzer et al., 2021), but suffer from implementation difficulties such as their invariance to sign flip
of the eigenvectors, in practice hindering their performance Dwivedi et al. (2022a). SignNet (Lim et al.,
2022) propose to learn these encodings via a sign-invariant GNN. Regardless of their particular type, current
node-wise positional encodings are a helpful addition but do not suffice on their own to make global attention
even remotely competitive with sparse message-passing (Rampášek et al., 2022).

Relative positional encodings (RPE) Each flavor of graph transformer comes with its own way of further
incorporating the graph structure. One of the first graph transformers, SAN Kreuzer et al. (2021) learns two
different sets of attention parameters: one for adjacent pairs, the other for non-connected nodes. Graphormer
Ying et al. (2021) adds a learnable bias bφ(i,j) to the attention score a(i, j) = exp

(
Qi ·Kj + bφ(i,j)

)
, indexed

on the shortest path length φ(i, j) between i and j. GraphiT Mialon et al. (2021) bias the attention matrix
with a graph kernel Kr encoding the structural similarity: a(i, j) = exp (Qi ·Kj)Kr(i, j). The choice of the
kernel Kr correspond to imposing different inductive biases. For instance Kr(i, j) = exp (pi · pj) – with p one
of the structural encodings mentioned above – would encode structural similarity. On the other hand the
heat diffusion or the PageRank kernels encode a notion of distance between nodes. If Kr is the adjacency
matrix or the 1-step random walk then GraphiT becomes a local-MPNN, very similar to GAT Veličković
et al. (2018).

What we propose is an extension of GraphiT, and a generalization of Graphormer, where the attention mask
Kr is learned based on structural edge encodings.

Edge features Structural Encodings Topology Encoding

+ +

+

Attention matrix per channel

Node

features

Positional

Encoding

σ(Q ⋅ K + Eatt)

Graph G

h(l+1)h(l)

∑ Aij ⊙ (Vj + Eij)

V

EvalEatt

Edge prior information

Node prior information

Linear

Attention filters

Messages

Embedding

Example

w/ rings

Node Encodings h Updated Node 

Encodings h

Figure 1: Chromatic Graph Transformer. (a) Graph features are preprocessed into node features h (top-left)
and two edge feature matrices Eatt and Eval ∈ RNnodes×Nnodes×d (bottom). (b) These are input to the CSA
layers, which iteratively update the node representations h. (c) These representations are fed to a classification
or regression head (not shown here).
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3 Method

3.1 Unifying framework

Most of the self-attention modules of the aforementioned GTs can be rewritten as in equation 4, with eij a
scalar encoding the relationship between nodes i and j.

a(i, j) = exp (Qi ·Kj + eij) ∈ R, (4)

By choosing eij = bφ(i,j) we recover Graphormer (the expression for eij is slightly more complex in the
presence of bond features, we do not write it here), and with eij = log(Kr(i, j)) we replicate GraphiT. In
another recent work – GRPE Park et al. (2022) – re-use the query and key vector to compute the RPE bias
eij = Qi · EQij +Kj · EKij .

Note that if eij can be factorized as an inner product pi · pj (or more exactly as WQpi ·WKpj), we recover
the standard Transformer with positional encodings pi.

To the best of our knowledge, this framework encompasses all previously proposed GTs, with the exception
of EGT Hussain et al. (2022), who scale the attention score after the `1-normalization ã(i, j) with a log-
normalized gating term on edge features σ(Egate

ij ) log(1 +
∑
k σ(Egate

ik )). Another recent GT (Kim et al., 2022)
falls out of the scope of this framework entirely, by treating both nodes and edges as separate tokens.

Monochrome attention In the coarsest form of our proposed model, CSA-mono, eij is simply a scalar
projection of the initial edge features eij = WE · E(0)

ij . This is the "black and white", or mono-chromatic
version of CSA.

3.2 Chromatic Self-Attention

Attention filters In the self-attention formulation given above by (4 and 2), the entirety of the node-node
interaction – both their structural and semantic relationship – is contracted into a single scalar a(i, j) (resp.
Nheads scalars in multi-headed attention) which then modulates the node message Vj .

We refine this scheme by making the attention scores multi-dimensional, allowing a separate attention
score ac(i, j) per output channel c ∈ (1, d), generalizing the scalar attention score into an attention filter
a(i, j) ∈ Rd.

a(i, j) = exp (Qi ·Kj + Eij) ∈ Rd (5)

`1-normalization is then performed across each channel

ã(i, j) = a(i, j)/
∑
k

a(i, k)

These filters are applied to the messages V via an element-wise product.

hi ← hi +
Nnodes∑
j=1

ã(i, j)� Vj (6)

This allows to selectively attend to, or dampen certain channels in the incoming messages. Note that the
two formulations (4) and (5) are equivalent if we impose Eij to be a constant vector, or a piecewise-constant
vector in the multi-head setting – constant on the channels of each head.

We emphasize that (5) comes as an enhancement over standard multi-headed attention, and is notably
different from using a multi-head version of (4) with nheads = nchannels. This is explained in detail in
Appendix B.

5



Enhancing messages Most MPNNs that handle edge features combine them with the node features to
form the message M(hj , Eij), with M being a simple function such as concatenation, addition or elementwise
product Hu* et al. (2020); Corso et al. (2020). Similarly, we also enrich the individual node messages with
relational information, by adding an edge value vector Evalue

ij to the node value vector Vj , the edge values
being a linear transformation of the edge features Evalue

ij = WEV E
(0)
ij :

hi ← hi +
Nnodes∑
j=1

ã(i, j)� (Vj + Evalue
ij ) (7)

Note that the update rule 7 opens up other possibilities for the attention filters, such as additive attention
Bahdanau et al. (2015). a(i, j) = exp (Qi +Kj + Eij) instead, completely foregoing the need for separate
attention heads.

3.3 Design of the edge features

Fundamental to the success and expressive power of this scheme is the choice of these initial edge features.

Semantic edge features After transforming the original or semantic edge features into suitable vector
form Ebond ∈ RNedges×d, we extend them to node-pairs that were not originally connected in A, by introducing
two learned embeddings ∈ Rd: one for self-connections Eself (if not already given), the other for non-connected
nodes En-c.

Ebond
ij =


Ebond
ij if i and j are connected

Eself if i = j

En-c otherwise
(8)

To encode both semantic and structural information in the final edge features E we concatenate them with a
relative positional encoding ERPE:

E
(0)
ij = Ebond

ij ‖ ERPE
ij . (9)

Here we choose concatenation but any simple function such as addition or multiplication should yield similar
results.

This system is general and flexible enough to leverage all possible pairwise relations in graphs that can be
encoded onto vectors.

Choice of the relative positional encoding For the RPE ERPE
ij , we draw upon the family of functions

of the successive powers of the random walk matrix RW = D−1A (where D is the diagonal degree matrix):

ERPE
ij = Φ

(
RW1

ij , . . . ,RW
p
ij

)
∈ Rp, (10)

With an appropriate choice of Φ, these constitute powerful descriptors of the graph relations (Li et al., 2020).
Indeed, one can recover positional information – the index of the first non-zero component is the shortest
path distance (SPD) – but also structural information. For instance RW1

ij is nonzero iff i and j are neighbors
and, in the absence of self-connections, RW3

ii is nonzero iff i is part of a triangle.

We give two possible RPEs constructed from these features. One of them – SPDE – is present in some form
in other GTs Ying et al. (2021); Park et al. (2022); Hussain et al. (2022). The other – RWSE – is commonly
used as a node-wise SE but has to our knowledge never been used before as an RPE.

Shortest Path Distance Encoding (SPDE) The shortest path distance encoding is obtained by choosing
Φ as a d-dimensional embedding of the index of the first non-zero component:

ESPDE
ij = WSPDEeφ(i,j) (11)

with WSPDE ∈ Rd×p the embedding vectors and eφ(i,j) ∈ Rp the one-hot encoding of the shortest path length
φ(i, j). Similarly to the semantic features above, we complete the feature matrix with a special embedding
for nodes unreachable in less than p hops, and another one for self connections.

6



Xu et al. (ICLR’2019). How powerful are graph neural networks? 
Alon, U., & Yahav, E. (2020). On the Bottleneck of Graph Neural Networks and its Practical Implications

i j i j
(a) (b)

Figure 2: Shortest Path Distance Encoding can-
not distinguish the relationship i ↔ j in the two
above graphlets, as they are both neighbors with
φ(i, j) = 1. On the other hand the three first coordi-
nates of the RWSEij vectors are markedly different:
[0.33, 0.33, 0.26] and [0.5, 0.0, 0.63] for the graphlets on
the left and right, respectively.

Random Walk Structural Encoding (RWSE)
In our proposed RPE, Φ is simply a matrix multipli-
cation with learnable weights WRWSE

E :

ERWSE
ij = WRWSE

E ·
[
RW1

ij , . . . ,RW
p
ij

]
(12)

If the weights matrix WRWSE
E is constrained to be

non-negative, these features can be considered as
re-weighted diffusion kernels between nodes, hence
constituting a learnable and multi-dimensional ex-
tension of GraphiT. We argue that RWSE is a richer
RPE than SPDE as it also preserves some local struc-
tural information. A simple illustrative example is
shown in Figure 2.

3.4 Adding substructures

Incorporating higher-order structure information can
be beneficial to performance. In molecular graphs for example, atoms in a ring (a chordless cycle) share
covalent electrons, which influence their distribution in space and their chemical properties. Hierarchical
message-passing schemes Fey et al. (2020); Bodnar et al. (2021b;a) were designed both to propagate information
effectively along meaningful substructures and to suitably modulate the messages. We emulate this form
of hierarchical message-passing in CSA by injecting specific topological information directly into the edge
features (and hence in both the attention matrix and the messages).

For a chosen set of structures (graphs) S we define a binary relation S∼ on nodes of a graph in definition 3.1.
S∼ is symmetric but not necessarily reflexive or transitive.
Definition 3.1. Given a set of structures S, two nodes i and j of a graph G are S-bound – written i S∼ j – if
and only if there exists an element S ∈ S and a subgraph G̃ of G containing both i and j such that G̃ is
isomorphic to S.

i S∼ j ⇐⇒ ∃S ∈ S, G̃ ∈ Sub(G)
s.t. i, j ∈ G̃ and S ∼ G̃

(13)

We then design boolean features based on this relation eSij = 1(i S∼ j). In the more generic form of our
topology encoding, which can be applied to any type of data, these features are embedded and then added to
the edge features:

Eij ← Eij + Embed(eSij)

In the cases where the original edge features Ebond are categorical, i.e. belong to a discrete set C, one can
give more degrees of freedom to the substructure encoding by forming the Cartesian product of the semantic
and the topology features, effectively doubling the number of edge types.

Ebond
ij ← Embed

((
Ebond
ij , eSij

))
Note this could also be done on the SPDE positional encoding for instance. Although this choice of encoding
is less easily applicable (due to the restrictive condition on the edge features) it is also more expressive, and
yields slightly improved results empirically.

In practice we have implemented this topology encoding for rings in molecular graphs, by choosing S as the
set of rings up to a certain length, but the same could be done for any type of substructure deemed relevant
to the task at hand.

3.5 Discussion and implementation

Model architecture The main components of our architecture are illustrated in Figure 1. As is standard
in Transformer layers, our CSA layer is composed of the self-attention block followed by 2 linear layers with
batch normalization. We stack L of these layers which yield final representations h(L). These are fed to a
prediction head that depends on the task (graph/node/edge classification/regression).

7



h(l+1) = CSA(h(l), E(0))
E(0) = EdgeEncoder(Ebond, A)
h(0) = NodeEncoder(X,A)

Regularization Aside from standard regularization techniques, we perform dropout directly on the
attention tensor, silencing either whole nodes (node-ablation), connections (edge-ablation) or channels
(feature dropout). All of these are options in our model and our code.

Generality Semantic edge feature information are preserved (this is guaranteed by adding it to the messages
directly), and structural information is also taken into account, modulating both the attention matrix and
the messages.

Note that this framework is general enough to be applied to other types of data such as sequences, images or
3D point clouds. The graph structure is not essential to the CSA formulation, which can be transposed to
other fields by designing an appropriate RPE – for instance embedding 3D distance and angles in 3D points
clouds, or pixel distances in images.

Limitations There are several limitations with our proposed model, the main one being the scalability
to large and sparse graphs. Indeed the computational complexity of our method scales as O(|Nnodes|2 d),
compared to the O(|Nedges| d)-complexity of local MPNNs. For small graphs however this is partially offset
by the efficiency of GPU dense matrix computation. To scale our method to larger graphs one could explore
the numerous attempts at a linear or sub-quadratic Transformers Zaheer et al. (2020); Jaegle et al. (2022),
transposing them to our framework. The pre-processing steps also incur a one-time cost of O(|Nnodes|3 p) for
the computation of the RWSE or the SPDE base values.

Another limitation could be the reliance on hand-crafted features in the RPEs – although the same could be
said of all GTs – but in fact there are very few hyper-parameters to tune, and fixed step sizes of RWSE-16,
SPDE-8 work across a variety of datasets.

Implementation We integrate our proposed CSA layer in the general GraphGPS framework, which enables
testing on several benchmark datasets, choice of a wide range of positional encodings as well as adding local
MPNN layers in parallel (we do not use this feature in this paper though). We also add our implementations
of the relative positional encodings Edge-RWSE and SPDE. The code of the model, and scripts to reproduce
the experiments are freely available at https://github.com/inria-thoth/csa.

4 Experiments

4.1 Experimental setup

We evaluate the performance of our model on 3 medium-scale benchmark datasets from Dwivedi et al. (2020):
ZINC, PATTERN and CLUSTER and on the large molecular dataset PCQM4Mv2 Hu et al. (2021). We
show SOTA results in all 4 datasets.

We conduct ablation studies to showcase the individual contributions of (i) chromatic attention, (ii) attending
to distant nodes (iii) the choice of the RPE and (iv) incorporating topological sub-structures.

Following Rampášek et al. (2022), the ablation studies are performed on ZINC and a subset of PCQM4Mv2
containing 10% of the whole training set (but the same validation set as the full version).

Little hyperparameter search was done, defaulting to the setup in GraphGPS or other comparable models
whenever possible. We chose maximum ring-size as in Bodnar et al. (2021a) k = 18 for ZINC, and k = 6 for
OGB datasets. For ZINC we use the categorical ring encoding scheme described in section 3.4 and for OGB
datasets we use the boolean encoding.

8
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Model ZINC
MAE ↓

M
P

N
N GCN Kipf & Welling (2017) 0.367± 0.011

GatedGCN Dwivedi et al. (2022a) 0.090± 0.001
GPS Rampášek et al. (2022) 0.070± 0.004

h-
M

P
N

N CIN Bodnar et al. (2021a) 0.079± 0.006
CRaWL Toenshoff et al. (2021) 0.085± 0.004
GIN-AK+ Zhao et al. (2022) 0.080± 0.001

T
ra

ns
fo

rm
er

s SAN Kreuzer et al. (2021) 0.139± 0.006
Graphormer Ying et al. (2021) 0.122± 0.006
SAT Chen et al. (2022) 0.094± 0.008
EGT Hussain et al. (2022) 0.108± 0.009
GRPE Park et al. (2022) 0.094± 0.002

CSA (ours) 0.070± 0.003
CSA-rings (ours) 0.056± 0.002

Table 1: Results on the ZINC dataset, ordered by the broad model class and performance. (GPS is placed
among local MPNNs here, as their classification performance can be fully imputed to their local module).

All models were trained on a single NVidia V100 GPU system, with 16GB or 32GB memory depending on
the dataset. See Appendix A for the complete experimental details and hyperparameters.

4.2 Benchmarking CSA

Model PATTERN CLUSTER
Accuracy ↑ Accuracy ↑

SAN 86.581± 0.037 76.691± 0.65
Graphormer − −
SAT 86.848± 0.037 77.856± 0.104
EGT 86.821± 0.020 79.232± 0.348

GPS 86.685± 0.059 78.016± 0.180

CSA (ours) 87.011± 0.036 79.175± 0.126

Table 2: Results on the node classification datasets
PATTERN and CLUSTER.

ZINC and Benchmarking Graph Neural Net-
works ZINC is a popular molecular graph regres-
sion benchmark, for which Graph Transformers have
historically lagged behind their sparse counterparts.
The dataset splits are fixed as in Dwivedi et al. (2020),
with 10K graphs in the training set, 1K in the both
the validation and test sets. The graphs contain on
average ∼ 20-30 nodes.

Our results are presented in Table 1, in which the
ring-augmented version of our model CSA-ring im-
proves the state of the art by a significant margin.
Adding ring information greatly improves the per-
formance in ZINC, which is to be expected as the
artificial objective partially depends on the counts of
these patterns. However we note that CSA achieves
state-of-the-art results even without this substructure
information, far surpassing other standalone GTs.

PATTERN and CLUSTER PATTERN and CLUSTER are synthetic datasets of inductive node-level
classification. In both cases, graphs were generated using a Stochastic Block Model (SBM). In PATTERN,
one must detect which nodes were generated with different SBM parameters than the rest of the graph, and
in CLUSTER one must assign each node to one of the 6 clusters (or blocks) it belongs to. These datasets
contain 14K and 12K graphs, each with 100 nodes and 2K edges on average (much denser than molecule
graphs). As shown in Table 2, we reach state-of-the-art performances on both datasets.
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Larger scale datasets Finally, we assess the performance of our method on the large-scale benchmark
PCQM4Mv2. The dataset is composed of 3.7M small undirected graphs (14.6 nodes on average).

Model PCQM4Mv2
Validation MAE ↓ # Param.

M
P

N
N

GCN 0.1379 2.0M
GCN-virtual 0.1153 4.9M
GIN 0.1195 3.8M
GIN-virtual 0.1083 6.7M

T
ra

ns
fo

rm
er

s Graphormer 0.0864 48.3M
EGT 0.0869 89.3M
GRPE 0.0890 46.2M
GPS-small 0.0938 6.2M
GPS-medium 0.0858 19.4M

CSA-small (ours) 0.0898 2.8M
CSA-deep (ours) 0.0853 8.3M

Table 3: Results on the PCQM4M-v2 dataset, ordered by the broad model class and performance. As the
test set was kept private by challenge organizers, evaluation is done using the validation set.

We test both a small and a deep version of our model in Table 3, which outperforms SOTA with less
parameters. The difference in performance is however not as significant as for the ZINC dataset, we presume
this is because the comparative advantages of our method diminishes with larger models and datasets.

4.3 Ablation study

Usefulness of the chromatic attention In Figure 3 we visualize the different learned attention score
matrices, for 3 output channels of a 16-channel model trained on ZINC. Each of these channels clearly focuses
on structurally different nodes: the first channel on neighboring nodes, the second one on atoms in the same
ring, and the third one focuses exclusively on faraway nodes. The figure shows both the complete node-node
attention maps for each channel, and also some selected rows plotted on the graphs, for ease of visualization.
These show the attention scores of the highlighted node, across 4 structurally diverse nodes.

RPE Rings ZINC
MAE ↓

RWSE 0.070± 0.004
RWSE X 0.056± 0.001
SPDE 0.072± 0.002
SPDE X 0.063± 0.005

Table 4: CSA performance with different relative posi-
tional and structural encodings (RPE).

The attention maps for all 16 channels are available
in the appendix.

To ensure that this is not a learned artifact and that
the model actually benefits from these extra degrees
of freedom, we empirically validate the increased
expressiveness of CSA in Table 5 by successively ab-
lating the chromatic nature of the attention scores,
and the edge value vectors. On the two datasets we
have tested, both additions make an impact.

Structural encoding We confront our proposed
positional and structural Random Walks Encodings
with the Shortest Path Distance Encoding in Table
4 and confirm the intuition that RWSE outperforms
SPDE, regardless of the topological encoding.
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Node 1

Node 3

Node 5

Node 13

Full Attention 

Matrix

Channel 1:

Focus on neighbours

Channel 7:

Focus on rings

Channel 12:

Focus on faraway nodes

Figure 3: Attention scores for multiple nodes and channels at the last layer of a 16-channel model trained on
ZINC. Scores are shown for the molecule ZINC44549294. Each column corresponds to a different channel,
which we hand-picked based on their diversity and interpretability. The top row shows the attention channel
scores for all node pairs, and each subsequent row corresponds to a different receiving node, highlighted in
red.

ZINC PCQM4Mv2
subset

Color Edge Value MAE ↓ MAE ↓

− − 0.143± 0.014 0.248± 0.025
X − 0.078± 0.018 0.177± 0.039
− X 0.059± 0.002 0.154± 0.061
X X 0.056± 0.001 0.112± 0.001

Table 5: Added value of including multidimensional attention filters ("Color" column) and injecting edge
information in the value messages ("Edge Value" column)

5 Conclusion

We have proposed an extension of the Transformer self-attention, generalizing attention scores to attention
filters. We adapt the resulting model to graph representation learning, further extending the self-attention
mechanism by incorporating edge features in the message values. We combine our model with a novel relative
positional encoding scheme – and a topology encoding one – and we show its added value on a diverse set of
graph benchmarks.
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A Experimental Details

Implementation As previously mentioned, our code is integrated in the GraphGPS framework introduced
by Rampášek et al. (2022). In particular, the data-loaders and splitting strategies are kept the same to ensure
a fair comparison with other methods. Results in the benchmark section were all obtained with 10 seeds each,
except for PCQM4Mv2-full which was run on a single seed. Results in the ablation study are aggregated over
4 seeds. We report the mean loss along with its standard deviation over runs.

Hyper-parameters The table 6 recaps the chosen hyperparameters for each dataset, as well as training
execution time. In all our experiments we use the AdamW Loshchilov & Hutter (2019) optimizer with default
values for β1, β2 and ε, and a cosine learning rate scheduler with warmup.

Edge parameter sharing To reduce computation time and in some cases improve performance, we provide
the option to share the edge representations Eatt and Eval among all layers.
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Hyperparameter ZINC PATTERN CLUSTER PCQM4Mv2
CSA-small CSA-deep

# CSA Layers 10 6 16 16 16
Hidden Dim 64 64 48 256 256
# Heads 4 4 8 16 16
Dropout 0 0 0.1 0 0
Attention Dropout 0.5 0.5 0.5 0.5 0.5

Node Positional Encoding RWSE-20 RWSE-16 RWSE-16 None None
PE dim 28 16 16 - -
Relative Positional Encoding RWSE-20 RWSE-16 RWSE-16 RWSE-16 SPDE-8
Edge parameter sharing X 7 7 X X

Rings X 7 7 7 X
Max rings size 18 - - - 6
Encoding categorical - - - additive

Batch Size 32 32 16 256 256
Learning rate 0.001 0.0005 0.0005 0.0005 0.0001
# Epochs 2000 100 100 300 150
# Warmup epochs 50 5 5 10 10
Weight decay 1e-5 1e-5 1e-5 0 0

# Parameters 350k 259k 382k 2.8M 8.2M
Time (epoch/total) 21s 56s 122s 822s 1900s

Table 6: Hyperparameters used for all datasets. Ablation studies on the PCQM4Mv2-subset are all done
based on the CSA-small configuration.
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Color Heads PCQM4Mv2 ZINC

− 1 0.074± 0.004 0.147± 0.003
X 1 0.0059± 0.001 0.121± 0.001
− best 0.060± 0.002 0.1145± 0.0002
X best 0.056± 0.001 0.112± 0.001
− h = d 0.062± 0.001 0.118± 0.005

Table 7: Performance of CSA vs CSA-mono with different number of heads. best is 8 for 64 dimensions for
ZINC, 16 for 256 dimensions in PCQM4Mv2. (when h = d the color and monochrome versions are the same)

B Difference between CSA and multi-head attention

In short, our method enhances the standard multi-head attention (which we call CSA-mono in the paper).

Indeed, note d the number of channels and h the number of heads. For a given channel c ∈ [1, d], we denote
dh = d/h the implicit dimension of the attention heads, and ch = bc/dhc the index of the attention head
which channel c belongs to. The c-th channel of the unnormalized attention score between two nodes q and k
of dimension d, linked by the edge e is then given by:

• Standard multi-head attention (called CSA-mono in the paper) with d = h:

ac = 1√
dh

chdh+dh−1∑
l=chdh

qlkl + ech

The edge bias ech
here is constant across all channels of the same attention head. (In fact in most

other GTs this bias is constant across all attention heads:
ech

= e1,∀c).

• Colored multi-head attention (CSA-color with 1 < h < d), e ∈ Rd:

ac = 1√
dh

chdh+dh−1∑
l=chdh

qlkl + ec

The difference here is that the edge bias ec varies per channel instead of per head.

In multi-headed dot-product attention, choosing the hyperparameter h = nheads amounts to striking a
balance between the selectivity of the per-head cosine similarities Qh ·Kh (of implicit dimension d/h), and
the potential diversity of those similarities across attention heads (h different scores).

In CSA we maintain this balancing option intact, but also keep a separate edge bias ec per channel, without
loss of expressivity.

We compare CSA with its monochrome version in table 7, varying the number of attention heads.

In figure 4 we show all 16 channels of the first layer of a single attention head CSAmodel trained on ZINC. 3
of these were chosen in figure 3 of the main text. One can clearly see that channels are learning different
attention patterns, with some being identifiable as immediate neighbors, nodes in the same ring, and also
complementary channels concentrating on faraway nodes.
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Figure 4: Attention scores for all 16 channels at the first layer of a single-head model trained on ZINC. Scores
are shown for the molecule ZINC44549294.
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