
Taxonomy of Requirements Specification Templates
Hiba Hnaini∗, Raúl Mazo∗, Paola Vallejo†, Jose Galindo‡, and Joël Champeau∗

∗Lab-STICC, ENSTA Bretagne, Brest, France
{hiba.hnaini, raul.mazo, joel.champeau}@ensta-bretagne.fr

†GIDITIC, Universidad EAFIT, Medellı́n, Colombia
pvallej3@eafit.edu.co

‡Dpto. de Lenguajes y Sistemas Inf., Universidad de Sevilla, Sevilla, Spain
jagalindo@us.es

Abstract—Requirements specification is an early stage of sys-
tem design. It consists of rephrasing and documenting stakehold-
ers’ explanations and needs in the form of clear and coherent
requirements. However, these requirements are often expressed
in natural language since it is the easiest communication method.
Researchers have proposed semi-structured natural language
templates or boilerplates for specifying functional and non-
functional requirements, which consider security requirements.
This seeks to enhance the quality of the requirements speci-
fications and simplify their transformation to system models.
However, it is still unknown what concepts, quality attributes,
and good practices should be considered to specify requirements
in a semi-structured natural language and how that information
has been considered in the existing templates. In this paper, we
aim to determine how templates are related among them and
what are the implications (e.g., complexity, completeness, time)
of using one or another. In this paper, we identify each template’s
concepts, quality attributes, and good practices by studying the
template’s aspects and then using a running example to formulate
requirements using these templates. We also identify the aspects
repeated or inherited from one template to another. This paper
puts forward a taxonomy of requirements specification templates
that categorize and specify the sources of the templates, which
helps determine what template considers the aspects of another.

Index Terms—Security Requirements Template, Boilerplate,
Requirements Specification, Natural Language, Taxonomy.

I. INTRODUCTION

The increase of security threats on software and hardware
systems within the past few years has imposed consideration
of security at all stages of system development, starting from
the requirements specification stage. However, eliciting precise
and non-complex security requirements can take time and
effort. This challenge originates from the need for guides that
help security requirements engineers define their requirements.
Similarly to standard requirements, security requirements also
aim that (i) the same interpretation is reached by all readers
and (ii) this interpretation corresponds to the idea that the
author of the requirement was trying to convey.

According to Denger et al. [1], the most common method
for specifying and documenting requirements is Natural Lan-
guage (NL) since it needs no training and is within reach.
However, the drawbacks of NL are too significant to disregard.
As Dalpiaz et al. [2] explain, these disadvantages are ambi-
guity, unclarity, inconsistency, and incompleteness. Mavin et
al. [3] add the disadvantages of vagueness, complexity, du-
plication, verbosity, implementation, and untestability. Several

researchers have proposed the use of semi-structured natural
language in the form of guidelines, templates, boilerplates, pat-
terns, and so on to mitigate some of the weaknesses of natural
language when writing requirements. For example, a template
controls the structure of the requirement by possibilities and
restrictions while preserving the advantage of being in NL. In
addition, this method reduces faults in the early stages of a
system’s development process.

Some proposals consist of generic guidelines that make
it possible to specify requirements for almost any type of
systems [4] [5].

Other proposals present different strategies to facilitate the
work of the requirements engineers and, therefore, improve
the quality of the products specified by modeling textual
requirements. For example, through standard reference data
[6], a generic syntactic requirements specification template [7],
a robust template [8], or a template based on the 5W1H (Why,
Who, Where, When, What, How) questions [9].

Other researchers defined and used templates for a specific
domain. For example, Esser and Struss propose a natural
language template-based interface to acquire requirements for
functional testing of control software for passenger vehicles
[10], and Mavin et al. present a set of structural rules to
address common requirements problems, such as ambiguity,
complexity, and vagueness [3]. The rule set allows all require-
ments to be expressed in natural language in one of five simple
templates. The rule set was applied to extract requirements
for an aero engine control system from an airworthiness
standard document, and Mahmud et al. propose a toolchain
for structured requirements specification in the Requirements
Specification and Analysis (ReSA) language. “ReSA is an
ontology-based requirements specification language tailored to
automotive embedded systems development” [11].

Other researchers concentrated on security requirements
specifications. For example, Toval et al. present a method
for eliciting and specifying system and software requirements,
including a repository containing reusable requirements, a
spiral process model, and a set of requirements document
templates [12]. Firesmith discussed the value of reusable
parameterized templates for specifying security requirements
[13]. Firesmith outlined an asset-based risk-driven analysis
approach for determining the appropriate actual parameters to
use when reusing such parameterized templates to specify se-



curity requirements that should improve the quality of security
requirements in requirements specifications. Kamalrudin et al.
propose a security requirements library and template to assist
the requirements engineer in writing security requirements by
providing them with the relevant sentence structure [14]. The
library was built by compiling security attributes derived from
parsing and keyword matching.

However, we could not find a knowledge resource that
combines all the concepts, relations, and best practices needed
during the requirements specification.

To fill the gaps identified in the state of the art, this paper
proposes a taxonomy with the concepts and relationships of
existing templates and guidelines for requirements specifica-
tion. The taxonomy will give the requirements and constraints
to create a new template.

The paper is organized as follows: The guidelines and tem-
plates used to form the taxonomy are presented and detailed in
Section II. Section III briefly discusses the analyzed templates.
Section IV presents a taxonomy of requirements specification
templates. Finally, Section V concludes this work.

II. BASELINE GUIDELINES AND TEMPLATES

This section lists and explains the different templates and
guidelines found in the literature for requirements specifica-
tion. For a more precise illustration, we have used the example
of the Blood Infusion Pump System presented by Lindvall et
al. [15] to re-specify a requirement of the system using the
guidelines and templates, where applicable.

A. Attempto Controlled English (ACE)

ACE, proposed by Schwitter and Fuchs [4], is a computer-
processable subset of English with restricted grammar and
domain-specific vocabulary that allows specialists to formulate
requirement specifications. ACE is associated with its parser
(APE) and a reasoner (RACE). ACE is structured by simple,
composite, and interrogative sentences.

• Simple sentences express a true state of affairs, and their
form is subject + predicator (+ complement + adjunct).

• Composite sentences are built from simpler sentences
and constructors: coordination (and,or, either-or), subor-
dination (if-then, who/which/that), and negation (not).

• Interrogative sentences allow users to pose yes/no ques-
tions and wh-questions.

ACE is based on syntactic, semantic, and disambiguation
principles.

• Syntactic principles illustrate a form of the sentence of
requirement. For instance, a syntactic principle is “nouns
are always used with a determiner” (e.g., “The customer
enters a card”).

• Semantic principles represent how different parts of the
requirement are interpreted. For instance, “verbs denote
events and states”.

• Disambiguation principles are the steps taken to de-
crease and limit the ambiguity in the requirement. For
instance, “some ambiguous constructs are not available”
(e.g., “John and Mary enter a card”) and “unambiguous

alternatives with scope markers can be used instead” (e.g.,
“John and Mary enter a card each”).

B. Gellish

Van Renssen presents an application-independent language
that allows textual modeling requirements through standard
reference data for system customization, data integration,
and data exchange [6]. It is based on ontological concepts,
where like in an ontology, the Gellish language represents the
relationship between two objects. It adopts a table form to
represent the language with the following columns:

• Left-hand object UID: a unique ID associated with the
source object of the relationship.

• Left-hand object name: the name of the relationship’s
source object.

• Fact UID: a unique ID of the relationship (or fact).
• Relationship type name: the name of the relationship or

fact. For example, is a specialization of, is part of.
• Right-hand object UID: a unique ID associated with the

target object of the relationship.
• Right-hand object name: the name of the relationship’s

target object.
“Gellish is not limited to specific application domains,

although the current ontology (the dictionary) does not yet
cover the scope of a natural language”. Table I illustrates a
fact specified by Gellish.

TABLE I
GELLISH EXAMPLE.

Left-
hand
object
UID

Left-
hand
object
name

Fact
UID

Relationship
type
name

Right-
hand
object
UID

Right-
hand
object
name

111 Andries 11 is classi-
fied as a

990007 man

C. Nayak et al.’s template

Nayak et al. propose a reliable requirements specification
template [5] (based on Volere template [16]) with some param-
eters that evaluate the reliability of the individual requirement
before finalizing the requirements documentation from the
initial phase of software development. The template contains
information about a requirement, such as Rationale, Source,
Requirement Type, etc., but it focuses on the following reliabil-
ity parameters: Severity Level, Confidence Level, and Rank of
Requirement. However, this template does not give a structure
for the requirement itself and considers it a description (“a one
sentence statement of intention of the requirement”) written
entirely in natural language.

D. Rupp et. al.’s template

Rupp et. al. propose a generic syntactic requirements spec-
ification template, which focuses on the syntax (structure) of
a requirement, not its semantics (content) [7]. The following
parts compose the template.



• Condition: condition or constraint under which the
requirement is to take place. <When? Under what
conditions?>.

• System: name of the system concerned by the require-
ment. THE SYSTEM <system name>.

• Priority: degree of the legal obligation of the require-
ment. SHALL, SHOULD, WILL, MAY.

• Functional activity: functionality to be provided by the
system:

– Independent system action: <process verb>
– User interaction: PROVIDE <whom?> WITH THE

ABILITY TO <process verb>
– Interface requirement: BE ABLE TO <process verb>

• Object: object concerned by the requirement. <object>.
• Additional object details: additional details or explana-

tion about the object of the requirement, for example,
where? or how? <additional details about the object>.

E. Easy Approach to Requirements Syntax (EARS)

Mavin et al. present a set of structural rules to address
common requirements problems such as ambiguity, com-
plexity, and vagueness [3]. It is based on ECA, “In ECA,
the event specifies the signal that triggers the rule and the
condition is a logical test that (if satisfied) causes the specified
system action” [3]. The rule set allows all requirements to be
expressed in natural language in one of the following simple
templates.

• Generic requirements syntax: <optional
preconditions> <optional trigger> the <system
name> shall <system response>.

• Ubiquitous requirements - no pre-condition: The
<system name> shall <system response>.

• Event-driven requirements - triggering event: WHEN
<optional preconditions> <trigger> the <system
name> shall <system response>.

• Unwanted behaviors: IF <optional
preconditions><trigger>, THEN the <system name>
shall <system response>.

• State-driven requirements: WHILE <in a specific
state> the <system name> shall <system response>.

• Optional features: WHERE <feature is included> the
<system name> shall <system response>.

F. Mazo et al.’s template

Mazo et al. identify some gaps in Rupp et al.’s template
and, based on those gaps, propose a more robust template
that facilitates the work of the requirements engineers and,
therefore, improves the quality of the products specified with
the new template [8]. Mazo et al.’s template is adapted to
product lines and auto-adaptive systems (using the RELAX
language presented in [17]). It has the following sections.

• Conditions under which a behavior occurs: describe
behaviors performed or provided only under specific
conditions (e.g., IF, WHILE, IN CASE, AFTER).

• Family of systems, systems, or parts of a system:
allows specifying the name of the product line, system,

subsystem, or system component (e.g., ALL SYSTEMS
OF THE <product line name>).

• Degree of priority: specifies the degree of priority
associated with a requirement (i.e. SHALL, SHOULD,
COULD, WILL).

• Activity: specifies the characterization of the activity
conducted by the system or the systems of a product line.

• Object or objects: specifies the object or objects that
make up the system (e.g., EACH <object>).

• Complementary details of the object(s): can be one or
more adjectives or a more enhanced description of the
object.

• Conditionality in the object: describes a behavior that
the system must execute if and only if the object at-
tains the specified condition (i.e., IF AND ONLY IF
<condition>.

• Verification criterion (adjustment) of the requirement:
a detectable criterion to determine to what degree the
requirement is verifiable.

• Relax requirements statements for self-adaptive sys-
tems: represents the autonomous nature of requirements
in self-adaptive systems (e.g., AS MANY, UNTIL).

G. Cube

Pabuccu et al. present the Cube requirement writing tem-
plate dedicated to software systems and based on 5W1H
questions [9].

• Why: the goal of the requirement.
• Who: the actor of the requirement.
• Where: the place of the requirement.
• When-trigger: pre-condition of the requirement.
• When-condition: post-condition of the requirement.
• What: the requirement’s action or activity.
• How: it explains how the system will be developed.
Cube identifies three types of requirements and provides

three different templates:
• Business Requirement: WHO - WHAT- WHERE -

WHEN TRIGGER- WHEN CONDITION Aim, Reason:
WHY.

• User Requirement: - when WHO - WHEN TRIGGER
- WHERE - What - if - WHEN CONDITION - HOW
(optional) - WHY (optional).

• Functional Non-functional Requirement: Who - What
- when - When Trigger -and When Condition - Where -
WHY (optional) - HOW (optional).

H. Esser and Struss’s template

Esser and Strauss propose a natural language template-
based interface to acquire requirements for functional testing
of control software for passenger vehicles [10]. The content
of the filled-in templates can be represented in propositional
logic and temporal relationships and form the correct expected
behavior model. The template is structured as an if (start-
condition) - then (consequence) - until (end-condition)
sentence (e.g., “if the system is in mode m1, lamp L3 is off,



and button B4 is released, then immediately lamp L3 is lit
until button B4 is down again or the system leaves m1”).

I. ReSA

Mahmud et al. propose a toolchain for structured require-
ments specification in the ReSA language [11]. “ReSA is an
ontology-based requirements specification language tailored
to automotive embedded systems development”. ReSA “(i)
renders natural language terms (words, phrases), and syntax,
(ii) uses an ontology that defines concepts and syntactic rules
of the specification, and (iii) uses requirements boiler-plates
to structure specification”. It is composed of six boilerplates
or templates.

• Simple: statement that contains a modal verb, such as,
shall (e.g., “system shall be activated”).

• Proposition: proposition or assertive statement (e.g.,
“button is pressed”.

• Complex: “is constructed from a Simple, Proposition
boilerplate, and an adverbial conjunctive (such as while,
when, until)”, e.g., “the error shall be reported while the
fault is present”.

• Compound: “is composed of two or more Simple
or Proposition boilerplates and the logical operators,
AND/OR” (e.g., “system shall be activated and driver shall
be notified”).

• Conditional: “a different variant of conditional state-
ments, i.e., if, if-else, if-elseif, or if-elseif-else, and con-
ditional nesting”.

• Prepositional Phrase: “can be used to describe timing
properties, the occurrence of events, and other comple-
ments to the subject of a main phrase” (e.g., “within 5ms,
by the driver”.

J. SImple REuse of software requiremeNts (SIREN)

Toval et al. present a method for eliciting and specifying
system and software requirements. The method includes a
repository with reusable requirements, a spiral process model,
and a set of requirements document templates [12]. The
method focuses on information systems security. It does not
provide a structured template for the requirements description
but for the entire Software Requirements Specification docu-
ment. The repository contains two types of requirements: pa-
rameterised (some parts have to be adapted to the application
being developed at the time, e.g., “The security manager shall
check the user’s identifiers every [time in months] to detect
which ones have not been used in the last [time in months]”)
and non-parameterised (could be applied directly to any
project concerning the repository’s profiles and/or domains,
e.g., “The firewall configuration will be screened host”).

K. Firesmith template

Firesmith discusses the value of reusable parameterized
templates for specifying security requirements [13]. Firesmith
outlined an asset-based risk-driven analysis approach for deter-
mining the appropriate current parameters to use when reusing
parameterized templates to specify security requirements that

should improve the quality of security requirements in re-
quirements specifications. Firesmith explains how to create
templates and gives an example of a security requirement
to specify integrity: “The [application/component/data cen-
ter/business unit] shall protect the [identifier—type] data it
transmits from corruption (e.g., unauthorized addition, modifi-
cation, deletion, or replay) due to [unsophisticated/somewhat
sophisticated/sophisticated] attack during execution of [a set
of interactions/use cases] as indicated in [specified table]”.
However, no general template was provided.

L. Kamalrudin et al.’s template

Kamalrudin et al. propose a security requirements library
and template to assist the requirements engineer in writing se-
curity requirements by providing them with the sentence struc-
ture [14]. The library was built by compiling security attributes
derived from parsing and keyword matching. The template
provided is as follows: The <Subject> should <Verb/Security
Keyword> to the <Object> <Security Keyword> <Security
Mechanism> in order to <Adjective Phrase> (e.g., “[The]
customer should register [to] the system using unique user-
name and password in order to proceed to book ticket ser-
vice”).

M. AMAN-DA

Souag et al. propose a security requirements elicitation
and an analysis method [18]. It uses a multi-level do-
main ontology of security notions and provides a security
requirements template: <When><Under what condition>
<Agent name> ”Shall/Should/Will” <Action> <Assets>
<Additional Information> (e.g., “The web publishing system
should lock accounts after reaching logon failure threshold”).

III. APPLICATION EXAMPLE

Table II shows the re-specification of some Blood Infusion
Pump System requirements using templates discussed in Sec-
tion II. Per the result of the requirements re-specification and
the information provided in Section II concerning each guide-
line and template, we were able to categorize them according
to their structure or nature, the type of requirements they can
represent, and their output. We also noticed a similarity in
the structure of some templates. It is because they were based
on a combination of other ones. For example, Mazo et al.’s
template uses the structure of Rupp et al.’s and the EARS
templates. This categorization resulted in the creation of the
taxonomy presented in Section IV. For example, it is explained
by Mavin et al., and clear in the structure of EARS, that the
EARS template integrates the event-condition-action concepts
of the Event-Condition-Action (ECA) language or template.
This is also true in the Mazo et al. template, which inherits
some concepts, quality attributes, and good practices from the
Rupp et al. and EARS templates.

IV. TAXONOMY

To identify the source and the guidelines and templates used
in constructing each template, we propose a taxonomy of all



TABLE II
EXAMPLE REQUIREMENTS USING THE TEMPLATES.

Template Example Requirement - Blood Infusion Pump Sys-
tem

ACE R1.2 If the silent warning alarm persists for 10 seconds
or more, then the system shall trigger an audible warn-
ing alarm
R1.2.ACE If the silent warning alarm persists for 10
seconds or more, then the system triggers an audible
warning alarm

Rupp et al. R2.5: If BP improves from true critical condition to true
warning condition, then the system shall trigger a true
warning alarm
R2.5.Rupp: <If BP improves from true critical con-
dition to true warning condition then>condition<the
blood infusion pump system>system <shall>priority

<trigger>activity <an audible critical alarm>object

EARS R2.8: The system shall disable the “Start infusion”
button whenever blood infusion is stopped due to critical
alarm
R2.8.EARS: The <blood infusion pump
system>systemname shall <disable the “Start
infusion” button whenever blood infusion is stopped
due to critical alarm>systemresponse

Mazo et al. R3.1: If the system received two consecutive out-of-
range BP low values (less than 10) or high values
(greater than 180), then the system shall initiate system
shutdown
R3.1.Mazo: If <the system received two consecu-
tive out-of-range BP low values (less than 10) or
high values (greater than 180)>condition then <the
blood infusion pump system>system <shall>priority

<initiate>activity <system shutdown>object

Cube R1.6: The system shall disable the ‘Start Infusion’
button during the warning alarm
R1.6.Cube: <The system>who <shall disable the
‘Start Infusion’ button>what <when the warning alarm
starts>whentrigger<and enable the button after the
alarm stops>whencondition

Esser and
Struss

R2.2: If the silent critical alarm clears within 10 sec-
onds and there was a true warning alarm before, then
the system shall resume blood infusion and clear the
warning alarm
R2.2.Esser: If -the silent critical alarm clears within 10
seconds and there was a true warning alarm before-,
then -the system shall resume blood infusion and clear
the warning alarm- until ?

ReSA R1.3:If BP improves, then the system shall resume
blood infusion and clear the warning alarm
R1.3.ReSA: <If BP improves,>conditional <the sys-
tem shall resume blood infusion and clear the warning
alarm>compound

Kamalrudin
et al.

S2.2: The system shall use the authenticators to validate
the source of the BP value
S2.2.Kamal: <The system>subject

<shall authenticate>verb <the BP
value>object <using>Security−keyword <an
authenticator>security−mechanism <to validate the
source of the BP value>adjectivephrase

AMAN-DA S4.1.1: A known-good cryptographic algorithm shall be
used to implement authentication.
S4.1.1.AMAN-DA: <The system>agent

<shall><implement >action < authentication>asset

<using a known-good cryptographic algorithm
>additionalinformation

the above templates in Figure 1. A relationship between two
templates means that the target (target of the arrow) template
has been considered or studied when constructing the source
template (source of the arrow). The benefit of having such

a taxonomy is to avoid repeating already included templates
when building new requirement templates. The taxonomy
categorizes the templates and guidelines between controlled-
natural languages and templates. Then, each category deter-
mines the type of requirements that can be represented by each
template (functional, non-functional, or security requirements).
There are also two types of templates identified in the tax-
onomy, templates for requirements description and templates
for System Requirements Specification (SRS) documents, as
shown in the legend of Figure 1. For example, as we have
mentioned in Section III, Mazo et al.’s template integrates
some aspects of the Rupp et al. and EARS templates. It is
evident through the example given in Table II that the syntax of
the requirement formulated with the Mazo et al.’s template is
similar to the requirement reformulated with the Rupp et al.’s
template. Both requirements are composed of a condition, a
system name, a priority keyword, an action, and an object. This
similarity is described in Figure 1 by the relationship between
Mazo et al.’s template (source) and the EARS and Rupp et
al. templates (targets). This relationship indicates that Mazo
et al.’s template already respects and integrates the concepts,
quality attributes, and good practices from Rupp et al. and
EARS. Thus, it is unnecessary to reconsider them when using
the Mazoet al.’s template, which reduces the time and resource
cost.

V. CONCLUSION

System security has become a very critical issue to handle
at all stages of system design, starting from the requirements
specification stage. To guide and simplify this stage, sev-
eral requirements templates have been proposed. We have
discussed the concepts, attributes, and good practices and
examined these templates in Section II. Then, in Section III,
we re-specified some requirements of the Blood Infusion Pump
System using the templates found. We could categorize the
templates and guidelines according to different characteristics
in this process. However, most of these templates were built
based on other templates, where they integrate the concepts,
quality attributes, and good practices of others. With the
categorization of these templates and the identification of the
sources of each template, we were able to create a taxonomy.
The taxonomy presented in Section IV aims to avoid the
repeated study of source templates which is a loss of research
hours and resources. We intend to use this taxonomy as a
baseline to create a new security requirements specification
template where we can identify, using the taxonomy, the
templates we can base our new template on while avoiding
re-studying already integrated templates.

ACKNOWLEDGMENT

We thank the French DGA (Direction Générale de
l’Armement), the European Union, and the Spanish Govern-
ment for supporting this research. This work was supported
by the project Data-pl funded by FEDER/Ministry of Science
and Innovation — State Research Agency; the COPERNICA



Fig. 1. Requirements templates and guidelines taxonomy.

(P20 01224) and METAMORFOSIS (FEDER US-1381375)
projects funded by Junta de Andalucı́a.

REFERENCES

[1] C. Denger, D. M. Berry, and E. Kamsties, “Higher quality requirements
specifications through natural language patterns,” Proceedings 2003
Symposium on Security and Privacy, pp. 80–90, 2003.

[2] F. Dalpiaz, I. Schalk, and G. Lucassen, Pinpointing Ambiguity and In-
completeness in Requirements Engineering via Information Visualization
and NLP, 03 2018, pp. 119–135.

[3] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, “Easy approach
to requirements syntax (ears),” in Proceedings of Requirements Engi-
neering Conference, 2009. RE ’09. 17th IEEE International. United
States: IEEE, Nov. 2009, pp. 317–322, 2009 17th IEEE International
Requirements Engineering Conference ; Conference date: 31-08-2009
Through 04-09-2009.

[4] N. Fuchs and R. Schwitter, “Attempto controlled english (ace),” CoRR,
vol. cmp-lg/9603003, 03 1996.

[5] S. K. Nayak, R. A. Khan, and M. R. Beg, “A comparative template for
reliable requirement specification,” International Journal of Computer
Applications, vol. 14, no. 2, pp. 27–30, 2011.

[6] A. van Renssen, “Gellish: an information representation language,
knowledge base and ontology,” ESSDERC 2003. Proceedings of the 33rd
European Solid-State Device Research - ESSDERC ’03 (IEEE Cat. No.
03EX704), pp. 215–228, 2003.

[7] C. Rupp, M. Simon, and F. Hocker, “Requirements engineering und
management,” HMD Praxis der Wirtschaftsinformatik, vol. 46, pp. 94–
103, 06 2014.

[8] R. Mazo, C. M. Z. Jaramillo, P. Vallejo, and J. M. Medina, “Towards
a new template for the specification of requirements in semi-structured
natural language,” J. Softw. Eng. Res. Dev., vol. 8, p. 3, 2020.

[9] Y. U. Pabuccu, I. Yel, A. B. Helvacioglu, and B. N. Asa, “The require-
ment cube: A requirement template for business, user, and functional
requirements with 5w1h approach,” International Journal of Information
System Modeling and Design (IJISMD), vol. 13, no. 1, pp. 1–18, 2022.

[10] M. Esser and P. Struss, “Obtaining models for test generation from
natural-language-like functional specifications,” pp. 75–82, 2007.

[11] N. Mahmud, C. Seceleanu, and O. Ljungkrantz, “Resa tool: Structured
requirements specification and sat-based consistency-checking,” in 2016
Federated Conference on Computer Science and Information Systems
(FedCSIS), 2016, pp. 1737–1746.

[12] A. Toval, J. Nicolás, B. Moros, and F. Garcı́a, “Requirements reuse
for improving information systems security: a practitioner’s approach,”
Requirements Engineering, vol. 6, no. 4, pp. 205–219, 2002.

[13] D. Firesmith, “Specifying reusable security requirements.” J. Object
Technol., vol. 3, no. 1, pp. 61–75, 2004.

[14] M. Kamalrudin, N. Mustafa, and S. Sidek, “A template for writing
security requirements,” in Asia Pacific Requirements Engeneering Con-
ference. Springer, 2017, pp. 73–86.

[15] M. Lindvall, M. Diep, M. Klein, P. Jones, Y. Zhang, and E. Vasserman,
“Safety-focused security requirements elicitation for medical device
software,” in 2017 IEEE 25th International Requirements Engineering
Conference (RE), 2017, pp. 134–143.

[16] J. Robertson and S. Robertson, “Volere,” Requirements Specification
Templates, 2000.

[17] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J.-M. Bruel,
“Relax: Incorporating uncertainty into the specification of self-adaptive
systems,” in 2009 17th IEEE International Requirements Engineering
Conference, 2009, pp. 79–88.

[18] A. Souag, R. Mazo, C. Salinesi, and I. Comyn-Wattiau, “Using the
aman-da method to generate security requirements: a case study in the
maritime domain,” Requirements Engineering, vol. 23, no. 4, pp. 557–
580, 2018.


