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ABSTRACT

This paper considers the analysis of bivariate signals using com-
plex Singular Spectrum Analysis (SSA). It introduces a pseudo-
correlation based criterion in the grouping step of complex SSA.
The advantage of using pseudo-correlation rather than correlation
measures when analyzing polarized signals with complex SSA is
demonstrated theoretically. This criterion is shown to be effective
to extract bivariate signals modeled as particular complex Linear
Recurrence Relations (LRR) of order 2. These elementary complex
bricks offer a high interpretability in terms of polarization. Illustra-
tion of the proposed grouping technique is made through polarized
component extraction on a real-world data example.

Index Terms— Singular Spectrum Analysis, Bivariate Signals,
Polarization, Linear Recurrence Relation, Pseudo-Correlation crite-
rion

1. INTRODUCTION

Bivariate signals can be found in many fields such as optics 1], [2],
seismology [3], [4]], gravitational wave astrophysics [5}/6] or phys-
ical oceanography [7], 8] to name just a few. For such physical
applications, the notion of polarization plays a key role: it encodes
the geometry of oscillations in the 2D plane. More intuitively, it
can be seen as the signal trajectory in the complex plane. The anal-
ysis of the evolution of polarization with respect to time, space or
frequency enables many fundamental insights about the underlying
physics. As an example, Figure[T] shows a seismic bivariate signal:
while its two components have similar dynamic content, its trajec-
tory in the 2D plane takes the form of a slowly evolving ellipse.
Thus, it defines an elliptically polarized (bivariate) signal and reveals
the geophysical nature of the wave, in that case a Rayleigh wave. Re-
cent works [9,/10] have further shown that polarization has a general
relevance for the analysis and filtering of bivariate signals. However,
current approaches do not yield simple bivariate signal models that
have a straightforward interpretation in terms of polarization.

To this aim, this paper introduces an elementary discrete-time
bivariate signal model that enables interpretation in terms of polar-
ization. In this paper, the complex representation of a bivariate sig-
nal is used rather than its 2D real vector representation, as it allows
notably for direct definitions of amplitude and phase [[11,|{12]. To
construct the model, one considers rank-1 matrices obtained from
the complex-valued Hankel matrix built from a bivariate signal, with
the help of the Complex Singular Spectrum Analysis (SSA). Signals
obtained from rank-1 matrices are recombined into elementary com-
ponents interpretable polarization-wise. The main contribution of
this paper consists in the introduction of low-rank elementary polar-
ized components together with the proposition of a dedicated crite-
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Fig. 1: Bivariate signal example: seismic displacement along the
horizontal and vertical axes from the 1991 Solomon Islands Earth-
quake (normalized) available online [[13]].

rion to combine elementary polarized components obtained via the
SSA decomposition.

2. PRELIMINARIES

Notations. Vectors and matrices are denoted in bold lowercase and
uppercase letters, respectively. The complex conjugate of o € C is
denoted as @. The transpose conjugate of a matrix M is M and its
rank is given by rk M. Throughout the paper we use the complex
vector z € CV to denote a discrete bivariate signal of length N,
defined in terms of its real-valued components z1, z2 € RY such
that z[n] = z1[n] + iz2[n] forn = 0,..., N — 1 where i* = —1.
Complex SSA. Standard real-valued SSA is a well established uni-
variate time-series analysis tool that has been shown to provide ef-
ficient signal denoising or trend extraction methods [14]. It relies
on low-rank decomposition of Hankel matrix embeddings of time-
series through the use of the singular value decomposition (SVD). It
can be extended to complex and multivariate signals [[15]. We recall
below the different steps of complex SSA:

1. The signal z € CV is embedded into a Hankel matrix H
with a user-defined number of L rows,

2[0] 2[1] z[2] 2[K —1]
2[1] 2[2] T 2[K] Lok
H = z[2] ' 2[K +1] eCc™?,
z[L—1] z[L] z[L+1] z[N —1]
M

where K = N — L + 1.

2. Compute the rank-r truncated SVD H = > 7 H;, with
H; = oiuivj where o is the i singular value in descend-
ing order, u; and v; are the corresponding left and right
singular vectors.



3. Recover the 7 elementary components s; € C" by anti-
diagonal averaging of the rank-1 matrices H; € CE*X (we
will refer to it as the anti-diagonal averaging process). Pre-
cisely, the n™ term s;[n] is defined as the average of the n™
anti-diagonal of H ;.

4. The last step, known as the grouping step, consists in finding
a partition of the set of r elementary time-series {s; }1<i<r
to perform a given task, such as extracting trends or denois-
ing [[14]]. This is usually carried out by clustering analysis of
pairwise correlations between elementary components.

Compared to the classical SSA, the 3" step on anti-diagonal
averaging and the 4™ step on grouping are swapped. Working on
time-series rather than matrices leads to easier grouping.

3. THE CONSTRAINED LINEAR RECURRENCE
RELATION OF ORDER 2

3.1. Linear Recurrence Relation (LRR) models

As explained in [16], the SSA procedure is particularly adapted to
the analysis of signals defined by Linear Recurrence Relation (LRR)
models. It actually revolves around a central property of Hankel
matrices: for a proper choice of the window length L, if rk H =
r < min(L, K), the time-series generating H follows a LRR of
order r. Working with LRRs as elementary components of the SSA
makes it more amenable to further analysis and theoretical results
compared to data-driven approaches.
A complex-valued LRR of order r explicitly reads:

zin+r] =Xzln+r—1]+ Xezln+7r—2]+ ... + Arz[n], 2)

forany n € N, with \; € C for 1 <4 < 7. From @) with r = 1,
the following closed-form expression stands for a LRR of order 1:

z[n] = zo A", 3)
with Zg, A € C and A = Ay from (@). This is the most elementary
complex-valued LRR. It generates a rank-1 Hankel matrix.

3.2. Constrained LRR2

Of central interest in the sequel is a special type of second order
complex-valued LRR, denoted constrained LRR2. It is defined as
follows.

Definition 3.1. A constrained LRR2 is defined as:
z[n] = 2o A" + oA, 4)
with xo,yo € C,A € C\ R

This definition is the sum of two LRR1 with opposite arguments,
which means that the two complex time-series rotate in opposite di-
rections in the complex plane. It is derived from the following spe-
cial case of LRR2 equation:

2[n+2] = A+ Nzln + 1] = A z[n].

This highlights that a complex-valued LRR2 is constrained if and
only if the weights in the LRR equation (Z) obey the following:
A, d2 € R, A2 < 0and A¥ < —4),. Note that any LRR1 (@)
can be written as a constrained LRR2 by setting yo = 0 in {@). Only
constrained LRR2 are considered in the sequel.
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Fig. 2: Polarization interpretation of constrained LRR2. Two values
of A are shown: |A| = 1 (blue) and |A| < 1 (orange).

3.3. Polarization properties of constrained LRR2

Figure [2| depicts an example of a constrained LRR2 (4) with initial
conditions xg = e’il%, Yo = eiIZSTW. Two values of \ are shown,
of same argument arg A = 0.2 and different modulus |A| = 1 (blue
curve) and |A| = 0.98 (orange curve). A constrained LRR2 with
|[A| = 1 traces out an ellipse along time. This illustrates that con-
strained LRR2 are closely related to the trajectory in the 2D plane
of a polarized (bivariate) signal. The polarization ellipse is usually
characterized by four parameters [[17] depending only on z¢ and yo:

arg(zo) — arg(yo)

a=v2y/|xo? +[wl? = 5 :
5
g arg(eo) +arg(wo) ol — lyol ©
- I X - *
2 ol + [yol

Here a > 0 is the amplitude or size of the ellipse, ¢ € [0, 27) is
the initial phase, § € [—7, 7] is the orientation, giving the angle
between the major axis of the ellipse and the horizontal axis, and
x € [—7, ] is the ellipticity defining the shape of the ellipse. This
last parameter is related to a ratio between the minor and major axis
of the ellipse. For a value of x = 0, the ellipse is a line segment
whereas for x = +7 itis a circle. For any x in between it is an
ellipse. Those cases are called respectively linearly, circularly and
elliptically polarized. The sign of x also dictates the running di-
rection of the ellipse (positive is counter-clockwise and negative is
clockwise). When |\| < 1, the ellipse preserves its geometry, but its

amplitude decreases with time, as seen in Figure[2]

This example shows that constrained LRR2 (4)) have a straight-
forward interpretation in terms of polarization. Therefore, they ap-
pear as good candidates to form the elementary bricks in bivari-
ate signals decomposition problems. In particular, identifying such
components with complex SSA requires a dedicated grouping crite-
rion, described in the next section.

4. ANEW GROUPING CRITERION: THE
PSEUDO-CORRELATION

In the SSA procedure, the grouping step usually consists in grouping
the anti-diagonal averaged rank-1 components into sets correspond-
ing to interpretable signals. This is classically done using correlation
measures [14]. In this section we introduce the pseudo-correlation
as a way to identify constrained LRR2 in the SSA components. Let
@, y two vectors in CV and p(z, y) denotes their correlation coeffi-
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Fig. 3: Pseudo-correlation |p(u1, u2)| as defined in Theorem-as
a function of |yo| for a fixed zo = ¢'**®"and ¢, = 1.47. Left: fixed
phase of A (¢» = 0.4m) for a varying |A|. Right: fixed |A| = 0.98
for a varying phase ¢.

cient. Their pseudo-correlation p(x, y) is defined as:

SN afnlyln]
N el S

In the rest of this section we will discuss the advantages of this sim-
ilarity measure to identify constrained LRR2. One can see after the
second step of the SSA that the eigenvectors are by construction or-
thogonal, i.e., their correlation is zero, but their pseudo-correlation
can still be non-zero. Such non-vanishing pseudo-correlations re-
veal polarization information shared by these eigenvectors. Con-
sequently, a grouping criterion based on correlation can not guar-
antee to associate components forming polarized components while
pseudo-correlation has the ability to do so.

plx,y) = p(z,7) (©)

Hylnl?

4.1. Theoretical effectiveness of the pseudo-correlation

The rationale to use pseudo-correlation as a grouping criterion is that
the two rank-1 components of a constrained LRR2 z[n] = zoA™ and
y[n] = yoX" @) are perfectly pseudo-correlated, i.e., |5(, y)| = 1.
Then, if the SSA process is accurate enough, its output components
are close enough to the two LRR1 inputs and should also be strongly
pseudo-correlated. Theorem [4.1] allows us to quantify the pseudo-
correlation between the SSA singular vectors.

Theorem 4.1. Let z[n] = zoA™ + yo , forn = 0,..., N — 1,
be a constrained LRR2 signal as defined in {@). Then the pseudo-
correlation between w1 and ws (the first 2 left singular vectors ob-
tained in the second step of the SSA) reads

2 2
[yol)frc (A LRSI ()
with far(a) = oM =1 a®™, and

(DS (A + 2R (075 /2. (M) fx (V)]
L)) (S (IAD? = [ (N)I?)

(w1, u2)| = (Jzo|® —

= [(lzo|® + lyol*) fz
— Alzoyo*(fL(A)? -

Sketch of Proof. Following the method proposed in [14} p. 247],
we derive w; and w2 by computing the eigen-decomposition of a
carefully designed complex matrix of dimension r X 7, where r =
2 corresponds to the rank of the Hankel matrix in step 1 of SSA.
Straightforward computations yield their pseudo-correlation (7). [

Theorem can now be specialized for the limit values of the
ellipticity parameter  defined in (@).
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Fig. 4: Pairwise correlation (left) and pseudo-correlation (right) of
the first 10 SSA components s1, ..., S10 (N = 2048 and L = 512).
The original signal is a sum of five constrained LRR2 whose param-
eters |zo| and |yo| are uniformly drawn in [0; 10], |A| in [0.95; 1] and
arg A in [0; 7).

Corollary 4.1 (Circular polarization). Under the assumptions of
Theorem as |x| — %, one has

_ P
fL(AD?

Corollary [4.T] shows the effectiveness of the pseudo-correlation
when X is close to =7, i.e., for grouping elliptically or circularly
polarized components. In fact, for typical values of A € C\ R
with |A| & 1, the singular vectors are shown to be almost perfectly
pseudo-correlated (|p(w1, u2)| = 1) in case of (almost) circular po-
larization. These singular vectors are obtained in the second step of
the SSA. Then, after an anti-diagonal averaging, the output of the
third step of the SSA is s; and s2. But if w; and us are perfectly
pseudo-correlated, s; and s2 are perfectly pseudo-correlated as well.

|p(w1, uz)l e

Corollary 4.2 (linear polarization). Let s1 and sz be the first 2 com-
ponents obtained in the third step of SSA. Under the assumptions of
Theorem[.1) as x — 0, one has

|p(s1,82)| — |p(s1,82)],
x—0

where p(s1, 82) is the correlation between s1 and sa.

Corollary [.2] shows now that pseudo-correlation becomes
equivalent to the usual correlation criterion for linearly polarized
components. Note that correlation is already used as a standard
criterion for grouping the components associated with a linearly
polarized input signal such that a (real) monochromatic signal
z[n] o coswn as detailed in [[16]. Even if singular vectors are no
longer pseudo-correlated in case of linear polarization, both corre-
lations on the SSA components after anti-diagonal averaging can
be quite high. To decode the polarization information of the signal,
the correlation is only useful for linearly polarized signals. For
circularly and elliptically polarized signals, the pseudo-correlation
shows better performances while also being equivalent for linear
polarization.

4.2. Numerical effectiveness of the pseudo-correlation

Figure [3|depicts the pseudo-correlation as given in Theorem.T]and
Corollary .1| when |yo| — 0. As long as |zo| # |yo| and the bi-
variate signal is not degenerate (i.e., arg(\) # km) the modulus of
the pseudo-correlation is close to 1 most of the time. This illustrates
that it is a powerful criterion to group SSA components for ellipti-
cally polarized LRR2.

Figure [4] depicts pairwise correlations and pseudo-correlations
between the SSA components obtained for a sum of LLR?2 signals.
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Fig. 5: Pairwise correlation (left) and pairwise pseudo-correlation
(right) of the first twenty components of the SSA.

The oft-diagonal pairwise correlations do not reach significant val-
ues, making difficult the pairing of LRR2 components. In contrast
to that, the pseudo-correlation shows high pairwise values clearly al-
lowing to group them and recover polarized LRR2 signals. This also
illustrates that when the SSA singular vectors related to the original
LRR2 signals are pseudo-correlated, then the SSA components in
step 3 remain strongly pseudo-correlated.

5. EXPERIMENTAL RESULTS

An illustration of the ability of complex SSA with pseudo-correlation
criterion to extract polarized components from a real signal is pre-
sented. The bivariate signal to be analyzed is given in Figure m It
is a seismic recording from the 1991 Solomon Islands Earthquake,
already studied in [17H19] and the data can be found at [[13]. The
original signal is trivariate, but most of the energy is contained in a
2D plane, i.e., the bivariate signal from Figure[T} The data was re-
duced to the tremor between samples 7000 and 11000, meaning that
the length of the effectively processed signal is N = 4000. The win-
dow length of the SSA procedure is chosen as L = | 4| = 1000.
A rank of » = 20 was chosen for the SVD in step 1 (20 components
kept), which corresponds to about 96% of the original signal energy.

Figure[]presents the pairwise correlation and pseudo-correlation
between the outputs of the third step of the SSA. The correlation
map (left side of Figure |§1) does not exhibit clear potential pairings.
In contrast to that, strong pseudo-correlations (yellow dots on the
right side map of Figure[5) indicate that several pairs of components
can be grouped to form signals with polarization close to elliptical.
This also means that they can be grouped into components with ar-
guments rotating in opposite direction along time (known as rotary
components [[7,{12]]).

Extraction of the two most pseudo-correlated components, the
1* and the 12", leads to the bivariate signal presented in Figure
(as the other pairs of pseudo-correlated leading components have
similar characteristics they are not shown for space reasons). It is
the archetype of polarization component that can be obtained using
complex SSA and the pseudo-correlation based grouping method.
The elliptical polarization of this component can be seen on the left
panel of Figure[] It is a rank-2 polarized component, and provides
an approximation of the original signal that only contains partial in-
formation on the polarization of the signal.

In order to estimate more accurately the polarized part of the
signal, a rank-12 approximation was performed by summing the 6
most pseudo-correlated leading components (see Figure [5). The re-
sulting bivariate signal is displayed in Figure[7} It represents 75%
of the original signal RMS (Root Mean Square) and contains higher
polarization diversity. The residual signal, obtained after subtraction

of the rank-12 approximation from the original signal is displayed in
Figure[8] It consists in a combination of unpolarized signals that can
potentially be referred as noise.
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Fig. 6: 1" and 12™ components of the complex SSA grouped using
the pseudo-correlation criterion.
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Fig. 7: Rank-12 approximation of the original signal using complex
SSA and the pseudo-correlation criterion. Indexes of the grouped
pairs are: (1,12), (2,8), (3,14), (4,15), (5,17) and (6,20). See
pseudo-correlation map on the right-side of Figure El
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Fig. 8: Residual signal obtained from the subtraction of the rank-12
approximation (FigureEI) from the original signal (Figurem).

6. CONCLUDING REMARKS

This paper demonstrates the advantages of using a pseudo-correlation
criterion in the grouping step of the complex SSA pipeline. It allows
to provide low-rank polarized approximations of bivariate signals
and can perform polarized signal extraction and estimation in noisy
scenarios, with applicability to real-world data. The constrained
LRR?2 are rank-2 bricks allowing to approximate polarized signals.

Future works will intend to generalize the proposed approach to
analyze and process non-stationary polarized signals. This could be
done either by considering constrained LRR2 with time varying co-
efficients, or by developing the notion of sliding polarized complex
SSA, in the spirit of the methodology developed in [20] for non-
stationary real-valued signals.
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