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Rosana El Jurdi, Olivier Colliot

Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP,
Hôpital de la Pitié Salpêtrière, F-75013, Paris, France

ABSTRACT

An important issue in medical image processing is to be able
to estimate not only the performances of algorithms but also
the precision of the estimation of these performances. Report-
ing precision typically amounts to reporting standard-error of
the mean (SEM) or equivalently confidence intervals. How-
ever, this is rarely done in medical image segmentation stud-
ies. In this paper, we aim to estimate what is the typical con-
fidence that can be expected in such studies. To that end, we
first perform experiments for Dice metric estimation using
a standard deep learning model (U-net) and a classical task
from the Medical Segmentation Decathlon. We extensively
study precision estimation using both Gaussian assumption
and bootstrapping (which does not require any assumption on
the distribution). We then perform simulations for other test
set sizes and performance spreads. Overall, our work shows
that small test sets lead to wide confidence intervals (e.g. ∼8
points of Dice for 20 samples with σ ≃ 10).

Index Terms— Segmentation, Performance, Validation,
Statistical analysis, Confidence interval, Standard error.

1. INTRODUCTION

In medical imaging, it is not uncommon that sample sizes are
in the order of dozens of subjects, at best hundreds or thou-
sands. In 3D medical image segmentation, the size of the set
used to evaluate the performance may be even smaller than
for other medical imaging tasks as obtaining the ground truth
requires voxel-wise annotation by trained raters.

Intuitively, the precision of the estimation of the perfor-
mance depends on two factors: the variability of the perfor-
mance among the test set (the more variable, the less precise)
and the size of the test set (smaller sets will lead to lower pre-
cision and therefore larger confidence intervals). However,
papers usually report the average performance for different
metrics (e.g. average Dice) but not the precision 1 with which
this average performance is estimated. Such precision can be
provided in the form of confidence intervals or equivalently

1Throughout the paper, precision means how precise are the estimates of
the performance. It has nothing to do with the performance metric Precision
also known as Positive Predictive Value.

standard error of the mean (SEM) which are not often re-
ported. What is more often reported is the empirical standard
deviation over different folds of a cross-validation. While this
may qualitatively characterize the variability of the learning
procedure when the training and testing set change, it should
never be used to compute the SEM, since here n would be the
number of folds or splits, which is arbitrary and can be made
as large as one wants, thereby making the confidence interval
arbitrarily narrow. It is not even an unbiased estimate of the
standard deviation of the performance metric [1].

Quantifying the precision of the estimation of the per-
formances thus requires an independent test set, on which
confidence intervals or SEM are reported. Since this is not
typically done in medical image segmentation papers, one
may ask the following question. What precision can be ex-
pected for a typical sample size? How trustworthy are the av-
erage performance estimates (for instance Dice coefficients)
reported in medical image segmentation papers?

Surprisingly, this question has been little studied in med-
ical imaging. In the case of a different task, namely image
classification, it is necessary to have large sample sizes for a
precise estimation of the accuracy (typically 10,000 samples
to achieve a 1%-wide confidence interval given an accuracy
of about 90% − 95%) [2, 3]. However, to the best of our
knowledge, this is not widely known in the case of segmen-
tation. We hypothesize that the test size needed to achieve
a given precision is lower than for classification due to the
continuous nature of performance measures [4].

Our objective is to study the precision that can be expected
in 3D medical image segmentation for typical test set sizes.
We first conduct experiments using a standard deep learning
network applied to a classical segmentation task from the Seg-
mentation Decathlon Challenge [5] in order to estimate confi-
dence intervals which are obtained for variable test set sizes.
We then perform simulations for other sizes and spreads. We
insist that the aim of the present paper is not to propose a
new segmentation methodology. Instead, the main aims are
to provide information regarding the confidence intervals that
can typically be expected in medical image segmentation and
to raise awareness of the community on this important issue.
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2. OVERVIEW

Our aim is to provide confidence intervals (or standard-errors)
for the mean of a given performance metric for different test
set sizes and different spreads (standard deviation) of the per-
formance. If the performance metric follows a Gaussian dis-
tribution, one can obtain those values as follows:

SEM =
σ√
n

CI = [µ− 1.96× SEM, µ+ 1.96× SEM]
(1)

where µ denotes the mean, σ the standard-deviation, n the
test set size, SEM the standard error of the mean and CI the
95% confidence interval. In the following, for conciseness,
we will also denote the width of CI = [a, b] as w = b− a.

One does not know a priori if using Equations 1 is valid
for a given performance metric. On the other hand, in the ab-
sence of assumption on the distribution of the metric, one can
use bootstrapping to estimate SEM and CI [6]. In Section 3,
we will perform experiments in order: i) to verify the valid-
ity of using Equations 1 by comparing the estimates obtained
using these equations to those using bootstrapping; ii) obtain
empirical estimates of µ and σ; iii) study the effect of using
subsamples of reduced size.

In Section 4, we will perform simulations using Equa-
tions 1 to study how the precision varies when varying the
test set size and performance variability (as measured by σ).

3. EXPERIMENTS

3.1. Dataset and segmentation method

We used the Hippocampus dataset from the Medical De-
cathlon challenge [5], composed of 260 3D MR images. The
task is to segment the anterior and posterior parts of the hip-
pocampus. For evaluation, we merged the two regions (in
prediction and ground-truth respectively) and considered the
hippocampus as a whole. From the 260 samples, 100 patients
were randomly selected for training, 50 for validation and the
remaining 110 samples constituted the test set.

For the segmentation, we used a U-net type network [7].
Note that our aim is not to achieve the highest possible seg-
mentation scores or to propose a novelty in the segmentation
method but rather to obtain typical performances. We thus re-
lied on a standard approach. We treat a 3D MRI as a sequence
of 2D images and used a 2D architecture. At inference, we
predict for each slice independently then stack the slices be-
longing to the same patient together to form a 3D-volume
prediction. The architecture is a 3-stage structure composed
of convolutional and de-convolutional blocks, bottleneck and
skip connections. An ensemble of convolutional and batch
normalization layers constitutes the encoder part. Each stage
within the decoder path is composed of 2 consecutive convo-
lutional blocks followed by an upsampling layer. The bottle-
neck is composed of 2 convolutional blocks separated by a

residual block [8]. The architecture has been used in previous
publications [9, 10]. The optimizer was Adam, the learning
rate was 0.001 and the batch size was 8. The learning rate was
halved if the validation performances did not improve over 20
epochs as proposed by [9]. Note that we used the standard
generalized Dice loss [11]. The model was trained over 500
epochs. We performed a three-fold cross-validation with the
150 patients of the training/validation sets and selected the
best model across these three folds. Note that the test set was
left untouched and was never used at any stage for training,
model selection or architecture/parameter optimization. To
evaluate the performance, we computed the Dice coefficient
in % 2 for the whole hippocampus (thus merging anterior and
posterior parts before computing the metric).

The code used to generate the results is available online 3

Fig. 1: Histogram of Dice accuracy over the entire test set.
It is shown together with a kernel density estimation (KDE)
which smoothes the observations with a Gaussian kernel.

3.2. Precision on the whole test set

We first studied the precision of performance estimates using
the maximum test set size. The distribution of Dice values
over the test set is shown in Figure 1. One can observe that
the Gaussian assumption is not unreasonable despite under-
lying outliers and skewness. More importantly, we will now
compare estimates based on this assumptions to correspond-
ing non-parametric bootstrap estimates.

We first compute µ, σ, SEM and w using Equations 1.
We then compute their bootstrap counterparts µ∗, SEM∗,
w∗ as follows 4. Given a test set of size n, M = 15000

2Performance metric was computed using this code: https://
github.com/deepmind/surface-distance

3https://github.com/rosanajurdi/SegVal/tree/
ISBI2023

4Throughout the paper, the bootstrap estimate of a given x is always de-
noted as x∗
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n µ σ SEM w µ∗ SEM∗ w∗

n = 110 80.70 10.75 1.02 4.02 80.70 1.02 3.99

Table 1: Results on the full test set (n = 110). µ and σ are the empirical mean and standard deviation of the Dice coefficient
across all patients in the test set. SEM is the standard error of the mean and w is the width of the 95% confidence interval
calculated via Equations 1. SEM∗, µ∗ and w∗ are the values obtained via Bootstrapping.

Subsample size k µk σk SEMk wk µ∗
k SEM∗

k w∗
k

k = 10 81.01 ± 3.04 8.17 ± 4.75 2.58 ± 1.5 10.13 ± 5.88 81.01 ± 3.04 2.59 ± 1.51 9.86 ± 5.62
k= 20 80.61 ± 2.16 9.96 ± 3.74 2.23 ± 0.84 8.73 ± 3.28 80.61 ± 2.16 2.23 ± 0.84 8.61 ± 3.21
k= 30 80.63 ± 1.6 10.36 ± 2.94 1.89 ± 0.54 7.41 ± 2.1 80.64 ± 1.6 1.89 ± 0.54 7.34 ± 2.08
k= 50 80.95 ± 1.14 9.99 ± 2.1 1.41 ± 0.3 5.54 ± 1.16 80.95 ± 1.14 1.41 ± 0.3 5.51 ± 1.15
k= 100 80.64 ± 0.32 10.78 ± 0.53 1.08 ± 0.05 4.22 ± 0.21 80.64 ± 0.31 1.08 ± 0.05 4.21 ± 0.21
k= 110 80.70 ± 0.0 10.75 ± 0.0 1.02 ± 0.0 4.02 ± 0.0 80.71 ± 0.01 1.02 ± 0.01 3.99 ± 0.03

Table 2: Results on subsamples of size k ≤ 110. Results are shown as mean ± std where mean and std are the mean and
standard-deviation over all the subsamples Sk,j of a given size k (k is fixed and j ∈ {1, . . . , 100}).

bootstrap samples of size n are drawn with replacement.
We denote a given bootstrap sample as S∗

m and its mean
as µ∗

m where m ∈ {1, . . . ,M}. The bootstrap mean µ∗ is
the mean of the bootstrap sample means µ∗

m. The standard
error of the mean µ∗ obtained via bootstrapping (SEM∗) is
the standard deviation of the means of all bootstrap samples:

SEM∗ =
√

1
M

∑M
m=1 (µ

∗
m − µ∗)

2. The 95% confidence
interval CI∗ = [a∗, b∗] is the set of values between the
2.5% and 97.5% percentiles of the sorted bootstrap means
{µ∗

1, µ
∗
2, . . . , µ

∗
m, . . . µ∗

M}. We finally define the width of the
confidence interval as w∗ = b∗ − a∗. The estimates using the
Gaussian assumption and the bootstrap are very close as can
be seen on Table 1.

3.3. Precision on subsamples of size k ≤ n = 110

We now study experimentally the relationship existing be-
tween the test set size and the precision of the estimation of
the segmentation performance. To that end, we draw subsam-
ples of variable size k ∈ K = {10, 20, 30, 50, 100, 110} from
the whole test set of size n. In order not to depend on a partic-
ular drawing (which may be lucky or unlucky), we repeat the
procedure 100 times for each k. We denote the subsamples as
(Sk,j) where k is the subsample size and j ∈ {1, . . . , 100} is
the index of a particular drawing.

We then proceed with the computations of the different
estimates based either on the Gaussian assumption or on the
bootstrap.

For the Gaussian assumption, we denote as µk,j =

1
k

∑k
l=1 Dj,k,l and σk,j =

√
1
k

∑k
l=1 (Dj,k,l − µk,j)

2 the
empirical mean and standard deviation for the subsample
Sk,j where Dj,k,l is the Dice coefficient of a given sub-
ject in the subsample Sk,j . Similarly, we use the notations
SEMk,j =

σk,j√
k

and wk,j = 2 ∗ 1.96 ∗ SEMk,j . We can

then study how these values vary across the 100 subsamples
of a given size k. To that end, we compute the average and
standard-deviation of µk,j , σk,j , SEMk,j and wk,j across the
different subsamples Sk,j for k fixed and j ∈ {1, . . . , 100}.
This provides the following estimates µk ± σµk

, σk ± σσk
,

SEMk ± σSEMk
and wk ± σwk

. The values are displayed in
Table 2. One can gather that, as the sample size increases, the
standard deviation and the standard error decrease.

Bootstrap estimations are performed as follows. For a
given subsample Sk,j of size k and index j, M = 15000
bootstrap samples of size k are drawn with replacement. We
denote a given bootstrap sample as S∗

k,j,m and its mean as
µ∗
k,j,m where m ∈ {1, . . . ,M} is the index of the mth boot-

strap sample of subsample Sk,j . The bootstrap mean µ∗
k,j

of Sk,j is the mean of the bootstrap sample means µ∗
k,j,m:

µ∗
k,j = 1

M

∑
m=1 µ

∗
k,j,m. The standard error of the mean

µ∗
k,j (denoted as SEM∗

k,j) obtained via bootstrapping is the
standard deviation of the means of all bootstrap samples of

subsample Sk,j : SEM∗
k,j =

√
1
M

∑M
m=1

(
µ∗
k,j,m − µ∗

k,j

)2

.

The 95% confidence interval of the sample Sk,j is denoted
as [a∗k,j , b

∗
k,j ] and is the set of values between the 2.5% and

97.5% percentile of the sorted bootstrap means of subsample
Sk,j . We finally define the width of the confidence interval
via bootstrapping as w∗

k,j = b∗k,j − a∗k,j . We study how these
values vary across the 100 samples of a given size k. To that
end, we compute the averages and the standard deviations of
µ∗
k,j , SEM∗

k,j and w∗
k,j across the different subsamples Sk,j

for k fixed and j ∈ {1, ..., 100}. This provides the following
estimates µ∗

k ± σµ∗
k
, SEM∗

k ± σSEM∗
k

and w∗
k ± σw∗

k
. Results

are shown in Table 2.

As for the whole test set, estimates using Equation 1 and
bootstrapping are very close across different subsample sizes.
As expected, precision decreases with the sample size.
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σ 2 5 8 10.75 12 15 18
SEM wk SEM wk SEM wk SEM wk SEM wk SEM wk SEM wk

k = 10 0.63 2.48 1.58 6.2 2.53 9.92 3.4 13.33 3.79 14.88 4.74 18.59 5.69 22.31
k = 20 0.45 1.75 1.12 4.38 1.79 7.01 2.4 9.43 2.68 10.52 3.35 13.15 4.02 15.78
k = 30 0.37 1.43 0.91 3.58 1.46 5.73 1.96 7.7 2.19 8.59 2.74 10.74 3.29 12.88
k = 50 0.28 1.11 0.71 2.77 1.13 4.43 1.52 5.96 1.7 6.65 2.12 8.32 2.55 9.98
k = 100 0.2 0.78 0.5 1.96 0.8 3.14 1.08 4.22 1.2 4.7 1.5 5.88 1.8 7.06
k = 200 0.14 0.55 0.35 1.39 0.57 2.22 0.76 2.98 0.85 3.33 1.06 4.16 1.27 4.99
k = 300 0.12 0.45 0.29 1.13 0.46 1.81 0.62 2.43 0.69 2.72 0.87 3.39 1.04 4.07
k = 500 0.09 0.35 0.22 0.88 0.36 1.4 0.48 1.89 0.54 2.1 0.67 2.63 0.8 3.16
k = 1000 0.06 0.25 0.16 0.62 0.25 0.99 0.34 1.33 0.38 1.49 0.47 1.86 0.57 2.23

Table 3: Simulation of SEMk and the width wk for different sizes k of the test set and for different values of σ. The gray
column with σ = 10.75 corresponds to the standard deviation found in the experimental section.

4. SIMULATIONS WITH A GAUSSIAN
DISTRIBUTION

In the previous section, we showed that estimates of SEM and
confidence intervals computed using either Equations 1 or the
bootstrap are in accordance. Given this, we now perform sim-
ulations using Equations 1 for more values of k (including in
particular larger test sets) and for different values of σ. Note
that this is independent of µ which, in itself, has no impact on
the SEM nor on the width of the CI (even though it is usually
observed that lower performing models, thus associated with
a lower value of µ, also have a more variable performance and
thus a larger value of σ). Results are displayed in Table 3.

Comparing the gray column in Table 3 to Table 1, one can
observe that both the standard error and the confidence inter-
val width are close to the previously obtained experimental
values (for k ≤ 100)). Nevertheless, the experimental values
are slightly lower than those of the simulation. As the value
of k increases, the gap between experimental and simulated
values decreases.

5. DISCUSSION

In this paper, we have provided elements regarding the preci-
sion with which segmentation performance can be estimated
in typical medical imaging studies. As hypothesized, the test
set size needed to obtain a given confidence interval is smaller
than in image classification. Typically, with 10,000 samples
for classification (for a high performing model with over 90%
accuracy), one obtains a 1.2%-wide CI. For our segmentation
experiments, such width is obtain with only about 1000 sam-
ples. For a 4%-wide CI, one needs about 1000 samples for
the aforementioned classification and about 100 samples for
segmentation. Of course, one needs to keep in mind that this
depends not only on the test sample size but also on σ of the
performance. For example for σ = 5, the 1%-wide CI would
then require between 300 and 500 samples.

Confidence intervals are rarely reported in medical im-

age segmentation papers. To illustrate this, we have con-
ducted a search for papers published in 2022 in IEEE Trans-
actions on Medical Imaging (IEEE TMI) dealing with seg-
mentation of 3D images. We found 51 papers containing
107 experiments (a given paper may include several exper-
iments). Only 71 (66%) of these experiments (correspond-
ing to 21 papers) were done on an independent test set, the
rest reporting cross-validation results on training/validation
sets. This is problematic for two reasons. First, the per-
formance on cross-validation results can lead to optimisti-
cally biased performances [12]. Moreover, they cannot be
used to estimate standard errors. For the experiments that
had an independent test set, the median size of the test set
was 21 (minimum: 4, mean: 61.5, maximum: 697). In light
of our experiments, it is not unreasonable that the associated
confidence intervals will often be wide (typically between 9
and 10 for a test set with 20 samples). Finally, of the 21
papers that adopted an independent test set, only 3 of them
(amounting to 6% of the 51 surveyed papers) reported con-
fidence intervals or standard-error [13, 14, 15]. Note that 11
other papers used statistical testing to compare different ap-
proaches even though they did not provide confidence inter-
vals [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26].

Our study has the following limitations. First, we stud-
ied only one dataset. Second, we used only one segmentation
model. Future work would need to assess other models and
datasets, in particular to see which is the typical range of val-
ues that can be expected for σ. Second, it was restricted to the
Dice performance metric and it would be interesting to study
if the same observations hold for other metrics (e.g. Haus-
dorff distance, volume error. . . ).

Overall, the experiments presented in our paper show the
importance of reporting confidence intervals on independent
test sets and that, in general, studies with small test sets cannot
claim accurate estimation of the performances. We believe
that it is an important issue on which the community should
focus.
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