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INTRODUCTION

Bivariate signals can be found in many fields such as optics [START_REF] Brosseau | Fundamentals of polarized light : a statistical optics approach[END_REF], [START_REF] Brown | Conjugate linear filtering[END_REF], seismology [START_REF] Samson | Pure states, polarized waves, and principal components in the spectra of multiple, geophysical time-series[END_REF], [START_REF] Pinnegar | Polarization analysis and polarization filtering of three-component signals with the time-frequency[END_REF], gravitational wave astrophysics [START_REF] Abbott | Observation of gravitational waves from a binary black hole merger[END_REF][START_REF] Flamant | Non-parametric characterization of gravitational-wave polarizations[END_REF] or physical oceanography [START_REF] Gonella | A rotary-component method for analyzing meteorological and oceanographic vector time series[END_REF], [START_REF] Thomson | Data analysis methods in physical oceanography[END_REF] to name just a few. For such physical applications, the notion of polarization plays a key role: it encodes the geometry of oscillations in the 2D plane. More intuitively, it can be seen as the signal trajectory in the complex plane. The analysis of the evolution of polarization with respect to time, space or frequency enables many fundamental insights about the underlying physics. As an example, Figure 1 shows a seismic bivariate signal: while its two components have similar dynamic content, its trajectory in the 2D plane takes the form of a slowly evolving ellipse. Thus, it defines an elliptically polarized (bivariate) signal and reveals the geophysical nature of the wave, in that case a Rayleigh wave. Recent works [START_REF] Flamant | Spectral analysis of stationary random bivariate signals[END_REF][START_REF] Flamant | A complete framework for linear filtering of bivariate signals[END_REF] have further shown that polarization has a general relevance for the analysis and filtering of bivariate signals. However, current approaches do not yield simple bivariate signal models that have a straightforward interpretation in terms of polarization.

To this aim, this paper introduces an elementary discrete-time bivariate signal model that enables interpretation in terms of polarization. In this paper, the complex representation of a bivariate signal is used rather than its 2D real vector representation, as it allows notably for direct definitions of amplitude and phase [START_REF] Mandic | Complex valued nonlinear adaptive filters: Noncircularity, widely linear and neural models[END_REF][START_REF] Schreier | Statistical signal processing of complex-valued data: the theory of improper and noncircular signals[END_REF]. To construct the model, one considers rank-1 matrices obtained from the complex-valued Hankel matrix built from a bivariate signal, with the help of the Complex Singular Spectrum Analysis (SSA). Signals obtained from rank-1 matrices are recombined into elementary components interpretable polarization-wise. The main contribution of this paper consists in the introduction of low-rank elementary polarized components together with the proposition of a dedicated crite- Fig. 1: Bivariate signal example: seismic displacement along the horizontal and vertical axes from the 1991 Solomon Islands Earthquake (normalized) available online [START_REF] Lilly | Jlab: A data analysis package for matlab[END_REF].

rion to combine elementary polarized components obtained via the SSA decomposition.

PRELIMINARIES

Notations. Vectors and matrices are denoted in bold lowercase and uppercase letters, respectively. The complex conjugate of α ∈ C is denoted as α. The transpose conjugate of a matrix M is M † and its rank is given by rk M . Throughout the paper we use the complex vector z ∈ C N to denote a discrete bivariate signal of length N , defined in terms of its real-valued components z1, z2

∈ R N such that z[n] = z1[n] + iz2[n] for n = 0, . . . , N -1 where i 2 = -1.
Complex SSA. Standard real-valued SSA is a well established univariate time-series analysis tool that has been shown to provide efficient signal denoising or trend extraction methods [START_REF] Golyandina | Analysis of time series structure, SSA and related techniques[END_REF]. It relies on low-rank decomposition of Hankel matrix embeddings of timeseries through the use of the singular value decomposition (SVD). It can be extended to complex and multivariate signals [START_REF] Golyandina | Multivariate and 2d extensions of singular spectrum analysis with the RSSA package[END_REF]. We recall below the different steps of complex SSA:

1. The signal z ∈ C N is embedded into a Hankel matrix H with a user-defined number of L rows,

H =            z[0] z[1] z[2] . . . z[K -1] z[1] z[2] . . . . . . z[K] z[2] . . . . . . . . . z[K + 1] . . . . . . . . . . . . . . . z[L -1] z[L] z[L + 1] . . . z[N -1]            ∈ C L×K , (1) 
where K = N -L + 1.

2. Compute the rank-r truncated SVD H = r i Hi, with Hi = σiuiv † i where σi is the i th singular value in descending order, ui and vi are the corresponding left and right singular vectors.

3. Recover the r elementary components si ∈ C N by antidiagonal averaging of the rank-1 matrices Hi ∈ C L×K (we will refer to it as the anti-diagonal averaging process). Precisely, the n th term si[n] is defined as the average of the n th anti-diagonal of Hi.

4. The last step, known as the grouping step, consists in finding a partition of the set of r elementary time-series {si} 1≤i≤r to perform a given task, such as extracting trends or denoising [START_REF] Golyandina | Analysis of time series structure, SSA and related techniques[END_REF]. This is usually carried out by clustering analysis of pairwise correlations between elementary components.

Compared to the classical SSA, the 3 rd step on anti-diagonal averaging and the 4 th step on grouping are swapped. Working on time-series rather than matrices leads to easier grouping.

THE CONSTRAINED LINEAR RECURRENCE

RELATION OF ORDER 2

Linear Recurrence Relation (LRR) models

As explained in [START_REF] Golyandina | Singular spectrum analysis with R[END_REF], the SSA procedure is particularly adapted to the analysis of signals defined by Linear Recurrence Relation (LRR) models. It actually revolves around a central property of Hankel matrices: for a proper choice of the window length L, if rk H = r ≤ min(L, K), the time-series generating H follows a LRR of order r. Working with LRRs as elementary components of the SSA makes it more amenable to further analysis and theoretical results compared to data-driven approaches.

A complex-valued LRR of order r explicitly reads:

z[n + r] = λ1z[n + r -1] + λ2z[n + r -2] + ... + λrz[n], (2) 
for any n ∈ N, with λi ∈ C for 1 ≤ i ≤ r. From (2) with r = 1, the following closed-form expression stands for a LRR of order 1:

z[n] = x0λ n , (3) 
with x0, λ ∈ C and λ = λ1 from (2). This is the most elementary complex-valued LRR. It generates a rank-1 Hankel matrix.

Constrained LRR2

Of central interest in the sequel is a special type of second order complex-valued LRR, denoted constrained LRR2. It is defined as follows.

Definition 3.1. A constrained LRR2 is defined as:

z[n] = x0λ n + y0λ n , (4) 
with x0, y0 ∈ C, λ ∈ C \ R.
This definition is the sum of two LRR1 with opposite arguments, which means that the two complex time-series rotate in opposite directions in the complex plane. It is derived from the following special case of LRR2 equation:

z[n + 2] = (λ + λ)z[n + 1] -|λ| 2 z[n].
This highlights that a complex-valued LRR2 is constrained if and only if the weights in the LRR equation ( 2) obey the following: λ1, λ2 ∈ R, λ2 < 0 and λ 2 1 < -4λ2. Note that any LRR1 (3) can be written as a constrained LRR2 by setting y0 = 0 in (4). Only constrained LRR2 are considered in the sequel. A constrained LRR2 with |λ| = 1 traces out an ellipse along time. This illustrates that constrained LRR2 are closely related to the trajectory in the 2D plane of a polarized (bivariate) signal. The polarization ellipse is usually characterized by four parameters [START_REF] Flamant | Time-frequency analysis of bivariate signals[END_REF] depending only on x0 and y0:

a = √ 2 |x0| 2 + |y0| 2 , φ = arg(x0) -arg(y0) 2 , θ = arg(x0) + arg(y0) 2 , tan χ = |x0| -|y0| |x0| + |y0| . (5) 
Here a ≥ 0 is the amplitude or size of the ellipse, φ

∈ [0, 2π) is the initial phase, θ ∈ [-π 2 , π 2 ]
is the orientation, giving the angle between the major axis of the ellipse and the horizontal axis, and χ ∈ [-π 4 , π 4 ] is the ellipticity defining the shape of the ellipse. This last parameter is related to a ratio between the minor and major axis of the ellipse. For a value of χ = 0, the ellipse is a line segment whereas for χ = ± π 4 it is a circle. For any χ in between it is an ellipse. Those cases are called respectively linearly, circularly and elliptically polarized. The sign of χ also dictates the running direction of the ellipse (positive is counter-clockwise and negative is clockwise). When |λ| < 1, the ellipse preserves its geometry, but its amplitude decreases with time, as seen in Figure 2.

This example shows that constrained LRR2 (4) have a straightforward interpretation in terms of polarization. Therefore, they appear as good candidates to form the elementary bricks in bivariate signals decomposition problems. In particular, identifying such components with complex SSA requires a dedicated grouping criterion, described in the next section.

A NEW GROUPING CRITERION: THE PSEUDO-CORRELATION

In the SSA procedure, the grouping step usually consists in grouping the anti-diagonal averaged rank-1 components into sets corresponding to interpretable signals. This is classically done using correlation measures [START_REF] Golyandina | Analysis of time series structure, SSA and related techniques[END_REF]. In this section we introduce the pseudo-correlation as a way to identify constrained LRR2 in the SSA components. Let x, y two vectors in C N and ρ(x, y) denotes their correlation coeffi- cient. Their pseudo-correlation ρ(x, y) is defined as:

ρ(x, y) = ρ(x, y) = N -1 n=0 x[n]y[n] N -1 n=0 |x[n]| 2 N -1 n=0 |y[n]| 2 . ( 6 
)
In the rest of this section we will discuss the advantages of this similarity measure to identify constrained LRR2. One can see after the second step of the SSA that the eigenvectors are by construction orthogonal, i.e., their correlation is zero, but their pseudo-correlation can still be non-zero. Such non-vanishing pseudo-correlations reveal polarization information shared by these eigenvectors. Consequently, a grouping criterion based on correlation can not guarantee to associate components forming polarized components while pseudo-correlation has the ability to do so.

Theoretical effectiveness of the pseudo-correlation

The rationale to use pseudo-correlation as a grouping criterion is that the two rank-1 components of a constrained LRR2 x[n] = x0λ n and y[n] = y0λ n (4) are perfectly pseudo-correlated, i.e., |ρ(x, y)| = 1.

Then, if the SSA process is accurate enough, its output components are close enough to the two LRR1 inputs and should also be strongly pseudo-correlated. Theorem 4.1 allows us to quantify the pseudocorrelation between the SSA singular vectors.

Theorem 4.1. Let z[n] = x0λ n + y0λ n , for n = 0, . . . , N -1, be a constrained LRR2 signal as defined in (4). Then the pseudocorrelation between u1 and u2 (the first 2 left singular vectors obtained in the second step of the SSA) reads

|ρ(u1, u2)| = (|x0| 2 -|y0| 2 )fK (|λ|) f L (|λ|) 2 -|f L (λ)| 2 δ , (7) 
with fM (a) = M -1 m=0 a 2m , and

δ = (|x0| 2 + |y0| 2 )fL(|λ|)fK (|λ|) + 2ℜ(x0y0fL(λ)fK (λ)) 2 -4|x0y0| 2 (fL(|λ|) 2 -|fL(λ)| 2 )(fK (|λ|) 2 -|fK (λ)| 2 ).
Sketch of Proof. Following the method proposed in [14, p. 247], we derive u1 and u2 by computing the eigen-decomposition of a carefully designed complex matrix of dimension r × r, where r = 2 corresponds to the rank of the Hankel matrix in step 1 of SSA. Straightforward computations yield their pseudo-correlation [START_REF] Gonella | A rotary-component method for analyzing meteorological and oceanographic vector time series[END_REF].

Theorem 4.1 can now be specialized for the limit values of the ellipticity parameter χ defined in [START_REF] Abbott | Observation of gravitational waves from a binary black hole merger[END_REF]. 

|ρ(u1, u2)| ----→ |χ|→ π 4 1 - |fL(λ)| 2 fL(|λ|) 2 .
Corollary 4.1 shows the effectiveness of the pseudo-correlation when χ is close to ± π 4 , i.e., for grouping elliptically or circularly polarized components. In fact, for typical values of λ ∈ C \ R with |λ| ≈ 1, the singular vectors are shown to be almost perfectly pseudo-correlated (|ρ(u1, u2)| ≈ 1) in case of (almost) circular polarization. These singular vectors are obtained in the second step of the SSA. Then, after an anti-diagonal averaging, the output of the third step of the SSA is s1 and s2. But if u1 and u2 are perfectly pseudo-correlated, s1 and s2 are perfectly pseudo-correlated as well. where ρ(s1, s2) is the correlation between s1 and s2. Corollary 4.2 shows now that pseudo-correlation becomes equivalent to the usual correlation criterion for linearly polarized components. Note that correlation is already used as a standard criterion for grouping the components associated with a linearly polarized input signal such that a (real) monochromatic signal z[n] ∝ cos ωn as detailed in [START_REF] Golyandina | Singular spectrum analysis with R[END_REF]. Even if singular vectors are no longer pseudo-correlated in case of linear polarization, both correlations on the SSA components after anti-diagonal averaging can be quite high. To decode the polarization information of the signal, the correlation is only useful for linearly polarized signals. For circularly and elliptically polarized signals, the pseudo-correlation shows better performances while also being equivalent for linear polarization.

Numerical effectiveness of the pseudo-correlation

Figure 3 depicts the pseudo-correlation as given in Theorem 4.1 and Corollary 4.1 when |y0| → 0. As long as |x0| ̸ = |y0| and the bivariate signal is not degenerate (i.e., arg(λ) ̸ = kπ) the modulus of the pseudo-correlation is close to 1 most of the time. This illustrates that it is a powerful criterion to group SSA components for elliptically polarized LRR2.

Figure 4 depicts pairwise correlations and pseudo-correlations between the SSA components obtained for a sum of LLR2 signals. The off-diagonal pairwise correlations do not reach significant values, making difficult the pairing of LRR2 components. In contrast to that, the pseudo-correlation shows high pairwise values clearly allowing to group them and recover polarized LRR2 signals. This also illustrates that when the SSA singular vectors related to the original LRR2 signals are pseudo-correlated, then the SSA components in step 3 remain strongly pseudo-correlated.

EXPERIMENTAL RESULTS

An illustration of the ability of complex SSA with pseudo-correlation criterion to extract polarized components from a real signal is presented. The bivariate signal to be analyzed is given in Figure 1. It is a seismic recording from the 1991 Solomon Islands Earthquake, already studied in [START_REF] Flamant | Time-frequency analysis of bivariate signals[END_REF][START_REF] Olhede | Polarization phase relationships via multiple Morse wavelets. I. Fundamentals[END_REF][START_REF] Lilly | Multiwavelet spectral and polarization analyses of seismic records[END_REF] and the data can be found at [START_REF] Lilly | Jlab: A data analysis package for matlab[END_REF]. The original signal is trivariate, but most of the energy is contained in a 2D plane, i.e., the bivariate signal from Figure 1. The data was reduced to the tremor between samples 7000 and 11000, meaning that the length of the effectively processed signal is N = 4000. The window length of the SSA procedure is chosen as L = ⌊ N 4 ⌋ = 1000. A rank of r = 20 was chosen for the SVD in step 1 (20 components kept), which corresponds to about 96% of the original signal energy.

Figure 5 presents the pairwise correlation and pseudo-correlation between the outputs of the third step of the SSA. The correlation map (left side of Figure 5) does not exhibit clear potential pairings. In contrast to that, strong pseudo-correlations (yellow dots on the right side map of Figure 5) indicate that several pairs of components can be grouped to form signals with polarization close to elliptical. This also means that they can be grouped into components with arguments rotating in opposite direction along time (known as rotary components [START_REF] Gonella | A rotary-component method for analyzing meteorological and oceanographic vector time series[END_REF][START_REF] Schreier | Statistical signal processing of complex-valued data: the theory of improper and noncircular signals[END_REF]).

Extraction of the two most pseudo-correlated components, the 1 st and the 12 th , leads to the bivariate signal presented in Figure 6 (as the other pairs of pseudo-correlated leading components have similar characteristics they are not shown for space reasons). It is the archetype of polarization component that can be obtained using complex SSA and the pseudo-correlation based grouping method. The elliptical polarization of this component can be seen on the left panel of Figure 6. It is a rank-2 polarized component, and provides an approximation of the original signal that only contains partial information on the polarization of the signal.

In order to estimate more accurately the polarized part of the signal, a rank-12 approximation was performed by summing the 6 most pseudo-correlated leading components (see Figure 5). The resulting bivariate signal is displayed in Figure 7. It represents 75% of the original signal RMS (Root Mean Square) and contains higher polarization diversity. The residual signal, obtained after subtraction of the rank-12 approximation from the original signal is displayed in Figure 8. It consists in a combination of unpolarized signals that can potentially be referred as noise. Fig. 7: Rank-12 approximation of the original signal using complex SSA and the pseudo-correlation criterion. Indexes of the grouped pairs are: (1, 12), (2, 8), [START_REF] Samson | Pure states, polarized waves, and principal components in the spectra of multiple, geophysical time-series[END_REF][START_REF] Golyandina | Analysis of time series structure, SSA and related techniques[END_REF], [START_REF] Pinnegar | Polarization analysis and polarization filtering of three-component signals with the time-frequency[END_REF][START_REF] Golyandina | Multivariate and 2d extensions of singular spectrum analysis with the RSSA package[END_REF], [START_REF] Abbott | Observation of gravitational waves from a binary black hole merger[END_REF][START_REF] Flamant | Time-frequency analysis of bivariate signals[END_REF] and [START_REF] Flamant | Non-parametric characterization of gravitational-wave polarizations[END_REF][START_REF] Harmouche | The Sliding Singular Spectrum Analysis: A Data-Driven Nonstationary Signal Decomposition Tool[END_REF]. See pseudo-correlation map on the right-side of Figure 5. Fig. 8: Residual signal obtained from the subtraction of the rank-12 approximation (Figure 5) from the original signal (Figure 1).

CONCLUDING REMARKS

This paper demonstrates the advantages of using a pseudo-correlation criterion in the grouping step of the complex SSA pipeline. It allows to provide low-rank polarized approximations of bivariate signals and can perform polarized signal extraction and estimation in noisy scenarios, with applicability to real-world data. The constrained LRR2 are rank-2 bricks allowing to approximate polarized signals. Future works will intend to generalize the proposed approach to analyze and process non-stationary polarized signals. This could be done either by considering constrained LRR2 with time varying coefficients, or by developing the notion of sliding polarized complex SSA, in the spirit of the methodology developed in [START_REF] Harmouche | The Sliding Singular Spectrum Analysis: A Data-Driven Nonstationary Signal Decomposition Tool[END_REF] for nonstationary real-valued signals.
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 2 Fig. 2: Polarization interpretation of constrained LRR2. Two values of λ are shown: |λ| = 1 (blue) and |λ| < 1 (orange).
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 32 Figure 2 depicts an example of a constrained LRR2 (4) with initial conditions x0 = e -i π 12 , y0 = e i 15π 24 . Two values of λ are shown, of same argument arg λ = 0.2 and different modulus |λ| = 1 (blue curve) and |λ| = 0.98 (orange curve). A constrained LRR2 with |λ| = 1 traces out an ellipse along time. This illustrates that constrained LRR2 are closely related to the trajectory in the 2D plane of a polarized (bivariate) signal. The polarization ellipse is usually characterized by four parameters [17] depending only on x0 and y0:
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 3 Fig. 3: Pseudo-correlation |ρ(u1, u2)| as defined in Theorem 4.1 as a function of |y0| for a fixed x0 = e i0.6π and ϕy 0 = 1.4π. Left: fixed phase of λ (ϕ λ = 0.4π) for a varying |λ|. Right: fixed |λ| = 0.98 for a varying phase ϕ λ .
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 4 Fig. 4: Pairwise correlation (left) and pseudo-correlation (right) of the first 10 SSA components s1, . . . , s10 (N = 2048 and L = 512). The original signal is a sum of five constrained LRR2 whose parameters |x0| and |y0| are uniformly drawn in [0; 10], |λ| in [0.95; 1] and arg λ in [0; π).
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 41 Circular polarization). Under the assumptions of Theorem 4.1, as |χ| → π 4 , one has

Corollary 4 . 2 (

 42 linear polarization). Let s1 and s2 be the first 2 components obtained in the third step of SSA. Under the assumptions of Theorem 4.1, as χ → 0, one has |ρ(s1, s2)| ---→ χ→0 |ρ(s1, s2)|,
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 5 Fig. 5: Pairwise correlation (left) and pairwise pseudo-correlation (right) of the first twenty components of the SSA.
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 6 Fig.6: 1 st and 12 th components of the complex SSA grouped using the pseudo-correlation criterion.
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